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1. Abstract1

Technological substitutions play a major role in the research2

and development efforts of most modern industries. If timed3

and provisioned well, successful technology substitutions can4

provide significant market advantages to firms that have antic-5

ipated the demand correctly for emergent technologies. Con-6

versely, failure to commit to new technologies at the right time7

can have catastrophic consequences, making determining the8

likely substitution mode of critical strategic importance. With9

little available data, being able to identify at an early stage10

whether new technologies are appearing in response to per-11

ceived stagnation in existing technical developments, or as a12

result of pioneering leaps of scientific foresight, poses a signif-13

icant challenge.14

This paper combines bibliometric, pattern recognition, statis-15

tical, and data-driven approaches to develop a technology clas-16

sification model from historical datasets where literature evi-17

dence supports mode labelling. The resulting functional lin-18

ear regression model demonstrates robust predictive capabili-19

ties for the technologies considered, supporting the literature-20

based substitution framework applied, and providing evidence21

suggesting substitution modes can be recognised through auto-22

mated processing of patent data. Further, preliminary evidence23

suggests that classification can be achieved based on partial24

time series, implying that future extensions to real-time classifi-25

cations may be possible for decision-making in the early stages26

of research and development.27

Keywords:28

Technological substitutions, Patent bibliometrics, Pattern29

recognition, Classification, Technology Life Cycle, Emer-30

gence31

2. Introduction32

The introduction of new technologies into heavily regulated33

industries such as aerospace is often a very complex, time-34

consuming and expensive challenge that requires significant35

levels of research and development in order to ensure a success-36

ful technology substitution. This challenge is exacerbated when37

new technology options represent a fundamental shift away38

from well-established principles, as the risk and uncertainties39

involved increase significantly. This is currently the case in the40

anticipated transition from conventional turbojet aircraft archi-41

tectures to all new electric configurations, and equally for the42

adoption of technologies enabling mass manufacturing and cus-43

tomisation processes in aerospace production lines. At the same44

time, the opportunities associated with these innovations may45

be sufficient to warrant decision-makers adopting new techno-46

logical approaches. In some cases, new technologies arise even47

while existing technologies are still undergoing further develop-48

ments, and have not yet reached the peak of their performance.49

This further complicates the decision for enterprises, as devot-50

ing significant resources to a new technological approach that51

may or may not out-perform the old one presents great commer-52

cial risk. In this regard it is beneficial to be able to identify early53

on whether a new technology is likely to have scope for devel-54

opment beyond that of the current dominant technology, and55

commercially, when the tipping point might occur where the56

new approach would become the industry ‘mainstream’ tech-57

nology option.58

This paper examines historical cases where emerging tech-59

nologies have been presumed in advance to have development60

opportunities beyond those of pre-existing technologies, sub-61

sequently leading to transitions occurring before performance62

of the existing technology has stagnated. Based on conceptual63

models published previously that consider the mode of techno-64

logical substitution and the relation to both scientific and tech-65

nological developments, this paper looks to test whether sepa-66

rate bibliometric measures of scientific and technological devel-67

opment can be combined to provide an indication of the mode68

of adoption likely to occur from patent data available during69

the early stages of development. Bibliometric, pattern recog-70

nition, statistical and other data-driven analysis techniques are71

applied to technologies identified as having been adopted as a72

result of either prior technological stagnation (which we term73

technological failure with reactive substitution), or as a result74

of a presumptive leap being made, in order to identify early in-75

dicators of the mode of technological substitution. In the case76

of substitutions as a result of a presumptive leap, some forth-77

coming technical limit is recognised that prompts a transition78

before the current technology has stagnated. This historical79

classification has led to the development of a functional lin-80

ear regression model that can be used in supporting technology81

strategy and innovation management by indicating the likely82

mode of adoption from key technology development indica-83

tors. In doing so, this paper has found good evidence in histor-84
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ical records to support the literature based categorisation into85

reactive and presumptive modes of substitution, and demon-86

strated that these modes can be recognised through automated87

processing of patent data. Preliminary evidence is also pro-88

vided that suggests it may be possible to use partially complete89

datasets (i.e. segmented time series) to predict the end mode90

of substitution, potentially enabling future extensions to real-91

time applications. The paper begins by providing some back-92

ground to technology substitutions and patent-based analysis93

techniques in section 3, followed by an overview of bibliomet-94

ric data sources, statistical analysis, and method selection in95

section 4. Details of the derivation of the technology classifica-96

tion model using statistical ranking and functional data analysis97

are then provided in section 5, along with the corresponding re-98

sults and discussions in section 6. Finally, conclusions from99

the patent indicator ranking and classification model building100

exercises are then summarised in section 7.101

3. Background102

Technological substitution often plays an important role in103

the fortunes of enterprises. As such, numerous studies have104

previously examined the many complex factors that influence105

technology development and adoption trends. An overview of106

the relationships between technological performance, human107

perceived limits of science and technology, observed substitu-108

tion patterns and behaviours, and patent-based forecasting tech-109

niques are provided here to explain the analysis that follows.110

3.1. Technology forecasting, substitution patterns, and techno-111

logical failure112

Correctly predicting which emerging technologies are likely113

to be most influential can ensure that a firm is best positioned to114

gain a large advance over their competitors when the new tech-115

nology comes to fruition. Conversely, failure to anticipate the116

arrival of big technological shifts can leave firms severely di-117

minished. This is illustrated by the dramatic impact on Kodak’s118

business following the introduction of digital photography, that119

rendered many of the firm’s existing film products obsolete fol-120

lowing an early lead in the digital field that was not fully capi-121

talised upon [47]. Equally, investing heavily in a nascent tech-122

nology too soon can have grave consequences, as Bertlesmann123

found from investing in Napster [33]. As such, forecasting tech-124

niques are often used to determine strategies in large organisa-125

tions by providing an initial guide to future opportunities, risks,126

challenges, & areas of uncertainty [17].127

In this field, considerable work has already been undertaken128

on the modelling of technology diffusion as part of these sub-129

stitution events. This has included, amongst many other ar-130

eas of study (see [58]), the influence of successive technology131

generations, and the impact of time delays on the perception132

of new technologies (see [9] and [18] respectively). Classi-133

cally, the introduction of new technologies is often described134

as following an S-curve that assumes uptake is initially slow135

in the earliest stages, until performance and functional bene-136

fits of the new technology are seen to be greater than those of137

existing technologies, at which point uptake significantly ac-138

celerates [23, 75]. This model assumes that eventually all tech-139

nologies then arrive, driven by research and development ef-140

forts, at an ultimate limiting condition that is based on physical141

constraints, where performance improvements stagnate once142

again. However, in reality, periods of performance stagnation143

can also occur when challenging technical obstacles appear, or144

when market uptake slows (potentially due to market saturation,145

regulatory changes, or competition from new technologies), re-146

ducing investment in research and development [56, 59]. This147

results in substitutions to the next generation of technologies148

occurring either before or after arriving at a perceived perfor-149

mance limit, which may or may not be an actual, or ultimate,150

performance limit [5, 38].151

This brings about the notion of continual technological (or152

functional) failure, at the point where a replacement technology153

is sought for a currently stalled technological paradigm [70].154

However, the technological ‘failures’ that lead to this reactive155

type of substitution vary greatly, and cannot just assume a sin-156

gle simple definition. In this regard, previous work has exam-157

ined what is meant by ‘technological failure’, and has broadly158

categorised these occurrences as outlined in the work of Goo-159

day [28]. In the analysis that follows, this study focuses on160

failures relating to the ever more demanding expectations that161

human users impose on their technologies. Specifically, the def-162

inition of technological failure used in this study is given as:163

“A point in time at which technology performance164

development stagnates/plateaus, with no further pro-165

gressive trajectory improvements foreseen for a sig-166

nificant period of time in comparison to the over-167

all technology lifecycle considered, which is subse-168

quently followed by the substitution of a new technol-169

ogy/architecture that is on a progressive trajectory”170

This means that a technology has been able to reach what171

could be observed to be a temporary performance limit in this172

condition before substitution to a new discontinuous technol-173

ogy occurs [65]. This definition also follows on from the work174

of Sood & Tellis which applied a sub-sampling approach to175

analyse different types of ‘multiple S-curves’, and subsequently176

concluded that technologies tend to follow more of a step-177

function, with long periods of static performance interspersed178

with abrupt jumps in performance, rather than a classical S179

shape. In this study, stagnation periods were recorded where180

technology performance during a given sub-sample had an up-181

per plateau longer in duration than the immediately preceding182

growth phase, whilst the subsequent jump in performance in183

the year immediately after the plateau was almost double the184

performance gained during the entire plateau [70].185

3.2. Anomalies associated with scientific and technological186

crisis187

Up till now, only substitution patterns associated with tech-188

nological failure have been discussed. However, previous stud-189

ies have identified that technological substitutions are not just190

the result of the existing technology being deemed to have191
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‘failed’. In this sense Edward Constant argued that a feature192

