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Abstract

Motivation: Large-scale RNA sequencing studies with hundreds of experimental conditions allow
elucidation of the alternative splicing (AS) mechanisms. A limitation of contemporary differential exon
usage (DEU) tests is the comparison of multiple experimental conditions to a single reference, leading to
increased probability of identifying the same exon in multiple conditions. The expression data models are
based either on mapped read counts or Percent spliced-in (PSI), lacking an universal framework.
Results: We design the Condition-specific differential exon expression (csDEX) models, based on
Negative Binomial (read counts) and Beta regression (PSl), identifying AS changes unique to a small
subset of conditions. A low-rank approximation of the design matrix is proposed, with no increase in false
positive rate and a decrease in run time. With an increasing number of conditions, csDEX improves on
retrieval accuracy and hyperparameters estimation over comparable DEU methods. We evaluate csDEX
on the ENCODE project shRNA knockdown RNA-seq data on 190 RBPs (e.g., SRSF1, U2AF1/2, PTBP1,
hnRNPs, TARDBP) and UCSC knownAlt annotation. The csDEX models improve over comparable DEU
methods, with precision of 98% (PSl-based) and 82% (count-based). The causal effect of RBP binding
on AS is verified by independent data sources on RBP binding (eCLIP), sequence motifs, and successful
retrieval of previously verified cryptic exons regulated by TARDBP.

Availability and implementation: csDEX is an open source R package, with code and examples available
athttps://www.github.com/mstrazar/csDEX.

Contact: martin.strazar@fri.uni-lj.si

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction conditions can reach tens or thousands. For example, the Encyclopedia
of DNA Elements project includes 498 human, mouse and fly RNA-seq
experiments (ENCODE, Consortium (2004)), or a recent Arabidopsis
Thaliana data set which contains 285 RNA-seq experiments (Zhang
et al., 2016). More similar collaborative initiatives are expected in the
future (Goodwin et al., 2016). The increase in the order of magnitude

The advent of next-generation sequencing and the development of methods
such as RNA-seq has lead to a major increase in mapping resolution
and quantification precision of transcriptomes (Mortazavi et al., 2008).
The ability to quantify expression on a nucleotide resolution has driven
the design of differential expression models at the gene expression and

alternative splicing (AS) level, the two main aspects of transcriptome has strong implications on modeling in terms of efficiency and statistical

diversity. power.

A common experimental design assumed by AS models includes
a control condition and a number of case conditions. Following the

Here, we design a statistical package csDEX (condition-specific
Differential Exon Expression) to detect changes in alternative splicing
decrease in the cost of sequencing, the number of assayed experimental that flr‘e umquej Fo a s.m.gle or a few CXP erimental cond‘mons. D.ete<.:tmg
condition-specific splicing changes has important practical applications,

including but not limited to: identifying outliers/experimental artifacts,
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retrieving exons/splice sites regulated only by a particular RNA-binding
protein (RBP), using multiple conditions as background in absence of
control/reference experiments. We demonstrate the utility of csDEX on a
large dataset of 190 human RBP knockdown samples, identifying RBP-
specific splicing changes. The identified splicing changes are ranked on
statistical significance and verified with independent, external data sources
on RBP binding (eCLIP) and sequence motif analysis.

Statistical models of AS have extended the models of gene expression,
as both modeling scenarios have multiple data processing steps in common,
including read mapping, expression quantification and differential
expression analysis. A recent report empirically shows that the choice
of differential expression model had the greatest effect on precision/recall
of the resulting candidates (Williams et al., 2017). Of the two mechanisms,
alternative pre-mRNA splicing (AS) is more sensitive to the quantification
measure, as changes in AS are assessed within- rather than between
genes. Notable differences in AS modeling software packages therefore
include representation of basic splicing unit (exon, splicing junction,
exonic/intronic part, etc.), and the quantification metric, which largely
determines the distributional and other modeling assumptions. In the
following, we briefly review existing approaches and position csDEX
within this spectrum.

Definition of basic splicing unit determines whether an AS splicing
model assumes a known gene/transcript annotation. The earliest of
AS models MISO (Katz et al., 2010), SpliceTrap (Wu et al., 2011),
MATS (Shen et al., 2012), rSeqDiff (Shi and Jiang, 2013), rMATS (Shen
et al., 2014) assume transcript quantification and compare the ratio of
two isoforms, including and excluding an alternative exon of interest.
A splice graph representation pioneered by FDM (Singh et al., 2011)
and related alternative splicing module (ASM, DiffSplice by Hu et al.
(2013)), also used by jSplice (Christinat et al., 2016), MAJIQ (Vaquero-
Garcia et al., 2016), SDEAP (Yang and Jiang, 2016), employ changes
in probability distributions of different paths through the splice graph to
discover splicing changes. Finally, the methods DEXSeq (Anders ef al.,
2012), JunctionSeq (Hartley and Mullikin, 2016) and Alexa-Seq (Griffith
et al., 2010) build a non-overlapping exonic part (bin) representation
from existing transcript annotation (a GTF file) and perform analysis on
the newly generated GFF file. Our model csDEX assumes the former,
predefined GFF-based exonic part representation, due to standardization
and ability to relate to all types of alternative splicing events in the UCSC
Known Alt annotation (Kent et al., 2002) used in our case study.

