References
Adler, A.S., Sinha, S., Kawahara, T.L., Zhang, J.Y., Segal, E., and Chang, H.Y. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev. 2007; 21: 3244–3257
Ahlqvist, K.J., Hämäläinen, R.H., Yatsuga, S., Uutela, M., Terzioglu, M., Götz, A., Forsström, S., Salven, P., Angers-Loustau, A., Kopra, O.H. et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 2012; 15: 100–109
Alavez, S., Vantipalli, M.C., Zucker, D.J., Klang, I.M., and Lithgow, G.J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature. 2011; 472: 226–229
Alers, S., Löffler, A.S., Wesselborg, S., and Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks.Mol. Cell. Biol. 2012; 32: 2–11
Ameur, A., Stewart, J.B., Freyer, C., Hagström, E., Ingman, M., Larsson, N.G., and Gyllensten, U. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet. 2011; 7: e1002028
Anisimov, V.N., Berstein, L.M., Popovich, I.G., Zabezhinski, M.A., Egormin, P.A., Piskunova, T.S., Semenchenko, A.V., Tyndyk, M.L., Yurova, M.N., Kovalenko, I.G., and Poroshina, T.E. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY). 2011; 3: 148–157
Armanios, M., Alder, J.K., Parry, E.M., Karim, B., Strong, M.A., and Greider, C.W. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am. J. Hum. Genet. 2009; 85: 823–832
Armanios, M. and Blackburn, E.H. The telomere syndromes. Nat. Rev. Genet. 2012; 13: 693–704
Bahar, R., Hartmann, C.H., Rodriguez, K.A., Denny, A.D., Busuttil, R.A., Dollé, M.E., Calder, R.B., Chisholm, G.B., Pollock, B.H., Klein, C.A., and Vijg, J. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006; 441: 1011–1014
Baker, D.J., Dawlaty, M.M., Wijshake, T., Jeganathan, K.B., Malureanu, L., van Ree, J.H., Crespo-Diaz, R., Reyes, S., Seaburg, L., Shapiro, V. et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat. Cell Biol. 2013; 15: 96–102DOI:
http://dx.doi.org/10.1038/ncb2643Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., and van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479: 232–236
Barzilai, N., Huffman, D.M., Muzumdar, R.H., and Bartke, A. The critical role of metabolic pathways in aging. Diabetes. 2012; 61: 1315–1322
Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444: 337–342
Begus-Nahrmann, Y., Lechel, A., Obenauf, A.C., Nalapareddy, K., Peit, E., Hoffmann, E., Schlaudraff, F., Liss, B., Schirmacher, P., Kestler, H. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat. Genet. 2009; 41: 1138–1143
Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A.M., Ayuso, E., Bosch, F., and Blasco, M.A. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012; 4: 691–704
Bjedov, I., Toivonen, J.M., Kerr, F., Slack, C., Jacobson, J., Foley, A., and Partridge, L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010; 11: 35–46
Blackburn, E.H., Greider, C.W., and Szostak, J.W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 2006; 12: 1133–1138
Blagosklonny, M.V. Aging: ROS or TOR. Cell Cycle. 2008; 7: 3344–3354
Blagosklonny, M.V. Rapamycin-induced glucose intolerance: hunger or starvation diabetes. Cell Cycle. 2011; 10: 4217–4224
Blasco, M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007; 3: 640–649
Blasco, M.A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 2007; 8: 299–309
Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A., and Greider, C.W. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997; 91: 25–34
Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998; 279: 349–352
Boonekamp, J.J., Simons, M.J., Hemerik, L., and Verhulst, S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell. 2013; 12: 330–332
Boulias, K. and Horvitz, H.R. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012; 15: 439–450
Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., Liu, Y., Zhang, D., Scadden, D.T., and Chen, D. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013; 3: 319–327
Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011; 477: 482–485
Burtner, C.R. and Kennedy, B.K. Progeria syndromes and ageing: what is the connection?. Nat. Rev. Mol. Cell Biol. 2010; 11: 567–578
Cabanillas, R., Cadiñanos, J., Villameytide, J.A., Pérez, M., Longo, J., Richard, J.M., Alvarez, R., Durán, N.S., Illán, R., González, D.J., and López-Otín, C. Néstor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am. J. Med. Genet. A. 2011; 155A: 2617–2625
Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cochemé, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., and Gems, D. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013; 153: 228–239
Calabrese, V., Cornelius, C., Cuzzocrea, S., Iavicoli, I., Rizzarelli, E., and Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Aspects Med. 2011; 32: 279–304
