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Abstract

The aim of this dissertation is to devise a meshless model describing the
thermomechanical phenomena, which occur during DC casting of aluminium
alloys under the influence of electromagnetic stirring. The thermoemchanical
phenomena are important, because they can cause several type of defects,
which can significantly deteriorate the quality of the resulting billet. The
two most important of them are the hot tearing, which causes cracks to
appear in the mushy zone, and the porosity, which demonstrates itself as
micrometer sized voids in the microstructure of the billet.

To calculate the stresses and strains, a computational model, stated
in axial symmetry is formulated. It describes the stationary state of the
casting process stated in Eulerian formulation by fixing the computational
domain to the mold of the casting device allowing the material to move
through the computational domain. The stresses are calculated from the
stress equilibrium equations. Small strain approximation is used to consider
three contributions to strain. The strain consists of the thermal strain, which
is caused by the inhomogeneous thermal profile in the billet, the viscoplastic
strain caused by the irreversible deformation because of the large stresses
occurring in the billet and the elastic strain.

The spatial discretization of the governing equations is performed by
local radial basis function collocation method (LRBFCM) and the temporal
discretization is achieved by the method of lines with implicit Euler for-
mula. The method used for spatial discretization uses radial basis functions
augmented by monomials to approximate the solution values on localized
stencils. This approximation is used to construct the discretization coeffi-
cients of the differential operators present in the model. A flexible framework
for formulation of multiphysics problems was developed to use obtained
discretization coefficents to construct the temporal discretization of the
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governing equations.

The performance of the method was tested on several benchmark test
cases. The accuracy of the discretization was estimated by comparing
analytical and numerical solution of several stationary problems in thermo-
mechancis. Of special interest was performance of the method with respect
to the choice of the shape parameter, which determines the spatial scale of
the radial basis functions. Besides this, the dependence of the condition
number of the interpolation matrix on the shape parameter was studied.
The condition number was found fit to replace the condition number as
shape-determining free parameter of the method.

The implementation of the solver of time dependent problems was tested
on problem of thermoelasticity, which couples the thermal transport with
elastic waves. The results of the problem were compared with the finite
element method, showing comparable results. The results were also compared
with the results obtained by meshless local Petrov-Galerkin method and the
proposed local collocation method demonstrated significantly better solution
quality in the studied case.

The performance of the solver used to solve the system of nonlinear
equations given by the viscoplastic constitutive equations was estimated on
a quasi zero-dimensional problem. The results matched perfectly. Solution
of a more complicated problem was obtained with the proposed method and
FEM, both methods giving practically the same solution, although some
serious limitations of the chosen FEM solver became evident during the
selection of the problem parameters.

Finally, the devised method was applied to the problem of DC casting of
aluminium alloys. The thermomechanical model relies on a model of heat and
mass transfer to obtain the input fields needed in the solver. The required
fields are: temperature, pressure, liquid fraction and electromagnetic force.
The thermomechnics model performs calculations only in the mechanically
coherent part of the mushy zone, below the coherency isotherm. The model
iteratively determines the boundary conditions on the contact between the
billet and the mold. After the solution of the thermomechanical model
reaches stationary state, the obtained results are used to determine the hot
tearing susceptibility.
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The dependence of the hot tearing susceptibility on various casting
parameters is estimated. The model successfully reproduces the lambda
curve, which is typical for dependence of the hot tearing on the percentage
of the alloying element.

The selected spatial discretization method is found to be capable of
modeling the thermomechanical problems associated with DC casting of alu-
minium alloys. It is demonstrated to be capable of solving partial differential
equations on irregular meshes with same performance as if the regular grids
were used. The impact of the augmentation monomials on the behavior of
the method is investigated, suggesting the requirement to use augmentation
with linear polynomial to increase the method reliability.

The developed model of thermomechanics during DC casting, tightly cou-
pling the fluid flow, electromagnetic field and heat transfer to viscoplasticity
can model the influence of different casting parameters on the formation of
some mechanical defects which occur during the process of DC casting.

Keywords meshelss methods, thermomechanics, viscoplasticity, radial
basis functions, local collocation method, shape parameter, direct-chill
casting, hot tearing, porosity, aluminium alloys, electromagnetic casting
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Brezmrežno modeliranje termomehanike nizko-
frekvenčnega elektromagnetnega polkontinu-
irnega ulivanja

Povzetek

Namen te disertacije je razvoj brezmrećnega modela termomehanskih
pojavov, ki so prisotni med DC ulivanjem aluminiujevih zlitin pod vplivom
elektromagnetnega mešanja. Ti pojavi so pomembni, ker lahko povzročijo
več vrst defektov, ki lahko bitveno poslabšajo kvaliteto ulitega droga. Med
njimi sta najpomembneǰsa vroče trganje, ki povzroči pojavljanje razpok v
kašastem področju, in poroznost, ki se kaže kot prisotnost mikrometerskih
praznin v notranjosti droga.

Za izračun napetosti in deformacij je bil razvit osnosimetrični računski
model. Z Eulerjevim opisom modelira stacionarno stanje med procesom litja.
Računska domena je pripeta na kokilo, skoznjo pa se premika strjeni material.
Za izračun napetosti se rešuje ravnovesna enačba za napetost zapisana za
približek majhnih deformacij. Deformacija je vsota treh prispevkov. Sestavl-
jajo jo termična deformacija, ki je posledica nehomogenega temperaturnega
profila, viskoplastična deformacija, ki je posledica nepovratne deformacije
zaradi velikih napetosti v drogu, ter elastična deformacija.

Prostorska diskretizacija enačb modela je izvedena z lokalno kolokacijo
z radialnimi baznimi funkcijami, časovna diskretizacija pa z implicitno
Eulerjevo metodo. Metoda, ki jo uporabimo za prostorsko diskretizacijo,
ustvari aproksimacijo rešitve na lokaliziranih poddomenah z radialnimi
baznimi funkcijami in monomi. Iz dobljene aproksimacije lahko izračunamo
diskretizacijske koeficiente za vse diferencialne operatorje, ki so prostni v
enačbah modela. Ti diskretizacijski koeficienti so uporabljeni v razvitem
ogrodju, ki omogoča lažjo sklopitev enačb večfizikalnih modelov in njihovo
enostavno časovno diskretizacijo.

Učinkovistost razvite metode je bila preverjena na več različnih testnih
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primerih. Natančnost diskretizacijske metode je bila ocenjena z primejavo
numeričnih in analitičnih rešitev stacionarnih problemov termomehanike.
Posebej zanimivo je obnašanje natančnosti ob spreminjanju oblikovnega
parametra, ki določa prostorsko skalo radialnih baznih funkcij. Poleg tega je
bil proučen vpliv oblikovnega parametra na pogojenostno število interpo-
lacijskih matrik. Pogojenostno število se je izkazalo za primeren nadomestek
oblikovnega prametera kot prosti parameter metode.

Implementacija postopka reševanja je bila preverjena na problemu sklo-
pljenje termoelastičnosti, ki sklaplja transport toplote z elastičnimi valovi.
Dobljeni rezultati so bili primerjani z rezultati metode končnih elemen-
tov. Rešitvi sta se ujemali za vse obravnavane primere. Ob primerjavi
z rešitvijo dobljeno z brezmrežno lokalno metodo Petrov-Galerkin, so se
rezultati dobljeni z lokalno kolokacijsko metodo izkazali za bistveno bolǰse.

Učinkovitost postopka reševanja sistema nelinearnih enaćb dobljenih
iz viskoplastičnega mehanskega modela je bila preverjena na kvazi nič-
dimenzionalnem problemu. Ujemaje rezultatov z analitično rešitvijo je bilo
popolno. Rešitev istih enačb na geometrijsko bolj zapletenem primeru je bila
primerjana z reštvijo s končnimi elementi. Doblejni rešitvi ta bili praktično
enaki, je pa postopek izbire testnega primera izpostavil nekaj pomankljivosti
izbranega programa za reševanje s končnimi elementi.

Nazadnje je bila razvita metoda uporabljena za reševanje termome-
hanskega problema DC ulivanja aluminijevih zlitin. Termomehanski model
se za pridobitev nekaterih vhodnih fizikalnih polj zanaša na povezan model
prenosa toplote in gibalne količine. Potrebna vhodna fizikalna polja so tem-
peratura, tlak, delež tekoče faze in elektromagnetna sila. Termomehanski
model rešuje enačbe na mehansko koherentnem delu kašastega območja,
pod položajem izoterme koherenčne temperature. Na območju stika med
drogom in kokilo model iterativno določi ustrezne robne pogoje. Ko rešitev
mehanskega modela doseže stacionarno stanje, se izračunajo še kriteriji
vročega trganja ter profil poroznosti.

Preiskan je vpliv parametrov ulivanja na občutljivost za vroče trganje in
poroznost. Model uspešno napove odvisnost v obliki lambda krivulje, ki je
tipična za vpliv koncetracije dodanega elementa.

Metoda za prostorsko diskretizacijo se izkaže za sposobno modeliranja

vii



termomehanskih procesov povezanih z DC ulivanjem aluminiujevih zlitin.
Rešitve, pridobljene z opisano metodo, so enako učinkovite na neurejenih
mrežah kot tudi na urejenih. Preiskave vpliva izbire augmentacijskih poli-
nomov na obnašanje metode kažejo, da je uporaba augmentacije z linearnim
polinomom nujna za izbolǰsanje zanesljivosti metode.

Izdelani model termomehanike med DC ulivanjem, ki sklaplja tok tekočine,
vpliv elektromagnetnega polja in prenosa toplote z viskoplastičnim mehan-
skim modelom, lahko opǐse vpliv procesnih parameterov na tvorbo mehanskih
napak med DC ulivanjem.

Ključne besede brezmrežne metode, termomehanika, viskoplastičnost,
radialne bazne funkcije, lokalna kolokacijska metoda, parameter oblike, DC
ulivanje, vroće trganje, poroznost, aluminiujeve zlitine, elektromagnetno
ulivanje
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Chapter 1

Introduction

1.1 Motivation

The fast progress of computer capability illustrated by Moore’s law has
enabled great advancements in numerical modeling in engineering and science.
This advancement was accompanied by development of classical numerical
methods: the finite element method, finite difference method and finite
volume method. These methods have earned the reputation of reliable tools
in computer-aided engineering and science.

However, the need for numerical models and the quest for knowledge have
jointly driven the development of new numerical methods and increasingly
more sophisticated physical models. The new, sophisticated models, have
often hit the limitations of the classical methods. The classical methods are
difficult to use when they are applied to problems which require changing
of the underlying mesh, be it because the movement of the mesh points
is required by the physical model or because some form of adaptive mesh
refinement needs to be implemented. The classical methods, especially
the finite difference method, can also have problems when dealing with
complex geometries. The formulations of the classical methods themselves
can significantly change when considering higher-dimensional problems. This
is especially evident for the finite element method, since each new spatial
dimension introduces a set of new geometrical objects, which need to be
constructed and kept track of.

All the limitations stated above are caused by the requirement of the
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Figure 1.1: Number of published papers per year containing keywords ”meshless”
or ”meshfree” as returned by Google Scholar search on 30th November 2016.

classical methods to be formulated not only on a set of points but on a set
of points with an associated structure, which could limit the positioning
of points or could require additional connectivity information (e.g. polygo-
nization) to be constructed. The removal of the requirement for this kind
of associated structure or even just its simplification would increase the
flexibility of the method and possibly allow for more efficient solution of the
problems or allow description of problems unapproachable by the classical
methods.

The methods which aim to reduce the compexity of the associated
structure or even remove the need for mesh altogether are called meshless
(or meshfree) methods. As illustrated by the Figure 1.1 this class of methods
is receiving increasingly more attention from the modeling community. In
this work, we contribute to this corpus by applying a meshless method to
modeling of mechanical phenomena during DC casting of aluminium billets.

1.2 Overview of meshless methods

The name meshless methods is used to describe many different methods.
The most important distinction between the methods is the approach which
is used to discretize the governing equations. The largest class of methods
applies Galerkin approach of rewriting the governing equation in weak form
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and expressing the integrals in terms of the selected approximation function.
The other class, which also includes the method used in this work, consists
of methods which use collocation. The governing equation is discretized
by directly evaluating the derivatives of the approximation function in
discretization points.

Another way to classify the methods is by the way they construct the
approximation function (Wendland, 2004). Regardless of the method used,
the aim of the approximation is to construct the Lagrange functions Λi(r),
which are such that given a set of points {rl; l = 1 . . . n} a function φ(r)
is sufficiently well approximated in point r near the set {rl; l = 1 . . . n} by
approximation s(r)

s(r) =
n∑
i=1

φ(ri)Λi(r). (1.1)

Roughly, we can distinct three kinds of approximation approaches, depending
on the way the Lagrange function is determined. The reproducing kernel
approach assumes an expression for the Lagrange function, while the moving
least squares and interpolation approaches use Lagrange function which is
calculated by using least squares approximation and interpolation conditions,
respectively. Described approximation approaches also differ in the accuracy
of constructed approximation functions. For a given number of local points,
the interpolation, which is used in this work, is usually the most accurate.

The last distinction between the methods can be made with respect to
the type of basis functions which are used to construct the approximation.
Mostly, the methods use low order polynomials, especially when using the
least-squares to construct the approximation. The minority of methods
uses other basis functions, which try to avoid the setbacks of polynomials.
The method used in this dissertation is of latter kind and uses radial basis
functions to construct the approximation function.