common to all technological revolutions was the emergence of193

‘technological anomalies’, which could be traced to either sci-194

entific or technological crisis [39]. In the work of Constant the195

first, and most common, cause of these technological anomalies196

was attributed to functional failure. Conversely, technological197

anomalies were also identified as arising as a result of presump-198

tive technological leaps:199

“The demarcation between functional-failure200

anomaly and presumptive anomaly is that presump-201

tive anomaly is deduced from science before a new202

paradigm is formulated and that scientific deduction203

is the sole reason for the sole guide to new paradigm204

creation. No functional failure exists; an anomaly is205

presumed to exist, hence presumptive anomaly” [39]206

The type of crisis that emerges is dependent on which type207

of anomaly precedes it. Scientific crisis can occur irrespective208

of whether an alternative theoretical framework exists or not209

when a persistent, unresolved, scientific anomaly successfully210

refutes an established theory. In this condition the crisis is di-211

rectly linked to the anomaly. However, technological anomaly212

and crisis are rarely so logically driven, and can arise in condi-213

tions where existing technological paradigms are still perform-214

ing favourably. This is illustrated by the turbojet revolution of215

the 1930s and 1940s, where piston-engine developments pro-216

vided remarkable performance improvements and continuing217

success, but were superseded by scientific predictions of a per-218

formance limit arising from propeller compressibility effects.219

Consequently scientific foresight was directly responsible for220

the radical technological changes that followed. In addition, in221

order for a technological anomaly to provoke a technological222

crisis, a convincing alternative paradigm must exist, so that the223

relative functional failure of the conventional system is observ-224

able. As such, the alternative technological paradigm instigates225

the crisis, whilst the technological anomaly may only be seen226

as speculation or as a limiting condition to the normal technol-227

ogy [39].228

3.3. Modes of substitution229

Building on the works of Constant, Schilling, and Sood, a230

conceptual framework for analysing technology substitutions231

was published by Ron Adner that considers both the emergence232

challenges facing new technologies and the extension opportu-233

nities still available to existing technologies [5]. In this, four234

substitution regimes are proposed considering low and high235

scenarios for both new technology emergence challenges and236

old technology extension opportunities, and are demonstrated237

in the context of developments in semiconductor lithography238

equipment. These regimes are characterised as 1) Creative De-239

struction (low extension opportunity and low emergence chal-240

lenge), 2) Robust Coexistence (high extension opportunity and241

low emergence challenge), 3) Resilience Illusion (low extension242

opportunity and high emergence challenge), and 4) Robust Re-243

silience (high extension opportunity and high emergence chal-244

lenge). Based on the definitions of functional failure and pre-245

sumptive anomaly described in sections 3.1 and 3.2, reactive246

technology substitutions correspond to quadrants 1 and 3 in Ad-247

ner’s substitution framework (i.e. substitutions based on low248

extension opportunities for existing technologies), whilst pre-249

sumptive technology substitutions correspond to quadrants 2250

and 4 (i.e. substitutions where there still appears to be high251

extension opportunities for existing technologies). Further de-252

tails and examples of these technological substitution regimes253

are provided in [5] along with a review of the corresponding254

technology adoption S-curves.255

The current study only considers the extension opportunity256

dimension in its classification of substitution modes in order257

to facilitate the development of the data-driven methodology258

presented here. It is worth noting that this analysis could be259

repeated and decomposed further into the four higher fidelity260

regimes proposed by Adner, but this would require additional261

case studies to ensure a sufficient number of technologies are262

available in each category, whilst also requiring supplementary263

literature or expert evidence to support category assignments.264

For this reason this study only considers the ability to distin-265

guish between the two broader extension opportunity driven266

modes of substitution (i.e. reactive or presumptive) from anal-267

ysis of historical scientific and technological data. Whilst the268

higher level modes considered here are characterised by the269

low and high extension opportunity scenarios respectively at270

the tail end of the existing technology’s S-curve, variability in271

the emergence challenge dimension is assumed to slow the de-272

velopment of the new technology at the start of the subsequent273

S-curve. As such, this varies the initial curvature of the new274

technology’s S-curve, rather than shifting in time the point of275

first emergence (which for this analysis is effectively treated as276

a static point). In terms of performance trends this means that277

a reactive substitution corresponds to a period of performance278

stagnation prior to the new technology first appearing, whilst279

a presumptive substitution corresponds to the new technology280

first emerging as the existing technology continues to improve.281

This is illustrated in Fig. 1.

Figure 1: Illustration of reactive and presumptive substitution modes, based on
Adner’s framework

282

Table 1 uses Adner’s framework, alongside the definitions283

provided in sections 3.1 and 3.2, and performance evidence ob-284
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tained from literature, to classify a sample set of technologies285

