REFERENCES
(1) Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, B.; Prakash, H.
Recent Advances in Biosensor Technology for Potential Applications–An
Overview. Front. Bioeng. Biotechnol. 2016, 4.
(2) Sokolov, A. N.; Roberts, M. E.; Bao, Z. Fabrication of low-cost
electronic biosensors. Mater. today. 2009, 12, 12-20.
(3) Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Immobilization
strategies to develop enzymatic biosensors. Biotechnol. Adv.
2012, 30, 489-511.
(4) Dias, A. D.; Kingsley, D. M.; Corr, D. T. Recent advances in
bioprinting and applications for biosensing. Biosensors.
2014 , 4, 111-136.
(5) Li, J.; Rossignol, F.; Macdonald, J. Inkjet printing for biosensor
fabrication: combining chemistry and technology for advanced
manufacturing. Lab Chip. 2015, 15, 2538-2558.
(6) Määttänen, A.; Vanamo, U.; Ihalainen, P.; Pulkkinen, P.; Tenhu, H.;
Bobacka, J.; Peltonen, J. A low-cost paper-based inkjet-printed platform
for electrochemical analyses. Sens. Actuators, B. 2013,
177, 153-162.
(7) Gonzalez-Macia, L.; Morrin, A.; Smyth, M. R.; Killard, A. J.
Advanced printing and deposition methodologies for the fabrication of
biosensors and biodevices. Analyst. 2010, 135(5),
845-867.
(8) Boland, T.; Xu, T.; Damon, B.; Cui, X. Application of inkjet
printing to tissue engineering. Biotechnol. J. 2006,
1(9), 910-917.
(9) Delaney, J. T.; Smith, P. J.; & Schubert, U. S. Inkjet printing of
proteins. Soft Matter. 2009. 5(24), 4866-4877.
(10) Komuro, N.; Takaki, S.; Suzuki, K.; Citterio, D. Inkjet printed
(bio) chemical sensing devices. Anal. Bioanal. Chem.
2013, 405(17), 5785-5805.
(11) Khan, M. S.; Fon, D.; Li, X.; Tian, J.; Forsythe, J.; Garnier, G.;
Shen, W. Biosurface engineering through ink jet printing. Colloids
Surf., B. 2010, 75(2), 441-447.
(12) Zheng, Q.; Lu, J.; Chen, H.; Huang, L.; Cai, J.; Xu, Z. Application
of inkjet printing technique for biological material delivery and
antimicrobial assays. Anal. Biochem. 2011, 410(2),
171-176.
(13) Di Risio, S.; Yan, N. Bioactive paper through inkjet printing.
J. Adhes. Sci. Technol . 2010, 24(3), 661-684.
(14) Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.;
Galleri, G.; Manetti, R. Enzyme biosensors for biomedical applications:
Strategies for safeguarding analytical performances in biological
fluids. Sensors (Basel, Switzerland). 2016, 16(6).
(15) Yamazaki, I.; Piette, L. H. The mechanism of aerobic oxidase
reaction catalyzed by peroxidase. Biochim. Biophys. acta.
1963 , 77, 47-64.
(16) Gochman, N.; Schmitz, J. M. Application of a new peroxide indicator
reaction to the specific, automated determination of glucose with
glucose oxidase. Clin. Chem. 1972, 18(9), 943-950.
(17) Yue, Y.; Huo, F.; Yin, C.; Escobedo, J. O.; Strongin, R. M. Recent
progress in chromogenic and fluorogenic chemosensors for hypochlorous
acid. Analyst. 2016, 141(6), 1859-1873.
(18) Iannacone, R. L.; Revukas, A. J. U.S. Patent No. 3,645,696.
Washington, DC: U.S. Patent and Trademark Office. 1972.
(19) Zhang, D.; Zhang, W.; Ye, J.; Zhan, S.; Xia, B.; Lv, J.; Wang, L. A
label-free colorimetric biosensor for 17β-estradiol detection using
nanoparticles assembled by aptamer and cationic polymer. Aust. J.
Chem. 2016, 69(1), 12-19.
(20) Najian, A. N.; Syafirah, E. E. N.; Ismail, N.; Mohamed, M.; Yean,
C. Y. Development of multiplex loop mediated isothermal amplification
(m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor
for detection of pathogenic Leptospira. Anal. Chim. Acta.
2016 , 903, 142-148.
(21) Zhang, D.; Yang, J.; Ye, J.; Xu, L.; Xu, H.; Zhan, S.; Wang, L.
Colorimetric detection of bisphenol a based on unmodified aptamer and
cationic polymer aggregated gold nanoparticles. Anal. Biochem.
2016 , 499, 51-56.
(22) Bala, R.; Kumar, M.; Bansal, K.; Sharma, R. K.; Wangoo, N.
Ultrasensitive aptamer biosensor for malathion detection based on
cationic polymer and gold nanoparticles. Biosens. Bioelectron.
2016 , 85, 445-449.
(23) Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S. Paper
bioassay based on ceria nanoparticles as colorimetric probes.
Anal. Chem. 2011 , 83(11), 4273-4280.
(24) Eisenberg, G. Colorimetric determination of hydrogen peroxide.
Ind. Eng. Chem., Anal. Ed. 1943 , 15(5), 327-328.
(25) Tengvall, P.; Elwing, H.; Sjöqvist, L.; Lundström, I.; Bjursten, L.
M. Interaction between hydrogen peroxide and titanium: a possible role
in the biocompatibility of titanium. Biomaterials. 1989,
10(2), 118-120.
(26) Di Risio, S.; Yan, N. Piezoelectric Ink‐Jet Printing of Horseradish
Peroxidase: Effect of Ink Viscosity Modifiers on Activity.
Macromol. Rapid Commun. 2007 , 28(18‐19), 1934-1940.
(27) Matavž, A.; Frunză, R. C.; Drnovšek, A.; Bobnar, V.; Malič, B.
Inkjet printing of uniform dielectric oxide structures from sol–gel
inks by adjusting the solvent composition. J. Mater. Chem. C.
2016 , 4, 5634-5641.
(28) Perelaer, J.; Smith, P. J.; van den Bosch, E.; van Grootel, S. S.;
Ketelaars, P. H.; Schubert, U. S. The Spreading of Inkjet‐Printed
Droplets with Varying Polymer Molar Mass on a Dry Solid Substrate.
Macromol. Chem. Phys. 2009, 210(6), 495-502.
(29) Klechikov, V. Z.; Pliner, L. I. Detection and
cytospectrophotometric evaluation of enzyme activity in thyroid
sections. Bull. Exp. Biol. Med. 1974, 78(2), 951-954.