The method which is used in this dissertation belongs to collocation
meshless methods which use interpolation with radial basis functions to
construct local approximation function. This kind of methods are relatively
recent additions to the family of meshless methods, being developed only
since the start of the new millennium, although, as we see in the next section,
the ideas employed are significantly older.
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1.2.1 Historical development of local collocation mesh-
less methods

The first step in the development of the meshless methods was the idea
presented by Jensen in 1972 (Jensen, 1972). He proposed a system for
generation of finite differences on irregular grids using interpolation with
polynomials on local stencils consisting of a small number of nearest neighbors.
His method was pestered by poorly conditioned interpolation matrices and
a stencil modification had to be used when a poorly conditioned stencil was
encountered. This problem was remedied in the paper by Liszka and Orkisz
in 1979 (Liszka and Orkisz, 1979). Their solution was to use a weighted
least-squares approximation by second order polynomial constructed from
the values in the stencil. They successfully applied the developed method to
a selection of problems in solid mechanics. The use of the least squares is
not the only way to stabilize the interpolation problem. The replacement
of polynomials with positive definite radial basis functions (RBFs) has the
same effect (Buhmann, 2003).

The superior properties of radial basis functions were demonstrated by
extensive test of different scattered data approximation schemes in the work
of Franke (Franke, 1982). He performed the tests of 29 different scattered
data approximation techniques and found the interpolation with radial basis
functions to be superior to other approaches.

The seminal work by Kansa (Kansa, 1990a; Kansa, 1990b) was the first
application of RBFs to numerical solving of partial differential equations
(PDEs). In his two papers he first demonstrated capabilities of RBFs to
accurately calculate the derivatives. This allowed him to use the method to
solve parabolic, hyperbolic and elliptic equations in two dimensional setting.
The detailed theory of the convergence of the method was developed later
on by Franke (Franke and Schaback, 1998). Since the RBF interpolant used
by Kansa was constructed using all the points in the computational domain,
the resulting interpolation matrix was dense and ill-conditioned. These
problems overwhelmed very good convergence properties of the method, and
the approach failed to gain widespread adoption. However, the idea of using
RBFs for construction of approximations in numerical methods lived on.
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The RBF interpolation reemerged a few years later in work done on the
boundary elements method, although in a different setting. The particular
solution of the governing equation was determined by integrating the RBF in-
terpolant of the source term. Initially, conical functions were used (Partridge
et al., 1992), but were soon replaced by RBFs because of their superior
interpolation properties (Golberg and Chen, 1994; Golberg, 1995). The idea
of integrating the interpolants instead of differentiating them gained wide
popularity and is still developed today (Yao et al., 2015; Zhang et al., 2016).

The next application, for which good interpolation properties of RBFs
were demonstrated, was the radial point interpolation method (RPIM) (Gu
and Liu, 2001). It used RBFs to construct local interpolation which was
used to discretize weak form equations for solid mechanics.

Soon after that, a group of papers appeared, which locally constructed
RBF interpolant and used it so solve strong formulation equations (Tolstykh
and Shirobokov, 2003; Lee et al., 2003; Liu et al., 2002). Interestingly
enough, two of those three papers dealt with solid mechanics problems.
From then on, the approach gained quite wide adoption and was used to
model wide spectrum of problems ranging from thermal transport (Šarler
and Vertnik, 2006), fluid flow (Divo and Kassab, 2007), geophysics (Flyer
et al., 2012), reaction-diffusion problems on surfaces (Shankar et al., 2015)
to problems in solid state physics (Kosec and Trobec, 2015).

The method used in these papers calculates the derivatives by analytic
derivation of the interpolant. The other option is the approach presented
in (Liu et al., 2006), where the finite difference method (FDM) is used to
construct the derivatives. The RBF interpolant is used only to interpolate the
values from the disordered mesh points onto a finite difference stencil, which
is then used to calculate the derivatives by the finite difference method. This
approach has also been successfully applied to many problems in engineering
(Gerace et al., 2013), especially where stable calculation of advection is
necessary (Harris et al., 2015).

Our choice of the local RBF collocation method to perform the work
done in this dissertation was greatly influenced by the successful application
of the approach to several industrial problems related to solidification of
metals (Vertnik, 2010; Kosec et al., 2011; Mramor, 2015) and large plastic
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deformation during thermomechanical processing of steel (Hanoglu, 2015).

1.3 Overview of thermomechanics DC cast-
ing models

The direct chill (DC) casting of aluminium is well established procedure
and a lot of effort has been spent designing models which describe it. The
models of solid mechanics, which already included elasto-plastic constitutive
models (Weiner and Boley, 1963), were the first addition to the models
of solidification. The models were designed before wide availability of
computational resources and thus provided analytic expressions connecting
the process parameters to the stress state of the cast piece.

The first model of thermomechanics during direct chill casting was
formulated for casting of aluminium slabs (Tien and Koump, 1969). They
considered a beam-shaped section of the solidifying slab and determined the
dependence of stresses and displacements of the surface on thickness and
cooling rate.

The switch from analytic models to numerical models was essential to
achieve widespread use of the models. The first such model was presented
in (Williams et al., 1979). They modeled the process of continuous casting
of steel by considering heat transfer and elasto-viscoplastic model of solid
mechanics. Their model used finite element method (FEM) to discretize the
governing equations. Such model already included most of the important
physics and its usability is reflected in additional improvements in subsequent
years (Fjaer and Mo, 1990; Zabaras et al., 1990).

Another important addition to the models was the inclusion of the effects
of fluid flow. This was first included in the work (Li and Ruan, 1995), which
considered casting of a cylindrical billet and was also stated using FEM. This
model indicated the development of the field in the subsequent years. The
developed models were getting more complicated by including two-phase
models of the mushy zone (Farup and Mo, 2000) and increasingly complicated
rheological models (M’Hamdi et al., 2006) to improve the description of the
mushy zone. Such models provide results in terms of the stress and the
strain fields, porosity and the hot-tearing susceptibility.
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In recent years the great insights have been achieved also by large-scale
microscopic models (Phillion et al., 2009). Their resolution at the scale of
grains includes description of the inter-granular liquid channels (Vernède
et al., 2009; Sistaninia et al., 2013b). Such models have been applied also to
the problem of DC casting (Sistaninia et al., 2013a) to accurately predict
the location of crack initiation and growth direction.

1.4 Goals

The research group of prof. Šarler pioneered the use of meshless method for
modeling multiphase processes in material processing. The phenomena that
were successfully modeled were very diverse. The first was the modeling of
solid-solid phase changes in homogenization of aluminium alloys (Kovačević
and Šarler, 2005) which was followed by thermal models of DC casting of
aluminium (Vertnik et al., 2006).

Considerable amount of work has been done on modeling continuous cast-
ing of steel. A model considering solidification, fluid flow, thermal transport,
species transport and turbulence was developed for two-dimensional and
three-dimensional descriptions of the process (Vertnik and Šarler, 2009; Vert-
nik and Šarler, 2016). Model of electromagnetic braking during the con-
tinuous casting process were added in (Mramor, 2015). Meshless methods
were also used in development of traveling slice models of continuous casting
of steel (Vušanović et al., 2011). The model considered thermal transport,
solidification and grain growth. Similar concept of traveling slice was used
to model hot-rolling of steel (Hanoglu et al., 2011). The model was stated
in Lagrangian formulation to describe heat transfer and deformation of the
material.