Quantification of splicing unit usage is the main determinant of the
modeling choices. Read-count based models (e.g. DEXSeq, JunctionSeq,
DiffSplice, jSplices, Alexa-Seq, rSeqDiff) compare the fold-change of
reads mapping to a splicing unit between two conditions. This approach
is prone to false positives originating from changes in gene expression
rather than changes in splicing, as read counts are assigned to splicing
units independently from its neighbours. Methods based on isoforms (e.g.
FDM, SpliceTrap) estimate the divergence between distribution of isoform
usage. Similarly, the percentage-spliced in (PSI) quantity determines the
ratio of isoforms including a splicing unit versus all isoforms of a gene
(e.g. IMATS, MISO). Although assigned to each splicing unit individually,
its computation is inherently dependent on neighbouring splicing units.
Another advantage of PSI is the absence of normalization issues, present
for count-based models. To our knowledge, csDEX is the first method
including both count- and PSI-based expression quantification, based on
generalized linear models; the Negative Binominal and the Beta regression
models are designed respectively (Smithson and Verkuilen, 2006; Ferrari
and Cribari-Neto, 2004; Dobson and Barnett, 2008). Here, we empirically
compare count- and PSI-based modeling using the representative methods
and outline the advantages of PSI for modeling AS.

Modeling with multiple experimental conditions brings practical and
statistical challenge. The majority of the approaches require defining a

control condition against which all other conditions are compared. Firstly,
although the modeling benefits from having more data for parameter
inference, it does not enable finding changes that are specific to a
small subset of conditions (condition-specificity). Secondly, performing
all possible comparisons naturally leads to increase in computational
complexity and degrees of freedom - less statistical power. A differential
gene expression model Multi-DE tackles both problems with a low-rank
approximation, however with loss of condition-specificity (Park and Wu,
2016). The csDEX model specifies exhaustive testing for all combinations
of splicing units and experimental conditions. In the case of very sparse
data sets (most splicing units having zero expression), we propose a model
approximation based on the Wald test for parameter significance, resulting
in up to three-fold execution speed-up with no increase in Type I error
probability (false positive rate).

c¢sDEX is an R package with standard documentation and guide. The
user interface and input data format are extended from existing DESeq2
and DEXSeq packages, enabling interoperability and easier comparison.

2 A family of condition-specific differential
expression models

The described models fall under the generalized linear model (GLM)
family and are used in the analysis of variance (ANOVA) scenario. The null
models assume no effect of a condition on the exonic part and hypothesis
test is used to quantify the significance of observed effects. For each gene
independently, we define models of read counts and percent spliced-in
(PSI) related to its non-overlapping exonic parts, defined the same way as
in DEXSeq.

Let e be the exonic part of interest, which includes exons, alternative
splice sites, retained introns. We use ¢ to denote an experimental condition.
Both count- and PSI-based models assume the same design matrix while
differing in the distributional assumptions of the observed data.

2.1 The read count model

The number of reads Ye. mapping to exonic part e upon condition c is
distributed according to a negative binomial (NB) distribution:

Yec NNB(ScHemde) (1)

where ptec denotes the expected count, s. the size factor particular
of a condition and related to depth of sequencing, and d. the dispersion
(extra-Poisson variation) of each exonic part. In order to infer regression
parameters of NB-distributed data, the dispersion de is assumed to be
known, while the mean is parametrized using the log-link function:

log(prec) = Be + Be 2

where B¢, B¢ represent exonic part- and condition- specific parameters.
The alternative models

IOg(MGC) =Be+Bc+ 668/566/66/6/ 3

where 9 is the Kronecker delta function and 3,/ ./ represents an effect
of €’ on condition ¢’. The parameters of the alternative model are inferred
once for each candidate interaction (pair e’ and c’). Since the alternative
model (Eq. 3) is a more general case of the null model (Eq. 2), the
likelihood-ratio test can be used to assess the significance of the interaction
paramterer 3./, (Dobson and Barnett, 2008). Additional factors (such as
library type, batch number, cell type) can be added to models 2-3.

The genes are assumed to be independent groups of exonic parts and
parameters are fitted for each gene independently; for a gene with ne
exonic parts and expression in n. conditions, we perform ne X n. tests.
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The significance scores are used to produce a ranked-list of likely effects of
conditions on the exonic parts. Instead of testing all possible pairs, there
may exist a subset of exonic parts or conditions of interest to be tested
while the remaining pairs are used as reference.

The hyperparameters - size factors s. and dispersion de - are assumed
to be known prior to estimation of 3. Various methods exists for both
parameters. For size factors, we use the function calcNormFactors
provided by the edgeR package. The discussion on dispersion estimation
in NB regression models is presented in Section 3.1.1.

2.2 The Percent spliced-in model

Percent spliced-in (PSI) is a measure of expression alternative to read
counts and represents the ratio of exon inclusion in all transcripts of a
gene.

PSI is derived for each exonic part as a ratio of reads overlapping the
exonic part versus total reads overlapping the upstream and downstream
splice junctions. The division that is involved also acts as an implicit form
of normalization, making the PSI values comparable across exonic parts.
The PSI can be used to quantify all splicing events, such as alternative
5°/3” ends, intron retention and others.

Beta regression is used to model data in form of fractions (Ferrari and
Cribari-Neto, 2004; Smithson and Verkuilen, 2006), since the support of
the beta distribution is an open real interval, e.g., (0, 1). The model uses
a familiar parametrization; the PSI of an exonic part e in condition c is
distributed according to a beta distribution with mean g, and precision
D, ie., Wee ~ Beta(ptec, P).

The link function for the mean is the logit(x) = log(+=-), which is

l—z
amapping (0,1) — (—oo, 00). The null model is thus given as

logit(pec) = Be + B, “4)

and the alternative model includes the interaction factor S,/ ./:

IOgit(,U‘CC) = Be + Bec + 686/6CC/ Be’c' (5)

The definitions are analogous to model in Egs. 2-3 and the significance
of the effect of exonic part €’ on condition ¢’ is again evaluated by means
of the likelihood-ratio test. Due to implicit normalization, the model uses
a single precision parameter . Other options such as a precision model
are possible subject to additional computational cost.

