
Dimensionality reduction of large datasets with
t-SNE and PCA

Ondrej Spetko, Anna Lunterova
Aalborg University Copenhagen

INTRODUCTION

The initial project idea is to use unsupervised machine
learning in Python to analyze and cluster a big dataset, describ-
ing correlation between dimensions of high-dimensionality un-
labeled data by visualizing it into low dimensional space. Two
most common dimensionality reduction algorithms, PCA and
t-SNE will be used, and compared. Primarily Scikit, Numpy,
Matplotlib and Pandas data science libraries will be used for
implementation. The final t-SNE data points will be visualized
and coloured on a 3D scatter map for further exploration
of dataset. Additionally, different parameters for t-SNE were
compared and analyzed based on the resulting visualization.
Firstly, the purpose behind used implementation technique and
the two algorithms will be explained in the analysis. Then the
structure of implementation will be described, and lastly, the
results of this process will be shown.

ANALYSIS

Dataset

Before starting, the chosen data collection needs to be gath-
ered. The chosen was already collected dataset from USDA
National Nutrient 2017 database, that consists of around 8400
data points, with 41 dimensions/features. The features consists
of the calorie amount, amount of proteins, carbohydrates, fats,
fiber, and of different minerals and vitamins, and recommended
amount of those different minerals and vitamins per day. This
data was downloaded in an already processed form of an excel
sheet. The process of data cleaning was decided based on
the purpose of the visualization and type of communicated
information.

Python

Python is flexible, free, supported by large community and
with a lot of libraries for scientific computing, data science and
machine learning. It is a high-level programming language that
allows to quickly write and prototype, however with slower
performance compared to C++. Usually for the reason of
higher performance Scikit library is used for machine learning
computing. Among famous data science libraries belong Scikit,
Numpy, Pandas and Matplotlib. These allow easier handling,
analyzing, and visualizing data implementation. Famous envi-
ronment for using Python is Jupyter Notebook. It is an open-
source web application that allows to create and share Python
execution environment with outputs in one document. Jupyter
Notebook can be run using Anaconda environment, which
includes commonly used tools and languages for scientific
computing and data science. Next chapters explain the specific
two data mining algorithms that will be used.

PCA

The most common algorithm for reducing dimension of a
dataset is using of principal component analysis (PCA) devel-
oped already back in 1933. PCA is linear algorithm that uses an
orthogonal transformation to transform a set of observations of
likely similar variables into a so called principal components,
what is a set of values of linearly uncorrelated variables.
Problem with linear dimension reduction algorithms is that
the dissimilar data points are being placed far apart in lower
dimensional representations. Linear algorithms won’t be able
to describe complex polynomial relations between features.
Unlike other famous non-linear dimensionality reduction algo-
rithm t-SNE that uses probability distribution with element of
randomness instead to find the relations in the data. This allows
t-SNE model distances between points in the low-dimensional
map

Figure 1. PCA dimensionality reduction visualization

t-SNE

t-SNE is a relatively new technique (2008) developed by
Laurens van der Maaten that reduces amount of dimensions
in high-dimensional data by assigning relative distance value
based on the relative correlations to each datapoint resulting
in a two or three-dimensional map. The strength of t-SNE
is in preserving the local distances of the high-dimensional
data in mapping to low-dimensional data. Even though the e-
SNE results in obvious clustering of the similar data points
in the final map, the algorithm is not a clustering algorithm
and is used only as exploratory or visualization tool because
original dimensions are mapped to lower dimensions without
preserving any link to their original values. Because of that
one can not make definite assumptions based only on t-SNE
output. However, output of the t-SNE can be used in process of
classification or clustering as input into further classification or
clustering algorithms. t-SNE algorithm is quite heavy on the
system resources because it compares the relations pairwise

with goal of minimizing the sum of the difference of the
probabilities in higher and lower dimensions. The visualiza-
tions produced by t-SNE are found to be significantly more
accurate compared to Principal Component Analysis (PCA),
Sammon mapping, Isomap, Locally Linear Embedding and
other visualization techniques algorithms.

Figure 2. t-SNE dimensionality reduction visualization

When implementing t-SNE it is important to be aware of
the parameters that are tuning the algorithm output. Below is
table of the parameters that are available when implementing
t-SNE with Python programming language.

Figure 3. t-SNE parameters

Structure and design

The structure of the code was divided into main data
analysis steps: * Pre-processing * Loading * Cleaning *
Dividing of the dataset * Data analysis * t-SNE execution and
modelling * Data visualization * Scatter plot

Jupyter notebook allows to write code in separate cells, that
can be executed in any order, and display the results below
the executed cell(See figure below of an example of separated
reading cell)

Data reading

Firstly Numpy and Pandas libraries were loaded. Dataset
in form of csv file was loaded, and saved as data frame. The
list of columns it is composed from was printed together with

Figure 4. Example of a cell in Jupyter Notebook

the head and tail of the document (first and last 10 rows), to
understand its dimensions better,see figure below.

Figure 5. Dataset structure of original document

Additionally, types of each columns were printed
(float,int,objects,strings..), and the size of the data frame ma-
trix.

Data cleaning

Then, from the column of food category, certain categories
were decided not to be used, as they were causing noise in the
resulting visualization mostly because these categories were
complete meals. This is part of the “condensing” cell in the
code. The columns with values of nutrients, carbohydrates,
proteins, fats, fibers etc., were separated from the food ID,
description and food category, into separated dataframes. This
was done to prepare the dataset for further analysis with t-SNE
and PCA, by dividing into a dataframe of only columns with
necessary values.