Although the DC casting of aluminium was the first process which
was modeled by a meshless method, no additional progress was done in
this until recently. The model was upgraded by addition of fluid flow and
electromagnetic stirring (Košnik et al., 2014; Hatić et al., 2016). Development
of a meshless model which would complement this work by providing results
considering thermomechanical aspects of the process is the main goal of this
dissertation.
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Te model is also expected to provide a way to predict occurrence of
mechanical casting defects, the main goal being the prediction of hot tearing.
We also aim to predict the occurence of porosity and the shape of the billet
surface.

Considering a lack of literature on the application of the local radial basis
function to problems in viscoplasticity and thermomechanics the goal is also
to devise numerical methods which enable a stable and robust solution of
the considered model and provide further insight in the performance of the
method.
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Chapter 2

Physical background

In this chapter we expose the physical background of the approach used
to assemble the model of DC casting by describing the framework of solid
mechanics, following the approach of (Fung and Tong, 2008) and the vis-
coplasticity theory, specifically the approach of viscoplastic potentials as
exposed in (Simo and Hughes, 1998) and (Lubarda, 2002).

2.1 Mechanics

2.1.1 Description of strain

The description of the configuration of the deformed body is essential for
formulation of solid mechanics. It is achieved by two quantities, the dis-
placement and strain. We start by considering the situation illustrated in
Figure 2.1. The body is deformed from configuration Ω to the configuration
denoted Ω′. The deformation of the body moves the material which was at
position r to the position R(r). The difference between the two positions is
called the displacement u and is defined by

u(r) = R(r)− r. (2.1)

We assume that the displacement is continuous, which means that no cracks
or holes are introduced into the body by the deformation. Also, to simplify
the formulation, we require the displacements to be twice continuously
differentiable.

9
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The stress that develop in the body because of the deformation are not
determined directly by the displacement. A rigid body motion does not
induce any stress within the body although, it results in nonzero displacement.
The source of stress is the stretching and torsion that are imposed on the
body by the deformation.

To determine the quantity of interest, we study the length of vector
dr, which connects two nearby material points. The deformation maps
this vector to the vector dR. In coordinate system with basis vectors
{eκ, κ = 1, 2, 3} the vector dr is

dr =
3∑

κ=1
dxκeκ. (2.2)

Inverting the equation (2.1), the change of length of the vector dr is given
by

|dR|2 − |dr|2 =
3∑

ξ,κ=1

[
(I +∇u)T (I +∇u)− I

]
ξχ

dxξdxχ. (2.3)

The matrix in front of the factor dxξdxχ is proportional to the strain tensor
ε. Its components are given as

εξχ = 1
2

(
∂uξ
∂xχ

+ ∂uχ
∂xξ

+ ∂uξ
∂xχ

∂uχ
∂xξ

)
. (2.4)

When the components of the displacement vector gradient are small, the
nonlinear term can be neglected. The linearized strain is then given by

εξχ = 1
2

(
∂uξ
∂xχ

+ ∂uχ
∂xξ

)
. (2.5)

This definition of strain will be used in the rest of the dissertation.
The aim of this dissertation is modeling viscoplastic deformations, which

develop during the proces of DC casting. Usually, viscoplasticity is associated
with large deformation of the material. In the case of DC casting we know
from the observation of the process itself, that the strains are small, on the
order of 0.01. This gives us confidence in the decision to use the small strain
approximation.
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u(r)

r
R

dr
dR

Ω′
Ω

x1

x2

Figure 2.1: Definition of displacement.

2.1.2 Description of stress and stress equilibrium

To formulate the definition of stress tensor, we need to consider a closed
surface Γ inside a body, illustrated in Figure 2.2. If there are stresses present
in the body, then we can assume that a force dF is acting on each small
part dS of the surface. The ratio of these two quantities is called traction t.
The linear mapping, which maps the normal of the surface element n to the
traction prescribed on the surface element is the stress tensor σ. It can be
implicitly defined as

tξ =
3∑

χ=1
σξχnχ. (2.6)

The stress in the body is tightly connected with the deformation of the body,
which is described by strain.

Using the same setting, we can also derive the stress equilibrium condition.
Let us first allow for an additional external body force to be acting on the
considered body. The distribution of the force can be described with f(r).
The force equilibrium for the body Ω with surface Γ is given by

∮
Γ
tdΓ +

∫
Ω
fdV = 0. (2.7)

The definition (2.6) is used to express the equilibrium condition in terms of
stress tensor. Using the divergence theorem, we arrive at

∫
Ω

(∇ · σ + f) dV = 0. (2.8)
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By reducing the volume of the interior of the surface to such extent that
the integration term can be assumed constant, we see that the equilibrium
condition is

∇ · σ + f = 0. (2.9)

If the body is not in equilibrium, it starts accelerating as specified by the
following equation of motion

∇ · σ + f = ρü, (2.10)

where ρ is the mass density.
Besides the equilibrium of forces, we also need to consider the equilibrium

of torques. The torque of the tractions acting on surface of the body Γ is
given as

Mξχ =
∮

Γ
(tξxχ − tχxξ) dΓ =

3∑
ζ=1

∮
Γ

(σξζxχ − σχζxξ)nζdΓ. (2.11)

The same torque can be also calculated by the integration of the body force
induced by stress σ over the volume Ω of the body.

Mξχ =
∫

Ω
(∇ · σξxχ −∇ · σχxξ) dV =

3∑
ζ=1

∫
Ω

(
∂σξζ
∂xζ

xχ −
∂σχζ
∂xζ

xξ

)
dV.

(2.12)
This expression can be rewritten in terms of the surface integral in equation
(2.11) and an additional term

∫
Ω

3∑
ζ=1

(
σξζ

∂xχ
∂xζ
− σχζ

∂xξ
∂xζ

)
dV, (2.13)

which should be equal to zero, since the equations (2.11) and (2.12) define
the same physical quantity. This is only possible if σχξ = σξχ, which means
that the stress tensor has to be symmetric.

The stress tensor is real-valued and symmetric, which means that its
eigenvalues are real and that the corresponding set of eigenvectors is orthog-
onal. The eigenvalues are called the principal stresses and the directions
defined by the eigenvectors are called principal directions. In each princi-
ple direction the material experiences pure tension/compression with its
amplitude given by the corresponding principal stress.
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x1

x2

x3
Ω

Γ

n t

Figure 2.2: Illustration to definition of stress.