Calamini, B., Silva, M.C., Madoux, F., Hutt, D.M., Khanna, S., Chalfant, M.A., Saldanha, S.A., Hodder, P., Tait, B.D., Garza, D. et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 2012; 8: 185–196
Caldeira da Silva, C.C., Cerqueira, F.M., Barbosa, L.F., Medeiros, M.H., and Kowaltowski, A.J. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell. 2008; 7: 552–560
Calderwood, S.K., Murshid, A., and Prince, T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology. 2009; 55: 550–558
Campisi, J. and d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007; 8: 729–740
Cao, L., Li, W., Kim, S., Brodie, S.G., and Deng, C.X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 2003; 17: 201–213
Cao, K., Blair, C.D., Faddah, D.A., Kieckhaefer, J.E., Olive, M., Erdos, M.R., Nabel, E.G., and Collins, F.S. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J. Clin. Invest. 2011; 121: 2833–2844
Castello, L., Maina, M., Testa, G., Cavallini, G., Biasi, F., Donati, A., Leonarduzzi, G., Bergamini, E., Poli, G., and Chiarpotto, E. Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3K signaling pathways. Mech. Ageing Dev. 2011; 132: 305–314
Castilho, R.M., Squarize, C.H., Chodosh, L.A., Williams, B.O., and Gutkind, J.S. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell. 2009; 5: 279–289
Cerletti, M., Jang, Y.C., Finley, L.W., Haigis, M.C., and Wagers, A.J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell. 2012; 10: 515–519
Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’Connor, E.M., Cusack, S., Harris, H.M., Coakley, M., Lakshminarayanan, B., O’Sullivan, O. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488: 178–184
Colman, R.J., Anderson, R.M., Johnson, S.C., Kastman, E.K., Kosmatka, K.J., Beasley, T.M., Allison, D.B., Cruzen, C., Simmons, H.A., Kemnitz, J.W., and Weindruch, R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325: 201–204
Collado, M., Blasco, M.A., and Serrano, M. Cellular senescence in cancer and aging. Cell. 2007; 130: 223–233
Conboy, I.M., Conboy, M.J., Wagers, A.J., Girma, E.R., Weissman, I.L., and Rando, T.A. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005; 433: 760–764
Conboy, I.M. and Rando, T.A. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle. 2012; 11: 2260–2267
Chakkalakal, J.V., Jones, K.M., Basson, M.A., and Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature. 2012; 490: 355–360
Chen, C., Liu, Y., Liu, Y., and Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2009; 2: ra75
Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and Scadden, D.T. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000; 287: 1804–1808
Chiang, W.C., Ching, T.T., Lee, H.C., Mousigian, C., and Hsu, A.L. HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell. 2012; 148: 322–334
Davoli, T. and de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 2011; 27: 585–610
de Magalhães, J.P., Curado, J., and Church, G.M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging.Bioinformatics. 2009; 25: 875–881
de Magalhães, J.P., Finch, C.E., and Janssens, G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res. Rev. 2010; 9: 315–323
de Magalhães, J.P., Wuttke, D., Wood, S.H., Plank, M., and Vora, C. Genome-environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol. Rev. 2012; 64: 88–101
De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C.L., Munnich, A., Le Merrer, M., and Lévy, N. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003; 300: 2055
Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D.K., Solimando, L., and Goldman, R.D. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008; 22: 832–853
Deeks, S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med. 2011; 62: 141–155
Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995; 92: 9363–9367
Doles, J., Storer, M., Cozzuto, L., Roma, G., and Keyes, W.M. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 2012; 26: 2144–2153
Doonan, R., McElwee, J.J., Matthijssens, F., Walker, G.A., Houthoofd, K., Back, P., Matscheski, A., Vanfleteren, J.R., and Gems, D. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008; 22: 3236–3241
Durieux, J., Wolff, S., and Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011; 144: 79–91
Edgar, D., Shabalina, I., Camara, Y., Wredenberg, A., Calvaruso, M.A., Nijtmans, L., Nedergaard, J., Cannon, B., Larsson, N.G., and Trifunovic, A. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice.Cell Metab. 2009; 10: 131–138
Eisenberg, T., Knauer, H., Schauer, A., Büttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009; 11: 1305–1314
