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1 Introduction

Asset classes have long been the building blocks of investment portfolios, but
when apparently uncorrelated investments moved in sync during the finan-
cial crisis, it raised fundamental questions about whether diversified portfolios
actually were diversified.

Factor-based investing is one attempt to answer that question. By focusing
on the underlying factors that define risk, return, and correlation this approach
seeks to explain why some asset classes move together and to offer more ef-
ficient portfolio construction. Asset managers are starting to incorporate the
idea into their portfolios, and a number of firms are offering factor-based mu-
tual funds and ETFs.

Ever since 2009, when Ang, Goetzmann and Schaefer[1] produced their
study for the Norwegian Government Pension Fund, many in the market have
accepted the need to invest intentionally and efficiently in factor premia. A
host of institutional mandates have evolved focusing on factors and, impor-
tantly, a series of financial products has come to market that has been built
from these indices. Looking at the range of smart beta products in the market,
many of which fall under the category of factor investing.

A factor can be thought of as any characteristic relating a group of secu-
rities that is important in explaining their return and risk. A large body of
academic research highlights that long term equity portfolio performance can
be explained by factors. This research has been prevalent for over 40 years;
Barra for instance has undertaken the research of factors since the 1970s. Cer-
tain factors have historically earned a long-term risk premium and represent
exposure to systematic sources of risk. Factor investing is the investment



process that aims to harvest these risk premia through exposure to factors.
We currently identify six equity risk premia factors: Value, Low Size, Low
Beta/Volatility, Quality and Momentum. They are grounded in academic re-
search and have solid explanations as to why they historically have provided
a premium.

In this report, we will first study the low beta/volatility factor in detail,
explain the economic rationale behind its excess return and describe how to
create a index to catch its return. Then we will discuss how this factor could
be integrated into a multi-factor basket.

2 Low-Beta(BAB)/Vol factor

The superior performance of low-volatility stocks - the low-volatility anomaly
- has been documented to exist in equity markets around the globe. And since
its discovery, a good amount of academic research has attempted to determine
both its origins and whether or not it will continue to persist.

Among that research is a December 2013 paper[2], the authors of the study
concluded that the reduction in a portfolios volatility is driven by a substantial
decrease in its market beta, and that low-volatility strategies outperformed
their corresponding cap-weighted market indexes due to exposure to the value
factor, the betting-against-beta (BAB) factor as well as the duration factor.

In other words, investors were trading one risk (beta) for two others (value
and term). This conclusion is consistent with the findings of prior research.

Here we will primarily focus on BAB factor. First, we give a sounding
economic model explaining the rationale behind this factor. We then discuss
how to build portfolios to catch this factor. Finally, we show our backtest
results.

2.1 Limit on Leverages and its consequences

A basic premise of the capital asset pricing model (CAPM) is that all agents
invest in the portfolio with the highest expected excess return per unit of risk
(Sharpe ratio) and leverage or de-leverage this portfolio to suit their risk pref-
erences.However,many investors,such as individuals,pension funds, and mutual
funds, are constrained in the leverage that they can take and they therefore
overweight risky securities instead of using leverage.

This behavior of tilting toward high-beta assets suggests that risky high-
beta assets require lower risk-adjusted returns than low-beta assets, which



require leverage. Indeed, the security market line for U.S. stocks is too flat
relative to the CAPM [3] and is better explained by the CAPM with restricted
borrowing than the standard CAPM|3, 4, 5], (see [6] for an excellent historical
perspective).

Several questions arise: How can an unconstrained arbitrageur exploit this
effect, i.e., how do you bet against beta? What is the magnitude of this
anomaly relative to the size, value, and momentum effects? How does the
return premium vary over time and in the cross section?

Frazzini and Pedersen explained these questions by considering a dynamic
model of leverage constraints.