In the derivations above we have omitted an important detail. In general,
all the integrations in the above expressions should be performed on control
volumes in the deformed body. However, in numerical models, the equations
are usually stated for the undeformed configuration, although the stress
equilibrium should be achieved in the deformed configuration. One can
imagine that significant rotation of the material caused by the deformation
could cause the directions of surface normals to change and thus also changing
the direction of the tractions resulting in wrong solution of the equilibrium
equation. Our approximation is thus only valid if the rotation caused by the
deformation is small. This can be controlled for by factoring the deformation
gradient as

∇R = QS, (2.14)

which is the usual QR decomposition where Q is orthogonal and the matrix
S is upper triangular. This decomposition splits the deformation in two parts.
A vector dx in the original configuration is first deformed by the matrix S
and then rotated by Q to become dX in the deformed configuration. We can
neglect the fact that the equilibrium equations are stated for the undeformed
configuration instead for the deformed one, as long as the rotation given by
Q is small (Fung and Tong, 2008).
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2.1.3 Linear theory of thermoelasticity

To be able to write the equilibrium condition (2.10) in terms of deformation
vector, we need to assume a constitutive law connecting the stress and strain
tensors. The most general linear law of this form is specified by a fourth
order elastic tensor C by σ = ε. In case of an isotropic body, only two
constants are enough to describe the tensor C. This special case is known as
the Hooke’s law and is given by

σξχ = λ tr(ε)δξχ + 2Gεξχ. (2.15)

The λ stands for Lamé parameter and G for the shear modulus. The δξχ
symbol stands for Kronecker delta and tr is the trace of the tensor. There
are many different parametrizations of the Hooke’s law. The one used in
formula (2.15) is usually used in physics. In engineering, use of Young’s
modulus E and Poisson’s ratio ν is more common. The connections between
them are

λ = νE

(1− 2ν)(1 + ν) (2.16)

G = E

2(1 + ν) . (2.17)

For uniaxial loading of the material, the Young’s modulus directly connects
the stress σ‖ and the strain ε‖ by σ‖ = Eε‖. In the same setting, the
Poisson’s ratio connects the strain in the axial direction with the strain in
the orthogonal direction ε⊥ = νε‖.

The derivation of the coupling with temperature field T requires a short
detour in thermodynamics. We introduce the strain energy function w

defined by

dw =
3∑

ξ,χ=1
σξχdεξχ. (2.18)

It can be shown that such a function describes the internal energy of an
isentropic process or the Helmholtz free energy of isothermal process (Fung
and Tong, 2008). In case of an isotropic solid, this function can be written
as

w = λ

2 ( tr(ε))2 +G
3∑

ξ,χ=1
εξχεξχ. (2.19)

To describe the thermoelastic coupling we need to introduce additional
terms in the strain energy function. The lowest order contribution is of the
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first order in both, strain and temperature. New strain energy function for
isotropic solid has therefore the form

w = λ

2 ( tr(ε))2 +G
3∑

ξ,χ=1
εξχεξχ − β(T − Tref ) tr(ε). (2.20)

In this expression β is the coefficient describing thermal expansion and Tref
is the reference temperature, at which we assume the thermal stresses to
be zero. Using the definition of the strain energy function (2.18), the strain
tensor definition (2.5), and the equilibrium equation (2.10) we can obtain
the equilibrium equation in terms of the displacement

G∇2u+ (G+ λ)∇∇ · u = ∇
(
β (T − Tref )

)
− f (2.21)

and, for non-equilibrium conditions,

ρü = G∇2u+ (G+ λ)∇∇ · u−∇
(
β (T − Tref )

)
+ f . (2.22)

The coefficient β is given by β = αE/(1− 2ν), where α is the coefficient of
linear expansion defined in the relation

εξχ = δξχα(T − Tref ). (2.23)

By using this approach, we manage to obtain the coupling in one direction
only, namely for a given temperature field, we are able to calculate the impact
on stresses. To achieve thermodynamic consistency, we should also account
for the inverse coupling. The derivation of the coupling comes from the
consideration of the rate of entropy production (Fung and Tong, 2008). In
order to simplify the equations we use thermodynamic quantities given per
unit mass, e.g. F =

∫
ρfdV . The entropy production rate is given by

ρṡ = ρ
∂s

∂εξχ
ε̇ξχ + ρ

∂s

∂T
Ṫ . (2.24)

The dot ( ˙ ) over a physical quantity stands for partial derivative with respect
to time Ṫ = ∂T/∂t. From the thermodynamics we know the connection
between the entropy production rate and the heat flux j

ρṡ = − 1
T
∇ · j (2.25)
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and the definition of the heat capacity at constant volume

cv = −T ∂
2F

∂T 2 . (2.26)

Our aim is to rewrite the equation (2.24) in terms of free energy. The free
energy of an isotropic elastic material is given by

ρf = w − ρTs, (2.27)

where w is the strain energy function. From the free energy definition it is
clear that we have −s = ∂f/∂T . The equation (2.24) can now be written in
terms of free energy and heat flux

− 1
T
~∇ · j = −ρ

3∑
ξ,χ=1

∂f

∂εξχ∂T
ε̇ξχ − ρ

∂2f

∂2T
Ṫ . (2.28)

The definitions of heat capacity and free energy can be used to replace the
partial derivatives of the free energy. By employing the definition of the
heat flux from Fourier’s law j = −k~∇T we get the coupling equation that
we were looking for

3∑
ξ=1

∂

∂xξ

(
k
∂T

∂xξ

)
= ρcvṪ + Tβ tr(ε̇). (2.29)

One can imagine that the physical problems governed by the equations
listed above are quite difficult to solve. In order to obtain results which
are relevant in engineering, we have to introduce some simplifications. The
equations that we have written deal with transient problems, so the straight-
forward simplification is to limit ourselves to quasi-static problems, where
all the fields are assumed to be stationary.

The fact that the adiabatic expansion of the gas is accompanied by a
drop in its temperature is known as Joule-Kelvin phenomenon (Žumer and
Kuščer, 2006). The equation describing the same phenomenon for solids can
be obtained from equation (2.29), by forbidding the heat conduction (~j = 0).
This gives us the equation connecting the rate of change of temperature
with the strain rate

∂T

∂t
= − Tβ

ρCv
tr(ε̇). (2.30)

The coefficient in front of the strain rate has in case of aluminium value ≈ 1K.
To estimate the strain rate, we assume that all the boundary conditions
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and body forces are stationary. The only contribution to the strain rate is
then the thermal expansion given by (2.23). The increase of temperature
dT in time interval dt is then the sum of the increase due to the thermal
conduction dTcon and the increase due to the strain rate dTε. The increase
of the temperature is then dT = (1 + α1 K)dTcon. Since the value of α is
approximately 10−5K−1, the contribution to the temperature increase due
to the strain rate is negligible.

2.2 Viscoplasticity

2.2.1 Motivation

The linear constitutive law is a good approximation for material behavior
only in narrow, but important, range of loading. The behavior predicted
by linear law is appropriate only when the applying load results in small
deformations. To describe materials in general load configurations, we need
to consider more complicated, nonlinear, material models.

