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Abstract

In the lecture, we will see how a time dependent coupling allows us to engineer a new Hamiltonian. Most importantly, we will

discuss the resonant coupling of two levels and the decay of a single level to a continuum.

In the last lecture (Jendrzejewski et al.), we discussed the properties of two coupled levels. However, we did
not elaborate at any stage how such a system might emerge in a true atom. Two fundamental questions
come to mind:

1. How is it that a laser allows to treat two atomic levels of very different energies as if they were
degenerate ?

2. An atom has many energy levels En and most of them are not degenerate. How can we reduce this
complicated structure to a two-level system?

The solution is to resonantly couple two of the atom’s levels by applying an external, oscillatory field, which
is very nicely discussed in chapter 12 of Ref. (Jean-Louis Basdevant, 2002) (Cohen-Tannoudji et al., 1998).
We will discuss important and fundamental properties of systems with a time-dependent Hamiltonian.

We will discuss a simple model for the atom in the oscillatory field. We can write down the Hamiltonian:

Ĥ = Ĥ0 + V̂ (t). (1)

Here, Ĥ0 belongs to the atom and V (t) describes the time-dependent field and its interaction with the atom.
We assume that |n〉 is an eigenstate of Ĥ0 and write:

Ĥ0 |n〉 = En |n〉 . (2)

If the system is initially prepared in the state |i〉, so that

|ψ(t = 0)〉 = |i〉 , (3)

what is the probability

Pm(t) = |〈m|ψ(t)〉|2 (4)

to find the system in the state |m〉 at the time t?
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1 Evolution Equation

The system |ψ(t)〉 can be expressed as follows:

|ψ(t)〉 =
∑
n

γn(t)e−iEnt/~ |n〉 , (5)

where the exponential is the time evolution for Ĥ1 = 0. We plug this equation in the Schrödinger equation
and get:

i~
∑
n

(
γ̇n(t)− iEn

~
γn(t)

)
e−iEnt/~ |n〉 =

∑
n

γn(t)e−iEnt/~
(
Ĥ0 + V̂

)
|n〉 (6)

⇐⇒ i~
∑
n

γ̇n(t)e−iEnt/~ |n〉 =
∑
n

γn(t)e−iEnt/~V̂ |n〉 (7)

If we multiply (6) with 〈k| we obtain a set of coupled differential equations

i~γ̇ke−iEkt/~ =
∑
n

γne−Ent/~ 〈k| V̂ |n〉 , (8)

i~γ̇k =
∑
n

γne−i(En−Ek)t/~ 〈k| V̂ |n〉 (9)

with initial conditions |ψ(t = 0)〉. They determine the full time evolution.

The solution of this set of equations depends on the details of the system. However, there are a few important
points:

• For short enough times, the dynamics are driving by the coupling strength 〈k| V̂ |n〉.

• The right-hand sight will oscillate on time scales of En − Ek and typically average to zero for long
times.

• If the coupling element is an oscillating field ∝ eiωLt, it might put certain times on resonance and allow
us to avoid the averaging effect. It is exactly this effect, which allows us to isolate specific transitions
to a very high degree 1

We will now see how the two-state system emerges from these approximations and then set-up the pertur-
bative treatment step-by-step.

2 Rotating wave approximation

We will now assume that the coupling term in indeed an oscillating field with frequency ωL, so it reads:

V̂ = V̂0 cos(ωLt) =
V̂0

2

(
eiωlt + e−iωlt

)
(10)

We will further assume the we would like use it to isolate the transition i → f , which is of frequency
~ω0 = Ef −Ei. The relevant quantity is then the detuning δ = ω0−ωL. If it is much smaller than any other
energy difference En − Ei, we directly reduce the system to the following closed system:

iγ̇i = γfe−iδtΩ (11)

iγ̇f = γie
iδtΩ∗ (12)

1This is the idea behind atomic and optical clocks, which work nowadays at 10−18.
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Here we defined Ω = 〈i| V̂0

2~ |f〉. And to make it really a time-of the same form as the two-level system from
the last lecture, we perform the transformation γf = γ̃fe

iδt, which reduces the system too:

iγ̇i = Ωγ̃f (13)

i ˙̃γf = δγ̃f + Ω∗γi (14)

This has exactly the form of the two-level system that we studied previously.

2.1 Adiabatic elimination

We can now proceed to the quite important case of far detuning, where δ � Ω. In this case, the final state
|f〉 gets barely populated and the time evolution can be approximated to to be zero (luk).