according to the broader modes of substitution observed.286

In addition to the broader modes of substitution outlined287

in Table 1, other technologies have been identified as ‘non-288

starters’: these are marginalised technologies that were never289

mass commercialised (such as wire recorders or chain print-290

ers). In many cases these technologies could have been adapted291

for the target markets considered but were either never used or292

failed to demonstrate the required features, or performance and293

cost improvements necessary to warrant further development294

beyond initial trials. Non-starters are excluded in this study,295

as the analysis that follows classifies individual technologies296

based on training technologies that are known to have been suc-297

cessfully commercialised, and as such it is not believed their298

inclusion would influence the results presented here, although299

non-starters would need to be included for predicting the com-300

mercial success or failure of emerging technologies in the first301

instance [70].302

Based on Constant’s hypothesis regarding scientific and tech-303

nological anomalies and their influence on the mode of techno-304

logical substitution, this paper looks to test whether bibliomet-305

ric measures of scientific and technological development can306

provide an indication of the mode of adoption likely to occur.307

Constant’s conceptual model theorises that presumptive techno-308

logical anomalies emerge from scientific insights before a func-309

tional failure has occurred. Consequently, this study theorises310

that in order to identify cases of technological substitution aris-311

ing from presumptive anomaly a classification scheme would312

need to be able to identify if a functional failure already exists,313

and if new scientific discoveries have preceded such a failure.314

As a result, the classification scheme needs to consider:315

1. a population’s perception of the current rate of scientific316

development in observed domains [39]317

2. a population’s perception of the current rate of technolog-318

ical development in observed domains [39]319

3.4. Measuring perceptions of limits of science and technology320

Many indicators of science and technological progress have321

been developed in the fields of bibliometrics and scientomet-322

rics in recent decades. Whilst these have largely been devel-323

oped for the purposes of identifying and targeting gaps in ex-324

isting knowledge, as well as for determining the effectiveness325

of funding in specific fields of research, they also provide a326

systematic approach to compare development trends across a327

broad range of scientific domains. When attempting to mea-328

sure science it is however important to ensure that any measure-329

ments taken are suitable indicators of the development charac-330

teristics that are being studied. In this regard conceptual dis-331

tinctions exist between scientific activity, scientific production,332

and scientific progress [51]. In this study, the emphasis is not333

on assessing the performance or influence on technical direc-334

tion of a specific set of papers, but rather to gauge the adop-335

tion of the field as a whole. As technology diffusion models336

also rely on non-invested parties being made aware of scientific337

and technological progress, communication and promotion of338

scientific research are important factors to include in adoption339

processes [9]. Adoption is equally dependent on perceptions of340

current scientific and technological rates of progress (shaped by341

social and political pressures, as well as technical), rather than342

the actual rates of progress (shaped by technical contributions to343

knowledge). Lastly, diffusion effects are population size, word-344

of-mouth, and time dependent [9]. As a result, measures of sci-345

entific production are felt to be a more relevant indication of346

likelihood to adopt than measures of scientific progress in this347

study.348

3.5. Patent-based technology forecasting349

The use of patents for forecasting technology development350

trends, and the close links to economic activity, has evolved351

considerably since the earliest literature was published on352

measuring innovation from patent statistics by the likes of353

Schmookler and Scherer in the 1960s [67, 64]. More re-354

cent publications have expanded these early concepts and have355

demonstrated on numerous occasions how patterns in historic356

patent data can be used to build predictions of future develop-357

ment trends, including the use of partially complete or mined358

datasets when historical data is not yet available. Many of359

these studies attempt to assess the development maturity of a360

given technology (not to be confused with measures of com-361

mercial market adoption) against commonly recognised mile-362

stones and features in observed technology evolution patterns.363

Chief amongst these is comparison to Arthur Little’s Technol-364

ogy Life Cycle (TLC) [46]. Comprising four stages (emer-365

gence, growth, maturity, and saturation) Little’s framework de-366

scribes a means of measuring technological development efforts367

relative to a technology’s competitive impact and progress in368

transitioning from product to process-based innovation. Clas-369

sically TLC studies have relied on a simple count of patent370

records to determine the maturity of technologies on this scale.371

However, contesting the accuracy and reliability of matching a372

single patent indicator against pre-determined growth curves,373

Watts, Porter, and Haupt advocated the use of multiple patent374

metrics in their technology evaluations [78, 35]. Building on375

this, Gao demonstrated the use of a trained nearest neighbour376

classifier, based on thirteen extracted patent data dimensions,377

to assess a technology’s life cycle progress [24]. This was fol-378

lowed more recently by Lee’s proposal for the use of a stochas-379

tic method based on multiple patent indicators and a hidden380

Markov model (i.e. an unsupervised machine learning tech-381

nique) to estimate the probability of a technology being at a382

certain stage of its life cycle [43]. In parallel to these extensions383

to sets of indicators and pattern recognition techniques, the use384

of text-mining approaches to improve the speed, relevance, and385

accuracy, of patent analysis methods have been demonstrated386

by Ranaei’s automatic retrieval of patent records for forecast-387

ing the development of electric and hydrogen vehicles [62].388

Similarly, patent content clustering techniques for technology389

forecasting purposes have also been explored by the works of390

Trappey and Daim [74, 17]. Daim’s analysis illustrated how391

technology forecasting results for emerging technologies can be392

improved by combining patent-based statistics with bibliomet-393

ric clustering and citation analysis techniques for the purpose394
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Examples of reactive substitutions Examples of presumptive substitutions

Plug-compatible market (PCM) disk drives [13] Transition from piston engine to jet engine [39, 12, 69]
Transition to fibre optic cables from Cu/Al wires for data transfer
[70]

Transition to optical undersea cables from coaxial cables [12]

Transition to Low Pressure Sodium lights from Tungsten Fila-
ment Lamps [12]

Transition to water turbines from steam engines [39, 69]

Transition to Compact Fluorescent Lamps from Tungsten Fila-
ment Lamps [12]

Transition to early gas engines from steam engines [39]

Transition to White LED lighting from Low Pressure Sodium
and Compact Fluorescent Lamps [12]

Transition to steam turbines from water turbines [39, 69]

Transition to hypersonic aircraft from supersonic [12] Transition to catalytic petroleum cracking from thermal cracking
[39]

Transition to coaxial undersea cables from single cable [12] Transition to the transistor from the vacuum tube [22]
Transition to T-carrier system from modem internet access [12] Transition to atomic energy from fossil fuels [39, 30]
Transition to Synchronous Optical Networking (SONET) system
from T-carrier internet access [12]

Renewable energy sources: transition to solar PV/thermal, wind,
geothermal, hydropower, and marine energy from fossil fuels
[30, 69]

Transition to ink jet and laser printers from dot matrix printers
[70]

Transition to modern battery and plug-in hybrid electric vehicles
from petrol and diesel vehicles [82]

Table 1: Identified examples of reactive and presumptive technological substitutions

of data acquisition (as a proxy indicator for technology diffu-395

sion when historical data is not present). However, being able396

to determine the technical readiness of a new technology is only397

part of the technology forecasting problem. The other critical398

aspect that must then be considered is the market adoption of399

the technology once it has been commercialised. Here Daim’s400

work subsequently coupled the patent-based and academic liter-401

ature data-mining techniques employed with the use of system402

dynamics modelling as a means of exploring causal relation-403

ships and non-linear behaviours in technology diffusion. Based404

on these works, the current study looks to combine the recent405

advances made in pattern recognition applications with a sim-406

plified version of Adner’s technology substitution framework.407

4. Methodology408

There is a range of possible techniques that can be used for409

gauging the progress of technological development. In this410

study, bibliometric data has been used based on patent records411

as this has become a well-established means of assessment for412

both industry market comparisons and government policy set-413

ting purposes. An overview of the considerations taken in to414

account in method selection and development are discussed be-415

low.416

4.1. Bibliometric data417

Patent data has been sourced from the Questel-Orbit patent418

search platform in this analysis. More specifically, the full Fam-419

Pat database was queried in this study, which groups related420

invention-based patents filed in multiple international jurisdic-421

tions into families of patents. Some of the core functionalities422

behind this search engine are outlined in [42]. This platform423

is accessed by subscribers via an online search engine that al-424

lows complex patent record searches to be structured, saved,425

and exported in a variety of formats. A selection of keywords,426

dates, or classification categories are used in this search engine427

to build relevant queries for a given technology (this process is428

discussed in more detail in section 5.2). The provided search429

terms are then matched in the title, abstract, and key content of430

all family members included in a FamPat record, although un-431

like title and abstract searches, key contents searches (which in-432

clude independent claims, advantages, drawbacks, and the main433

patent object) are limited to only English language publications.434

4.2. Statistical comparisons of time series435

This study considers 23 technologies, defined in Table 3,436

where literature evidence has been identified to classify the437

particular mode of technology substitution observed. The ev-438

idence and process used in this categorisation is outlined in de-439

tail in [49]. Using bibliometric analysis methods it is possible440

to extract a variety of historical trends for any technologies of441

interest, effectively generating a collection of time series data442

points associated with a given technology (these multidimen-443

sional time series datasets are referred to here as ‘technology444

profiles’). This raises the question of how best to compare dis-445

similar bibliometric technology profiles in an unbiased manner446

in order to investigate whether literature based technology sub-447

stitution groupings can be determined using a classification sys-448

tem built on the assumptions given in section 3.3. In particular,449

comparisons of technology time series can be subject to one or450

more areas of dissimilarity: time series may be based on differ-451

ent number of observations (e.g. covering different time spans),452

be out of phase with each other, may be subject to long-term453

and shorter term cyclic trends, be at different stages through454

the Technology Life Cycle (or be fluctuating between different455

stages) [46], or be representative of dissimilar industries. As456

such, a body of work already exists on the statistical compar-457

ison of time series, and in particular time series classification458
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methods [45]. Most modern pattern recognition and classifica-459

tion techniques emerging from the machine learning and data460

science domains broadly fall within the categories of super-461

vised, semi-supervised, or unsupervised learning approaches.462

Related to this, an overview of current preprocessing, statisti-463

cal significance testing, classification, feature alignment, clus-464

tering, cross-validation, and functional data analysis techniques465

for time series is provided in Appendix A for further details of466

the considerations addressed in this study’s methodology be-467

yond those discussed directly in section 4.3.468

4.3. Method selection469

Based on the technology classification problem considered,470

the bibliometric data available, and the methods discussed in471

Appendix A the following methods have been selected for use472

in this analysis:473

4.3.1. Technology Life Cycle stage matching process474

For those technologies where evidence for determining the475

transitions between different stages of the Technology Life Cy-476

cle has either not been found or is incomplete, a nearest neigh-477

bour pattern recognition approach has been employed based on478

the work of Gao [24] to locate the points where shifts between479

cycle stages occur. However, for the specific technologies con-480

sidered in this paper, literature evidence has been identified for481

the transitions between stages, and so the nearest neighbour482

methodology is not discussed further here.483

4.3.2. Identification of significant patent indicator groups484

In order to identify those bibliometric indicator groupings485

that could form the basis of a data-driven technology classifi-486

cation model a combination of Dynamic Time Warping and the487

‘Partitioning Around Medoids’ (PAM) variant of K-Medoids488

clustering has been applied in this study. For the initial feature489

alignment and distance measurement stages of this process, Dy-490

namic Time Warping is still widely recognised as the classifi-491

cation benchmark to beat (see Appendix A), and so this study492

does not look to advance the feature alignment processes used493

beyond this. Unlike the Technology Life Cycle stage matching494

process which is based on a well-established technology matu-495

rity model, this study is assuming that a classification system496

based on the modes of substitution outlined in section 3.3 is497

not intrinsically valid. For this reason an unsupervised learning498

approach has been adopted here to enable human biases to be499

eliminated in determining whether a classification system based500

on presumptive technological substitution is valid or not, before501

subsequently defining a classification rule system. In doing so502

this additionally means that labelling of predicted clusters can503

be carried out even if labels are only available for a small num-504

ber of observed samples representative of the desired classes,505

or potentially even if none of the observed samples are abso-506

lutely defined. This is of particular use if this technique is to507

be expanded to a wider population of technologies, as obtain-508

ing evidence of the applicable mode of substitution that gave509

rise to the current technology can be a time-consuming process,510

and in some cases the necessary evidence may not be publicly511

available (e.g. if dealing with commercially sensitive perfor-512

mance data). As such, clustering can provide an indication of513

the likely substitution mode of a given technology without the514

need for prior training on technologies that belong to any given515

class. Under such circumstances this approach could be applied516

without the need for collecting performance data, providing that517

the groupings produced by the analysis are broadly identifiable518

from inspection as being associated with the suspected modes519

of substitution (this is of course made easier if a handful of520

examples are known, but means that this is no longer a hard521

requirement).522

The ‘PAM’ variant of K-Medoids is selected here over hi-523

erarchical clustering since the expected number of clusters is524

known from the literature, and keeping the number of clusters525

fixed allows for easier testing of how frequently predicted clus-526

ters align with expected groupings. Additionally, a small sam-527

ple of technologies is evaluated in this study, and as a result528

computational expense is not likely to be significant in using529

the ‘PAM’ variant of K-Medoids over Hierarchical clustering530

approaches. It is also worth noting that by evaluating the pre-531

dictive performance of each subset of patent indicator group-532

ings independently it is possible to spot and rank commonly533

recurring patterns of subsets, which is not possible when using534

approaches such as Linear Discriminant Analysis which can as-535

sess the impact of individual predictors, but not rank the most536

suitable combinations of indicators.537

4.3.3. Ranking of significant patent indicator groups538

As the number of technologies considered in this study is rel-539

atively small, exhaustive cross-validation approaches provide a540

feasible means to rank the out-of-sample predictive capabilities541

of those bibliometric indicator subsets that have been identi-542

fied as producing significant correlations to expected in-sample543

technology groupings. As such, leave-p-out cross-validation544

approaches are applied for this purpose, whilst also reducing545

the risk of over-fitting in the following model building phases546

[8].547

4.3.4. Model building548

The misalignment in time between life cycle stages relative549

to other technologies can make it difficult to identify common550

features in time series. This is primarily because this phase vari-551

ance risks artificially inflating data variance, skewing the driv-552

ing principal components and often disguising underlying data553

structures [50]. Consequently, due to the importance of phase554

variance when comparing historical trends for different tech-555

nologies, and the coupling that exists between adjacent points556

in growth and adoption curves, functional linear regression is557

selected here to build the technology classification model de-558

veloped in this study (see notes on Functional Data Analysis559

in Appendix A for further details).560
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5. Building a technology classification model from Technol-561

ogy Life Cycle features562

5.1. Patent indicator definitions563

The work of Gao et al. identifies a range of studies that have564

been conducted previously based on the principle of using ei-565

ther a single or multiple bibliometric indicators as a means of566

investigating technological development and performance [24].567

Their review of these methods concluded that multiple patent568

indicators are required to avoid generating potentially unreli-569

able results if just using a single indicator extracted from patent570

data. As such, the nearest neighbour classification process de-571

veloped in Gao’s study proposes the use of thirteen separate572

patent indicators. This current study has accordingly repro-573

duced these metrics where possible, resulting in a total of ten574

patent indicators (i.e. producing time series for each technology575

with ten dimensions), as three of the previous list of indicators576

were specific to the Derwent Innovation Index [1] which was577

not used in this study due to the limited ability to bulk export578

the necessary results from this database. Table 2 summarises579

the bibliometric indicators extracted for each technology within580

this analysis.581

With the main exception of the use of the Questel-Orbit Fam-582

Pat database instead of the Derwent Innovation Index, the indi-583

cator definitions and assumptions used in this study are other-584

wise consistent with those outlined in sections 2.1.1 to 2.1.5585

of [24]. The only other notable difference to be recorded586

is that the Questel-Orbit patent records are not automatically587

given a designation as being a corporate, non-corporate, or588

individual patent assignee. As such, the counts of corporate589

and non-corporate indicators (which would otherwise be based590

on this assignee designation) are determined instead based on591

the ‘Family Normalized Assignee Name’ field available in the592

patent records, as records with entries in this field correspond593

to corporate designations.594

5.2. Search strategy and terms for identifying relevant patent595

profiles596

Previous bibliometric studies have explored the many differ-597

ent ways in which patent records can be correctly identified for598

a given field or topic [76, 66, 7, 63, 48, 19, 80, 37]. Whilst fil-599

tering of search results based on technology classification cat-600

egories is generally preferred where possible to ensure a more601

rigorous search strategy [7], it is also advisable to keep the steps602

that supplement or remove patents from search queries to a min-603

imum to maintain data consistency and repeatability [37]. As604

such, the search queries used in this analysis are based primar-605

ily on filtering by International Patent Classification (IPC) or606

Cooperative Patent Classification (CPC) labels. Where possi-607

ble the IPC categories applied have been reused from previous608

studies in order to replicate existing search queries so as to ex-609

tract comparative datasets, or have been based on expert defined610

groupings such as the European Patent Office’s Y02 classifi-611

cation which specifically relates to climate change mitigation612

technologies. Otherwise keyword search terms and IPC labels613

are combined that focus on the appearance of closely adjoining614

instances of the search terms (or of their common synonyms) to615

be matched. The use of IPC technology category filters in this616

manner ensures that a higher level of relevance and repeatabil-617

ity is achieved. Based on these preprocessing steps, the final618

search queries used for the technologies to be considered are619

presented in Table 3.620

5.3. Patent indicator data extraction process621

Using the technology classification categories, and where ap-622

plicable the keywords specified in Table 3, the results of these623

search queries were exported in batches of up to 10,000 records624

at a time in a tabulated HTML format. Exported records were625

based on only the representative family member for a given626

FamPat grouping in order to avoid duplication of records across627

multiple jurisdictions. Additionally, each exported record in-628

cluded the key patent information along with full details of629

both cited patent and non-patent literature references made in630

the current record. As some searches could generate very large631

numbers of records (i.e. hundreds of thousands), the use of632

batch processing enabled large quantities of records to be han-633

dled in manageable formats, but required that the batches were634

subsequently imported into a tool capable of processing the vol-635

umes of data considered. For this purpose, MATLAB was used,636

and a script (provided in Appendix B) was developed to convert637

each HTML batch file into a corresponding .MAT file (based on638

a pre-existing conversion script), ready for data cleaning pro-639

cesses.640

5.4. Patent indicator data cleaning process641

Whilst the consistency of the Questel-Orbit patent data is of642

a high standard, several steps are still required to be able to ex-643

tract patent indicator metrics from this data. This is done to en-644

sure that the datasets are translated into a tabulated format suit-645

able for the automated analysis processes to follow, and to cor-646

rect any easily rectifiable data entry errors that may be present647

in the extracted data (such as the omission of application or648

priority dates from the relevant columns when these dates are649

available elsewhere). In doing so, this allows a more accurate650

chronology of patent events to be established. This process is651

not discussed in detail here, but is available in Appendix C for652

more information.653

5.5. Technology Life Cycle stage matching process654

With bibliometric profiles extracted for each of the technolo-655

gies considered in this study, the first stage of analysis consists656

of identifying the transition points between different stages of657

the Technology Life Cycle in order to establish time series seg-658

ments for use in subsequent comparative analysis. For the tech-659

nologies considered in this study, evidence was identified from660

literature to suggest when these transitions had occurred, such661

as in the innovation timeline assessments prepared for a range662

of technologies by Hanna [34]. Full details of the transition663

points used in this study are provided in Table 4.664

Of the 23 technologies listed in Table 4, 20 were found to665

have patent data pertaining to the emergence stage (i.e. ex-666

cluding incandescent lights, landline telephones, and wireless667

data transfer). As such only those technologies with patent data668
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Indicator No. Name Description

1 Application Number of patents in Questel-Orbit by application year
2 Priority Number of patents in Questel-Orbit by priority year
3 Corporate Number of corporates in Questel-Orbit by priority year
4 Non-corporate Number of non-corporates in Questel-Orbit by priority year
5 Inventor Number of groups of inventors in Questel-Orbit by priority year
6 Literature citation Number of backward citations to literature in Questel-Orbit by priority year
7 Patent citation Number of backward citations to patents in Questel-Orbit by priority year
8 IPC Number of IPCs (4-digit) in Questel-Orbit by priority year
9 IPC top 5 Number of patents of top 5 IPCs in Questel-Orbit by priority year
10 IPC top 10 Number of patents of top 10 IPCs in Questel-Orbit by priority year

Table 2: Bibliometric indicators used in this study (based on the work of Gao et al. [Gao 2013])

available during the emergence stage are considered in the anal-669

ysis that follows.670

For subsequent expansion of this analysis to additional tech-671

nologies where evidence is not immediately apparent for the672

definition of these segments, a nearest neighbour pattern match-673

ing process was also developed as outlined in section 4.3.1674

based on the work of Gao et al. [24]. This methodology is not675

discussed in further detail in this paper.676

5.6. Identification of significant patent indicator groups677

Having defined the time periods corresponding to each Tech-678

nology Life Cycle stage for the technologies considered, it is679

now possible to segment the bibliometric time series into com-680

parable phases of development. Significant predictors of sub-681

stitution modes in each Technology Life Cycle stage are then682

identified using the procedure outlined in Fig. 2.