When the leveraged agents hit their margin constraint, they must de-
leverage. Therefore, the model predicts that, during times of tightening fund-
ing liquidity constraints, the low beta factor (or more precisely the BAB fac-
tor) realizes negative returns as its expected future return rises. Furthermore,
the model predicts that the betas of securities in the cross section are com-
pressed toward 1 when funding liquidity risk is high. Finally, the model implies
that more-constrained investors overweight high-beta assets in their portfolios
while less-constrained investors overweight low-beta assets and possibly apply
leverage. Our model thus extends Black’s[3] central insight by considering
a broader set of constraints and deriving the dynamic time-series and cross-
sectional properties arising from the equilibrium interaction between agents
with different constraints.

2.2 Theory

We consider an overlapping-generations (OLG) economy in which agents i =
1,...,I are born each time period ¢ with wealth W/ and live for two periods.
Agents trade securities s = 1, ..., S, where security s pays dividends J; and has
™ shares outstanding. Each time period ¢, young agents choose a portfolio of
shares # = (z', ..., 2%), investing the rest of their wealth at the risk-free return

r! | to maximize their utility
max 27 (By(Pry1 + 641) — (1+17)P) — %xTQfx (1)

where P, is the vector of prices at time ¢, {); is the variance-covariance matrix
of P, 1+6,41, and ~* is agent 4 risk aversion. Agent i is subject to the following
portfolio constraint:

m! ZmSPf < W} (2)



This constraint requires that some multiple m! of the total dollars invested
must be less than the agent i’s wealth.

We are interested in the properties of the competitive equilibrium in which
the total demand equals the supply:

Z 7t =" (3)
Consider the first order condition for agent ¢

0= E(Prs1 + 8e41) — (1+17) P, — 41’ — 4P, (4)

where 1% is the Lagrange multiplier of the portfolio constraint. Solving for z°
gives the optimal position.
The equilibrium condition now follows from summing over optimal posi-

tions !
r= ;Q_l(Et(PtH +611) — (L + 1l + ) Py) (5)

where the aggregate risk aversion v is defined by 1/y = >,1/49" and ¢, =
> %W is the weighted average Lagrange multiplier.
Finally this leads to the equilibrium equation.

Eyfriy) = vl + v+ BE (B[] — ) — 1) (6)

where 1, is the average of some Lagrange multipliers which measures the
tightness of leverage constraints.

This equilibrium equation immediately leads to the consequence that any
portfolio with beta ] will have an excess return o of CAPM sense

aj = Py(1 = f7) (7)

One could notice that it is positive when 3; < 1 and negative when 7 > 1.
Therefore, we have shown theoretically that the BAB factor defined by
1 — % is a risk premium.

2.3 Portfolio construction

In order to show in reality that the BAB factor is indeed a systematic risk
that brings excess return, one needs to construct a portfolio and back-tests it.

In their paper [7], Frazzini and Pedersen suggested a straightforward way
to construct such a portfolio by explicityly choosing two baskets with highest
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x% betas and lowest x% betas. Then the portfolio simply short the high beta
basket and long the low beta basket. So the portfolio has positive exposure to
BAB factors in both long and short leg. We then neutralize the exposure to
market by scaling the long and short legs to reach total beta neutrality.

Mathematically, noting the high and low beta basket as S and S, the
initial weights w® ( in section 3 we will discuss different ways to determine
initial weights)

Then, we could construct a beta-neutral portfolio by scaling the S¥ and S*
so that their beta becomes -1 and 1 respectively. The final portfolio becomes

§=s"usk, {wi}ies:{%} u{—“’H} (®)
B icSL /B ieSH
So we could easily see that 3° = 0 and using (6) to see that
s — Bf
Bolrin] = gz +17) >0 (9)
Bi B

If we normalize the portfolio to be non-leveraged, then we go back to (7).
Therefore, this is a simple method to construct beta-neutral portfolios that
captures the excess returns from the BAB factor.

We also consider another method of constructing BAB factor driven port-
folios. The motivation is from the observation that the above F-P method
results in some large volatilities. Therefore, after allocating the initial weights,
instead of neutralizing the portfolio to market, we scale the long and short leg
to minimize the total risk.

m/\in(wL — M TQ(w* — ™) (10)
The result is .
H @) L
A= “’T—LH“’ (11)
U}H QHHU)H

where Qp, Qum are the blocks of 2 corresponding to the basket S¥ or S”.