2.3 Efficient parameter estimation

Closed-form solutions for likelihood-maximizing parameters for the
presented generalized linear models do not exist. To fit both count and PSI
models, we use the Iterative-reweighted least-squares (IRLS) algorithm
with Levenberg-Marquardt damping (Press, 2007), with time complexity
of O((ne +nc)?) per single model fit. Here, we briefly describe a model
approximation scheme and refer the reader to Suppl. Section 1.1 for a more
complete treatment.

Let the parameter vectors 3 and 3, be the local maximizers of the
log-likelihood for null and alternative models, respectively. Parameter
estimation for the alternative model is repeated ne X n. times for each
candidate interaction (pair €’,c’; Suppl. Fig. 1). As the number of
conditions grows with n, the number of model parameters and the number
of fitted values grow with ne + n¢ and ne X ne, respectively. This leads
in an increased number of measurements associated to an exon factor.
Consequently, an increasing proportion of parameter values tends to be
approximately equal in the null and the alternative models. In other words,
the mean-squared error (the distance) between corresponding components
of By and B, decreases with n. (Supplementary Fig. 2a-2b).

We propose an approximation scheme based on the Wald test for
parameter significance to decrease the number of parameters for each

alternative model fit. Briefly, having obtained a maximum likelihood
estimate of 3, the value of each component 3, ; is compared to its
estimated variance 01.2, leading to a test statistic

B3
wi = —3 ©)

ai

which follows a x? distribution with one degree of freedom. This way,
the parameters significantly different from zero can be identified, for a user-
defined significance level a.. The factors corresponding to the remaining
parameters - non-significantly different from zero - are collapsed into a
single residual factor €... The new design matrices for the null and the
alternative models are defined by

lil’lk(/.Lec) = ﬂe + BC + €ec
link(uec) = Be + 5: + €ec + 655’5cc’ﬁe’c’

(O]

where . or 8. are nonzero if and only if they have been identified
as significant by the Wald test (Eq. 6). For the null model, such definition
does not affect the likelihood of the original null model. On the other hand,
alternative model has a reduced capacity, retaining only the significant
parameters. The maximum likelihood of the reduced model is upper
bounded by that of original alternative models (Eq. 3 and Eq. 5), which
affects statistical power, but does not increase the probability of Type I
error, which is desired for our application. The conditions for applying
the likelihood-ratio test are still met as the reduced null model is a special
case of the reduced alternative model. This can be seen as a low-rank
approximation of the design matrix where non-significant columns are
combined into one. The effect of model reduction on timing properties,
retrieval accuracy and the model capacity is investigated in Section 3.1.3.

3 Results and discussion
3.1 Experiments on generated data

To assess the accuracy of retrieval of differentially used exonic parts, and
investigate the effect of increasing number of conditions, we perform
experiments with artificially generated data for count- and PSI-based
models.

The number of exons is set to ne = 60 and the number of conditions
varies, nc € [3, 5,10, 30, 50]. The sampling distributions for size factors,
exonic part, condition, exon-condition interaction parameters and size
factors are determined to assume comparable values to real-world datasets
(data not shown), and are defined as

se ~T1(1,2)
Be, Be Nu(*l» 2) ()]
/Be’c’ ~ u([_87 _6] U [172])7

where I'1 (a, b) is the gamma distribution with one degree of freedom,
and U(a, b) is the uniform distribution on [a, b]. The number of ground-
truth interacting pairs €', ¢’ is set to 5% of the total number of exons
and selected at random. Finally, the observable values Y. and W, are
sampled according to the models in Eq. 3 and Eq. 5, respectively. To
compute standard deviations, 30 replicate datasets are generated with two
replicates per condition.

3.1.1 Dispersion estimation

The variance of negative-binomial distributed data is dependent on the
mean and dispersion as var[Yec] = plec + de ugc. The values of exonic
part-specific hyperparameters d. are required prior to model fitting. The
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Cox-Reid dispersion estimate, a method proposed for small number of
conditions (or replicates), used by the DEXSeq package, provides a
conservative estimate, taking the maximum of model fit and individual
exon estimate. The advantage of large number of conditions provides
greater statistical power when estimating hyperparameters.

Due to unequal library sizes across conditions, the counts Ye. are
sampled from distributions with different means. We use a quantile-
adjusted conditional ML (qCML) to generate identically distributed
pseudodata and derive a common estimate (Robinson et al., 2010).

Suppl. Fig. 4 shows the results on generated data, which confirm qCML
is the least biased and outperforms the Cox-Reid estimate with increasing
number of conditions (at n. = 50; qCML RMSE 0.92, Cox-Reid RMSE
2.90). The qCML model overestimates the low dispersion values, as shown
on Suppl. Figs. 4a-d. This favours Type II error (false negative) over Type
I error, which is a suitable trade-off for differential expression tests in
genomic studies.

3.1.2 Retrieval of condition-specific differentially expressed exons
Next, we evaluate the accuracy of the differential exon expression retrieval
by each method. The statistical significance scores produced by each
method are used to rank the exons and receiver-operating characteristics
(ROC) are estimated with respect to the ground truth. The area under the
ROC curve (AUC) is used as a measure of retrieval accuracy.

To this end, we demonstrate the advantage of modeling all experimental
conditions jointly versus exhaustive pairwise condition vs. control
comparisons. For count data, DEXSeq is run once per each condition,
versus an arbitrarily chosen control condition (which is the same for
all comparisons). For PSI data, csDEX is run jointly for all conditions
(labeled full) and, similarly, once per each condition versus control (labeled
pairwise). The statistical significance scores are reported using scientific
notation (i.e., ’aE-x" =a x 10~7%).

