AI Project \#4: Natural Numbers

Steven Wirsz ${ }^{1}$
${ }^{1}$ California State University, Northridge

Due Date:
February xx, 2018 23:59 hours

Use numerals to represent in Prolog the natural numbers. The constant z (for zero) is a numeral, and if X is a numeral then $s(X)$ is also a numeral (where the function s represents ++). The numerals corresponding to $0,1,2,3$, etc. are $\mathrm{z}, \mathrm{s}(\mathrm{z}), \mathrm{s}(\mathrm{s}(\mathrm{z})$, and $\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{z}))$), etc. Add code comments to show your understanding and demonstrate with test cases.

Define a number of predicates to interact with these numerals. For example: plus(z,Y,Y).
$\operatorname{plus}(\mathrm{s}(\mathrm{X}), \mathrm{Y}, \mathrm{V})$:-
plus(X,Y,U), \% remove a function from X till reaching zero
$\mathrm{s}(\mathrm{U})=\mathrm{V} . \%$ add a function to V each time

REQUIREMENTS:

1. Create an implementation of natural numbers
2. Implement plus
3. Implement equal
4. Implement less than
5. Implement greater than
6. Implement minus
7. Implement multiplication
8. Implement mod/remainder
9. Implement factorial
10. Extra credit: implement number so that number (X, N) is true if X is a numeral corresponding to the decimal integer N . For example, number $(\mathrm{s}(\mathrm{z}), 1)$ is true and number $(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{z}))), 2)$ is false.
11. Extra credit: implement e_number, so that e_number (X, Y) is true if Y is a phrase in English for positive natural numbers between zero and 100, representing X. For example:
e_number(s(s(s(z))), three) returns true
e_number (X, twenty five) returns $\mathrm{X}=\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots$ (z) ...)
Submit a working .pl file that demonstrates the cases above with a significant number of code comments to explain the operation of each predicate and also provide test cases.

Last Revised: January 21, 2018