Figure 2: Overview of the process used to identify and rank significant patent
indicator groups

683

As discussed in sections 4.3.2 and 4.3.3 an unsupervised684

learning approach has been employed here based on applying685

Dynamic Time Warping (DTW) and the ‘PAM’ variant of K-686

Medoids clustering on the relative distance measures calculated687

between time series. This is again implemented as a MATLAB688

script based on the DTW and K-Medoid functions made avail-689

able by MathsWorks [52, 3], which is provided in Appendix690

B. The first step of this process involves generating a list of all691

the unique subsets that can be created from the ten patent in-692

dicator metrics considered in this study. This produces 1,023693

(i.e. 210 − 1) possible combinations of the ten patent indicators694

to be tested, as illustrated by Fig. 3.695

Next, the raw patent data time series are transformed by using696

an inverse hyperbolic sine function and normalised to convert697

the data into a suitable format for long-term comparisons (see698

notes on preprocessing in Appendix A). Once in this format,699

the data points are filtered based on the current Technology Life700

Cycle stage being considered, as illustrated by Fig. 4, ensuring701

comparable curve features are considered.702

After the datasets have been transformed and filtered based703

on the current Technology Life Cycle stage, Dynamic Time704

Warping is then used to calculate the Euclidean distance be-705

tween each pair of technology time series when compared using706

the time series dimensions specified by each patent indicator707

grouping in turn. This process is depicted visually in Fig. 5,708

illustrating the successive layers of filtering that are applied709

for each technology pairing and each patent indicator group-710

ing considered. The output from this process is an i x j x 1023711

distance matrix, where i and j specify the current technology712

pairing being considered, and the value quoted is the measured713

distance between multi-dimensional time series based on the714

current patent indicator subset being used. In parallel to this the715

corresponding warping paths required to measure the distance716

between the N-dimensional curves in each condition are stored717

in two separate matrices for later use.718

Using this distance matrix it is now possible to apply K-719

Medoids clustering to determine the technology groupings720

predicted when each specific patent indicator subset is used.721

By comparing the predicted technology groupings to those722

expected from the earlier literature classifications (see sec-723

tion 3.3), a confusion matrix is created for each patent indicator724
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Case study Class Orbit patent search keywords IPC or CPC categories No. of patent fami-
lies

Compact Fluorescent Lamp R (compact+ or CFL+ or (energ+ s (sav+ or
low+))) AND fluores+

CPC: Y02B-020/16+ OR Y02B-020/18+ OR
Y02B-020/19+

1,169 (21/07/2017)

Electric vehicles P – CPC: Y02T-010/62+ OR Y02T-010/64+ OR
Y02T-010/70+ OR Y02T-010/72+ OR Y02T-
090/1+

100,870
(24/07/2017)

Fiber optics (data transfer) R ((fiber+ or fibre+) 3d optic+) IPC: G02B OR H04B OR C03B OR C03C OR
D01C OR D04H OR D06L OR G02F OR G06E
OR G06K OR G11B OR G11C OR H02G OR
H03K OR H04J OR H04N OR G01P

176,299
(20/07/2017)

Geothermal electricity P – CPC: Y02E-010/1+ 5,272 (24/07/2017)
Halogen lights R – CPC: Y02B-020/12+ 645 (24/07/2017)
Hydro electricity P – CPC: Y02E-010/2+ 46,125 (24/07/2017)
Impact/Dot-matrix printers R ((impact+ or (dot+ or matri+) or (daisy 1w

wheel+)) 3d print+)
IPC: G03G OR B41J OR G06F OR G06K OR
H04N OR G06T OR G02B OR H04L OR G01R
OR G03C OR B41M OR G03B OR B65H

24,993 (24/07/2017)

Incandescent lights P Incandescen+ or filament+ IPC: F21H OR F21L OR F21S OR F21V OR
F21W OR F21Y

17,597 (03/08/2017)

Ink jet printer R (ink+ 3d jet+ 3d print+) IPC: B41J-002/01 OR G03G OR B41J OR G06F
OR G06K OR H04N OR G06T OR G02B OR
H04L OR G01R OR G03C OR B41M OR G03B
OR B65H

46,135 (24/07/2017)

Internet R (internet+ 3d protocol+ 3d suite+) OR
(computer+ 1w network+)

IPC: G06F OR H04L OR G06N OR H04K OR
G09F

42,861 (24/07/2017)

Landline telephones P (((land line+ or main line+ or home or
fixed line+ or wire line+) 3d (+phone))
OR (speaking telegraph+) OR (tele-
phon+)) NOT (mobil+ or (cell+ 3d
(+phon+ or communi+)) or smart phon+

or port+)

IPC: H04B OR H01Q OR H01P OR H04J OR
G01R OR H04Q OR H01H OR H04M OR H04R
OR G10L

139,895
(03/08/2017)

Laser printer R (laser+ 3d print+) IPC: G03G OR B41J OR G06F OR G06K OR
H04N OR G06T OR G02B OR H04L OR G01R
OR G03C OR B41M OR G03B OR B65H

17,827 (24/07/2017)

LED lights R – CPC: Y02B-020/3+ 8,596 (24/07/2017)
Linear Fluorescent Tube
lights

R ((fluores+ 3d (lamp+ or light+ or tube+)))
NOT (compact or (energ+ 3d sav+))

IPC: F21K OR F21L OR F21S OR F21V OR
F21W OR F21Y

25,126 (24/07/2017)

Nuclear energy P – CPC: Y02E-030+ 60,017 (24/07/2017)
Solar PV P – CPC: Y02E-010/5+ OR Y02E-010/6+ 112,068

(24/07/2017)
Solar thermal electricity P – CPC: Y02E-010/4+ OR Y02E-010/6+ 91,553 (24/07/2017)
TFT-LCD R ((((thin film+) 1w transistor+) or TFT+)

AND (((liquid crystal+) 1w display+) or
LCD)) or TFT LCD

IPC: G02F-001/13 5,181 (24/07/2017)

Thermal printers R (thermal+ 2d print+) IPC: G03G OR B41J OR G06F OR G06K OR
H04N OR G06T OR G02B OR H04L OR G01R
OR G03C OR B41M OR G03B OR B65H

23,388 (24/07/2017)

Tide-wave-ocean electricity P – CPC: Y02E-010/28+ OR Y02E-010/3+ 19,224 (24/07/2017)
Turbojet P ((Gas w turbin+) or (jet+ w engine+) or

turbo fan+ or turbo prop+ or turbo jet+
or turbo shaft+ or prop fan+ or ((open
w rotor+) 3d (engine+ or technolog+ or
counter rotat+)))

IPC: B60K OR B60L OR B60P OR B60V OR
B61B OR B61C OR B62D OR B63B OR B63H
OR B64C OR B64D OR B64F OR B64G OR
F01D OR F02B OR F02C OR F02K

71,024 (24/07/2017)

Wind electricity P – CPC: Y02E-010/7+ 67,035 (24/07/2017)
Wireless data transfer R (Wireless 3d data 3d trans+) IPC: H03K OR H04H OR H04W OR G06K OR

G06T
17,188 (24/07/2017)

Table 3: Technologies considered in study, classification, and patent data search terms
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Case study Last year of
Emergence stage

Last year of
Growth stage

Last year of Ma-
turity stage

Technology Life Cycle transition point sources

Compact Fluorescent Lamps 1979 2011 – [34, 79]
Electric vehicles 1997 2005 – [61, 81]
Fiber optics (data transfer) 1970 1990 – [11, 36]
Geothermal electricity 1958 – – [27]
Halogen lights 1959 – – [2, 55, 21]
Hydro electricity 1956 1975 – [15]
Impact/Dot-matrix printers 1970 1984 1991 [53, 73, 6, 14, 4]
Incandescent lights 1882 1916 2008 [12, 26, 21]
Ink jet printer 1988 1996 2003 [14]
Internet 1982 2000 – [44, 83, 77]
Landline telephones 1878 1945 2009 [57, 40]
Laser printer 1979 1993 – [29, 73]
LED lights 2001 – – [34]
Linear Fluorescent Tube lights 1937 1990 2012 [2, 72, 41]
Nuclear electricity 1963 1981 – [34]
Solar PV 1990 – – [34]
Solar thermal electricity 1968 – – [20, 32]
TFT-LCD 1990 2007 – [24]
Thermal printers 1972 1985 2002 [54, 31, 73, 68, 10]
Tide-wave-ocean electricity 1966 – – [71, 16]
Turbojet 1939 1958 – [25]
Wind electricity 1982 – – [34]
Wireless data transfer 1982 2002 – [34]

