Measuring Complexity in an Aquatic Ecosystem


Abstract. We apply to aquatic ecosystem components, formal measures of emergence, self-organization, homeostasis, autopoiesis and complexity developed by the authors. These measures are based on information theory, created by Claude Shannon. In particular, they were applied to the physiochemical component of an aquatic ecosystem located in the Arctic Polar Circle. The results show that variables with a “homogeneous” distribution of its values in all states presented obtained higher values of emergence, while variables with a more “heterogeneous” value’s distribution had a higher self-organization. It is confirmed that variables having high complexity values reflect a balance between change (emergence) and regularity/order (self-organization). In addition, homeostasis values were coinciding with the variation of winter and summer season. Also, autopoiesis values confirmed a higher degree of independence of some components (physiochemical and biological) over others. This approach showed how the ecological dynamics can be described in terms of information.

Keywords Complex Systems, Information Theory; Complexity, Self-organization, Emergence, Homeostasis, Autopoiesis.


Traditionally, science has been reductionistic. Reductionism—the most popular approach in science—is not appropriate for studying biological and ecological systems, as it attempts to simplify and separate in order to predict their future behavior and states. Due to prediction difficulty, biological and ecological systems have been considered as complex. This “complexity” is due to the relevant interactions between components. It is important to highlight that, etymologically, the term complexity comes from the Latin plexus, which means interwoven. In other words, something complex is difficult to separate.

Being complex, biological and ecological systems have properties like emergence, self-organization, and life. It means, biological and eco