Data analysis

Short analysis consisted of counting number of values in
each category (food desc[“FoodGroup”].value counts()), and
calculating statistics, such as mean of the values or their range.
For this, both Describe and Scipy statistics package were
explored. This was done to understand standard deviations
of values and differences between categories better (how far
outliers might be etc.).

Separately, principal component analysis (PCA) was per-
formed in separated cells, as part of the data analysis. The
steps for doing principal component analysis can be found at
the end of the code. The steps were in this order: Singular
Vector Decomposition, then selecting eigenvalues and ranking
them from highest to lowest (figure below).

Then cumulative sum was calculated, telling us how many
percentages of the data similarity each of the principal com-
ponents (represented by its eigenvalue) represents. Projection
matrix was calculated, to prepare for the final visualization of

Figure 6. Matrix eigenvalues

points by the two main principal components. Array on the
figure below shows how many percentages of the data can be
represented by the first eigenvalues.

Figure 7. Array of cumulative summary in percentages

Since the datasets consists of so many dimensions, and all
of them are very similarly significant, we can already predict
that the visualization by principal component analysis will
not be that precise. The first two principal components can
represent only 25% of data.

Data visualizations

Visualizations were done by running sklearn manifold li-
brary function, TSNE and by implementing PCA from scratch
to break it down into small steps. The already implemented
function was used for TSNE as it is more complex algorithm,
with changing default parameters, and exploring the results.
Creation of both 2D and 3D t-SNE maps were created. In the
created program structure, firstly we run TSNE function on
the created dataframe (figure below).

Figure 8. Execution of t-SNE from Sklearn library

This created as an output a matrix Y of x and y values, for
each point in the space. After, Y was plotted and visualized
into uniform color map, where the structure of the output
points could be already seen (Figure below).

Colorization of the points in the map, or projection into
colors was done in two ways. Firstly by their distance in the
space by using PCA. Dimensions we compared to the median
of each, and using those comparisons as bits in a 24-bit color
(see the code cell bellow).

Figure 9. Plotting the resulting Y matrix into a 2D space

Figure 10. Projection of points into 24 colors

Secondly, the colorization was done by assigning the colors
to specific food groups, to see if there is any correlation
between points in the same food category to be close to each
other. This was chosen at the end as final way of coloring,
and the result will be seen and analyzed in the behaviour
chapter. The figure below shows labels for the assigned colors
to specific food groups.

Figure 11. Legend of categories

Lastly, 3D interactive map was implemented with the help
of plotly library. To do that, in the t-SNE parameters the
number of components was increased to 3. This way, the Y
matrix had 3 dimensions. This was loaded and visualized in
the scatter plot map (figure below).

The output of this is a 3D interactive map, food points
colored by the categories, and with names of the categories
visualized on hover. This allows us or the user to see the dis-
tribution of different categories in space, different clusters, etc.
The final outputs and visualizations of those two algorithms
will be described in the next chapter.

BEHAVIOUR AND RESULTS

Dimensionality reduction with PCA

After calculating the projection matrix in the PCA cells,
this was visualized using seaborn library. The colors were

Figure 12. 3D scatter plot implementation

assigned by food categories. Since the visualization is charac-
terized by only first two principal components, that represents
only 24%, we could see the points are still quite indistinguish-
able and clustered together (figure below).

Figure 13. PCA visualization. Result of projection of main components onto
the points

Dimensionality reduction with t-SNE

The t-SNE was run multiple times, with different parame-
ters of perplexity and number of iterations. Figure below shows
the perplexity of 10, 30, 50, and 90. The number of iterations
is 1000 on all four samples.

Figure 14. t-SNE dimensionality reduction, visualizations comparison

The higher the number of perplexity and iterations, the
longer the processing took. The higher the perplexity the
more clearly divided points. The number can be between 1-
100, and the closer to 100 the less changes. The number
of iterations changed the look only until the number around
1000 was reached, then the changes were small. For the final
2D visualization perplexity 90 and 4000 iterations were used.
The two figures below compare the outcome of a map when
colorization by food categories, with PCA to 24 dimensions.

Figure 15. Final 2D t-SNE map colored by food categories

Figure 16. Final 2D t-SNE map colored by PCA distances

On both, the perplexity is 90 and 4000 iterations, only
the way to color the points was different. We can see some
similarities, such as on the food category the meat points are
mostly clustered together on the bottom of the map, and by
distance they are also colored in similar shades. Similarly, fruit
is more on the left side, etc. Further, to interact with the points
and see them on a 3D map, an interactive exploratory map with
labels can be found here https://shourikan.github.io/TrialViso/,
and figure from it seen on the figure below.

At the end Interactive 2D map, with perplexity 90 and 4000
iterations was further chosen as a best representation of the
dataset. The final implementation was part of a bigger project,
and can be seen here.

https://test-efe0a.firebaseapp.com/main.html?choice=4

Figure 17. Interactive 3D t-SNE map

CONCLUSION

This research lead us to see the benefits of dimensionality
reduction with t-SNE algorithm, however PCA served as a
great tool for analyzing the principal components. In case of
high correlation of only few dimensions and low correlation of
others, PCA is a great and quicker tool to implement. However,
in case of food database, all dimensions were more or less
equally significant in localizing the point. By coloring the
points we could see the closeness of points in same categories
or similar categories such as beef and pork. This fulfilled the
purpose of this program, and chosen visualization served as a
base for further communication of the dataset in a form of an
application.

