CAPACITY > DEMAND
We know that earthquakes happen and are uncontrollable. So, in that sense, we have to accept the demand and make sure that the capacity exceeds it. The earthquake causes inertia forces proportional to the product of the building mass and the earthquake ground accelerations. As the ground accelerations increases, the strength of the building, the capacity, must be increased to avoid structural damage.
It is not practical to continue to increase the strength of the building indefinitely. In high seismic zones the accelerations causing forces in the building may exceed one or even two times the acceleration due to gravity, g. It is easy to visualize the strength needed for this level of load – strength to resist 1g means than the building could resist gravity applied sideways, which means that the building could be tipped on its side and held horizontal without damage. Base isolation takes the opposite approach, it attempts to reduce the demand rather than increase the capacity. We cannot control the earthquake itself but we can modify the demand it makes on the structure by preventing the motions being transmitted from the foundation into the structure above.
Over the years several types of base isolation system have been developed by researchers. Not all of those are practically feasible. Base isolation systems can be classified according to the following: