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1 csDEX implementation and results on simulated
data

In this section, we give details on model approximation based on Wald Test, with
investigation its effects on timing and accuracy in comparison to the full-model.

1.1 Wald test based model approximation

In the following section, we describe a low-rank model approximation to speed up
re-computation of alternative models. The strategy is based on the observation,
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that the distance between parameter vectors for the null and alternative model
is inversely proportional to the number of conditions. The setting is depicted on
Supplementary Fig. 1.

Let ne be the number of exonic parts of a gene and nc the number of exper-
imental conditions. Let X0 ∈ Rnenc×(ne+nc) denote a binary design matrix, with
one row per observation, and columns encoding each pair of exonic part e and
condition c. This is an established description of general linear models that is
given by the Eq. 1 below. The low-rank approximation is performed in the same
manner for both the count- and PSI-based models, hence we make no distinction
between the two in this description. The null models for both distributions have
a similar form

link(µec) = βe + βc (1)

where the link function equals log (the count model) or the logit (the PSI
model). Let the parameter vector β0 ∈ Rne+nc be a local maximizer of the null
model likelihood. For all nenc alternative models, the design matrices Xa ∈
Rnenc×(ne+nc+1) and the parameter vectors βa ∈ Rne+nc+1, define an additional
factor for the candidate interaction e′, c′ being tested:

link(µec) = βe + βc + δee′δcc′βe′c′ . (2)

Note that the matrix X0 is equal to each matrix Xa in all but the last column.
The number of model parameters is of order ne + nc, while the number of fitted
equals ne × nc, respectively. Thus, the number of fitted values per parameter
equals nenc

ne+nc
and rapidly saturates as nc grows, with the derivative of the order

n−2c (Supplementary Fig. 2a). Hence, as nc grows, the mean squared-error (the
distance) between corresponding components of vectors β0 and βa is expected to
decrease. This is due to single additional factor having a diminishing effect on all
other parameters (Supplementary Fig. 2b). Hence, re-using the information from
the null model fit β0 can be used to reduce the time required to find each βa.

We propose a model approximation algorithm based on the Wald test of pa-
rameter significance. Let β0,i be the i-th component of the null model parameter
vector. The corresponding estimated variance σ2

i is defined by the Iterative re-
weighted least-squared (IRLS) algorithm as the i-th diagonal entry in the Fisher
information matrix (?). For each β0,i, the Wald test statistic is defined as

wi =
β2
0,i

σ2
i

(3)

which follows a χ2 distribution with one degree of freedom. Thus, the sta-
tistical significance of β0,i being nonzero is quantified, subject to an user-defined
significance level α.
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Let Z be a subset of indices {1, 2, ...ne + nc} for which wi is not statistically
significant subject to α. The parameters at indices in Z are not significantly
different from zero and can be related to exonic parts and/or conditions with
a majority of corresponding observations equal to zero (for both count and PSI
data). These parameters are unlikely to change significantly when the interaction
factor is added in Eq. 2, and do not significantly affect the null model likelihood.

We construct reduced design matrices for the null and alternative models by
merging the non significant parameters into an residual factor εec. The residual
for each observation is computed as a dot product

εec = X0[ec,Z]β0[Z], (4)

yielding new formulations for the reduced null and reduced alternative models
as follows:

link(µec) = βe + βc + εec

link(µec) = βe + βc + εec + δee′δcc′βe′c′
(5)

where βe or βc are nonzero if and only if e /∈ Z or c /∈ Z, respectively. The
reduced null and reduced alternative models have ne + nc− |Z|+ 1 and ne + nc −
|Z| + 2 parameters, respectively, where | · | denotes cardinality of the set, and an
intercept factor is assumed implicitly.

The parameter vector for the reduced null model is computed directly from β0,
i.e., does not require model refitting. Specifically, the parameter corresponding to
the residual factor, β0Z,ε = 1, while the parameters for βe and βc, e, c /∈ Z do
not change. Note that the reduced null model will have the same likelihood as
the original null model. For the reduced alternative model, the value of βaZ,ε is
obtained through IRLS likewise to all other parameters.

