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1 Introduction

1.1 Direct-chill casting

In direct-chill casting the degassed melt arriving from the furnace is lead by the trenches
in the casting table to a DC casting machine (Eskin, 2008). The melt enters the mold
from the top and starts solidifying on contact with the dummy block. When the solidified
part is strong enough to support the metallostatic pressure caused by the liquid phase,
the dummy block starts to retract from the mold, removing the solidified alloy. The
solidified alloy takes on the role of the dummy block in the heat removal as well as in
preventing the melt to escape the mold. The speed of retraction of the dummy block is
set such that a stationary state is obtained with regards to thermal profile in the mold.

The direct-chill (DC) casting is a well established technology used to cast majority
of aluminium intended for production of sheet ingots, extrusion billets and electrical
conductors. Although the process has been widely used for almost a century, there are still
many technological problems to be understood. Due to the complex interaction between
various physical phenomena, the best way to understand the technological problems is
by development of advanced numerical models.

One of the most serious casting defects is hot tearing, the irreversible formation of a
crack in the semisolid casting. The importance of hot tearing is reflected in many studies
trying to understand various aspects of the phenomenon (Eskin et al., 2004; Eskin, 2008;
Li, 2010; Stangeland et al., 2004) as well as in the development of numerical models to
predict it’s occurrence (Hao et al., 2010; Sistaninia, 2013).

To better understand the physical reasons for hot tearing, we should consider the
solidification process of an aluminium alloy. Based on the permeability of the solid
network, the process can be divided into four stages (adapted from (Eskin, 2008)).

1. Mass feeding, in which both, the already solidified dendrites and liquid melt are
free to move.

2. Interdendritic feeding, in which the fluid has to flow through the already coherent
solid skeleton.

1



3. Interdendritic separation, in which the liquid network becomes fragmented. With
increasing solid fraction, liquid is isolated in pockets or immobilized by surface
tension.

4. Interdendritic bridging or solid feeding, in which the billet has developed consider-
able strength and solid state creep compensates for further contraction.

Hot tearing usually occurs in the last two stages in conditions, in which the liquid
feeding is not sufficient to account for the shrinkage of the material. The shrinkage can
be in general divided in two parts, the solidification shrinkage and thermal shrinkage.
Thermal shrinkage is well known thermal isotropic contraction, while the reason for the
solidification shrinkage is the difference in the densities of solid and liquid phases. The
thermal shrinkage is the main factor for stress occurrence in already solidified material,
while the solidification shrinkage is most relevant during the third stage of the solidifica-
tion, when the liquid network becomes fragmented.

As a result of the shrinkage stresses develop in the ingot. The existence of areas with
tensile stress is one of the most important conditions for hot tearing. The occurrence
of hot tears is also facilitated by the fact that the yield stress decreases with increasing
temperature. If the tensile stresses in an area increase over this value, the dendritic
bridges that have formed collapse, initiating a hot tear.

The alloy composition is also an important factor determining the hot-tearing proba-
bility. Different thermo-mechanical properties, different solidification range and variances
in micro structure resulting from different chemical composition can make hot-tearing
even more difficult to predict.

1.2 Meshless methods

In conventional methods the mesh generation is an important step during the numerical
solution. In case of the FEM and finite volume method (FVM) the domain has to be
polygonized, which is an demanding and time consuming task. The finite difference
method (FDM) is defined on a regular grid, which severely reduces the applicability of
the method for irregular geometries.

The many variants of meshless methods try to alleviate both problems (Liu, 2010).
In general the meshless methods either use the variational approach of the FEM or try
to generalize the FDM method. The latter approach is the one we are interested in. The
main reason is the simplicity of the implementation and applicability to many different
physical phenomena.

Over the years various approaches to generalizing the FDM (Liszka and Orkisz, 1980;
Shirobokov, 2006; Sadat and Prax, 1996) were proposed. These methods were able to
obtain quite accurate results, but they were plagued by ill-conditioned interpolation prob-
lem for some node arrangements. To bypass this problem, the finite difference formulas
were suggested to be calculated using a set of (conditionally) positive definite functions,
meaning that the interpolation problem was always well defined. One such set are the
radial basis functions, in particular the multiquadrics.

Multiquadrics (MQ) were first used for PDE solving in the two fundamental articles
published by Kansa in 90’s (Kansa, 1990b; Kansa, 1990a). In these articles, the MQs
were used in spectral mode, meaning that the solution was interpolated on the whole
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computational domain, and not only on the small stencils as in the case of FDM. The
global interpolation approach limits the number of discretization points that can be used.
Since all the functions used are of the same shape, only their origin is shifted, the func-
tions with origins close enough become linearly dependent, which causes the system of
equations to become ill conditioned.

Improvements were proposed in the direction of abandoning the global interpolation
and interpolating the solution only locally (Lee et al., 2003; Tolstykh and Shirobokov,
2003). This approach has turned out to be very robust, allowing for great flexibility of
the method. The local radial basis function collocation method (LRBFCM) has since
been successfully applied to many physical problems (heat transfer (Šarler and Vertnik,
2006), solidification (Vertnik et al., 2006), turbulent fluid flow (Vertnik and Šarler, 2009),
macro segregation (Kosec et al., 2011), magnetohydrodynamics (Mramor et al., 2013))
and applied to modelling processes in industry (Vertnik, 2010; Mramor, 2015; Hanoglu,
2015).

2 Intended work and expected results

The main aim of the thesis is development of a meshless solver for thermomechanics model
of the DC casting process. In the process of developing we expect to formulate and test
the LRBFCM for solving linear thermoelasticity and further explore the capabilities of
the method when applied to mechanical problems. Also, we expect to develop and test a
multiphysics framework based on LRBFCM, extend it to solve viscoplastic problems and
compare it with commercial programs. The developed solver for thermomechanics will
be coupled to the adjacent model of heat and mass transfer during the DC process. The
resulting model will be able to provide insight in development of hot tearing of aluminium
billets and the impact of the process parameters on the quality of the billet.

3 Performed work

The LRBFCM method has been tested for solving time-independant linear thermoelas-
ticity problems and the precision of the method has been studied with regards to the
method parameters. This work was presented at THERMACOMP2014 at Lake Bled
(Mavrič and Šarler, 2014a) and was published in International Journal of Numerical
Methods in Heat and Fluid Flow as an invited contribution (Mavrič and Šarler, 2015b).
The developed model was further used to model the stresses during DC casting. Im-
provements on the model were presented in conferences ICASP-4 in London (Mavrič and
Šarler, 2014b), COUPLED2015 in Venice (Mavrič and Šarler, 2015d) and MCWASP XIV
in Osaka (Mavrič and Šarler, 2015c). Futhermore, a multiphysics modelling framework
was developed and a coupled thermoelasticity problem was used to benchmark the per-
formance. This work was presented at NHT2015 (Mavrič and Šarler, 2015a) in Warsaw
and has also been invited for publication in International Journal of Numerical Methods
in Heat and Fluid Flow.
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4 Originality

The method will be for the first time used to solve thermomechanical and viscoplastic
problems, which will provide new insights on the method performance with respect to
various free parameters of the method. Also, the LRBFCM will be for the first time
extended to modelling of thermomechanics during the DC casting of aluminium billets.
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