The results are shown in Fig. 1. When detection of condition-specific
changes in exon expression are desired, csDEX performs equally or better
than DEXSeq for an increasing number of conditions, e.g. at n. = 5,
c¢sDEX mean AUC=0.865 and DEXSeq AUC=0.813 (p-value=6.6E-2,
Student t-test), and for n. = 50, the mean AUC scores are 0.962 and
0.859, respectively (p-value=8.6E-5). For PSI-based models which have an
upper bounded variance, the differences are in mean AUC are less drastic,
but still statistically significant as overall mean AUC=0.847 (full model)
and AUC=0.789 (the pairwise model, p-value=2.eE-4, Student t-test).

The retrieval accuracy varies greatly between the number of conditions
due to different, independently generated datasets with a low number of
replicates. To disambiguate the effect of differences in sampling, AUC
scores for the same dataset replicates are compared pairwise. For each
comparison, csDEX consistently produces a higher AUC than DEXSeq
(Wilcoxon signed rank test, p-value=3.4E-13, Fig. 1b, label all). This
property is preserved when the tests are confined to datasets with the same
numbers of conditions. The number of times csDEX outperforms DEXSeq
increases with ne, e.g., forn. = 3, p-value=5.7E-02, and for n. = 50, p-
value=1.9E-07. The same effect is observed for PSI-based models, where
for n. = 3, p-value=6.3E-01, and for n. = 30, p-value=2.0E-05, and
overall p-value=5.7E-08 (Fig. 1c). Together, these results argue that joint
modeling of multiple conditions increases the statistical power of the test
to detect condition-specific changes.

3.1.3 Comparison of full and reduced models

Finally, we compare the effect of design matrix approximation scheme,
described in Section 2.3. To assess the retrieval accuracy measured by
AUC, a synthetic dataset with n. = 10 is used. The significance threshold
« affects Type I error probability, but did not significantly affect the
retrieval accuracy (change in AUC < 0.0008 for PSI model and < 0.005

PSI models

method B3 full B8 painwise

Count models

method B3 csDEX B DExseq

10- - 10-
H
08- = 087
Q . Q
] 3
< <
06
06-
. , \ . . 04- , , . )
3 5 10 30 50 3 5 10 30 50

Num. conditions Num. conditions

ne || csD. DEXS. PW pt || full pairw. PW Dt
3 0.88 0.89 5.7E-02 5.7E-1([0.82 0.83 6.3E-1 6.7E-1
5 0.87 0.81 8.7E-03 6.6E-2 || 0.87 0.80 1.2E-3 1.9E-2
10 || 0.93 0.81 8.0E-06 1.1E-3(|0.86 0.78 3.6E-4 1.4E-2
30 || 0.94 0.85 1.2E-06 2.1E-3(|0.85 0.76 2.0E-5 6.4E-3
50 {| 0.96 0.86 1.9E-07 8.6E-5(| 0.84 0.78 1.3E-2 6.7E-2
all || 0.91 0.85 3.4E-13 2.0E-6 (| 0.85 0.79 5.7E-8 2.3E-4

Fig. 1. Accuracy of retrieval for known interactions on generated data is measured by Area
under ROC curve (AUC) for increasing number conditions. Tables show mean scores for
csDEX and DEXSeq (for count data) and full versus pairwise models (for PSI data). The
statistical significance of differences in means is performed with one-sided Wilcoxon signed
rank test (pyy) and one-sided Student t-test (p¢).

for the count model between @ = 1 and a=1E-10), as shown on Suppl.
Fig. 3). On the other hand, decreasing « leads to a significant reduction
in the number of model parameters (30 down to an average of 5.2 and
2.0 for the PSI model and the count model, respectively). Consequently,
the running time decreases accordingly (3.48-fold reduction for the PSI
model, and 3.21-fold for the count model). Together, these results show the
savings with usage of reduced models on large-scale biological datasets.

3.2 Experiments on ENCODE RNA-seq datasets

To evaluate the methods, we use publicly available RNA-seq data from the
ENCODE project (Consortium, 2004). We perform differential analysis of
non-overlapping exonic parts in a defined subset of genes. The discovered
differentially used exonic parts are analysed for enrichment of known
splicing events, RBP binding events and RNA motifs.

3.2.1 Experimental setup

We obtained 208 RNA-seq experiments on 189 individual RNA-binding
protein knockdowns (shRNA interference, denoted shRNA+RNA-seq)
and 19 controls in a human immortalised myelogenous leukemia line K562,
provided by the ENCODE consortium (Suppl. Table 4). The number of
reads mapping to each exonic part is extracted from BAM files aligned
to the hgl9 genome using the script dexseq_count.py (package
DEXSeq). Provided transcript quantifications files are used to compute PSI
values, as a ratio of isoforms including an exonic part versus all isoforms
(Suppl. Table 5). Similarly, we downloaded BAM files for 244 experiments
aligned to the hg38 genome in order to compare the results with a study
of TARDBP-regulated cryptic exons (Suppl. Table 6).

A subset of the human gene annotation file (GTF, Ensembl hg19) was
prepared to evaluate the precision of annotated splicing events retrieval.
The selected genes contain at least 5 and up to 15 unique exons, contain
at least one cassetteExon and do not overlap with any other gene (Suppl.
Table 2). The associated exons are split into non-overlapping exonic parts
(GFF file) using the script dexseq_prepare_annotation.py. The
final GFF file contains 1,073 genes and 11,047 unique exonic parts.
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This smaller dataset is used to efficiently evaluate differential exon usage
methods.

