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Abstract

In this lecture we will discuss a systematic approach to build up molecules from more complex atoms.

In the last lecture (mol) we discussed the existing orbits within the linear combination of orbitals. We will
now try to systematically fill up the orbitals with electrons in order of their energy.

1 Molecular bindings

A good overview over the different mechanism for molecular binding is given in Fig. 1 In the last lecture we
have seen two different binding processes of molecular bonding:

1. Ionic binding, which was important in the H+
2 molecule.

2. Kovalent binding, which dominated the H2 molecule.

Both are important for small distances. For large distance the van der Waals interaction can create weakly
bound molecules.
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Figure 1: Different binding mechanisms in diatomic molecules. Figure taken from (Hertel and Schulz, 2015)

2 Van-der Vaals interaction

The question is then how can these systems interact ? They do not share electrons and they are neutral, so
they do not have a permanent electric dipole moment. The magnetic dipole interaction is extremely weak
anyway.

The key is induced dipole moment of the atom in in an electric field, seen in lecture 6 (Jendrzejewski et al.,
a). Each of the atoms can have a dipole moment Di = qri. As each atom is neutral, they interact through
their dipole-dipole interaction:

Ŵdd =
1

4πε0

e2

R3
(rA · rB − 3(rA · n)(rB · n)) (1)

We now have to perform the amplitude of this energy quantum mechanically. In a first step, we express Ŵdd

in terms of the operators X̂A,B , ŶA,B , ẐA,B . The orientation of the atom is sketched in the inset in Fig. 2.

We can write then:

Ŵdd =
1

4πε0

e2

R3

(
X̂AX̂B + ŶAŶB − 2ẐAẐB

)
(2)

We are only interested in their interaction at very large distances, such that we can treat the interaction
perturbatively (see lecture 7 (Jendrzejewski et al., b)). To first order, we have to evaluate:

E1 =
〈
φAn,0,0, φ

B
n,0,0

∣∣ Ŵdd

∣∣φAn,0,0, φBn,0,0〉 (3)
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Figure 2: Configuration of two dipoles.

It only contains terms of the kind
〈
φin,0,0

∣∣ X̂i

∣∣φin,0,0〉. As the dipole moment is zero, the first order correction
in the energy is zero too. The idea is then that the mean electric field created by the atom might be zero.
However, quantum mechanics allows for fluctuations of the type 〈|er|2〉. They are taken into account through
second order perturbation theory. We obtain directly:

E2 =
∑
φ,φ′

|
〈
ψAφ , ψ

B
φ′

∣∣∣ Ŵdd

∣∣ψA0 , ψB0 〉 |2
(EA0 + EB0 − EAφ − EBφ′)

(4)

And we can also pull out the R3 dependence of each W , to obtain a general expression for the van-der-Waals
interaction:

E2 = −C6

R6
(5)

To get an estimate for the typical scale of the binding we can have a look into the prefactor C6. We will do
this here for highly excited states of hydrogen as it is relevant to the other alkalis too:

• Each X̂ will be be proportional to the typical extension of its orbit, such that we have X̂ ∼ n2a0 within
the electronic shells.

• As for the energy difference, we know that the energy of high n En ≈ Ry,∞
n2 (the screening makes

all alkalis look very similiar for high energies). The energy difference is therefore in the order of

δEn ≈ Ry,∞
n3 .

Putting it all together, we obtain

C6 ≈
e4a40n

8

Ry,∞/n3
≈ e4a40
Ry,∞(4πε0)2

n11 (6)

This prediction has been directly tested as shown in Fig. 3.
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a) b)

Figure 3: Direct measurement of the van-der-Waals force in (Béguin et al., 2013)

3 Molecular orbit theory

We would like to put together more complex molecules step-by-step. Let’s take a step back to the hydrogen
molecule to formulate the problem.

3.1 The hydrogen molecule

Let us have a brief look at H2 again and consider only contributions from 1s atomic orbitals. We saw that
we can distribute the two electrons within the gerade and ungerade orbital of the hydrogen ion. So our basic
orbitals will be:

σg ∝ (ψ1s(~ra) + ψ1s(~rb)) (7)

σu ∝ (ψ1s(~ra)− ψ1s(~rb)) . (8)

Lower case letters stand for the individual electrons while upper case letters characterize the whole system.
We will now attempt to fill up the two orbitals (7) and (8) with the two electrons.

