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Abstract

In this work, the automatic recognition of handwritten digits was treated using a classical and modern machine
learning approach; both based on neural networks. First, we present a simple softmax regression model and achieved
a recognition accuracy of 91.91%. Then, we implement a convolutional neural network model with a custom KNet
architecture and achieved an accuracy of 99.13%. In this work, we make use of make use of the MNIST Dataset
which comprises of cleaned train, test, and validation categories of hand-written digits as grayscale images.

1



1.0 Introduction

Automatic recognition of hand written digits involves the use of image processing, computer vision,
and, or, artificial intelligence translation from a digit or string of digits written by hand, to a set of
characters accurately represented in memory by a computer without explicit human guidance. This
has numerous applications, for example, automatic handling of cheque notes in the banking industry,
translation of old handwritten texts to digital forms, handwriting input modes in smartphones,
fraud detection, and so on. In this work, we present two methods: (1) A softmax regression (SR)
model, and, (2) A custom KNet convolutional neural network (CNN) model.

1.1 Handwritten Digits Dataset (MNIST)

The MNIST database was built by modifying the original NIST database containing digits 0 to
9 as mentioned earlier. It has 60,000 training images (the mnist tensorflow train database has
55,000 examples however), 10,000 test images, and 5,000 validation images all drawn from the
same distribution. All these images are in grayscale and normalized. The center of gravity of the
intensity lies at the center of the image. Each image is 28 x 28 pixels in dimension thus each image
has a total of 784 intensity values between 0 and 1 when flattened. When flattened, it can become
a 784 x 1 or a 1 x 784 vector. Unfortunately, during flattening (or reshaping) the relationship
of pixels with neighboring pixels is lost. Image pixels are highly correlated with their neighbors
and losing this information is detrimental. The solution to this can be found in convolutional
neural networks which would be discussed in Section 4.0. The major categories of machine learning
techniques used in solving the recognition tasks with MNIST dataset include: Linear classifiers,
k-nearest neighbors, boosted stumps, nonlinear classifiers, support vector machines(SVMs), neural
nets, convolutional nets. Using tensorflow for our machine learning task, we utilize “One-Hot”
encoding for the Classification Labels.

2.0 Literature Survey

The automatic recognition of hand written digits can be safely regarded as a classical machine
learning problem. Numerous methods, architechures, tricks, and techniques, have been proposed
and good results have been achieved. Evidence of this can be found in the prevalence of different
digit datasets used for benchmarking and analyzing such algorithms. Common classical datasets
in this work include USPS (US Postal Service), NIST (US National Institute of Standards and
Technology) dataset, and its variants such as the MNIST (modified NIST) and EMNIST (Extended
MNIST) [1] datasets. The CIFAR-10 and CIFAR-100 [2] dataset, STL-10 dataset [3], Street View
House Numbers (SVHN) dataset [4] and CEDAR dataset are commonly sought too.

One of the early works utilizing a relatively modern technique on this subject was [5]. In [6]
however, the authors studied the performance of different classifier algorithms on the MNIST
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Figure 1: An Overview of the MNIST Dataset

database of handwritten digits. They discussed measures that affect algorithmic implementation
such as training time, run time, and memory requirements. In their work, they presented a Baseline
Linear Classifier, Nearest Neighbor Classifier, Large Fully Connected Multi-Layer Neural Network,
LeNet1, LeNet4, Boosted LeNet4 (based on the idea of Convolutional Networks), Tangent Distance
Classifier (TDC), LeNet4 with K-NN, Local Learning with LeNet4, Optimal Margin Classifier
(OMC). From these, the Boosted LeNet4 achieved the best error performance while LeNet4 required
the least memory. LeCun et al.’s paper proposed a ConvNet approach to digit recognition problem,
achieving 96% accuracy. The method involved considerable preprocessing without which accuracy
falls to 60%.