3 Implementation of the F-P method

In the implementation, the process is rather simple. The two baskets S and
ST are chosen simply to be the highest and lowest 2% beta/vol stocks. The
original weight w',i € S¥, k = L, H is determined by one of the two methods,
the factor weighted and the rank weighted.
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The factor weighted method is as following. One first identifies the two
baskets S and SL. Then one winsorizes the score vol) by shifting its mean
to be 0 and capping all the factor value within 2.5 times standard deviation.
Now one simply takes

w' = —Bi(or —6Y, ieSt k=LH (12)

where B or ¢ is the winsorized factor.

Notice that the weights in the high factor basket S¥ have already been set
negative. Thus the final step is to rescale the two baskets according to (8) but
keeping the sign in S,

The rank weighted method is to first rank the factors of all the stocks and
take the weights to be

w'=7z— 2" (13)

where 2 is the rank of stock 7 and 7 is the average of all the ranks, i.e.
(size(z) + 1)/2. Then the weighted is rescaled by the same methods as the
factor weighted method.

Following one of the two methods above, one could construct the target
portfolio. However, in reality, to make the strategy tradable, the portfolio
should satisfy several constraints. Normal constraints include turnover, max
and min holding positions, max trading liquidity, etc. Here, for our purpose of
understanding beta neutrality, we focus on the constraint concerning market
neutrality.

We compare two kinds of neutrality, the universal beta neutrality and the
sectoral beta neutrality. The final portfolio being .S, the neutralities are defined
as following

C1: universal beta neutrality Zw’ﬂi =0, 2€5,

. (14)
C2: sectoral beta neutrality Zwlﬂ‘ =0, i€ Sector kNS, Vk,

)

Note that C2=C1

3.1 Backtest results

In Figure 1 and Figure 2, we list the performance of strategies under sec-
tor/universe BN constraints.
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Figure 1: The net of TC performances of low-beta strategies under different

conditions

3.2 Conclusions

e requiring region-sector BN has similar results as posing region-sector
winsorization. Thus, the results of requiring both is very close to requir-
ing only one of the two.

e using rank or factor value as scores doesn’t affect much the performance,
it is whether the rank or factor values are winsorized /neutralized region-
sectorally or not that greatly affects the performance. One could see
clearly in both figures there are two branches, the upper branch are
the ones with neither region-sector winsorization nor region-sector Beta
neutral, The low branch are the ones with at least one condition.

e Min-risk has similar results as global Beta neutrality on performance.

4 Multi-factor strategies

Now we move from a single factor to the multi-factor world. There are many
reasons to consider multi-factor model. The first reason, as described before,
is that people tend to look more and more on the factor rather than asset
classes or single stocks. They are trying to find anything that could bring
excess returns.

More than 350 individual factors have been identified as potential sources
of out performance. Below is a review of several single factor products that are
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suitable for the construction of multi-factor products. Figure 1 shows factors
that have a long history in the academic literature and have been used in the
construction of factor indices.

While some have suggested that factor premia are the result of data mining,
that if you look hard enough you can get the data to tell you what you’d like
to observe, the factors in Table 4 are supported by a wealth of academic
literature. In addition, work undertaken by both practitioners and academics
has shown that the economic rationale, or the history, behind the factors make
good financial sense.

Detractors of the factor investing argument have suggested that these fac-
tors might be academically valid, but argue that when they become investment
products the crowding or herding effects are likely to lead to an erosion of re-
turns. However, the history of minimum variance investing (the low-volatility
factor) suggests that these factors are remarkably robust.

Therefore, if an investor wants to get exposures to more than one factors,
it will become really important to know how factors are related and how to
combine them in a portfolio.