We can now distribute the two electrons in different ways onto the orbitals (7) and (8):

• Both electrons in a gerade orbital 1σ2
g .

• Both electrons in an ungerade orbital 1σ2
u.

• One electron in a gerade orbtial and one electron in an ungerade orbital: σ1
g1σ1

u.

In a second step, we need to respect the Pauli principle for the two electrons, which states that the full
wavefunction should be anti-symmetric under exchange of particles. We had a detailled discussion of the
topic on helium (Jendrzejewski et al., c). So for the first configuration 1σ2

g we have:

ψ1 ∝ σg(1) · σg(2) (S = 0,1 Σg) (9)

The spin has to be in a singlet here as the wavefunction itself is symmetric. Further, the parity of the full
wavefunction is gerade as g × g = g. So ψ1 is in a 1Σg configuration.

As one atom is in 1σ1
g and the other one is in 1σ1

u, the parity of the full wavefunction is g×u = u. Additionally,
we can choose which atom to position in which orbital and then also the symmetry of the superposition.
The symmetric superposition is:

ψ2 ∝ (σg(1) · σu(2) + σu(1) · σu(2)) (S = 0,1 Σu) (10)
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As the orbital superposition is symmetric, we once again have work in a spin singlet to achieve the overall
anti-symmetry of the two-electron wavefunction. So ψ2 is in a 1Σu configuration.

We can also choose anti-symmetric superposition of the two distinguishable orbitals:

ψ3 ∝ (σg(1) · σu(2)− σu(1) · σg(2)) (S = 1,3 Σu) (11)

As the orbital superposition is anti-symmetric, we have work in a spin triplet to achieve the overall anti-
symmetry of the two-electron wavefunction. So ψ3 is in a 3Σu configuration.

And finally we have for 1σ2
u:

ψ4 ∝ σu(1) · σu(2) (S = 0,1 Σg) (12)

The spin has to be in a singlet here as the wavefunction itself is symmetric. Further, the parity of the full
wavefunction is gerade as u× u = g. So ψ4 is in a 1Σg configuration.

At short distance the energy ordering is E(ψ1) < E(ψ2) ∼ E(ψ3) < E(ψ4).

Figure 4: Configuration interaction. The faded lines indicate how the energy of ψ1 and ψ4 would naively.
If the system is diagonalized in a more flexible basis, that allows for superpositions, the orbits repel. Taken
from (mec).

However for larger distances the gerade or ungerade character of each wave function becomes of less impor-
tance and the two configurations ψ1 and ψ4 become of similiar energy. They are further both 1Σg states.
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Therefore also all linear combinations of the two states have the valid symmetries and and more flexibel trial
solution would be of the form:

c1ψ1 + c4ψ4 (13)

The full solution then shows clear level repulsion between the two uncoupled channels. This concept is called
“configuration interaction”.

3.2 Conditions for (anti-)binding of particular orbitals.

The conditions for the creating of (anti-)binding orbitals is viusalized in Fig 5.

In a first step, there has to be sufficient wave function overlap, such that there can be constructive and
destructive interference. This implies that the orbit has to be large enough to ’see’ the other atom, but not
to diffuse. This typically implies that only the valence shell has to be considered.

Only orbits of the same symmetry group can form a bond. The main symmetry property here is the total
Lz with respect to the axis of the molecule. We have (table 4.5 of (Demtröder, 2010)):

• s, pz and dz2 have Lz = 0 (Σ).

• px, py as well as dyz, dzx have |Lz| = 1(Π)

Having a sufficient overlap is obviously not enough, the two orbits also have to have the same a similiar
energy, which is easily fulfilled in a homonuclear molecule. But if we now have two different molecules the
orbital energy of (A) might be different from the orbital energy of (B). The larger the difference, the smaller
is the shift.

Figure 5: a) Two atomic orbitals with resonant energy form a binding and anti-binding orbital. b) Molecular
orbitals of heteronuclear molecules.

4 Homo-nuclear shell structure

We can finally put all this together to build up the shell structure of homo-cuclear diatomic molecules as
shown in Fig. 6.

The name of the molecule indicates the highest occupied molecular orbit (HOMO). The next empty shell is
then called the lowest occupied molecular orbit (LUMO).
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Figure 6: The shell structure of some homonuclear diatomic molecules. Taken from (mec).
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