This definition still allows application of likelihood ratio or difference in de-
viance model selection tests, since the reduced null is a special case of the reduced
alternative model. The reduced alternative model will have a likelihood that is
less than or equal to the original alternative model. This implies lower statistical
power, but does not affect the probability of Type I error (false positive rate) under
the same significance threshold.

Depending on cardinality of Z (number of zero observations), the savings in
the dimension of the parameter space can be substantial, greatly reducing the time
required for testing alternative models with large number of exonic parts and/or
conditions.

The effect of low-rank approximation, dependence of timing and accuracy on
parameter α is shown on Suppl. Figs. 2-3.
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Supplementary Figure 1: Overview of the reduced model algorithm, showing a
hypothetical dataset with ne = 4 exonic parts and nc = 4 conditions. The β0 is a
vector of parameters corresponding to the null model, and statistically significant
values (Wald test, p < α) are marked with a star (?). The statistically non-
significant parameters and the corresponding columns of the original design matrix
(left) are merged the residual factor ε, obtaining the reduced design matrix (right).
An intercept (bias) factor is assumed, but not shown.
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Supplementary Figure 2: Empirical evaluation of model reduction on a real bi-
ological dataset, which is constructed as described in Section 2.2.1 (main text).
a) The relationship between the number of conditions (nc) to the ratio of fitted
values per parameter ( nenc

ne+nc
). b) Model fits for a randomly selected gene. The

distance between β0 and βa is inversely proportional to nc. Standard deviations
are computed over all possible interacting pairs e, c. c) The distribution of times
(in seconds) per one model fit in the whole dataset when using the full and reduced
models. d) Quantiles of the time distributions in c).
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Supplementary Figure 3: Effect of significance level α on synthetic count (a-c) and
PSI (d-f) datasets described in Section 2.1 (main text). Five replicate datasets
are generated and shown in different colors. a, c) Change in retrieval accuracy
(Area under receiver-operating characteristic, AUC). b, d) Change in the number
of significant non-zero model parameters. c, f) Change in mean time per model
fit.
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1.2 Comparison of dispersion fitting methods

We compare the qCML and Cox-Reid dispersion estimation methods depending
on different number of conditions on Suppl. Fig. 4.
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Supplementary Figure 4: Dispersion fitting with qCML (orange) and Cox-Reid
dispersion estimate (blue) for increasing number of conditions: 5, 10, 30, 50 (left to
right). Root mean square error is shown in parentheses. True dispersion parameter
used for data sampling is shown in black.
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2 Experiments on ENCODE RNA-seq datasets
In the following, we present details on data preparation and supplementary results
for ENCODE RNA-seq datasets.

2.1 Number of unique exonic parts per gene

The distribution of the number of unique exonic parts per gene, used to construct
a subset of the original annotation is shown on 5.

2.2 Comparison of differential exon usage methods

We compare the methods csDEX-PSI, csDEX-count, DEXSeq and rMATS using

• Uniqueness scores (Suppl. Fig. 6), and

• Precision of retrieving known alternative splicing events (Suppl. Fig. 7)
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(a)

(b)

Supplementary Figure 5: Distribution of the number of unique exons in log10 scale
for genes in the hg19 genome. a) All genes. b) A subset of all genes; the genes
containing at least one annotated cassette exon in the knownAlt track (maximum
likelihod parameters, mean and std. deviation 1.476 ± 0.349 (absolute counts
101.476 = 29.88, 101.476−0.349 = 13.39, 101.476+0.349 = 66.68).
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Supplementary Figure 6: Distributions of uniqueness score. The distributions are
computed for each feature, condition pair (e, c) on interaction list retrieved by
each model. The uniqueness score is defined for (e, c) as the number of times e
appears in the interaction list for different c′ - the lower uniqueness score implies
that the feature is differentially used in a smaller number of conditions.
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Supplementary Figure 7: Evaluation of differential-exon usage detection methods
for alternative splicing events as annotated in UCSC altEvent track. The list of
candidate interactions provided by each of the methods is ranked by statistical
significance (p-value). The plots show cumulative probabilities of known event
of corresponding types within lists of size 30 to 10,000. The gray line show the
fraction of each splicing event in the dataset.
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2.3 Batch effects / sample clustering

The complete RNA-seq dataset in the ENCODE project at the time of writing
consisted of 190 shRNA knockdowns. The dataset can be divided into 19 batches
- a set of knockdown corresponding to the same control experiments, performed at
different dates. We performed two clustering analyses to investigate for possible
presence of batch effects that can be responsible for a non-negligible portion of
technical variability in sequencing studies (?).