Similarly, among the early works on Handwritten digit recognition was [7]. The authors developed
a backpropagation network constrained for digit recognition on zipcode digits provided by USPS.
The aimed to show that a large BP network can be applied to real image recognition tasts without
extensive preprocessing. The method produced a 1% error rate and about a 9% reject rate. Work
by Yawei Hou and Huailin Zhao utilized an Improved BP Neural Network for Handwritten Digit
Recognition. The authors claim results obtained converged faster and the classification results were
more accurate compared to results at that time [8]. In [9], the authors presented that Feedforward
neural networks utilizing Extreme Learning machine algorithm had faster weight optimization,
however, required larger number of hidden units to provide comparable results with a Backpropao-
gation based algorithm. In [10], the authors presented a method for recognizing handwritten digits
by fitting generative spline models which would then be tuned by an Expectation Maximization
Algorithm. While the method has it advntages, the main advantage is higher computational re-
quirements compared to standard OCR techniques. Work by [11] on the other hand involved the
combination of classifiers for digit recognition. This work was based on the idea that either by
Bayesian combination, Dempster-Shafer evidential reasoning, and Dynamic classifier selection, the
independent decisions by two high performance nearest-neighbor hand-printed digit classifiers can
be combined to obtain improved digit classification systems.

Loo-Nin Teow and Kia-Fock Loe in [14], presented a method based on biological vision to solve au-
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tomatic recognition of handwritten digits. They extracted linearly separable features from MNIST
dataset and used a linear discriminant system for recognition, with the triowise linear support
vector machines with soft voting yielding the best results. It doesn’t end there however. In 1999,
[15] proposed contour information and Fourier descriptors for digit recognition. Models were built
based on contour features, then test digits were analyzed by comparing the test digit’s features
with built models. The recognition rate achieved as around 99.04%. In [16], a three-stage classifier
was developed comprising of 2 Neural Networks and one Support Vector Machine (SVM). The two
Neural Networks in tandem help to provide low misclassification rate, more complex features, and,
a well-balanced rejection criterion. The SVM was optimized to take the top classes ranked by the
Neural network. The authors claimed their work to achieve competitive results at the time. In 2003,
Cheng-Lin Liu et al [12] summarized the performance of then state-of-the-art feature extraction and
classifier techniques on three image databases: CEDAR, MNIST, CENPARMI. In total, 10 feature
vectors and 8 classifiers were combined to give 80 accuracies to the test data sets used. Results
obtained can be found in [12]. Similar work by the same author(s) evaluated normalization methods
and direction feature extraction techniques with existing methods useful in digit recognition [13].

Numerous works, tricks, approaches, techniques, and systems can also be found on this subject.
For instance: The use of Self organizing maps [17], Shape matching [18], [19] A method involving
the division of the image into grids and computing the Hu moments as features was proposed.
Artificial neural network was then implemented as classifier. The method yielded good processing
times and accuracy. Methods such as Restricted Boltzmann Machines (RBMs) [28], SVM with
inverse fringe feature [29], Echo state networks [30], Discrete Cosine S-Transform (DCST) features
with Artificial Neural Networks classifier [31], Neural Dynamics Classification algorithm [32], Bat
Algorithm-Optimized SVM [33] have been applied. Similarly, promising results from numerous
algorithms have prompted the extension to numerous languages and characters. Indian numerals
were treated in [23], Persian digits in [24], Bangla Digits [25], Hindu and Arabic digits in [26],
Sindhi Numerals [27].

Most recently, due to the advent of powerful computational systems such as GPUs and TPUs, more
solutions have been proposed, especially, with Deep learning. In [21] for instance, the authors made
a case for Online digit recognition using deep learning. They developed a software application to
record a dataset which included user information such as age, sex, nationality, and handedness.
Thereafter they presented a 1D and 2D ConvNet model which obtained results of 95.86% (using
distance and angle), and 98.50% respectively. Unfortunately, as deep learning methods have yielded
exceptional results, they have also empowered Adversarial systems. It was shown by [22] that the
changing of 1 pixel can lead to significant misclassification rates. The authors showed that 70.97%
of the natural images can be perturbed to at least one target class simply by modifying a single pixel
with 97.47% confidence on average. Further information can be found from academic resources.
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3.0 Neural Network (Softmax Regression)

In this section, we describe the first approach to solving the handwritten digit classification problem.
Here, we present the Softmax Regression.

