Modification of ICU environment is associated with reduced incidence of delirium - Results from the VITALITY study

Alawi Luetz1, Hannah Uhrlau1, Helmut Piazena2, Achim Kramer3, Ingo Fietze4, Thomas Penzel4, Bjoern Weiss1, Thomas Willemeit5, Annette Finke5, Joachim Quantz6, Jing He6, and Claudia Spies1

1Department of Anaesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin
2Medical Photobiology Group, Charité - Universitätsmedizin Berlin
3Department of Medical Immunology, Charité - Universitätsmedizin Berlin
4Department of Internal Medicine, Center of Sleep Medicine, Campus Charité Mitte, Charité - Universitätsmedizin Berlin
5Graft Architects
6Art+Com Research

Abstract
This abstract was presented at the ESICM LIVES 2018 meeting and was published in Intensive Care Medicine Experimental 2018, 6(Suppl 2):1305.

Introduction
Delirium is the most frequent psychiatric syndrome in the Intensive Care Unit (ICU). This form of acute brain dysfunction predicts higher mortality rates and is associated with worse global cognition after ICU discharge \cite{Weiss2013}; \cite{Spies2014}. Therefore, delirium prevention bundles have become an integral part of guideline recommendations. Clinical trials investigating pharmacological strategies have failed to demonstrate consistent results in terms of patient outcomes. Hence, focus has moved towards non-pharmacological approaches.

Objective
Within an interdisciplinary project, we developed a new ICU room concept \cite{Weiss2013}. In 2013 we finished the renovation of 2 double ICU rooms (Fig. 1 and 2). Beside interventions aimed at noise reduction, workflow optimisation and infection control, we developed a new light ceiling that enables clinicians to apply patient individualised light therapy \cite{Weiss2013}; \cite{Spies2014}. We hypothesised that the delirium incidence for patients treated in the modified rooms is significantly lower when compared to patients treated in the standard rooms.
Figure 1: ICU at Charité - Universitätsmedizin Berlin with standard rooms and the 2 modified double bed rooms.
Methods

After sample size calculation, 74 mechanically ventilated patients with an expected ICU length of stay >48 hours were included in this prospective cohort study (NCT02143661). Amongst other reasons, patients with a substantial recent ICU exposure [2], patients who were unlikely to survive for 24 hours and patients who could not be reliably assessed for delirium were excluded from study participation. Delirium was assessed every 8 hours by research physicians with the Confusion Assessment Method for the ICU (CAM-ICU).

Results

The incidence of ICU delirium was significantly lower among patients treated in the modified rooms (46%) compared to patients treated in the standard rooms (76%, $p = 0.017$) (Table 1). The association between the modification of ICU environment and the delirium incidence was statistically significant (odds ratio, 0.15; 95% confidence interval, 0.04 – 0.66; $p = 0.012$) after adjusting for covariates.
<table>
<thead>
<tr>
<th>Patient Characteristics and Outcomes</th>
<th>Standard Room (n=37)</th>
<th>Modified Room (n=37)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>59 (43 - 71)*</td>
<td>57 (42 - 67)*</td>
<td>0.5665*</td>
</tr>
<tr>
<td>Male, n</td>
<td>14</td>
<td>16</td>
<td>0.8130c</td>
</tr>
<tr>
<td>Emergency admission, n</td>
<td>27</td>
<td>25</td>
<td>0.8000c</td>
</tr>
<tr>
<td>APACHE II on admission</td>
<td>24 (15 - 29)*</td>
<td>22 (12 - 16)*</td>
<td>0.3866b</td>
</tr>
<tr>
<td>Surgical, n</td>
<td>21</td>
<td>21</td>
<td>1.0000c</td>
</tr>
<tr>
<td>Delirium, n</td>
<td>28</td>
<td>17</td>
<td>0.0170c</td>
</tr>
<tr>
<td>ICU length of stay, d</td>
<td>14 (9 - 23)*</td>
<td>11 (5 - 20)*</td>
<td>0.3408b</td>
</tr>
<tr>
<td>Hospital length of stay, d</td>
<td>23 (15 - 38)*</td>
<td>23 (18 - 38)*</td>
<td>0.6495b</td>
</tr>
<tr>
<td>Discharge to home, n</td>
<td>14</td>
<td>20</td>
<td>0.2430c</td>
</tr>
<tr>
<td>In hospital mortality, n</td>
<td>4</td>
<td>3</td>
<td>1.0000c</td>
</tr>
</tbody>
</table>

Table 1: Basic Characteristics and Outcomes of Patients in the Standard and Modified Rooms.

APACHE II = Acute Physiology And Chronic Health Evaluation II.

*Values are presented as medians with an interquartile range (25th to 75th) in parentheses.

Intergroup analysis: *exact Mann-Whitney U test; *Fisher exact test.

A $p <0.05$ was considered significant.

Conclusion

This study is the first to show that a modification in ICU environment is significantly associated with a reduced delirium incidence. Further analysis is needed to investigate which of the room interventions may contributed to this clinical effect.

Supplemental Material

For more informations on the study please visit our study website.

References