˙̃γf = 0 (15)

We can use this equation to eliminate γ from the time evolution of the ground state. This approximation is
known as adiabatic elimination:

γ̃f =
Ω∗

δ
γi (16)

⇒ i~γ̇i =
|Ω|2

δ
γ̃i (17)

The last equation described the evolution of the initial state with an energy Ei = |Ω|2
δ . If the Rabi coupling is

created through an oscillating electric field, i.e. a laser, this is know as the light shift or the optical dipole
potential. It is this concept that underlies the optical tweezer for which Arthur Ashkin got the nobel prize
in the 2018 (201).

2.2 Example: Atomic clocks in optical tweezers

A neat example that ties the previous concepts together is the recent paper (rea). The experimental setup
is visualized in Fig. 1.

Figure 1: Experimental setup of an atomic array optical clock as taken from (rea).

While nice examples these clocks are still far away from the best clocks out there, which are based on optical
lattice clocks and ions (Ludlow et al., 2015).
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3 Perturbative Solution

The more formal student might wonder at which points all these rather hefty approximation are actually
valid, which is obviously a very substantial question. So, we will now try to isolate the most important
contributions to the complicated system through perturbation theory. For that we will assume that we can
write:

V̂ (t) = λĤ1(t) (18)

, where λ is a small parameter. In other words we assume that the initial system Ĥ0 is only weakly perturbed.
Having identified the small parameter λ, we make the perturbative ansatz

γn(t) = γ(0)
n + λγ(1)

n + λ2γ(2)
n + · · · (19)

and plug this ansatz in the evolution equations and sort them by terms of equal power in λ.

The 0th order reads

i~γ̇(0)
k = 0. (20)

The 0th order does not have a time evolution since we prepared it in an eigenstate of Ĥ0. Any evolution
arises due the coupling, which is at least of order λ.

So, for the 1st order we get

i~γ̇(1)
k =

∑
n

γ(0)
n e−i(En−Ek)t/~ 〈k| Ĥ1 |n〉 . (21)

3.1 First Order Solution (Born Approximation)

For the initial conditions ψ(t = 0) = |i〉 we get

γ
(0)
k (t) = δik. (22)

We plug this in the 1st order approximation (21) and obtain the rate for the system to go to the final state
|f〉:

i~γ̇(1) = ei(Ef−Ei)t/~ 〈f | Ĥ1 |i〉 (23)

Integration with γ
(1)
f (t = 0) = 0 yields

γ
(1)
f =

1

i~

t∫
0

ei(Ef−Ei)t
′/~ 〈f | Ĥ1(t′) |i〉dt′, (24)

so that we obtain the probability for ending up in the final state:

Pi→f (t) = λ2
∣∣∣γ(1)
f (t)

∣∣∣2 . (25)

Note that Pi→f (t)� 1 is the condition for this approximation to be valid!

Example 1: Constant Perturbation.

We apply a constant perturbation in the time interval [0, T ], as shown in 2. If we use (24) and set ~ω0 =
Ef − Ei, we get

γ
(1)
f (t ≥ T ) =

1

i~
〈f | Ĥ1 |i〉

eiω0T − 1

iω0
, (26)
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Figure 2: Sketch of a constant perturbation

and therefore

Pi→f =
1

~2

∣∣∣〈f | V̂ |i〉∣∣∣2 sin2
(
ω0

T
2

)(
ω0

2

)2︸ ︷︷ ︸
y(ω0,T )

. (27)

A sketch of y(ω0, T ) is shown in 3.

Figure 3: A sketch of y

We can push this calculation to the extreme case of T →∞. This results in a delta function, which is peaked
round ω0 = 0 and we can write:

Pi→f = T
2π

~2

∣∣∣〈f | V̂ |i〉∣∣∣2 δ(ω0) (28)

This is the celebrated Fermi’s golden rule.

Example 2: Sinusoidal Perturbation. For the perturbation

Ĥ1(t) =

{
Ĥ1e−iωt for 0 < t < T

0 otherwise
(29)

we obtain the probability

Pi→f (t ≥ T ) =
1

~2

∣∣∣〈f | V̂ |i〉∣∣∣2 y(ω0 − ω, T ). (30)
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At ω = |Ef − Ei| /~ we are on resonance.

In the fifth lecture, we will start to dive into the hydrogen atom.
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