Annotated alternative splicing events are extracted from the UCSC
Genome Browser track knownAlt, consisting of eight types of events:
altFinish, altFivePrime, altPromoter, altThreePrime, bleedingExon,
cassetteExon, retainedIntron, strangeSplice. We assign an exonic part to
any of the above eight knownAlt event categories based on partial overlap.
Since knownAlt annotation is not complete, we additionally denote an
exonic part alternative if it is not a part of every known transcript for a
given gene.

Similarly, we create a larger annotation with genes containing at least
13 and up to 66 unique exons (Suppl. Table 3). The bounds are selected
to represent the distribution of the number of unique exons per gene; for
genes with at least one cassetteExon, the distribution of the number of
exons (in log; scale) follows a shape close to the normal distribution,
with the interval [13, 66] a one standard deviation away from the mean of
29.88 exons (Suppl. Fig. 5). The annotation contains 139,759 exonic parts
in 4,789 genes. This larger dataset is used to examine RBP binding and
motif enrichment with greater statistical power.

We obtained 89 experiments on genome-wide RBP binding,
determined with ENCODE cross-linking and immunoprecipitation
(eCLIP) protocol in same cell line K562 (Suppl. Table 7). In total,
there is 69 RNA-binding proteins with both shRNA+RNA-seq and eCLIP
experiments available. For each exonic part, we count the number of
overlapping eCLIP reads.

Data from the Catalog of Inferred Sequence Binding Preferences of
RNA binding proteins! (CISBP) is included to corroborate the direct
binding evidence (Ray et al., 2013). The RNA motifs are obtained with
the in vitro assay RNAcompete and are represented as position-probability
matrices of 4-11 ntin length. Out of 69 RBPs with shRNA knockdowns and
binding evidence (eCLIP), there are 18 with known, direct motif evidence
in the CISBP.

3.2.2 Effects of quantification method on retrieved interactions

The variability in read counts can arise both from differences in expression
on a gene level and from splicing of individual exonic parts. The
disambiguation between the sources of variability is made harder if
expression of exonic parts is quantified independently (of other exonic
parts). Conversely, the quantification based on PSI implicitly includes all
exonic parts of a transcript. Fig. 2 shows the exonic part and condition
pairs with FDR< 10% retrieved by csDEX-count, DEXSeq (count-
based models) and csDEX-PSI, rMATS (PSI-based models). To assess
the dependence between actual percent-spliced in ¥ and read count Y,
each significant interaction - exonic part and condition pair (e, ¢) - is
placed in a plane spanned by

e AW, difference between W, and average W, ., (x-axis), and
o AY’; log, fold difference between read count Ye. and average Y,/

(y-axis),

where the averages are computed over all conditions ¢’. Unsurprisingly,
the two quantities are proportional, as seen by positive correlation
coefficients, which are significant for all four methods (p<2E-14%). Using
the PSI-based models csDEX-PSIand rMATS results significantly stronger
correlation compared to count-based models. It confirms that significant
change in PSI implies a perceived change in read counts, but not vice
versa. This is supported by counting the interactions having the same sign
in both AW and AY: 66% and 60% for PSI-based; 50% and 56% for
count-based models, with csDEX-PSI reporting the strongest agreement
between perceived changes in read counts and PSI.

'http://cisbp-rna.ccbr.utoronto.ca/

csDEX-PSI csDEX-count
g g
g S g S
[ n - (] n —
2 2
© o - [ o -
= =4
[=} [=}
ug o ug o
] — ] — -
g 7 g "
3 T T T T T 8 T T T T T
-1.0 -05 00 05 1.0 -1.0 -05 00 05 10
delta PSI delta PSI
MATS DEXSeq
g S g S
() n - (] n -
2 2
© o [} o
= =
G G
b} b o b
.,‘Q o L o
— - ] — —
g g "
3 T T T T T ] T T T T T
-1.0 -05 00 05 1.0 -1.0 -05 00 05 1.0
delta PSI delta PSI
N pp ps PG) P(w)

csDEX-PSI 5188  0.34 033 66% 55%
csDEX-count 452 0.14 0.11 50% 15%
rMATS 7851 031 035 60% 10%
DEXSeq 17102 024 031 56% 8%

Fig. 2. Agreement between actual change in PSI (A W) and change in read counts (AY") for
interactions (pairs e, c) retrieved by the compared methods (at FDR< 10%). Legend: N
number of retrieved interactions; p p / p g Pearson/Spearman correlation; P (s) percentage
of interactions equal up to sign, sign(AW¥) = sign(AY); P(w) percentage of significant
changes in AW.

The Wald Test is used to assess the degree of condition-specific
changes; the magnitude of AW for each exonic part is compared to its
standard deviation across all conditions. The largest percentage (55%) of
significant changes is reported by csDEX-PSI. Surprisingly, the percentage
of csDEX-count (15%) is slightly larger than rMATS (10%) and almost
twice as large as DEXSeq (8%), supporting the advantage of including
condition-specific model parameters.

From a similar perspective, each of the retrieved interaction lists is
used to estimate a distribution of uniqueness score (Suppl. Fig. 6). For each
significant pair (e, c), the count of conditions ¢’ where the same feature
e is also significant under the same FDR threshold of 10%. Expectedly,
the proposed condition-specific models are heavily skewed towards zero
(csDEX-PSI: 14.3 + 15.9; csDEX-count: 0.4 £ 0.9) compared to non-
condition specific models (rtMATS: 27.1 4+ 16.8; DEXSeq: 30.1 4= 22.0).