Another reason that we need a multi-factor model is the risk management.
Possessing an accurate estimate of the asset returns covariance matrix is the
sine qua non of portfolio risk management. How does one calculate such a
matrix in practice? The obvious solution is to build a history of asset returns
and then calculate the variances and covariances directly. Computing sample
statistics directly from historical data, however, is fraught with danger.

Historical returns are typically noisy; even in the absence of actual data



Explanation Examples
Value Undervalued relative to corporate fundamentals | Price-to-book, price-to-earnings
Growth Above-average earnings growth Price-to-earnings
Momentum Rate of acceleration of price 3-month, 6-month, 12-month
Volatility The dispersion of returns Volatility VIX
Size High or low market capitalization Market cap
Liquidity Low trading volume ADV
Quality Sustainable profitability Profitability, margins

Table 1: The most common factors

errors, false signals and spurious relationships abound. Two assets may appear
closely related when their seemingly-correlated behavior is in fact an artifact
of data-mining.

Weak signals and noise aside, when a new asset enters the existing universe,
there is no reliable way of calculating its relationships with the other assets,
because it does not yet possess a returns history. One could construct various
proxies, but such an approach is dubious at best.

Finally, data points totalling no less than the number of assets are required
to accurately estimate all the variances and covariances directly. For any
realistic number of assets, it is extremely unlikely that sufficient observations
exist. Even with a universe of 100 assets, over 5000 relationships need to be
estimated. For stock markets like the U.S. (over 12,000 assets), this becomes
completely infeasible.

Any one of the above problems is sufficient reason against constructing an
asset returns covariance matrix directly. A better approach is to first impose
some structure on the asset returns by identifying common factors within
the market — that is, factors which drive asset returns. Returns can then
be modeled as a function of a relatively small number of parameters, and
estimating thousands, or tens, even hundreds of thousands, of asset variances
and covariances can thus be simplified to calculating a much smaller handful
of numbers.

Generally speaking, factors used in multi-factor models can fall into several
broad categories:

e Fundamental factors



— Industry and country factors reflect a company’s line of busi-
ness and country of domicile.

— Style factors encapsulate the financial characteristics of an asset
— a company’s size, debt levels, liquidity, etc. They are usually
calculated from a mixture of market and fundamental (i.e. balance
sheet) data.

— Currency factors represent the interplay between local currencies
of the various assets within the model.

— Macroeconomic factors capture an asset’s sensitivity to variables
such as GNP growth, bond yields, inflation, etc.

e Statistical factors are mathematical constructs responsible for the ob-
served correlations in asset returns. They are not directly connected to
any observable real-world phenomena, and may change from one period
to the next.

Here we will focus on the style factors.

4.1 Multi-factor model

In our analysis, we take the most common five factors (including the BAB
factors in Section 2 ) : Momentum, Value, Quality, Size and BAB.

The multi-factor model says that the return of a stock 7 at time ¢ is driven
by the return of the market and the returns from these factors.

ri= Bir™ + inkff + €l (15)
2

where (3! is the beta of stock 4 to the market, xik is the exposure of stock
i to factor k at time ¢ and 7F is the return of factor k at time t.
Written in matrix format, it becomes

rm

r=|[p X][ﬁ]—i-e:)zf—l—e (16)
where X = [B X] and 7 = [T;n

So now we want to estimate the variables in the above equations from the
real data. There are two steps. The first step is to estimate 7 which is the
factor return. The second step is to estimate the covariance between 7.
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There are many possible solutions to this system of equations. If factor ex-
posures X are known, 7 can be estimated using cross-sectional regression anal-
ysis. With macroeconomic factors, however, 7 is observed, and it is X rather,
that needs to be estimated, typically via time-series regression for each asset.
In the case of statistical factors, neither X or 7 is specified, so a rotational in-
determinacy exists and both parameters are determined simultaneously, albeit
only up to a nonsingular transformation. For a more thorough discussion of
multi-factor models and the APT, the curious reader is encouraged to consult
8].

Here we only have style factors, so X is known and we want to estimate 7.

