REFERENCES
Amaral MD, De Boeck K. (2019). Theranostics by Testing CFTR Modulators
in Patient-Derived Materials: The Current Status and a Proposal for
Subjects with Rare CFTR Mutations. J Cyst Fibros 18, 685-692.
Awatade NT, Uliyakina I, Farinha CM, Clarke LA, Mendes K, Solé A,et al. (2014). Measurements of Functional Responses in Human
Primary Lung Cells as a Basis for Personalized Therapy for Cystic
Fibrosis. EBioMedicine 2, 147-153.
Botelho HM, Uliyakina I, Awatade NT, Proença MC, Tischer C, Sirianant L,et al. (2015). Protein Traffic Disorders: An Effective
High-Throughput Fluorescence Microscopy Pipeline for Drug Discovery. Sci
Rep 5, 9038.
Canato S, Santos JD, Carvalho AS, Aloria K, Amaral MD, Rune M, et
al. (2018). Proteomic Interaction Profiling Reveals KIFC1 as a Factor
Involved in Early Targeting of F508del-CFTR to Degradation. Cell Mol
Life Sci 75, 4495-4509.
Carlile GW, Robert R, Zhang D, Teske KA, Luo Y, Hanrahan JW, et
al. (2007). Correctors of protein trafficking defects identified by a
novel high-throughput screening assay. Chembiochem 8, 1012-1020.
Carlile GW, Yang Q, Matthes E, Liao J, Radinovic S, Miyamoto C, et
al. (2018). A Novel Triple Combination of Pharmacological Chaperones
Improves F508del-CFTR Correction. Sci Rep 8, 11404.
Chang XB, Cui L, Hou YX, Jensen TJ, Aleksandrov AA, Mengos A, et
al. (1999). Removal of multiple arginine-framed trafficking signals
overcomes misprocessing of delta F508 CFTR present in most patients with
cystic fibrosis. Mol Cell 4, 137-142.
Cholon DM, Quinney NL, Fulcher ML, Ester Jr CR, Das J, Dokholyan NV,et al. (2014). Potentiator of Ivacaftor Abrogates Pharmacologial
Correction of ΔF508 CFTR in Cystic Fibrosis. Sci Transl Med 6, 246ra96.
De Boeck K, Amaral MD. (2016). Progress in Therapies for Cystic
Fibrosis. Lancer Respir Med 4, 662-674.
Dekkers JF, Gogorza Gondra RA, Kruisselbrink E, Vonk AM, Janssens HM, de
Winter-de Groot KM, et al. (2016). Optimal correction of distinct
CFTR folding mutants in rectal cystic fibrosis organoids. Eur Respir J
48, 451-458.
Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ.
(1992). Processing of Mutant Cystic Fibrosis Transmembrane Conductance
Regulator Is Temperature-Sensitive. Nature 358, 761-764.
Eckford PDW, Ramjeesingh M, Molinski S, Pasyk S, Dekkers JF, Li C,et al. (2014). VX-809 and Related Corrector Compounds Exhibit
Secondary Activity Stabilizing Active F508del-CFTR After Its Partial
Rescue to the Cell Surface. Cell Biol 21, 666-678.
ECFS Patient Registry – Annual Data Report 2017. Available at:
https://www.ecfs.eu/sites/default/files/general-content-images/working-groups/ecfs-patient-registry/ECFSPR_Report2017_v1.3.pdf
Farinha CM, King-Underwood J, Sousa M, Correia AR, Henriques BJ,
Roxo-Rosa M, et al. (2013). Revertants, Low Temperature, and
Correctors Reveal the Mechanism of F508del-CFTR Rescue by VX-809 and
Suggest Multiple Agents for Full Correction. Chem Biol 20, 943-955.
Farinha CM, Sousa M, Canato S, Schmidt A, Uliyakina I, Amaral MD.
(2015). Increased Efficacy of VX-809 in Different Cellular Systems
Results From an Early Stabilization Effect of F508del-CFTR. Pharmacol
Res Perspect 3, e00152.
Grove DE, Fan C-Y, Ren HY, Cyr DM. (2011). The Endoplasmic
Reticulum-Associated Hsp40 DNAJB12 and Hsc70 Cooperate to Facilitate
RMA1 E3-dependent Degradation of Nascent CFTRDeltaF508. Mol Biol Cell
33, 301-314.
He L, Kota P, Aleksandrov AA, Cui L, Jensen T, Dokholyan NV, et
al. (2013). Correctors of ΔF508 CFTR Restore Global Conformation
Maturation Without Thermally Stabilizing the Mutant Protein. FASEB J 27,
536-545.
Heijerman HGM, McKone EF, Downey DG, Braeckel EV, Rowe SM, Tullis E,et al. (2019). Efficacy and Safety of the Elexacaftor Plus
Tezacaftor Plus Ivacaftor Combination Regimen in People with Cystic
Fibrosis Homozygous for the F508del Mutation: a Double-Blind,
Randomised, Phase 3 Trial. Lancet 394, 1940-1948.
Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. (1995).
Multiple Proteolytic Systems, Including the Proteasome, Contribute to
CFTR Processing. Cell 83, 129-135.