The 28 x 28 image matrix is flattened to a column vector of length 784. Each entry in the 784 rows
represents a part of the training image. It is noteworthy that by flattening the input image matrix,
spatial relationship information between pixels is lost. This issue is addressed by our KNet CNN
model. Invariance to rotation and scaling can be dealt with by a more recent technology known as
Capsule networks. In Section 3, we’ll discuss the CNN model employed. Capsule networks, on the
other hand, are beyond the scope of this study.

The Arabic numerals consists of ten digits: 0,1,2,3,4,5,6,7,8,9. Each image is unpacked to a column
vector xjand multiplied by weights Wi,j with biases bi. This results into a tensor of logits defined
by Equation 1.0.

zi =
∑

j Wi,jxj + bi

Solving a recognition problem on this system requires techniques from multi-class classification.
This is where the softmax function comes in (Equation 2.0 below). Basically, the softmax regression
(also known as the multinomial logistic regression) is a generalization of logistic regression to the
case where we want to handle multiple classes. It replaces the common sigmoid activation function
used in perceptrons

σ(zj) =
exp(zj)∑
j exp(zj)

The Softmax function takes an array of numbers and returns a set of numbers in the range 0 and 1.
These set of numbers add up to one and are used in determining the probailisitc appropriateness
of a learning outcome. Figure 2.0 below shows the softmax regression graphically.

Figure 2: Graph of Softmax Regression
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This can be collapsed into the matrix form shown in Figure 3.0

Figure 3: Tensor Representation of Softmax Regression

D(S,L) = −
∑

j Lj log(σ(zj))

Then the softmax cross-entropy (Equation 3.0 above) is defined and gradient descent optimizer
with a learning rate of 0.5 is used to perform training. 1000 epochs were used with a batch size of
100. The weights of the network were initialized as zeros.

#MNIST Digit Classification

#(c) Abdulmajeed Muhammad Kabir, December 2017

#Libraries: Tensorflow Matplotlib

#Dataset: MNIST Dataset

#Softmax Regression on MNIST Dataset

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

import matplotlib.pyplot as plt

%matplotlib inline

mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)

#single_image = mnist.train.images[1].reshape(28,28)

#plt.imshow(single_image,cmap=’gist_gray’)

x = tf.placeholder(tf.float32, shape=[None,784])

W = tf.Variable(tf.zeros([784,10]))

b = tf.Variable(tf.zeros([10]))

y = tf.matmul(x,W) + b

y_true = tf.placeholder(tf.float32, [None,10])

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y))
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optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5)

train = optimizer.minimize(cross_entropy)

init = tf.global_variables_initializer()

with tf.Session() as sess:

sess.run(init)

for step in range(1000):

batch_x, batch_y = mnist.train.next_batch(100)

sess.run(train, feed_dict={x:batch_x, y_true:batch_y})

#Evaluate the Model

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_true,1))

acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(acc, feed_dict = {x:mnist.test.images, y_true:mnist.test.labels}))

4.0 Convolutional Neural Network

CNNs are a much better approach to solving image classification problems. CNNs are based on
the visual cortex of mammals and therefore find their origins in biological research just like simple
perceptrons. It is based on the realization that neurons in the visual cortex have a small local
receptive field which can overlap to create a large robust visual system. This inspired an ANN
architecture that later became the CNN. Famously implemented by Yann LeCun et al (See Section
2.0). The LeNet-5 architecture was first used to classify the MNIST dataset. Other famous CNN
architectures include AlexNet by Alex Krizhevsjy, GoogLeNet by Szegedy, and ResNet by Kaiming
He et. al. Compared to Densely Connected Neural Networks, the CNN uses lesser parameters
and thus scales well over larger input data and is easier to deploy as applications. The CNN’s
architecture gives its strength. There are basically two main activities: (1) feature extraction via
convolutions, and (2)classification. Input data (Images) are represented as tensors of dimensions:
H-Height of image in pixels, W-Width of image in pixels, Color channel dimensions - 1 for Gray
color and 3 for RGB color. Figure 4 below is an outlook of a CNN model.