In Figure 2.3 a typical stress-strain curve of an aluminium alloy is shown
by the solid line (Hill, 1998). The linear model applies when stresses are
below the elastic limit stress, denoted by σE. As we increase the strain,
we reach the yield stress σY , when the plastic deformation starts to be
significant. The yield stress is the stress at which a given amount of plastic
deformation occurs, the yield value being dependent on the selected amount
of plastic deformation. In literature, usually value of 0.2% is used. As we
increase the load further, we reach the ultimate tensile stress σu, which is
the largest stress the material can support. Further increase in stress is
not possible. The strain, however, can be increased further, but the stress
decreases when doing so. This is only possible until we reach the fracture
point (εf , σf ), when the material fractures.

All this parameters are still not enough to completely describe the
behavior of aluminium alloys, particularly at high temperatures. The strain
rate, which is used to obtain the curve in the experiments, can change the
shape of the curve, as indicated in Figure 2.3. In the experiments the values
ranging from 10−1 to 10−7s−1 can be used (Kassner and Pérez-Prado, 2004).
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Figure 2.3: Typical stress strain curve of an aluminium alloy.

Larger strain rate can increase both, the observed yield stress and the
ultimate tensile strength (Chen et al., 2009; Ludwig et al., 2005). In the
Figure 2.3 two additional stress-strain curves are plotted with dots for strain
rates larger and smaller than the curve obtained by the reference strain rate.
When the yield stress depends on the stress rate, the material is said to be
viscoplastic (Hill, 1998).

2.2.2 Toy-model of viscoplasticity

More insight in the behavior of a viscoplastic metal can be obtained by
considering the one dimensional model shown in Figure 2.4 (Simo and
Hughes, 1998). Such toy-models are often used to intuitively understand
viscoelasticity (Fung and Tong, 2008). A simple model for viscoplasticity
can be constructed by slightly modifying the model for Maxwell viscoelastic
material (Fung and Tong, 2008). The Maxwell model, contained in the blue
shaded area in Figure 2.4, consists of connection of spring element with
elastic constant E and a dashpot with time constant η in series. Plastic
behavior is added to the model by connecting a friction element with yield
stress σY in parallel to the dashpot.

The total strain of the device is the sum of elastic part εe and the plastic
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part εp. The elastic part is the strain of the spring. The stress on the device
can be calculated as

σ = Eεe = E(ε− εp). (2.31)

If the stress σ is smaller than the σY all the stress can be transferred by
the friction device with no stress acting on the dashpot. However, when the
absolute value of the stress is larger than the yield stress, the dashpot starts
to move in such a manner that the extra stress is transferred by it. The
extra stress is given by

σex = (|σ| − σY )sign(σ) (2.32)

From the constitutive equation of the dashpot σ = ηε̇p we can obtain the
equation for the viscoplastic strain rate

ε̇p = 1
η

(|σ| − σY )sign(σ), (2.33)

if
|σ| − σY ≥ 0. (2.34)

The criterion in the equation (2.34) is called the yield criterion. Usually,
it is specified by a yield function f(σ), which is defined in such a manner
that when f(σ) < 0 the material behaves elastically and when the f(σ) > 0
plastic deformation occurs. The generalized surface in stress space given by
the equation f(σ) = 0 is called the yield surface. In general, it is usually
a generalized prism or a cone in space of principal stresses. In our case,
however, it is especially simple, since it is only a pair of points on the stress
line at σ = ±σY . Using the definition of yield function, the viscoplastic
strain rate is given by

ε̇p = 1
η
f(σ)sign(σ), (2.35)

if f(σ) ≥ 0.
Two physically interesting behaviors can be observed by considering two

different ways of loading the system. The first one can be observed if a finite
strain ε0 is instantaneously applied on the device. This can be described by
a step function in strain

ε = εoH(t). (2.36)

19



2.2. Viscoplasticity PHYSICAL BACKGROUND

εe εp

η

dashpot

σ σ

E

spring

σY

friction element

Figure 2.4: One dimensional toy-model of viscoplasticity.

Here, H(t) denotes the Heaviside step function. To observe the plastic
behavior, the amplitude of the applied strain must be large enough to cause
stresses larger than the yield stress, Eε0 > σY .

Taking the time derivative of the constitutive equation for stress (2.31)
and combining it with the plastic strain rate equation (2.33) we obtain the
following ordinary differential equation for stress

σ̇ = −E
η

(σ − σY ). (2.37)

With initial condition σ(t = 0) = Eε0. This equation describes the expo-
nential decay of the stress towards the yield stress as the stationary state is
approached.

The second important phenomenon can be observed if we consider the
stationary state when a constant strain rate ε̇0 is being applied to the system.
The constant strain rate will only cause the elastic deformation of the spring
until the yield limit is reached Eε ≤ σY . After that, the plastic strain rate
will be nonzero and governed by the equation

ε̇p = 1
η

(σ − σY ). (2.38)

The governing equation for stress can be obtained by time differentiation of
the equation (2.31). The stationary state of stress is reached when ε̇p = ε̇0.
From the equation (2.38) it follows that the stationary stress σ∞ is

σ∞ = σY + ηε̇0. (2.39)

This result demonstrates that the material can sustain stresses larger than
the yield stress. The extra stress the material can sustain depends on the rate
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Figure 2.5: Stress-strain curves of one dimensional viscoplastic model (E = 1,
η = 0.1, σY = 1).

of deformation. Stress-strain curves for the toy-model subject to constant
strain rate are shown in Figure 2.5. We see that the larger the strain rate,
the larger is the extra stress that the material can sustain. Such behavior is
a feature of the stress-strain curve shown in Figure 2.3, demonstrating that
viscoplasticity can be used to describe the observed behavior.

2.2.3 Rate-dependent plasticity via viscoplastic poten-
tials

For many years the approach to the modeling of viscoplasticity was in
principle the same as the one illustrated by the toy-model. The plastic
region determined by the yield function was used to determine the area
where the material behaves elastically. In the plastic regime, the plastic
strain rate was determined by a constitutive law similar to the equation
(2.33). In recent years, however, a different approach is gaining traction. The
yield function and associated viscoplastic strain rate equation is replaced
by a viscoplastic potential, which is used to determine the viscoplastic
strain rate (Hill and Rice, 1973). Such models are especially well suited for
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modeling of heterogeneous materials such as soil (Kelln et al., 2008), concrete
(Florea, 1994) and solidifying metals (Zavaliangos and Anand, 1993; Martin
et al., 1997).

The viscoplastic potentials are a way to generalize the stress and strain
energy to viscoplastic materials. We know that the strain energy defined
by the equation (2.18) can be introduced to define the relation between the
stress and strain

σ = ∂W

∂ε
. (2.40)

By components, that is
σξχ = ∂W

∂εξχ
. (2.41)

Since the free energy depends on the physical configuration of the material,
it is invariant to the stress and strain measure used to calculate it. By
performing a Legendre transformation we can define a similar potential U
that can be used to define the strain tensor

ε = ∂U

∂σ
, (2.42)

where U = σ : ε−W . This gives us a connection ε = ε(σ).
To generalize this kind of approach to plastic materials we need to

introduce the concept of plastic history H (Lubarda, 2002). A set of variables
ζj is used to describe the rearrangements of the material due to plastic
deformations. These internal variables are used to describe the internal state
of material, but not necessary in the usual way by the free energy being a
point function of these variables. The free energy can also depend on the
path by the way they were achieved. The plastic history of the material is the
set of variables ζj along with their history, making it a functional of history
of inelastic deformation. In the case of plasticity, both potentials defined
in equations (2.40) and (2.42) should also depend on the plastic history H.
They give us an expression connecting the strain to stress ε = ε(σ,H) (and
vice versa) at a given plastic history H.