We create a design matrix consisting of 420 RNA-seq samples and 139,759 ex-
onic parts (dataset for annotation with genes from 13 to 66 exonic parts, Suppl. Ta-
ble 3, online) with corresponding Percent-spliced In (PSI) value. For each sample,
additional metadata on experiment date and control sample is included. We use the
Principal component analysis (PCA) and Multi-dimensional scaling (MDS) clus-
tering methods to assess the similarities of samples within- and between- batches,
with the results summarized in Suppl. Table 1.

The detailed results of PCA on the design matrix with PSI values are available
in(Suppl. Table 10, online). The histogram of explained variance per principal
components displays a heavy-tailed distribution. Nevertheless, the two principal
components (PC1 and PC2) with largest explained variance account for a non-
negligible 16.6 % of total variance (Suppl. Fig. 8). A scatter plot of principal
component coordinates per each sample displays clustering of experiments in the
same batch (Suppl. Fig. 9). The samples corresponding to the same batch tend to
be closer to each other in the coordinate system spanned by PC1 and PC2 (average
within-batch Euclidean distance 60.885± 43.118; average between-batch distance:
198.794± 108.319).

A similar result is obtained when using the MDS transformation, where the
data is mapped to a two-dimensional space spanned by coordinates M1 and M2
(Suppl. Table 11, online). The Euclidean distances between samples in the M1-
M2 space approximate the Spearman correlation distance in the original (139,759-
dimensional) space. A similar clustering effect is seen after the MDS transforma-
tion (Suppl. Fig 10); the samples within the same batch then to be substantially
closer (average within-batch Euclidean distance 0.047 ± 0.032; average between-
batch distance: 0.105± 0.045).

Together, the results of this analysis confirm a possible presence of batch ef-
fects, where a substantial proportion of variance could be related to non-biological
variation, such as differences in laboratory conditions or personnel, and more.
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Control N date dw.PCA db.PCA dw.MDS db.MDS
1 ENCSR129RWD 48 2014-10-16 66.38 ± 48.40 196.61 ± 111.18 0.05 ± 0.02 0.11 ± 0.05
2 ENCSR661HEL 44 2014-12-17 49.99 ± 30.28 176.48 ± 112.12 0.06 ± 0.04 0.11 ± 0.05
3 ENCSR164MUK 32 2016-03-16 86.73 ± 47.66 222.25 ± 86.69 0.05 ± 0.03 0.10 ± 0.04
4 ENCSR667PLJ 32 2014-12-17 81.03 ± 50.03 235.08 ± 106.35 0.04 ± 0.02 0.11 ± 0.05
5 ENCSR815CVQ 32 2014-11-20 37.86 ± 22.54 156.06 ± 94.78 0.04 ± 0.02 0.08 ± 0.03
6 ENCSR572FFX 30 2015-08-18 55.87 ± 32.28 186.90 ± 83.63 0.06 ± 0.05 0.11 ± 0.04
7 ENCSR913CAE 30 2014-10-16 55.14 ± 37.25 167.72 ± 102.56 0.05 ± 0.03 0.10 ± 0.04
8 ENCSR620PUP 28 2016-01-12 37.45 ± 19.95 153.39 ± 91.19 0.03 ± 0.02 0.10 ± 0.04
9 ENCSR344XID 26 2014-10-16 93.71 ± 59.50 306.69 ± 95.53 0.03 ± 0.01 0.12 ± 0.05
10 ENCSR419JMU 24 2016-01-12 66.30 ± 31.53 286.55 ± 106.56 0.04 ± 0.03 0.12 ± 0.05
11 ENCSR032YMP 22 2016-03-16 52.54 ± 28.28 192.26 ± 89.68 0.06 ± 0.05 0.11 ± 0.05
12 ENCSR084SCN 20 2014-11-20 50.36 ± 36.85 178.82 ± 103.35 0.04 ± 0.02 0.11 ± 0.05
13 ENCSR143COQ 16 2016-06-13 79.61 ± 50.83 188.73 ± 62.33 0.06 ± 0.04 0.09 ± 0.04
14 ENCSR245BNJ 10 2014-12-17 27.49 ± 17.37 169.48 ± 117.10 0.05 ± 0.03 0.10 ± 0.05
15 ENCSR438MDN 10 2016-03-16 25.60 ± 14.22 156.53 ± 111.16 0.04 ± 0.02 0.10 ± 0.05
16 ENCSR118EFE 8 2016-03-16 32.46 ± 16.81 169.34 ± 104.85 0.05 ± 0.04 0.11 ± 0.05
17 ENCSR092WKG 4 2016-02-11 19.78 ± 4.52 178.04 ± 82.37 0.03 ± 0.02 0.11 ± 0.05
18 ENCSR031RRO 2 2016-06-13 16.10 ± 0.00 172.34 ± 85.71 0.03 ± 0.00 0.08 ± 0.04
19 ENCSR154OBA 2 2016-06-13 17.76 ± 0.00 184.56 ± 94.42 0.04 ± 0.00 0.10 ± 0.05
20 all 420 60.89 ± 43.12 198.79 ± 108.32 0.05 ± 0.03 0.10 ± 0.05

