Damien Irving

and 1 more

The Pacific-South American (PSA) pattern is an important mode of climate variability in the mid-to-high southern latitudes. It is widely recognized as the primary mechanism by which the El NiƱo-Southern Oscillation (ENSO) influences the south-east Pacific and south-west Atlantic, and in recent years has also been suggested as a mechanism by which longer-term tropical sea surface temperature trends can influence the Antarctic climate. This study presents a novel methodology for objectively identifying the PSA pattern. By rotating the global coordinate system such that the equator (a great circle) traces the approximate path of the pattern, the identification algorithm utilizes Fourier analysis as opposed to a traditional Empirical Orthogonal Function approach. The climatology arising from the application of this method to ERA-Interim reanalysis data reveals that the PSA pattern has a strong influence on temperature and precipitation variability over West Antarctica and the Antarctic Peninsula, and on sea ice variability in the adjacent Amundsen, Bellingshausen and Weddell Seas. Identified seasonal trends towards the negative phase of the PSA pattern are consistent with warming observed over the Antarctic Peninsula during autumn, but are inconsistent with observed winter warming over West Antarctica. Only a weak relationship is identified between the PSA pattern and ENSO, which suggests that the pattern might be better conceptualized as preferred regional atmospheric response to various external (and internal) forcings.

Damien Irving

and 1 more

Southern Hemisphere mid-to-upper tropospheric planetary wave activity is characterized by the superposition of two zonally-oriented, quasi-stationary waveforms: zonal wavenumber one (ZW1) and zonal wavenumber three (ZW3). Previous studies have tended to consider these waveforms in isolation and with the exception of those studies relating to sea ice, little is known about their impact on regional climate variability. We take a novel approach to quantifying the combined influence of ZW1 and ZW3, using the strength of the hemispheric meridional flow as a proxy for zonal wave activity. Our methodology adapts the wave envelope construct routinely used in the identification of synoptic-scale Rossby wave packets and improves on existing approaches by allowing for variations in both wave phase and amplitude. While ZW1 and ZW3 are both prominent features of the climatological circulation, the defining feature of highly meridional hemispheric states is an enhancement of the ZW3 component. Composites of the mean surface conditions during these highly meridional, ZW3-like anomalous states (i.e. months of strong planetary wave activity) reveal large sea ice anomalies over the Amundsen and Bellingshausen Seas during autumn and along much of the East Antarctic coastline throughout the year. Large precipitation anomalies in regions of significant topography (e.g. New Zealand, Patagonia, coastal Antarctica) and anomalously warm temperatures over much of the Antarctic continent were also associated with strong planetary wave activity. The latter has potentially important implications for the interpretation of recent warming over West Antarctica and the Antarctic Peninsula.