Together, this comparison illustrates the robustness of PSI-based
models for retrieving changes in alternative splicing as the count values
can be affected by gene expression and read coverage effects. Finally, the
inclusion of condition-specificity in model definition enables the retrieval
of unique changes particular to a small subset of conditions.

3.2.3 Precision of annotated splicing events retrieval

Obtaining ground truth information presents a major challenge in
evaluation of differential expression methods. To quantitatively evaluate
the lists of retrieved candidate interactions by each method, we use the
UCSC knownAlt annotation as ground truth for independent validation.
Note that the knownAlt annotation is not presented to any of the methods,
nor does it influence annotation of non-overlapping exonic parts (the GFF
file), but it is used only for initial selection of genes.

“strazar2017a” — 2017/6/7 — page 5 — #5



StraZar et al.

For each method, we select the top 10,000 most significant interactions.
For each of the nine AS event types listed in Section 3.2.1, we compute
the cumulative precision for each possible significance cut-off; precision
is defined as the number of exonic parts annotated with the particular AS
event (positives) versus constitutive exonic parts (negatives). We assume
that if an exonic part is deemed differentially spliced, the agreement
with an existing, independently annotated AS events supports the case
(true positive). Conversely, constitutive exonic parts (false negatives)
may still be identified as differentially spliced due differences in read
coverage/gene expression, incomplete annotation, or due to inherent
uncertainty associated to model fitting.

Not surprisingly, all six evaluated methods display an average
cumulative precision greater than the overall probability of the particular
AS event type, confirming that the retrieved lists are non-random (Fig. 3).
For example, there is 72% of exonic parts annotated with any AS event (i.e.
of category alternative), while all of the methods score above 80%. For all
nine categories, the PSI-based models (shown in warm colors) outperform
the count-based models by a large margin. This finding is supported by
the results in Section 3.2.2, showing that the variance in counts does not
imply variance in PSI. The quantification with PSI is explicitly dependent
on whether a feature is present in all transcripts, since constitutive features
will have PSI of either O or 1. Nevertheless, the condition-specificity and
a larger set of reference conditions implied in csDEX-PSI (prec.=98%)
improves the precision also over tMATS (prec.=91.5%). The csDEX-
count model improves over DEXSeq in all nine categories, confirming
that a difference in count should be compared to a large set of conditions
to be deemed significant. The two most abundant AS event categories are
shown on Fig. 3, bottom panel. The cumulative precision first exhibits a
rapid rise, indicating higher abundance of true positives towards the top
of the lists, reaching the prior probability as the list length approaches the
full dataset size. The cumulative precision plots for all AS event types
are shown in Suppl. Fig. 7. The Wald Test-based model approximations
to csDEX-PSI and csDEX-count, presented in Section 2.3 and indicated
with a **” exhibit a comparable performance to the corresponding exact
models, while slightly improving precision, confirming that this type of
model approximation can further decrease the probability of Type I error.
The reduced models additionally decrease running time over 3-fold (Suppl.
Fig. 2¢-2d), with median time of 0.63 seconds per model fit. In summary,
the condition-specific csDEX-PSI and csDEX-count improved precision
over its condition vs. control counterparts and retrieved plausible (exonic
part, condition) pairs representing annotated AS events by an independent
source.

3.2.4 Condition-specific regulated exonic parts are enriched in RBP
binding and motifs

We analyze the condition-specific, regulated exonic parts in context of two

independent data sources: i) the RBP binding protein occupancy (eCLIP)

and ii) motif analysis (CISBP data), obtained as described in Section 3.2.1.

For the experiments in this section, we use the larger annotation consisting

of genes with 13 to 66 unique exons (Suppl. Table 3).

To obtain a high-quality list of regulated exonic parts for each
condition, we infer parameters of the csDEX-PSI for each batch of
experiments. A batch is defined by a common control experiment (mock
shRNA with a non-specific target) and performed on the same date (Suppl.
Table 1). Principal component and Multi-dimensional scaling analyses
(PCA and MDS) of samples reveal a higher similarity of samples within
the same batch comparing to average similarity between batches (Suppl.
Figs. 8-10). This suggests a strong possibility of batch effects (Leek et al.,
2010), prompting us to perform separate csDEX tests per each batch (batch
design). A batch effect factor could in principle be included into the
model definition. However, ENCODE datasets includes only repeats of
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Fig. 3. Precision of recovering annotated AS events from UCSC knownAlt track asessing
the top 10,000 of most significant interactions (pairs e’, ¢’) retrieved by each method. The
cumulative precision for events cassetteExon and altPromoter is shown in detail. (dash:
prior probability, *: reduced model).

control experiments within each batch. The repeats of RBP knockdowns
in different batches are not included, limiting the ability to infer batch-
specific model parameters. We compare the results obtained by the batch
design to a classic condition vs. control (pairwise) design for each surveyed
factor individually.

We fit a reduced csDEX-PSI model to each gene (parameter
significance cut-off @« = 0.05, see Section 2.3). For each of the 18
conditions (RBP knockdowns with provided eCLIP and motif data), we
select significantly regulated alternative exonic parts (FDR<10%). For
each condition, we sample an additional 20,000 non-significantly regulated
exonic parts (FDR=1) to serve as a background set (backg.). We refer to
an exonic part as upregulated, when its expression is reduced in the RBP
knockdown, i.e. its expression is lower than predicted by the null model.
The definition of downregulated exonic parts is analogous.