Table 4: Technology Life Cycle transition points based on literature evidence

Figure 3: Generating list of all possible patent indicator groupings from time series dimensions considered

subset that shows the alignment between predicted and target725

groupings as shown in Fig. 6. Fisher’s exact test is then applied726

to each confusion matrix to calculate the probability of obtain-727

ing the observed clusters. In doing so, significant patent indi-728

cator subsets are identified based on those that have less than a729

5% chance of natural occurrence.730

5.7. Ranking of grouped patent indicator dimensions731

As discussed in section 4.3.3 and Appendix A leave-p-out732

cross-validation techniques provide a means to rank those bib-733

liometric indicator subsets that have been identified as produc-734

ing a significant match to the expected technology groupings.735

The first stage of this process consists of generating lists of all736

possible training technology combinations and corresponding737

test technology combinations based on leaving one technology738

out at a time. The procedure then progresses in a similar for-739

mat to the initial calculation of distances between each pair of740

technology time series as shown in Fig. 5, except that this time741

distance measures are only calculated between pairs of training742

technologies, and that this process is repeated for every possi-743
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Figure 4: Transforming extracted patent data time series into a suitable format for long-term comparisons

Figure 5: Calculating the distance between each pair of technology time series for each indicator grouping

ble combination of training technologies that are available. As744

such, the output from this process is now an i x j x 1023 x n745

distance matrix, where i and j now specify the current training746

technology pairing being considered, and n represents the num-747

ber of training combinations that can be used. This is illustrated748

in Fig. 7.749

K-Medoids clustering is once again applied to the resulting750

training technology distance matrices, from which two medoid751

technologies are identified for each patent indicator subset, in752

each training condition. At this point the test technologies can753

now be evaluated individually against the two medoid curves754

identified in each training condition, in order to determine the755

closest medoid to the current test technology. This provides756

a classification for the test technologies based on each train-757

ing condition and each patent indicator subset. From this the758

number of test technologies misclassified based on the current759

training condition can be determined. This in turn is then used760

to calculate the average number of test technologies misclassi-761

fied for each patent indicator grouping across all of the training762

conditions considered. Finally, the results are sorted in terms763

of the minimum average number of misclassifications in order764

to rank the robustness of each patent indicator grouping. This765

procedure is illustrated in Fig. 8.766

5.8. Functional model building process767

The ranking of different bibliometric indicator subsets pro-768

vides a means to identify the time series dimensions that, when769

11



Figure 6: Identifying patent indicator groups of interest

Figure 7: Calculating the distance between each pair of training technologies for each indicator grouping

combined, are most likely to provide robust out-of-sample pre-770

dictions of the observed technological modes of substitution.771

The preceding cross-validation exercise therefore provides a ba-772

sis for an informed selection of the time series components to773

use in model building. As a result, a technology classification774

model is now developed using functional data analysis (see sec-775

tion 4.3.4 and Appendix A) that is based on patent indicators776

4 and 6 (i.e. the number of non-corporates and the number of777

cited references by priority year). Besides being present in all of778

the highest scoring sets of top ranked predictors, these chosen779

patent dimensions can potentially be associated with the rate of780

development in technology and science respectively. This is in781

the sense that cited references shows a clear link to scientific782

production that is directly influencing technological develop-783

ment efforts, whilst the number of non-corporates by priority784

year (which counts the number of universities, academies, non-785

profit labs and technology research centres) is associated with786

the amount of lab work required to commercialise a technol-787

ogy. Considering the measure of non-corporates by priority788

year specifically, a large volume of lab work could indicate a789

lack of technological maturity, or the presence of considerable790

complexity in the technology being developed. By contrast,791

those technologies with reduced non-corporates by priority year792

activity may represent simpler technologies that mature more793

rapidly or intuitively. Non-corporates by priority year could794

therefore equate to a measure of technological complexity, or795
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Figure 8: Ranking of grouped patent indicator dimensions

effort required to mature.796

However, it is also worth noting that there are other patent797

indicator subset couples/triples that perform nearly as well. It798

is possible that these other high-performing subsets may be in799

some way related to the chosen patent indicators (i.e. perfect800

orthogonality can not necessarily be assumed between these801

metrics), and so at this point the choice has been taken to use802

the indicators specified as these have been seen to be the most803

statistically robust, whilst also being in good agreement with804

previous literature conclusions.805

Following on from the initial introduction to functional data806

analysis provided in Appendix A, and more detailed methods807

presented in [60], the method outlined in Fig. 9 has been imple-808

mented in MATLAB for building a functional linear regression809

model for the purposes of technology classification (the MAT-810

LAB script is available in Appendix B for further details).811

Taking the chosen time series dimensions as a starting point,812

a functional data object must first be created for each of the813

patent indicators (or model components) included in the cho-814

sen subset. This is necessary in order to combine all of the dif-815

ferent technology profiles being evaluated into two regression816

terms: one representing the number of non-corporates by pri-817

ority year, and a second term representing the number of cited818

references by priority year. These terms, when multiplied by819

their respective regression coefficients (which are calculated in820

the subsequent regression analysis), provide the relationship be-821

tween the predicted mode of substitution and the two selected822

measures of science and technology. However, as the Technol-823

ogy Life Cycle segments being combined will have a different824

number of observations for each case study technology, it is825

first necessary to resample the segmented time series based on826

a common number of resampling points. This ensures that even827

if one Technology Life Cycle stage spans 20 years in one time828

series, and spans 50 years in another, both time series will have829

Figure 9: Functional model building process based on methods outlined in [60]

50 observations, which enables the two curves to be aligned rel-830

ative to each other for the current Technology Life Cycle stage.831

Next a B-spline basis system is created for each model com-832

ponent based on the common number of resampling points de-833

fined, and at the same time for the regression coefficients (βi)834

to be estimated by the functional linear regression analysis (see835

Eq. 1 and Eq. 3 in Appendix A, as well as sections 3.4.1, 3.4.2,836

9.4.1 and 9.4.2 of (Ramsay 2009)), as illustrated in Fig. 10.837

Before functional data objects can be generated from the B-838

spline basis systems the degree of curve smoothing to be ap-839

plied has to be determined (i.e. the tightness of fit). Follow-840

ing the process outlined in [60] a ‘functional parameter object’841

that allows smoothness to be imposed on estimated functional842
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Figure 10: Building functional models of selected patent indicator groupings

parameters is now created (see section 5.2.4 of [60]). Func-843

tional parameter objects extend the existing datasets, by storing844

additional attributes relating to the smoothness constraints that845

need to be respected in any B-spline curve fit. A functional846

data object is then created for the current model component us-847

ing the new functional parameter object, along with an initial848

value of the smoothing parameter (λ). The degrees of freedom849

and generalised cross-validation criterion coefficient (see sec-850

tion 5.3 of [60]) can then be calculated for the current functional851

data object. By repeating this process for a range of λ values852

and plotting the results (not shown here) a suitable smoothing853

parameter can be identified that will be used in the final func-854

tional data object for each model component. Selection of a855

smoothing parameter in this fashion ensures that the functional856

data object generated will have the best chance of capturing the857

dynamics present in the current datasets, whilst also being more858

likely to be adaptable to future out-of-sample technologies. An859

example of a smoothed functional data object generated for the860

number of corporations associated with different technologies861

in a given priority year is illustrated in Fig. 11.

Figure 11: Functional Data Object for all technology profiles based on corpo-
rates by priority year

862

Having created a functional data object representation of863

each model component from the selected bibliometric subset,864

the MATLAB script then assesses the fit of each functional data865

object to the trend data. This is accomplished by calculating866

the residuals, variance, and standard deviations between the real867

and modelled values across the different technology curves in-868

cluded, but also across the time span of the Technology Life Cy-869

cle stage considered (see section 5.5 of [60]). A related sanity870

check for the functional data objects generated for each model871

component (before they are used in the functional linear regres-872

sion analysis) is the plotting of functional descriptive statistics873

(see section 6.1.1 of [60]). The functional mean and standard874

deviation of the data objects for the number of non-corporates875

and the number of cited references by priority year are shown in876

Fig. 12 and Fig. 13 respectively, and show that for both model877

components variability from the mean generally increases as878

time progresses (as would be expected for an increasingly di-879

vergent spread of technology trajectories). In addition the mean880

functional data object values show that there tends to be a no-881

table early surge followed by a dip in non-corporates by priority882

year during the emergence phase before a technology achieves883

mainstream adoption. This corresponds well to the hype cy-884

cle associated with new technologies during early development885

when significant levels of R&D are first launched in a race to886

achieve commercialisation, which can often prove premature or887

short-lived. By contrast, the mean cited references by priority888

year measure shows that a steadily accelerating growth is ob-889

served during the emergence phase, without significant undula-890

tion, potentially implying that scientific development efforts are891

less phased by disturbances as they begin to accumulate.892

5.8.1. Identification of smoothing parameter values for regres-893

sion coefficients894

With the functional data objects for each model component895

now ready, a cell array containing each model component along896
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Figure 12: Mean and standard deviation of functional data object created for
non-corporates by priority year