Matthes E, Goepp J, Carlile GW, Luo Y, Dejgaard K, Billet A, et
al. (2016). Low free drug concentration prevents inhibition of F508del
CFTR functional expression by the potentiator VX-770 (ivacaftor). Br J
Pharmacol 173, 459-470.
Middleton PG, Mall MA, Drevínek P, Lands LC, McKone EF, Polineni D,et al. (2019). Elexacaftor-Tezacaftor-Ivacaftor for Cystic
Fibrosis with a Single Phe508del Allele. N Engl J Med 381, 1809-1819.
Lopes-Pacheco M. (2016). CFTR Modulators: Shedding Light on Precision
Medicine for Cystic Fibrosis. Front Pharmacol 7, 275.
Lopes-Pacheco M. (2020). CFTR Modulators: The Changing Face of Cystic
Fibrosis in the Era of Precision Medicine. Front Pharmacol 10, 1662.
Lopes-Pacheco M, Boinot C, Sabirzhanova, Rapino D, Cebotaru L. (2017).
Combination of Corectors Rescues CFTR Transmembrane-Domain Mutants by
Mitigating Their Interactions with Proteostasis. Cell Physiol Biochem
41, 2194-2210.
Lopes-Pacheco M, Sabirzhanova I, Rapino D, Morales MM, Guggino WB,
Cebotaru L. (2016): Correctors Rescue CFTR Mutations in
Nucleotide-Binding Domain 1 (NBD1) by Modulating Proteostasis.
Chembiochem 17, 493-505.
Pedemonte N, Tomati V, Sondo E, Galietta LJV. (2010). Influence of Cell
Background on Pharmacological Rescue of Mutant CFTR. Am J Physiol Cell
Physiol 294, C866-C874.
Rapino D, Sabirzhanova I, Lopes-Pacheco M, Grover R, Guggino WB,
Cebotaru L. (2015). Rescue of NBD2 Mutants N1303K and S1235R of CFTR by
Small-Molecule Correctors and Transcomplementation. PLoS One 10,
e0119796.
Riordan JR. (2008). CFTR Function and Prospects for Therapy. Annu Rev
Biochem 77, 701-726.
Rowe SM, Pyle LC, Jurkevante A, Varga K, Collawn J, Sloane PA, et
al. (2010). DeltaF508 CFTR Processing Correction and Activity in
Polarized Airway and Non-Airway Cell Monolayers. Pulm Pharmacol Ther 23,
268-278.
Roxo-Rosa M, Xu Z, Schmidt A, Neto M, Cai Z, Soares CM, et al.(2006). Revertant Mutants G550E and 4RK Rescue Cystic Fibrosis Mutants
in the First Nucleotide-Binding Domain of CFTR by Different Mechanisms.
Proc Natl Acad Sci U S A 103, 17891-17896.
Sampson HM, Robert R, Liao J, Matthes E, Carlile GW, Hanrahan JW,et al. (2011). Identification of a NBD1-binding Pharmacological
Chaperon that Corrects the Trafficking Defect of F508del-CFTR. Chem Biol
18, 231-242.
Serohijos AWR, Hegedus T, Aleksandrov AA, He L, Cui L, Dokholyan NV,et al. (2008). Phenylalanine-508 Mediates a Cytoplasmic-Membrane
Domain Contact in the CFTR 3D Structure Crucial to Assembly and Channel
Function. Proc Natl Acade Sci U S A 105, 3256-3261.
Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AR, Welsh MJ.
(1993). Mutations in CFTR associated with mild-disease-form Cl- channels
with altered pore properties. Nature 362, 160-164.
Sondo E, Tomati V, Caci E, Esposito AI, Pfeffer U, Pedemonte N, et
al. (2011). Rescue of the Mutant CFTR Chloride Channel by
Pharmacological Correctors and Low Temperature Analyzed by Gene
Expression Profiling. Am J Physiol Cell Physiol 301, C872-C885.
Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard
C, et al. (2017). Tezacaftor-Ivacaftor in Patients with Cystic
Fibrosis Homozygous for Phe508del. N Eng J Med 377, 2013-2023.
Thibodeau PH, Richardson JM 3rd, Wang W, Millen L,
Watson J, Mendonza JL, et al. (2010). The cystic fibrosis-causing
mutation delF508 affects multiple steps in cystic fibrosis transmembrane
conductance regulator biogenesis. J Biol Chem 285, 35825-25835.
Turner MJ, Luo Y, Thomas DY, Hanrahan JW. (2020). The Dual
Phosphodiesterase ¾ Inhibitor RPL554 Stimulates Rare Class III and IV
CFTR Mutants. Am J Physiol Lung Cell Mol Physiol, doi:
10.1152/ajplung.00285.2019.
Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, et
al. (2014). Some gating potentiators, including VX-770, diminish
ΔF508-CFTR functional expression. Sci Transl Med 6, 246ra97.
Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M,et al. (2015). Lumacaftor-Ivacaftor in Patients with Cystic
Fibrosis Homozygous for Phe508del CFTR. N Engl J Med 373, 220-231.
Wang X, Matteson J, An Y, Moyer B, Yoo JS, Bannykh S, et al.(2004). COPII-dependent export of cystic fibrosis transmembrane
conductance regulator from the ER uses a di-acidic exit code. J Cell
Biol 167, 65-74.