Using the concept of plastic history, we can define the plastic strain
increment dpε by

dpε = ε(σ,H + dH)− ε(σ,H). (2.43)
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This definition is illustrated in Figure 2.6. For plastic material, a change
in plastic history can only be achieved by a stress loop which reaches the
yield surface. Such a loop for one-dimensional case is illustrated in Figure
2.6. For one-dimensional problems, the loop is reduced to a line on stress
axis. We start in point A with strain ε(σ,H). We then increase stress and
move in stress-strain space as determined by the stress-strain curve until
we reach the point B. During this we gain plastic history variation dH, and
increase stress by dσ. We see that the plastic strain increment is defined
without any change in stress. We need to return to the same stress value
as we have started with by moving from point B to point C, where strain
is ε(σ,H + dH), as required by the expression (2.43). This is achieved
by elastic unloading, since we move away from the yield surface and the
conditions for plastic deformation are no longer fulfilled. Keeping this stress
path in mind we can express the plastic strain increment as

dpε = dε− C : dσ, (2.44)

where C is the tensor of linear elastic moduli.
From the definition of potential U it is also clear that we can restate the

plastic strain increment in terms of plastic increment of the potential

dpε = ∂U

∂σ
(σ,H + dH)− ∂U

∂σ
(σ,H) = ∂

∂σ
dpU. (2.45)

In this manner we have shown that there exists a potential for the plastic
strain increment in a manner similar to the equation (2.42). This result
will be used to show invariance of the viscoplastic potential on the frame of
reference.

In viscoplasticity the governing equation of the viscoplastic strain rate
is required, instead of an equation for the viscoplastic strain (Simo and
Hughes, 1998). The equation for strain rate can be obtained by differentiating
the equation (2.44) with respect to time t

dpε
dt = dε

dt − C : dσ
dt . (2.46)

The absence of the requirement to remain inside the yield surface gives us
a straightforward way to design a viscoplastic potential. An infinitesimal
change in stress is not any more accompanied by a change in strain but by
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a change in strain rate. This means that we can devise a potential U(σ,H)
such that

δσ
dpε
dt = δU (2.47)

and
dpε
dt = ∂U

∂σ
. (2.48)

Using the definition of plastic strain in the equation (2.45) we can see that

δU = δdpU
dt . (2.49)

Since U is invariant on the choice of stress and strain measures so is U .
To formulate a viscoplastic model we only need to construct a viscoplastic
potential, without any need for yield function or yield surface.

For example, we can try to construct viscoplastic potential for the toy-
model studied in section 2.2.2. The viscoplastic strain rate is given by the
equation (2.35) when |σ| − σY > 0 and is equal to zero otherwise. This
branching persists also in the definition of the viscoplastic potential

U =


0 , if |σ| − σy < 0
1
2η (|σ| − σY )2 , otherwise.

(2.50)

The definition of the potential with two branches is a consequence of the
yield surface. The viscoplastic potentials, which do not try to mimic an
existing yield surface model, are defined by a single branch but still in such
a way that ε̇p << 1 when |σ| < σ0 for some model-dependent critical stress
σo.

2.2.4 Norton-Hoff model of viscoplasticity for metals

The viscoplastic potential theory described in the previous section can be
used to devise models for many complicated viscoplastic materials. Such
examples are soil (Kelln et al., 2008), concrete (Florea, 1994), crystals
(François et al., 1998), biological tissue (Chen et al., 2013) and metals at
high temperature (Zavaliangos and Anand, 1993) to name just a few.

The simplest and most widely used model to describe behavior of metals
at high temperature is the Norton-Hoff model. It was first proposed for
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Figure 2.6: Illustration to the definition of plastic strain increment.

modeling high temperature creep of steel (Norton, 1929). The law has the
following form

ε̇p = 3τ
2σe

ε0, (2.51)

where ε0 is given by

ε0 = A exp
(
− Q

RT

)(
σe
σ0

)n
. (2.52)

In this equation the following quantities are used: the deviatoric stress
τ is given by τ = σ − I tr(σ)/3. The effective stress σe is given by
σe =

√
2τ : τ/3. R is the general gas constant and T is the absolute

temperature. Q is experimentally determined activation energy. Also, the
value of critical stress σ0, the power n and constant A are material parameters
determined by experiments.

The typical value of n for aluminium alloys is 4. This value falls neatly
into the range 3-5, which indicates the so called “five-power-law creep”. This
name covers the laws of the form ε0 = Aoσ

n
e , where n ≈ 5. Such laws are

usually valid for temperatures higher than half of the melting temperature
(Kassner and Pérez-Prado, 2004). At lower temperatures, the power-law
breakdown occurs and the value of Q decreases.

The driving mechanism for the “five-power-law creep” is dislocation climb
and annihilation. The first theory of this was established by Weertman
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(Weertman, 1955). It was based on prediction of annihilation rate of dis-
locations emanating from two dislocation sources. It predicted the power
n to be between 3 and 5 depending on assumptions made in the model.
Additionally, the model predicted correct activation energy. Experimentally,
the values of Q in equation (2.52) were shown to be the same as for the
self diffusion process, meaning that this process was limiting the rate of
dislocation annihilation (Kassner and Pérez-Prado, 2004).

2.3 Hot tearing models

2.3.1 Hot tearing during DC casting of aluminium al-
loys

One of the most serious casting defects is hot tearing, the irreversible
formation of a crack in the semisolid casting. The importance of hot tearing
is reflected in many studies trying to understand various aspects of the
phenomenon (Eskin et al., 2004a; Lalpoor et al., 2010) as well as in the
development of numerical models to predict its occurrence (Hao et al., 2010;
Farup and Mo, 2000; M’Hamdi et al., 2006; Sistaninia et al., 2013a).

To better understand the physical reasons for hot tearing, we should
consider the solidification process of an aluminium alloy. Based on the
permeability of the solid network, the process can be divided into four stages
(adapted from (Eskin, 2008)).

1. Mass feeding, in which both, the already solidified dendrites and liquid
melt are free to move.

2. Interdendritic feeding, in which the fluid has to flow through the already
coherent solid skeleton.

3. Interdendritic separation, in which the liquid network becomes frag-
mented. With increasing solid fraction, liquid is isolated in pockets or
immobilized by surface tension.