Figure 13: Mean and standard deviation of functional data object created for
cited references by priority year

with a constant predictor term (i.e. a cell array equal to 1 for all897

technology terms) is generated for use in the functional linear898

regression. Before the final regression analysis can be run, a899

smoothing parameter for the regression coefficient basis system900

has to be selected. This is separate from the earlier smooth-901

ing parameter selected for smoothing the technology profiles;902

this second smoothing parameter only addresses the roughness903

of the regression coefficients. This is again necessary to try904

to prevent over-fitting, and ensure that the model converged on905

by the subsequent functional linear regression analysis has the906

best chance of performing well out-of-sample when extended907

to future datasets. In this instance, the selection of smooth-908

ing parameter is achieved by calculating leave-one-out cross-909

validation scores (i.e. error sum of squares values) for func-910

tional responses using a range of different smoothing parameter911

values, as per section 9.4.3 and 10.6.2 of [60]. The functional912

parameter object used in the regression coefficient basis system913

is then redefined using this more optimised smoothing parame-914

ter value.915

6. Results and Discussion916

The functional linear regression analysis is now run with the917

identified smoothing parameters and scalar response variables918

to identify the βi coefficients and the corresponding variance,919

used to define the 95% confidence bounds (see sections 9.4.3920

and 9.4.4 of [60] respectively). Fig. 14 to Fig. 16 show the re-921

sulting βi coefficients and confidence bounds for the number of922

non-corporates and the number of cited references by priority923

year during the emergence phase of development when using924

a high-dimensional regression fit (i.e. when the beta basis sys-925

tem for each regression coefficient is made up of a large num-926

ber of B-splines). This regression fit successfully identifies the927

correct mode of substitution from patent data available in the928

emergence stage for 19 of the 20 technologies considered. As929

such, from a preliminary inspection, this classification model930

looks to provide a good degree of accuracy, but further inves-931

tigation is required to ensure the model is not over-fitted, and932

that the result is not simply a naturally occurring phenomenon.933

From the confidence bounds on these plots it can be seen934

that for both the number of non-corporates and the number of935

cited references by priority year indicator counts the variance936

across technology profiles is highest at the start of the emer-937

gence phase: this is often when the least amount of data is938

available for comparing each technology, and also when devel-939

opment activity is most haphazard and sporadic, so this is not940

entirely surprising as this represents the point of greatest uncer-941

tainty. However, Fig. 15 and Fig. 16 also illustrate how the rela-942

tive importance of the chosen science (Fig. 16) and technology943

(Fig. 15) patent indicators in determining the predicted mode of944

substitution varies with time during the emergence phase (based945

on the datasets used), although no causal explanation as to why946

they have this relative weighting is directly provided by these947

functions. More specifically, deviations away from zero in these948

coefficient functions equate to an increased positive or negative949

weighting for the associated patent indicator count at that mo-950

ment in time, within the determination of the predicted mode951

of substitution. As such it can be seen from Fig. 15 that any952

patent indicator counts at t = 0 for the number of non-corporates953

by priority year (assuming these are present) will have a more954

significant influence on the predicted classification than at any955

other point in the emergence phase. Equally, Fig. 15 would956

suggest that the impact of non-corporates activity next peaks957

around 40% of the way through the emergence phase (poten-958

tially corresponding to the hype effect suggested by Fig. 12),959

and again at the end of the emergence phase. For the number of960

cited references by priority year, this regression model suggests961

that the times of greatest impact on the mode of substitution962

are at the very beginning and at the very end of the emergence963

stage. Whilst these coefficient plots gives some indication of964

the relative weighting applied to patent indicator counts as time965

progresses, the cumulative nature of the inner products used in966

functional linear regression means it is not possible to visually967

infer from these plots alone which mode the technology under968

evaluation is currently converging towards. For this it is also969

necessary to include the corresponding patent indicator count970

values that these coefficient terms are multiplied by for the spe-971

cific technology being assessed.972

Whilst the regression coefficient plots help to provide a pos-973

sible interpretation of the relationship between the different974

model components and the predicted technology substitution975

classifications, it is also necessary to check the ‘goodness-of-976

fit’ measures associated with these results. These common sta-977

tistical measures examine the amount of variability that is ex-978

plained by the current model, as well as testing the likelihood979
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Figure 14: Estimated regression coefficient for the constant functional basis
system - emergence

Figure 15: Estimated regression coefficient for predicting technology cluster
from non-corporates by priority year - emergence

Figure 16: Estimated regression coefficient for predicting technology cluster
from cited references by priority year - emergence

that the same result could be obtained by chance. As such, R-980

Squared, adjusted R-Squared, and F-ratio statistics are calcu-981

lated (see section 9.4.1 and 9.4.2 of [60]) to assess the overall982

fit of the high-dimensional functional linear regression model,983

and are summarised in Table 5.984

The R-squared and adjusted R-squared values shown in Ta-985

ble 5 would suggest that a reasonable classification fit has been986

achieved with this model across the 20 technology profiles con-987

sidered during the emergence phase. Specifically, this suggests988

a good level of accuracy based on the classification residuals,989

whilst the F-ratio of 5.60 with degrees of freedom 7.78 and990

11.22 respectively implies that the relationship established has991

a p-value somewhere between 0.0041 and 0.0060. As such this992

result appears to be significant at the 1% level, meaning that is993

unlikely that this classification label set would occur by chance.994

However, to ensure that this is the most appropriate fit to995

the data presented, the high-dimensional model initially devel-996

oped was subsequently benchmarked against a low-dimensional997

model (i.e. when the beta basis system for each regression co-998

efficient is made up of a small number of B-splines), as well999

as a constant and a monomial based model. The corresponding1000

‘goodness-of-fit’ measures for the alternative functional linear1001

regression models are compiled in Table 6.1002

Whilst the R-squared and adjusted R-squared measures ob-1003

served in Table 6 would suggest that the low-dimensional model1004

provides a better fit, the associated F-ratio score and corre-1005

sponding p-value suggests a lower significance than those val-1006

ues observed for the high-dimensional model. Conversely, the1007

constant basis model does not appear to provide as good a fit1008

to the expected scalar responses from the R-squared and ad-1009

justed R-squared values, but this is not surprising considering1010

the more limited nature of models built on constant terms. Fi-1011

nally, the monomial basis system performs fractionally better1012

on both the R-squared and adjusted R-squared measures whilst1013

also achieving a comparable level of significance to the high-1014

dimensional model. Consequently, from this benchmarking1015

analysis it would appear that the high-dimensional and mono-1016

mial basis system models are the most suitable candidates, but1017

it is possible that the overall performance of all of the models1018

could be further improved by sensitivity studies into the opti-1019

mum number of B-splines to use in the regression fit.1020

To further validate the statistical significance of the four1021

models considered here permutation testing is applied to count1022

the proportion of generated F values that are larger than the F-1023

statistic for each model (see section 9.5 of [60]). This involves1024

repeatedly shuffling the expected mode classification labels ver-1025

sus the technology profiles being read (maintaining their origi-1026

nal order) to see if it is still possible to fit the regression model1027

to these reordered responses. This tests the sensitivity of the1028

predicted classification labels to the order that the technology1029

profiles appear in, to examine what the results would look like if1030

there really was no relationship between the classification func-1031

tions derived and the original data. In so doing, this test also1032

creates a null distribution versus the qth quantile and observed1033

F-statistic generated from the models themselves. The results1034

of this analysis are shown in Fig. 17.1035

For statistical significance it is necessary that the observed1036

test statistic is found in the tail of the distribution generated,1037

implying that the classification responses predicted would only1038

occur very rarely (i.e. not by chance) if the data order was1039

rearranged. Having generated classification models based on1040

the most robust predictors from the earlier cross-validation ex-1041

ercise, all four models imply that some relationship has been1042

identified between the substitution mode predictions expected1043

and the two patent indicator dimensions used that is specific1044

to the data provided, although as seen in Tables 5 and 6 the1045

fit achieved varies depending on the model used. In this last1046

stage of the analysis the permutation testing now reveals that1047

the high and low-dimensional models are likely to perform best1048

out-of-sample as the observed F-statistics are furthest along1049

each distribution’s right tail in relative terms in comparison to1050

the other distributions generated for the constant and monomial1051
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Correct
mode type

R-squared Adjusted
R-squared

Degrees of
freedom 1

Degrees of
freedom 2

F-ratio

19/20 0.7954 0.7713 7.7837 11.2163 5.6024

Table 5: Results of high dimensional model fit

Model basis Correct
mode type

R-squared Adjusted
R-squared

Degrees of
freedom 1

Degrees of
freedom 2

F-ratio p-value

Low dimension 19/20 0.8514 0.8340 10 9 5.1584 0.0107
Constant 18/20 0.6200 0.5753 2 17 13.8684 0.0003
Monomial 19/20 0.8139 0.7920 8 11 6.0139 0.0040