Supplementary Table 1: Summary of average distances for i) samples with the same control (distance within; dw)
and ii) distances between samples of different controls (distance within; db) for PCA and MDS results. N , number
of samples corresponding to each control.



Supplementary Figure 8: Results of the PCA. Fraction of explained variance per
principal component (red), and the corresponding cumulative distribution (green).
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Supplementary Figure 9: Results of the PCA. Scatter plot of the two components with highest explained variance.
Each color represents samples controlled by a particular control experiment. RBP knockdowns are marked with a
cross, while controls are marked with a circle.



Supplementary Figure 10: Scatter plot of the two-dimensional MDS analysis. Each color represents samples con-
trolled by a particular control experiment. RBP knockdowns are marked with a cross, while controls are marked
with a circle.



2.4 Binding and motif enrichment

In the following, we give a thorough definition of calculation of the binding and
motif score enrichments. The results are presented for the batch design (Suppl.
Fig. 11, Suppl. Table 12) and case vs. control design (Suppl. Fig. 12, Suppl.
Table 13).

2.4.1 Binding enrichment signal (eCLIP)

We seek overlapping eCLIP tags at these regions and define the binding signal as
enrichment in eCLIP tags on regions associated to regulated exonic parts (reg.),
comparing to the background set (backg.). Specifically, we define the odds (fold
enrichment) as ratio of the two probabilities

(binding) oddsi =
P reg.
i

P backg.
i

(6)

where i is a sequence position in the interval [-150, +150] nt proximal to the
3’ SS and P reg.

i is the probability of an eCLIP tag mapped to position i for the set
of selected regulated (reg.) sequences, with P backg.

i defined analogously.

2.4.2 Motif enrichment signal

Similarly, we define a motif signal as follows. Let W be a `× 4 motif probability
matrix and S be a sequence binary matrix of size L × 4 with a value of Si,a = 1
iff the nucleotide at position i is a. The odds of motif given by W at sequence
position i are defined as the ratio of expected motif scores:

(motif) oddsi =
ES∈reg.

[∑
a∈{A,C,G,U}

∑`
j=1 Si+j,aWj,a

]
ES∈backg.

[∑
a∈{A,C,G,U}

∑`
j=1 Si+j,aWj,a

] (7)

where the expectations are taken over regulated (reg.) and background (backg.)
sequences. Defined in this way, the odds give the ratio between the expected motif
scores at sequence position i (?).