4.1.1 Least square solution

The ordinary least-squares (OLS) regression solution to the factor model of
returns seeks to minimize the sum of squared residuals:

7= arg minZei2 (17)

whose solution is straightforward
P=(XTX) Xy (18)

However, the above solution is true only when the following assumptions
for OLS hold

1. X is a N x S matrix with full column rank p(X) = S. The OLS solution
requires that X7 X be invertible, which is satisfied only if the columns
of X are linearly independent. Intuitively, this means the factors should
all be distinct from one another.

2. Residuals are zero-mean and independent of the factor exposures . In
order for the regression estimates to be unbiased, Ele] = 0 and E[XT¢] =
0 are required.

3. Residuals are homoskedastic and have no autocorrelation. These consti-
tute the Gauss-Markov conditions: Var(e') = o2 and cov(€’,¢/) = 0 for
all © # j and establishes the superiority of the least-squares solution over
all other linear estimators. Unfortunately, large assets tend to exhibit
lower volatility than smaller ones, and homoskedastic residual returns
are rarely observed. Figure 7?7 shows the typical relationship between
asset size and returns behavior.
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4. Residuals are normally-distributed: strengthening the previous assump-
tion to € ~ N (0, Q) where Q = 021, is not strictly required. Nevertheless,
it is a convenient assumption for testing the estimators, to simplify con-
structing confidence intervals, evaluating hypothesis tests, and so forth.
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Figure 3: The relation between residual and capitalization

Then how to solve the problem of heteroskedasticity? Traditionally, one
corrects for this phenomenon by scaling each asset’s residual by the inverse
of its residual variance, transforming the above into a weighted least-squares
(WLS) problem:

W2 = WRXR + W (19)

The solution becomes
P = (XTWX) T XTWr (20)

The challenge lies in estimating the residual variances. One could calculate
these directly from historical data, but such estimations are noisy and require
sufficient history for each asset. As a proxy for the inverse residual variance,
one could use the square-root of each asset’s market capitalization.

However, when adding other types of factors, especially industry and coun-
try factors, there will be the problem of collinearity. For a treatement of such
problems, please refer to Appendix ?7.
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4.1.2 The risk model

Thus far the discussion has focused entirely on modeling returns, having said
nothing whatsoever about the generation of risk forecasts. This is justified —
if returns are modeled correctly and robustly then deriving risk estimates is
relatively straightforward. For the mathematically-inclined, a more rigorous
treatment of the subtleties can be found in [9, 10]. If the model has been
sensibly constructed with no important factors missed, then the specific returns
are uncorrelated with themselves and with the factors, and the factor risk
model can then be derived thus:

Q=X2XT +A? (21)

The asset returns covariance matrix () is a combination of a common factor
returns covariance matrix ¥ and a diagonal specific variance matrix A2

The factor covariance matrix is calculated directly from the time-series of
factor returns. Regression models estimate a set of factor and specific returns
at each time period, eventually building up a returns history.

Recent events should exert more influence on the model than those long in
the past, but one cannot simply curtail the history of returns and use only the
most recent observations. A sufficiently long history is required to estimate all
the covariances reliably. Risk models address this dilemma by weighting the
returns matrix using an exponential weighting scheme:

w =275 t<T (22)

where T' is the most recent time period. A is the half-life parameter, the value
of t at which the weight is half that of the most recent observation.
The factor covariance matrix is simply calculated as

FWPT
T-1
Selecting an appropriate half-life is a major design question to which there
is no definitive answer. This half-life indirectly affects the forecast horizon of
the risk model. Too short a short half-life may allow for a very responsive
model but creates excessive turnover for asset managers; too long a half-life
and the model will fail to respond sufficiently to changing market conditions.
The half-life parameter therefore represents a balance between responsiveness
and stability. Here our principle is to make the half-life of covariance matrix
and the decaying half-life of the signal in the same order.
After having the return model and the risk model, we are now able to
construct multi-factor portfolios

Y

(23)
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4.2 Portfolio construction

A single factor strategy is a strategy that aims at getting exposures to one
single factor. The low-beta strategy discussed in Section 2 is an example.
But what should the portfolio be like if one want to get exposures to several
factors?
An easy way is to take the average of several single factor strategy, i.e.