Table 6: Benchmarking results

Figure 17: Permutation F-Test and null distributions for functional regression models - emergence

based models. This shows these two models have the lowest1052

probability of occurring by chance, and are most likely to be1053

generalisable to future datasets. A similar level of statistical1054

significance is observed between the high and low-dimensional1055

models, although as this permutation testing was only based on1056

1,000 permutations, the distributions could still evolve further1057

with a greater number of permutations. However, the constant1058

basis system model is more clearly seen here not to perform1059

as well out-of-sample, with the observed F-statistic closest to1060

the main body of the distribution. This, in combination with1061

the other ‘goodness-of-fit’ measures shown In Tables 5 and 6,1062

would therefore suggest that the high-dimensional functional1063

linear regression model provides the best basis for a technol-1064

ogy substitution classification model from those tested in this1065

analysis.1066

6.1. Method limitations1067

Although precautions have been taken where available to en-1068

sure that the methods selected for this study address the prob-1069

lem posed of building a generalised technology classification1070

model based on bibliometric data in as rigorous a fashion as1071

possible, there are some known limitations to the methods used1072

in this work that must be recognised. Many of the current limi-1073

tations stem from the fact that in this analysis technologies have1074

been selected based on where evidence is obtainable to indi-1075

cate the mode of adoption followed. As such the technologies1076

considered here do not come from a truly representative cross-1077

section of all industries, so it is possible that models generated1078

will provide a better representation of those industries consid-1079

ered rather than a more generalisable result. This evidence-1080

based approach also means that it is still a time-consuming pro-1081

cess to locate the necessary literature material to be able to sup-1082
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port classifying technology examples as arising based on one1083

mode of substitution or another, and to then compile the rel-1084

evant cleaned patent datasets for analysis. As a result only a1085

relatively limited number of technologies have been considered1086

in this study, which should be expanded on to increase confi-1087

dence in the findings produced from this work. This also raises1088

the risk that clustering techniques may struggle to produce con-1089

sistent results based on the small number of technologies con-1090

sidered. Furthermore, any statistical or quantitative methods1091

used for modelling are unlikely to provide real depth of knowl-1092

edge beyond the detection of correlations behind patent trends1093

when used in isolation. Ultimately some degree of causal explo-1094

ration, whether through case study descriptions, system dynam-1095

ics modelling, or expert elicitation will be required to shed more1096

light on the underlying influences shaping technology substitu-1097

tion behaviours.1098

Other data-specific issues that could arise relate to the use of1099

patent searches in this analysis and the need to resample data1100

based on variable length time series. The former relates to the1101

fact that patent search results and records can vary to a large1102

extent based on the database and exact search terms used, how-1103

ever overall trends once normalised should remain consistent1104

with other studies of this nature. The latter meanwhile refers to1105

the fact that functional linear regression requires all technology1106

case studies to be based on the same number of time samples.1107

As such, as discussed in Appendix A, linear interpolation is1108

used as required to ensure consistency on the number of obser-1109

vations whilst possibly introducing some small errors which are1110

not felt to be significant.1111

7. Conclusions from statistical ranking and functional data1112

analysis1113

Expanding on previous historical accounts of technologi-1114

cal substitutions this study has examined the premise that two1115

principal modes are often observed when considering transi-1116

tions between successive commercially prevalent technologies:1117

reactive and presumptive technological substitutions. These1118

two modes are believed to correspond to significantly different1119

technology adoption characteristics (not discussed in this pa-1120

per), with scientific foresight believed to play a crucial role in1121

the identification of presumptive innovations, and performance1122

stagnation leading to reactive transitions. In both cases, tech-1123

nological anomalies are believed to arise, either as a result of1124

scientific or technological crisis, that subsequently trigger the1125

eventual shift to the next technological paradigm. As such, this1126

paper has considered 23 example technologies where literature1127

evidence of performance development trends has been found1128

in order to test the ability to correctly identify observed adop-1129

tion modes using bibliometric, pattern recognition, and statisti-1130

cal analysis techniques. The results obtained from this analy-1131

sis suggest that statistical analysis of patent indicator time se-1132

ries, segmented based on identified Technology Life Cycle fea-1133

tures, provides a possible means for classification of technolog-1134

ical substitutions. Specifically, for the datasets considered mea-1135

sures of the number of cited references and the involvement of1136

non-corporate entities by year during the emergence phase were1137

found to provide a good indication of the expected mode of sub-1138

stitution when used as a basis for functional linear regression1139

(correctly classifying 19 out of 20 technologies included in this1140

stage), and performed consistently well in statistical ranking of1141

predictive capability. These selected patent data dimensions can1142

be associated with perceptions of scientific and technological1143

production respectively, consistent with the basic prerequisites1144

listed in section 3.3 for a classification scheme that can identify1145

presumptive technological substitutions.1146

Whilst these two patent dimensions occur in all of the most1147

robust predictor subsets (i.e. in terms of out-of-sample relia-1148

bility) when basing analysis on the emergence stage, this does1149

not prove that these are the only indicators capable of predict-1150

ing modes of technological substitution. As discussed in sec-1151

tion 5.8, the possibility of orthogonality has not been ruled out1152

with regards to the other patent indicators shown in Table 2.1153

However, these two dimensions are in good agreement with the1154

technological anomaly arguments put forward by Constant in1155

sections 3.2 and 3.3, and so were felt to be reasonable for form-1156

ing the basis of the technology classification model that has1157

been developed using functional linear regression. In partic-1158

ular, a regression fit made up of beta coefficient functions with1159

many B-spline elements was found to provide a viable means of1160

correctly matching the mode of substitution to the technology1161

profile being evaluated when considering multiple ‘goodness of1162

fit’ measures.1163

Permutation testing of the derived technology classification1164

model further suggests that the regression fit is sensitive to the1165

ordering of the expected mode labels relative to the technology1166

time series being considered, so this relationship would appear1167

to be based on the specifics of the individual technology curves1168

considered, and does not appear to be occurring by chance. This1169

implies that it may be possible to predict modes of substitu-1170

tion from limited bibliometric data during the earliest stages1171

of technology development, providing some evaluation of the1172

progress through the early stages of Technology Life Cycle is1173

made (this can be obtained using a nearest neighbour matching1174

process, not discussed in this paper). Equally this shows that the1175

functional data approach employed corroborates well the earlier1176

statistical rankings produced using Dynamic Time Warping, K-1177

Medoids clustering, and leave-one-out cross-validation of the1178

selected patent indicators, suggesting that these two methods1179

are compatible for this type of analysis.1180

It is also important to remember the potential limitations of1181

this study that would need to be addressed for further confi-1182

dence in the methodology used. Firstly, only a relatively small1183

number of technologies have been evaluated in this study due to1184

the time-consuming process required for data extraction, prepa-1185

ration, and identification of supporting evidence from literature1186

for the assignment of expected classification labels. Conse-1187

quently, whilst precautions have been taken to minimise the1188

risk of model over-fitting, the cross-validation procedures em-1189

ployed would benefit from further verification with a more di-1190

verse spread of technologies to ensure that out-of-sample er-1191

rors are accurately captured here. Regression models based on1192

small sample sizes can be very fickle to the datasets they are1193

calibrated to, so it cannot be ruled out that the results presented1194

18



here are a better fit to the industries included in this analysis,1195

rather than a model that can be necessarily generalised to all1196

technologies.1197

However, perhaps the most important note of caution regard-1198

ing this work relates to the quantitative approaches used here.1199

Whilst statistical approaches are well-suited to detecting un-1200

derlying correlations in historical and experimental datasets,1201

this on its own does not provide a detailed understanding of1202

the causation behind associated events, particularly in this case1203

when considering the breadth of reasons for technological stag-1204

nations, ‘failures’, or presumptive leaps to occur. Equally, sta-1205

tistical methods are not generally well suited to predicting dis-1206

ruptive events and complex interactions, with other simulation1207

techniques such as System Dynamics and Agent Based Mod-1208

elling performing better in these areas. Accordingly, to identify1209

causation effects and test the sensitivity of technological sub-1210

stitution patterns to variability arising from real-world socio-1211

technical behaviours not captured in simple bibliometric indica-1212

tors (such as the influence of competition, organisational, and1213

economic effects), the fitted regression model presented here1214

also needs to be evaluated in a causal environment.1215

Similarly, in order to demonstrate practical applicability the1216

mode of substitutions considered here need to be related to ob-1217

served adoption characteristics (not discussed in this paper).1218

Consequently, a System Dynamics model built on the regres-1219

sion functions identified in this study is proposed (although not1220

discussed here) in order to calibrate these extracted technology1221

profiles and mode predictions to empirical adoption data. This1222

aims to more thoroughly explore the causal mechanisms relat-1223

ing early indicators of technological substitution to the eventual1224

adoption patterns observed and provide a means of applying1225

greater reasoning to the relationships identified here.1226
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