Eriksson, M., Brown, W.T., Gordon, L.B., Glynn, M.W., Singer, J., Scott, L., Erdos, M.R., Robbins, C.M., Moses, T.Y., Berglund, P. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003; 423: 293–298
Espada, J., Varela, I., Flores, I., Ugalde, A.P., Cadiñanos, J., Pendás, A.M., Stewart, C.L., Tryggvason, K., Blasco, M.A., Freije, J.M., and López-Otín, C. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 2008; 181: 27–35
Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., Lambert, P.D., Mataki, C., Elliott, P.J., and Auwerx, J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008; 8: 347–358
Fernandez-Marcos, P.J. and Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 2011; 93: 884S–890S
Flores, I., Cayuela, M.L., and Blasco, M.A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005; 309: 1253–1256
Florian, M.C., Dörr, K., Niebel, A., Daria, D., Schrezenmeier, H., Rojewski, M., Filippi, M.D., Hasenberg, A., Gunzer, M., Scharffetter-Kochanek, K. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012; 10: 520–530
Fontana, L., Partridge, L., and Longo, V.D. Extending healthy life span—from yeast to humans. Science. 2010; 328: 321–326
Forsberg, L.A., Rasi, C., Razzaghian, H.R., Pakalapati, G., Waite, L., Thilbeault, K.S., Ronowicz, A., Wineinger, N.E., Tiwari, H.K., Boomsma, D. et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am. J. Hum. Genet. 2012; 90: 217–228
Foukas, L.C., Bilanges, B., Bettedi, L., Pearce, W., Ali, K., Sancho, S., Withers, D.J., and Vanhaesebroeck, B. Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol. Med. 2013; 5: 563–571
Fraga, M.F. and Esteller, M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007; 23: 413–418
Freije, J.M. and López-Otín, C. Reprogramming aging and progeria. Curr. Opin. Cell Biol. 2012; 24: 757–764
Freund, A., Laberge, R.M., Demaria, M., and Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell. 2012; 23: 2066–2075
Fridell, Y.W., Hoh, M., Kréneisz, O., Hosier, S., Chang, C., Scantling, D., Mulkey, D.K., and Helfand, S.L. Increased uncoupling protein (UCP) activity in Drosophila insulin-producing neurons attenuates insulin signaling and extends lifespan. Aging (Albany NY). 2009; 1: 699–713
Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J.M., Bucci, G., Dobreva, M., Matti, V., Beausejour, C.M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 2012; 14: 355–365
Garcia-Cao, I., Song, M.S., Hobbs, R.M., Laurent, G., Giorgi, C., de Boer, V.C., Anastasiou, D., Ito, K., Sasaki, A.T., Rameh, L. et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012; 149: 49–62
Garinis, G.A., van der Horst, G.T., Vijg, J., and Hoeijmakers, J.H. DNA damage and ageing: new-age ideas for an age-old problem. Nat. Cell Biol. 2008; 10: 1241–1247
Gates, A.C., Bernal-Mizrachi, C., Chinault, S.L., Feng, C., Schneider, J.G., Coleman, T., Malone, J.P., Townsend, R.R., Chakravarthy, M.V., and Semenkovich, C.F. Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab. 2007; 6: 497–505
Gehrig, S.M., van der Poel, C., Sayer, T.A., Schertzer, J.D., Henstridge, D.C., Church, J.E., Lamon, S., Russell, A.P., Davies, K.E., Febbraio, M.A., and Lynch, G.S. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature. 2012; 484: 394–398
Gems, D. and Partridge, L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu. Rev. Physiol. 2013; 75: 621–644
Gillum, M.P., Kotas, M.E., Erion, D.M., Kursawe, R., Chatterjee, P., Nead, K.T., Muise, E.S., Hsiao, J.J., Frederick, D.W., Yonemitsu, S. et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011; 60: 3235–3245
Giralt, A. and Villarroya, F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem. J. 2012; 444: 1–10
Gonzalez-Suarez, I., Redwood, A.B., Perkins, S.M., Vermolen, B., Lichtensztejin, D., Grotsky, D.A., Morgado-Palacin, L., Gapud, E.J., Sleckman, B.P., Sullivan, T. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 2009; 28: 2414–2427
Gonzalo, S., Jaco, I., Fraga, M.F., Chen, T., Li, E., Esteller, M., and Blasco, M.A. DNA methyltransferases control telomere length and telomere recombination in mammalian cells.Nat. Cell Biol. 2006; 8: 416–424
Gorgoulis, V.G. and Halazonetis, T.D. Oncogene-induced senescence: the bright and dark side of the response. Curr. Opin. Cell Biol. 2010; 22: 816–827
Green, D.R., Galluzzi, L., and Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging.Science. 2011; 333: 1109–1112
Greer, E.L., Maures, T.J., Hauswirth, A.G., Green, E.M., Leeman, D.S., Maro, G.S., Han, S., Banko, M.R., Gozani, O., and Brunet, A. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans.Nature. 2010; 466: 383–387