The KNet CNN architecture to be discussed is built using the following elements: (1) an input
layer, (2) a convolutional layer, (3) Nonlinearity function, (4) Pooling layer, (5) Fully connected
layer, (6) Drop out layer, (7) Softmax layer. There are two layers in this model. The layers contain
the following elements.
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Figure 4: Schematic of a Convolutional Neural Network

The input layer takes in a 28 x 28 image as a matrix with pixels normalized between 0 and 1.

The convolution layer is abbreviated as Conv. In this layer, kernels on the input image are learnt.
Its description includes three parts: number of channels, kernel spatial extent (kernel size), padding
and stride size. In KNet, a kernel size (receptive field) of 5x5 with a stride of 1 pixel. Zero padding
(’SAME’ padding) is used. At the first layer, it computes 32 features for each 5x5 patch. At the
second layer, it computes 64 features for each 5x5 patch.

The ReLU stands for rectified linear unit and serves to introduce nonlinearity in the model. It is
the activation function between the layers of the CNN (after convolution operation). The ReLU
can be seen in Figure 3.0.

The pooling layer is abbreviated as Pool. Pooling is a subsampling procedure that helps to reduce
the dimensionality of each feature map and at the same time, the number of parameters required
for the model. It removes a lot of information from the image yet helps agains overfitting. Max
pooling (largest element from a window) is used, the kernel size is 2x2 and the stride is set as 2x2
in KNet. The pooling layers will reduce the input size by a factor 2 pixels. We make use of zero
padding here (’SAME’).

The fully connected layer is abbreviated as FC”. Is more or less a traditional multilayer perceptron
and uses a softmax function at the output. Every neuron in the previous layer is connected to
every neuron in the next layer. It uses the learned features to classify the input image into various
classes based on the training dataset.

The dropout layer is abbreviated as Drop”. Dropout is a technique to improve the generalization
of deep learning methods. It sets the weights connected to a certain percentage of nodes in the
network to 0. In KNet, the drop out percentage is set to 50% in the dropout layer).

Softmax is abbreviated as σ(zj).

Finally, KNet is trained with the MNIST Dataset, which is a hand digit recognition problem with
10 classes. The last fully connected layer outputs a length 10 vector for every input image and
the softmax layer converts this length 10 vector into the estimated posterior probability for the 10
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classes (i.e. digits 0 through 9).

Then the softmax cross entropy is defined and Adam optimizer is used to perform training with
a Learning rate of 0.001. Epochs of 5000 were used with a batch size of 50. The weights of the
kernels were initialized randomly from a trucated normal distribution with mean 0 and standard
deviation 0.1.

#MNIST Digit Classification

#(c) Abdulmajeed Muhammad Kabir, December 2017

#Libraries: Tensorflow Matplotlib

#Dataset: MNIST Dataset

#Convolutional Neural Network on MNIST Dataset

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

def init_weights(shape):

init_random_dist = tf.truncated_normal(shape, stddev=0.1)

return tf.Variable(init_random_dist)

def init_bias(shape):

init_bias_vals = tf.constant(0.1, shape=shape)

return tf.Variable(init_bias_vals)

def conv2d(x,W):

#x --> [batch, H, W, Channels]

#W --> [filter H, filter W, Channels IN, Channels OUT]

return tf.nn.conv2d(x,W,strides=[1,1,1,1], padding=’SAME’)

def max_pool_2by2(x):

#x --> [batch, h, w, c]

return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=’SAME’)

def convolutional_layer(input_x, shape):

W = init_weights(shape)

b = init_bias([shape[3]])

return tf.nn.relu(conv2d(input_x,W)+b)

def normal_full_layer(input_layer, size):

input_size = int(input_layer.get_shape()[1])

W = init_weights([input_size, size])

b = init_bias([size])
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return tf.matmul(input_layer, W) + b

x = tf.placeholder(tf.float32, shape=[None, 784])

x_image = tf.reshape(x,[-1,28,28,1])

y_true = tf.placeholder(tf.float32, shape=[None,10])

# CONVOLUTIONAL LAYER 1

convo_1 = convolutional_layer(x_image, shape=[5,5,1,32])

convo_1_pooling = max_pool_2by2(convo_1)