The alignment between binding and enrichment signals (vectors of fold enrich-
ment within 300 nt regions) is scored using cross-correlation, defined as a maximal
Pearson correlation when one of the signals is allowed to be shifted by at most 50
nt.
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Supplementary Figure 11: Batch design; Fold enrichment (odds) of binding and
motif score probabilities when comparing up- and down- regulated exonic parts
for each RBP. A background (reference) set is composed of 20,000 non-regulated
exonic parts. The plots show [-150, 150] nt regions centered at 3’ splice sites (3’
SS), represented by a black vertical line. The gray dashed line represents fold
enrichment of 1 (i.e. no enrichment). The numbers represent values of cross-
correlation with maximum allowed displacement of 50 nt. Line plots are shown in
darker color when the cross-correlation > 0.15.
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2.5 Retrieving TARDBP-regulated cryptic exons

The dataset containing TARDBP regulated exons (see main text, Section 3.2.5).
The cumulative probability of cryptic exons dependent on the exonic part rank
(p-value returned by csDEX-count) is shown on Suppl. Fig. 13. The relationship
between number of reads mapping to and exonic part and log2 fold change against
expected expression is shown on Suppl. Fig. 14.
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Supplementary Figure 14: The dependence of mean read count to model-predicted
log2-fold change in expression (MA plot). All cryptic exonic parts are marked
with a diamond () and others with a circle. The exonic parts downregulated by
TARDBP, predicted by the csDEX-count model at FDR<5% are shown in red
color. Not-retrieved true cryptic exons are shown in blue. The confusion matrix
is shown in the table below.

21



3 Supplementary tables with experimental details

Supplementary Table 2: The genes with 5 to 15 unique exons and corresponding
non-overlapping exonic parts. Merged with the knownAlt annotation. See the
online file Homo_sapiens.GRCh37.75.cassetteExon.5.15.tab

Supplementary Table 3: The genes with 13 to 66 unique exons and corresponding
non-overlapping exonic parts. Merged with the knownAlt annotation. See the
online file Homo_sapiens.GRCh37.75.cassetteExon.13.66.tab

Supplementary Table 4: The list of BAM files aligned to the hg19 genome, used
to evaluate the count-based models. See the online file metadata-count.tsv

Supplementary Table 5: The list of transcript quantification files aligned to
the hg19 genome, used to evaluate the PSI-based models. See the online file
metadata-PSI.tsv

Supplementary Table 6: The list of BAM files aligned to the hg38 genome,
used to evaluate the retrieval of TARDBP cryptic exons. See the online file
metadata-TARDBP-hg38.tsv

Supplementary Table 7: The list of BED files from eCLIP experiments in the K562
samples. See the online file metadata-eCLIP.tsv

Supplementary Table 8: The GFF annotation file includ-
ing cryptic exonic parts provided by ?. See the online file
Homo_sapiens.GRCh38.TARDBP.cryptic.gff.gz
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Supplementary Table 9: The high-confidence cryptic exons provided by ?, retrieved
on Mar 28, 2017. See the online file hg38-cryptic-exons.tsv.

Supplementary Table 10: Results of the Principal component analysis (PCA).
The coordinates of two components with higest explained variance corresponding
to each exonic part. See the online file all_samples_rows_pca.csv.

Supplementary Table 11: Results of Multidimensional scaling (MDS). The coori-
nates of the two-dimensional space retaining the Spearman correlation distance.
See the online file all_samples_rows_mds.csv.

Supplementary Table 12: The binding enrichment at proximal regions for the up-
regulated and downregulated exonic parts in the dataset of genes with 13-66 exons.
The RBP knockdowns are grouped in 19 batches, corresponding to the control ex-
periment and the knockdown date. See the online file rnamaps_batch.csv.

Supplementary Table 13: The binding enrichement at proximal regions for the
downregulated exonic parts in the dataset of genes with 13-66 exons. Each
RBP knockdown is grouped with the corresponding control. See the online file
rnamaps_case.csv.
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