We examine the fold enrichment in binding and motif probability at
300 nt regions centered at the 3’ splice sites (3’ SS), whose recognition
by the spliceosome is affected by many surveyed RBPs, such as U2AF2,
PTBP1, SR proteins or hnRNPs. The differences in binding were very
subtle, and hardly detectable by Proportion or Hypergeometric enrichment
tests when looked at in a position non-specific manner (data not shown),
presumably due to previously observed high noise and sparsity in of the
eCLIP tags (Haberman et al., 2017). Therefore, we examined position-
specific enrichment at individual nucleotide positions within the defined
regions. The exact derivation of the enrichment scores is described in
Suppl. Section 2.4. Briefly, the binding enrichment at nucleotide position
¢ is defined as a ratio of probabilities (odds) of an eCLIP tag presence at
regulated (reg.) versus background (backg.) set of regions. Similarly, the
motif enrichment is defined as a ratio of motif scores (agreement of the
sequence with a given motif position-probability matrix). The alignment
between binding and enrichment signals (vectors of fold enrichment within
300 nt regions) is scored using cross-correlation, defined as a maximal
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Pearson correlation when one of the signals is allowed to be shifted by at
most 50 nt.

The results for a subset of binding and motifs patterns is presented
on Fig. 4, with the complete set of RBPs is shown on Suppl. Figs. 11-
12 and Suppl. Tables 12-13. Out of the 18 surveyed RBPs, nine display
high cross correlation (>0.15) for both up- and down- regulated exonic
parts, four only in upregulated and five only for downregulated exonic
parts. Comparing the results of batch design in to condition vs. control
design, both eCLIP and motifs signals display higher positive enrichment.
Twelve RBPs display an eCLIP signal enrichment of at least 1.5-fold in
at least one regime, whereas no comparable enrichment is in witnessed in
the condition vs. control design.

The U2 auxiliary factor (U2AF2) is a core spliceosomal component
that plays a role in 3’ splice site recognition (Fu et al., 2014). It binds
polypyrimidine tracts and interacts with the Ul protein for initial exon
definition. We observe highest enrichment in neat 3’ splice sites of the 1641
downregulated parts (N=1641; max. 1.59-fold eCLIP signal enrichment,
70 nt downstream of 3’ SS) and cross-correlation of 0.36 with motif
enrichment signal. Thus, binding of U2AF2 at the pre-mRNA defines
a splice site, causing the directly bound region to likely be excluded from
the transcript. The specifically upregulated exonic parts (N=925) display a
somewhat lesser 1.44-fold binding enrichment and cross-correlation with
motif signal of 0.23.

The polypyrimidine tract-binding protein (PTBP1) antagonizes
U2AF2 binding, interfering with functional recognition of 3’ splice sites
and preventing spliceosome assembly (Sharma et al., 2008). Our results
agree with this proposition; for the 1,114 downregulated exonic parts, we
observe 1.8-fold motif and 1.46-fold binding enrichment -15 nt upstream of
the 3’ splice sites, with 0.39 cross-correlation. A similar binding and motif
enrichment is observed at 1,286 upregulated exonic parts, however with
a much smaller cross-correlation of 0.1. The highest motif enrichment is
observed at -8 nt of the 3’ SS, suggesting a possible successful recognition
of the intron 3’ end by U2AF2 and consequently a successful inclusion
into the end transcript.

The KH domain containing, RNA binding, signal transduction
associated 1 protein (KHDRBS1), also identified as Sam68, is generally
associated to splicing activation by i) binding exonic splicing enhancers
or ii) enhancing the binding of U2AF2 to alternatively spliced pre-
mRNA (Matter et al., 2002; Tisserant and Konig, 2008). For the 634
upregulated exonic parts, this is confirmed by a peak 2.51-fold binding
enrichment at -8 nt around the 3’ splice site and an average of 1.78-fold
enrichment within the [-150, +150] nt region proximal to the 3’ SS, with
somewhat weaker motif enrichment. The 730 downregulated exonic parts
display a weaker binding enrichment pattern downstream of the 3” SS.
Together, this confirms the role of KHDRBS1 as an splicing activator in
both intronic and exonic regions.

The various roles of SF3B complex (SF3B) include recognition of
branch point adenosine. This enables SF3B to present a temporary steric
barrier to branch point sequence prior to activation, preventing pre-mature
splicing and promotion of stable interaction for U2 and U11/U12 di-snRNP
to pre-mRNA (Lardelli et al., 2010; Rakesh et al., 2016). For the 1,086
downregulated exonic parts, the binding enrichment pattern expectedly
mimics that of U2AF2, binding at the 3’ splice site motif CAAAG (cross-
correlation 0.44) and exhibiting largest enrichment at the starts of exonic
parts, 38 nt downstream from the 3’ SS.

The Serine and arginine rich splicing factors (SRSFs) largely bind
exonic splicing enhancers, hence its binding and alignment with the signal
is present mainly in the exonic regions (Fu ez al., 2014). This is exemplified
by e.g. the SRSF7 protein, with 1.41-fold binding enrichment in intronic
and exonic parts around the 3’SS of the 549 upregulated exonic parts,
and 0.63 cross-correlation of binding and motif signal. Conversely, the
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Fig. 4. Fold enrichment (odds) of binding and motif score probabilities when comparing up-
and down- regulated exonic parts, against the background set. The plots show [-150, 150]
nt regions centered at 3” splice sites (3’ SS), represented by a black vertical line. The gray
dashed line represents fold enrichment of 1 (i.e. no enrichment). The numbers represent
values of cross-correlation with maximum allowed displacement of 50 nt. Line plots are
shown in darker color when the cross-correlation > 0.15.

downregulated exonic parts display a slight depletion, with the binding
probability of 0.78-fold from the expected.