# CONVOLUTIONAL LAYER 2

convo_2 = convolutional_layer(convo_1_pooling, shape=[5,5,32,64])

convo_2_pooling = max_pool_2by2(convo_2)

convo_2_flat = tf.reshape(convo_2_pooling, [-1,7*7*64])

full_layer_one = tf.nn.relu(normal_full_layer(convo_2_flat,1024))

hold_prob = tf.placeholder(tf.float32)

full_one_dropout = tf.nn.dropout(full_layer_one, keep_prob=hold_prob)

#PREDICTOR

y_pred = normal_full_layer(full_one_dropout, 10)

# LOSS FUNCTION

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_pred))

# OPTIMIZER

optimizer = tf.train.AdamOptimizer(learning_rate = 0.001)

train = optimizer.minimize(cross_entropy)

#INITIALIZE

init = tf.global_variables_initializer()

steps = 5000

with tf.Session() as sess:

sess.run(init)

for i in range(steps):

batch_x, batch_y = mnist.train.next_batch(50)

sess.run(train, feed_dict={x:batch_x, y_true:batch_y, hold_prob:0.5})
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if i%100 == 0:

print("ON STEP: {}".format(i))

print("ACCURACY: ")

matches = tf.equal(tf.argmax(y_pred,1), tf.argmax(y_true,1))

acc = tf.reduce_mean(tf.cast(matches, tf.float32))

print(sess.run(acc,feed_dict={x:mnist.test.images, y_true:mnist.test.labels, hold_prob:1.0}))

print(’\n’)

5.0 Results

The following results were obtained:

5.1 Neural Network (Softmax Regression) Results

Tables 1 and 2 show parameters used and model performance

Neural Network Softmax Regression (Settings 1)

Parameter Value
Optimizer Gradient Descent on Cross-Entropy

Learning Rate 0.5
Batch Size 100

Initialized Weights Zeros
Initialized Biases Zeros

Epochs 1000
Training Time 0.5hrs

Accuracy 0.92

Table 1: Neural Network Softmax Regression Parameters Type 1 and Results

5.2 Convolutional Neural Network Results

Tables 3 and 4 show parameters used and model performance
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Neural Network Softmax Regression (Settings 2)

Parameter Value
Optimizer Gradient Descent on Cross-Entropy

Learning Rate 0.1
Batch Size 100

Initialized Weights Ones
Initialized Biases Ones

Epochs 1000
Training Time 0.5hrs

Accuracy 0.91

Table 2: Neural Network Softmax Regression Parameters Type 2and Results

Convolutional Neural Network (KNet Settings 1)

Parameter Value
Optimizer Adam optimizer on Cross-Entropy

Initialized Weights Random Normal std.dev=0.1
Initialized Biases 0.1

Padding Zero Padding
Pooling 2x2 Stride=2

Batch Size 50
Learning Rate 0.0

Epochs 5000
Dropout 0.5

Training Time 3hrs
Accuracy 0.99

Table 3: Convolutional Neural Network Parameters Type 1 and Results

6.0 Conclusion

In conclusion, one might be tempted to asking the question: “was the computational costs really
worth it since the results of the neural network softmax regression model were close to that of the
convolutional neural network model?”. In this case, it is worthy to note two things: (1) A 1%
difference in accuracy is a big deal in the field of machine learning and there are numerous research
groups trying their best to squeeze out as little as a 0.5% improvement in machine learning models.
(2) The testing of these models is based on properly cleaned, and normalized datasets. In the
real-world, this is not the case. The CNN does well at learning complex features and abstracting
higher levels of information from input data - this has been proven in literature. Finally, regardless
of the final accuracy of either model, the CNN has better potential in computer vision and image
recognition tasks.
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Convolutional Neural Network (KNet Settings 2)

Parameter Value
Optimizer Adam optimizer on Cross-Entropy

Initialized Weights Random Normal std.dev=0.5
Initialized Biases 0.1

Padding Zero Padding
Pooling 2x2 Stride=1

Batch Size 50
Learning Rate 0.0

Epochs 5000
Dropout 0.5

Training Time 3hrs
Accuracy 0.99

Table 4: Convolutional Neural Network Parameters Type 2 and Results

Figure 5: Summary of Results for the four models
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