4. Interdendritic bridging or solid feeding, in which the billet has developed
considerable strength and solid state creep compensates for further
contraction.
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Hot tearing usually occurs in the last two stages, in conditions, in which
the liquid feeding is not sufficient to account for the shrinkage of the material.
The shrinkage can be in general divided in two parts, the solidification
shrinkage and thermal shrinkage. Thermal shrinkage is well known thermal
isotropic contraction, while the reason for the solidification shrinkage is the
difference in densities of solid and liquid phases. The thermal shrinkage
is the main factor for stress occurrence in already solidified material while
the solidification shrinkage is most relevant during the third stage of the
solidification, when the liquid network becomes fragmented.

hot tear

porosity

Figure 2.7: Illustration of cracks caused by hot tearing.

As a result of the shrinkage, stresses develop in the ingot. The existence
of areas with tensile stress is one of the most important conditions for hot
tearing. To the occurrence of hot tears is also facilitated by the fact that
the yield stress decreases with increasing temperature. If the tensile stresses
in an area increase over this value, the dendritic bridges that have formed
collapse, initiating a hot tear.

The alloy composition is also an important factor determining the hot
tearing probability. Different thermo-mechanical properties, different so-
lidification range and variances in microstructure resulting from different
chemical composition can make hot tearing even more difficult to predict
(Eskin, 2008).
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2.3.2 Lahaie-Bouchard model

The Lahaie-Bouchard (LB) model (Lahaie and Bouchard, 2001) is one of
the many possible criteria for hot tearing. It describes the conditions under
which the hot tearing can nucleate. It is one of the few stress-based criteria
(Eskin and Katgerman, 2007). It formulates the rupture stress needed to
separate two grains held together by liquid film.

The formulation of the model starts by stating the stress needed to
separate two infinite beams bonded by capillary force due to a thin layer of
liquid between them. The stress σc is given as

σc = 2γl
h
, (2.53)

where γl is surface tension and h is the thickness of the liquid film. We
notice that the σc decreases as h increases. This means, that if the critical
stress is reached at a given thickness h, the two beams can be separated,
since an increase in h will decrease the stress needed for further separation.
If we replace the beams with a pair of grains, when this critical value of
stress is exceeded a crack will start to grow.

The condition (2.53) that defines the critical stress for separation of two
beams must be restated for a typical microstructure of the solidifying metal.
To do this we consider an idealized cross-section of the mushy zone consisting
of hexagonal solid grains separated by a thin layer of liquid as illustrated in
Figure 2.8. The side of the hexagonal grains has length a and the thickness
of the liquid film is h. We assume that once such a structure is subjected to
uniaxial stress, the strain in the direction of stress ε‖ is accumulated only by
the change of the liquid layer thickness without any deformation of grains.
This gives us

ε‖ = h− h0√
3a

, (2.54)

where h0 is the thickness of liquid layer in the unstrained configuration.
This thickness is connected to the solid fraction fs by the following formula
(Lahaie and Bouchard, 2001)

h0 =
√

3a1− fms
fms

. (2.55)

The power m is determined by the microstructure. If the microstructure is
columnar, the value m = 1/2 is used and if the microstructure is equiaxed
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the value is m = 1/3. The size of the solid grains a can be calculated from
the grain size dg by equating areas of a hexagon with side a to the area of
circle with radius dg. Combining all this to express the film thickness h in
equation (2.53) gives the following critical stress

σLB = 4
3
√

π√
2

γ

dg
(

1−fm
s

fm
s
− ε‖

) . (2.56)

Hot tearing can start when stress is larger than σLB. The stress to which
we compare this value is simple to define in quasi one-dimensional setting
which is used to construct this equation, but in general three-dimensional
setting we need to be more careful. The hot-cracking susceptibility (HCS)
can than be defined as

HCS = σmax
σLB

. (2.57)

The value σmax is the maximum principal stress. In the definition of the
critical stress the strain was defined in the same direction as the stress. This
means that the strain, which is used in the critical stress formula, is the
strain in the direction of maximal principal stress ε‖ = nTmaxεnmax, where
nmax is the direction of maximal principal stress.

2.3.3 Suyitno-Kool-Katgerman model

The Suyitno-Kool-Katgerman (SKK) model belongs to a class of more
sophisticated two-phase models. Besides providing us with a condition for
occurrence of hot tearing it also provides a model for microporosity. It
is more sophisticated than the rest of the models since it was developed
especially for the needs of numerical modeling (Suyitno et al., 2009). Because
of this, it includes variables which are impossible to measure reliably but
are easily provided by numerical models.

The models starts by stating the conservation equation for three phases,
each associated with a volume fraction.

fs + fl + fv = 1, (2.58)

where fs is solid fraction, fl is liquid fraction and fv is volume fraction of
voids. Mass conservation for a control volume gives us a rate equation for
void fraction

ḟv = ḟr + ḟe, (2.59)
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a

h

Figure 2.8: The microstructure cross-section used for formulation of LB model.
The gray hexagons represent the solid grains and the white channels the liquid
film between them.

where ḟr is the shrinkage rate and ḟe is the feeding rate. The model states
that the voids start to nucleate when ḟr − |ḟe| > ḟc. The parameter ḟc is
the critical rate for void nucleation. It is material dependent but very small,
so ḟc = 0 can be used instead of its actual value.

The shrinkage rate takes into account solidification shrinkage and material
deformation

ḟr = −
(
ρs
ρl
− 1

)
ḟl + ρs

ρl
fstr (ε̇) . (2.60)

The feeding term accounts for the liquid feeding of the melt. In the coherent
part of the mushy zone the liquid has to flow through a solidified network
of dendrites. Such a flow can be described by Darcy law. Combining this
with Caraman-Kozeny relation, which is the standard model to calculate
permeability of the mushy zone from the solid fraction (Eskin, 2008), we
obtain the following expression for the feeding term

ḟe = ∇ ·
(
d2
as

180η
f 3
l

1− fl
∇p

)
. (2.61)

The permeability of the mush is determined by the dendrite arm spacing

30



PHYSICAL BACKGROUND 2.3. Hot tearing models

das and the viscosity of the melt η. The driving therm is the gradient of the
pressure p.

In the locations, where the condition for cavity growth is fulfilled, the void
formation rate can be integrated to obtain the fraction of voids. Assuming
spherical voids, their diameter is given by

a =
( 3

2πCd
3
gfv

)1/3
. (2.62)

Here dg is the grain diameter and C packing parameter, which depends
on the packing of the grains. If the grains are packed in bcc lattice the
parameter has value C = 8/(3

√
3). Knowing the size of the voids in the

material can be used to determine the critical stress needed for crack growth
σSKK . For this we can use the result from Griffith theory of brittle fracture
which connects the diameter of a void with critical tensile stress needed for
a crack to nucleate on the void

σSKK =
√

4γsE
πa

. (2.63)

The only additional parameter in this equation is the surface energy γs. In
the same manner as in the case of LB model we can use the criterion

HCS = σmax
σSKK

(2.64)

to describe the hot tearing susceptibility of the material.
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