The Heterogeneous nuclear ribonucleoproteins Al and K (HNRNPA1
and HNRNPK) affect splicing by binding both exonic and intronic regions.
Both RBPs display binding enrichment in the upstream and downstream
of the 3’SS. Data for both proteins report more downregulated exonic
parts (1261 for HNRNPA1; 1938 for HNRNPK) than upregulated (934
for HNRNPA; 1164 for HNRNPK). For HNRNPA1 we observe a higher
binding enrichment of 1.35-fold at the downregulated exonic parts, with
cross-correlation of 0.44; For HNRNPK, we observe a stronger 3.1-fold
enrichment and cross-correlation of 0.39. This is consistent with the
knowledge that HNRNPs can cause both exon inclusion and exclusion
when binding to upstream intronic splicing silencers.

Together, the concordance with known binding patterns present a
positive control, and present an indirect, but relevant evidence to the quality
of retrieved exonic parts.

3.2.5 csDEX successfully retrieves TARDBP cryptic splicing events

A further validation of csDEX ability to discover condition-specific
splicing changes was performed vis-a-vis a thoroughly investigated
unannotated exons arising upon silencing of the TARDBP gene. The
long length and reduced evolutionary conservation of intronic sequences
contribute to an increased probability of emergence of novel 5” and 3’ splice
site pairings, resulting in the so-called cryptic exons or pseudoexons (Ling
et al., 2015). In a recent study, TARDBP-regulated cryptic splicing was
investigated within nine human and mouse RNA-seq datasets, including
the K562 samples obtained from ENCODE (Humphrey et al., 2016).
The authors report on a confident list of 84 cryptic exons that undergo
increased expression upon TARDBP depletion. In contrast, the changes in
expression of the same cryptic exons are not observed upon depletion of
FUS or hnRNPC, the two proteins also related to ALS and cryptic exons,
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suggesting TARDBP-specific regulation. The causal relationship between
TARDBP binding and direct effect on splicing was further supported by
RBP-RNA interactions (iCLIP and eCLIP) as well as the enrichment of
characteristic GU-rich RNA motifs.

We used a provided GFF annotation file with a total of 204,961
exonic parts, out of which 11,919 cryptic exonic parts were not part of
standard Ensembl annotation (Suppl. Table 8). Using the read alignment
(BAM) data for the hg38 annotation, we run the csDEX-count model
with 244 different RBP knockdowns (Suppl. Tables 6). The list of 84
high confidence cryptic exons was used as a positive control (Humphrey
et al. (2016), Suppl. Table 9, retrieved on 28. 3. 2017). To verify
whether the cryptic exons would be detected by csDEX, we test only for
TARDBP specific changes, while using the data for all 244 conditions for
parameter inference (i.e. the condition ¢’ always corresponds to TARDBP
in alternative models, Eq. 3). The predicted TARDBP-specific changes
are ranked by statistical significance and selected subject to a FDR< 5%
threshold.

First, we verified that the 11,919 cryptic exonic parts are detected
upon TARDBP depletion. Among all tested 204,961 exonic parts, the
cryptic exonic parts tend to be enriched at the top of the ranked list with
probability of 30.2% among the selected 331 exonic parts with FDR<
5.8%, comparing to 5% overall probability (Suppl. Fig. 13).

Furthermore, we examine the subset of 11,416 testable cryptic
exonic parts to evaluate the retrieval accuracy of 74 testable cryptic
exons (positive control). There are 46 predicted exonic parts (FDR<5%),
where 42 are downregulated in the wild-type conditions, confirming that
TARDBP generally silences the cryptic exons. Out of 46, there are 20
correctly retrieved cryptic exons (true positives, TP). The fraction of
true cryptic exons within the selected ones is significantly higher with
43.3% comparing to 0.4% in the remaining positions (p-value<1E-31,
Hypergeometric test; Suppl. Fig. 14). All the true positive (TP) and
false negative (FN) examples nevertheless tend to be ranked higher than
expected by chance (p-value<1E-13, Wilcoxon rank sum test, blue and
red points respectively, Suppl. Fig. 14). Together, the results support
the ability of csDEX to detect biologically meaningful, sparsely present
cryptic exons, regulated specifically by the TARDBP gene.

4 Conclusion

Post-transcriptional gene regulation has a comparable effect to gene
expression regulation on transcriptome and proteome diversity. With
ongoing refinement of experimental protocols, the ability to precisely
detect differential expression on a sub-transcript level is ever increasing.

Here, we present csDEX, a statistical modeling package for detection
of condition-specific alternative splicing. By comparing count- and
Percent spliced-in (PSI) based expression quantification, we highlight the
proneness of count-based models to detect changes in gene expression
rather than alternative splicing. csDEX provides both PSI- and read count-
based models within the family of generalized linear models, focusing on
condition-specific changes. The retrieved exonic parts from a case study
involving more than 200 RNA-seq samples are compared to multiple,
independent positive controls, enabling the quantification of retrieval
accuracy of related models. When compared to annotation of known
alternative splicing events, the csDEX model based on PSI quantification
proves to perform with close to 90% accuracy, while both types of csDEX
models retrieve splicing changes with lowest overlap between conditions.
The predictions are further validated with indirect data sources, such as
RBP binding evidence and motif analysis, as well as known cryptic exons
arising upon silencing the TARDBP gene.

As the cost of sequencing and computational resources steadily
decreases, large-scale multi-factor models can be used to underpin

experimental pipelines. The current ENCODE RNA-seq+shRNA KD
experiments do not provide sufficient control over sources of variability,
such as batch effects, to infer model parameters using all the available
data on hundreds of conditions. Careful experimental design is needed to
isolate condition-specific AS regulation.

Nevertheless, joint modelling of multiple conditions within a batch
improved found binding and RNA motifs patterns over case vs. control
design. Together, our experimental findings favour csDEX as the
differential exon expression method of choice when condition-specific
changes are desired.
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