References
  1. Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L. et.al. (2016). The global distribution and burden of dengue. Nature, 496, 504-507.
  2. Brady O.J., Gething P.W., Bhatt S., Messina J.P., Brownstein J.S., Hoen A.G. et al. (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 6:1760. doi:10.1371/journal.pntd.0001760
  3. Gubler D.J. (1998). Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews, 11(3):480–496.
  4. Gupta E., Dar L., Kapoor G., Broor S. (2006). The changing epidemiology of dengue in Delhi, India. Virology Journal, 3: 92.
  5. Hati A.K. (2006). Studies on dengue and dengue hemorrhagic fever (DHF) in West Bengal State, India. Journal of Communicable Diseases, 38( 2):124–129.
  6. Sengur A. (2008). An expert system based on linear discriminant analysis and adaptive neuro-fuzzy inference system to diagnosis heart valve diseases. Expert Systems with Applications, 35 (1–2), 214–222.
  7. Sengur A. (2008). An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases. Computers in Biology and Medicine, 38 (3) 329–338.
  8. Hsu C-C., Ho C-S. (2004). A new hybrid case-based architecture for medical diagnosis. Information Sciences, 166, 231-247.
  9. Das R., Turkoglu I., Sengur A. (2009). Effective diagnosis of heart disease through neural networks ensembles. Expert Systems with Applications, 36:7675:7680.
  10. Yan H., Jiang Y., Zheng J., Peng C. , Li Q. (2006). A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Systems with Applications, 30:272 –281.
  11. Orhan Er., Yumusak N., Temurtas F. (2012). Diagnosis of chest diseases using artificial immune system. Expert Systems with Applications, 39( 2):1862–1868.
  12. Karabatak M., Cevdet Ince M. (2009). An expert system for detection of breast cancer based on association rules and neural network. Expert Systems with Applications, 36: 3465–3469.
  13. Orhan Er., Temurtas F., Cetin Tanrıkulu A. (2010). Tuberculosis Disease Diagnosis Using Artificial Neural Networks. J Med Syst, 34:299–302.
  14. Giri, D., Acharya, U. R., Martis, R. J., Sree, S. V., Lim, T. C., Ahamed, T.,Suri, J. S. (2013). Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowledge-based Systems, 37, 274-282.
  15. Babaoglu, I., Findik, O., Ulker, E. (2010). A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Systems with Applications, 37(4), 3177-3183.
  16. Patil, B. M., Joshi, R. C., Toshniwal, D. (2010). Hybrid prediction model for type-2 diabetic patients. Expert systems with applications, 37(12), 8102-8108.
  17. Calisir, D., & Dogantekin, E. (2011). A new intelligent hepatitis diagnosis system: PCA–LSSVM. Expert Systems with Applications, 38(8), 10705-10708.
  18. Zheng, B., Yoon, S. W., Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476-1482.
  19. Ucar, T., Karahoca, A., Karahoca, D. (2013). Tuberculosis disease diagnosis by using adaptive neuro fuzzy inference system and rough sets. Neural Computing and Applications, 23(2), 471-483.
  20. Uğuz, H. (2012). Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy. Neural Computing and Applications, 21(7), 1617-1628.
  21. Muthukaruppan, S., Er, M. J. (2012). A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Systems with Applications, 39(14), 11657-11665.
  22. Seera, M., Lim, C. P. (2014). A hybrid intelligent system for medical data classification. Expert Systems with Applications, 41 (5), 2239-2249.
  23. Ubeyli, E. D. (2007). Implementing automated diagnostic systems for breast cancer detection. Expert Systems with Applications, 33 (4), 1054-1062.
  24. Kumar, Y., Sahoo, G. (2013). Prediction of different types of liver diseases using rule based classification model. Technology and Health Care, 21 (5): 417-432.
  25. Sahoo, Anoop J., Kumar Y. (2014). Seminal quality prediction using data mining methods. Technology and Health Care, 22 (4): 531-545.
  26. Yadav, G., Kumar, Y., Sahoo, G. (2012). Prediction of Parkinson’s disease using data mining methods: A comparative analysis of tree, statistical and support vector machine classifiers. In Computing and Communication Systems (NCCCS), IEEE National Conference, 1-8.
  27. Karabatak M., Cevdet Ince M. (2009). An expert system for detection of breast cancer based on association rules and neural network. Expert Systems with Applications, 36: 3465–3469.
  28. Orhan Er., Temurtas F., Cetin Tanrıkulu A. (2010). Tuberculosis Disease Diagnosis Using Artificial Neural Networks”, J Med Syst., 34:299–302.
  29. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press.
  30. Haykin, S. (1998). Neural networks: A comprehensive foundation, Englewoods Cliffs. NJ: Prentice-Hall.
  31. Bishop, C. M. (2005). Neural networks for pattern recognition. Oxford Univ Pr.
  32. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.
  33. Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning. Springer US, 760-766.
  34. C. Schaffer (1993). Selecting a classification method by cross validation. Machine Learning, 13:135–143.
  35. Kohavi R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of International Joint Conference on AI, 1137 –1145.