1

where w? is the portfolio weight of the single factor portfolio at time t.

But the problem is that we are treating every factor equally. So a better
idea is to create a new blend target weight and do the optimization based on
this target weight.

Here we briefly discuss the method of Generalized Risk Parity as a simple
example.

The idea is that in our target portfolio, we want that the risk from each fac-
tor is the same. To achieve this, one needs to first define the factor mimicking
portfolio.

Starting from (16), one writes it in a cleaner way

P = (XTWX) ' XTWr = Mr (25)
Therefore, for each factor £ (including the market) one has

= My (26)

7

Then the k-th row of the matrix M is a portfolio whose return is equal to
the return of factor k, we call it the mimicking portfolio of factor k.
Since we already have the risk model, its diagonal terms are then the
volatility of the factors.
6 = Diag(%) (27)

One could then derive the risk parity portfolio to be
w=M'""16 (28)

The performance of the portfolio is as Figure 4

Here we tested three versions of GRP strategies, rebalancing daily, every
8 business days, and every 20 business days. But there is no solid reason that
the outperformance of 8 days rebalance is not a random effect.
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Figure 4: The factor attributions of multi-factor strategy

4.3 Attribution analysis

In the context of multi-factor model, the idea of attribution analysis is to
attribute the performance of a strategy to this factors. By this method, one is
then able to identify the main driven factor of the performance, whether there
is any unexpected factor attribution, etc.

The idea is simple. Starting again from the multi-factor equation (16), for
a given portfolio w, one has

r= Zwiri = Zw’f(mfk = Z (Z wkf(’k) = Z eFik (29)

where e” is the exposure of the portfolio to factor k, and e*#* is the attribution
from factor k.

For a single factor strategy, one should expect that the largest attribu-
tion comes from that single factor. For multi-factor strategy, the attribution
depends on the method of construction of multi-factor portfolios.

Below is the result of the single factor strategy and multi-factor strategy.

Conclusions: Both the low-beta and the low-vol strategies are mainly
driven by BAB factors. And the multi-factor strategy is driven by nearly
all the factors. This shows that (1) the BAB factor and low-vol factor are
very similar; (2) our method of portfolio construction is able to catch the risk
premium from the factor.
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Figure 5: The factor attributions of low-beta strategy
5 The role of constraints in the optimization

process

In this final section, we will briefly discuss the role of constraints in the opti-
mization process.

The practical issues that arise due to the interaction between three prin-
cipal players in any quantitative strategy, namely, the alpha model, the risk
model and the constraints are collectively referred to as Factor Alignment
Problems (FAP). Examples of FAP include risk underestimation of optimized
portfolios, undesirable exposures to factors with hidden and unaccounted sys-
tematic risk, consistent failure in achieving ex-ante performance targets, and
inability to harvest high quality alphas into above-average IR.

Despite several studies [11, 12, 13, 14, 15, 16|, there is considerable disparity
in understanding the sources of FAP. While the role of misaligned alpha factors
is relatively easy to understand, incorporating the impact of constraints entails
considerable analytical complexity that most consultants and researchers find
difficult to fathom. A few of them have even gone to the extent of suggesting
that aligning alpha and risk factors should suffice in handling FAP. We provide
a solid rebuttal to this line of thinking by demonstrating typical symptoms of
FAP in optimal portfolios generated by using completely aligned alpha and
risk models. Additionally, we provide theoretical guidance to clarify the role
of constraints in influencing FAP and illustrate how the Alpha Alignment Fac-
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Figure 6: The factor attributions of low-vol strategy

tor (AAF) methodology can handle misalignment resulting from constraints,
analytical complexities notwithstanding.

Let’s consider a simple example. For the sake of analytical accessibility,
we limit our discussion to constrained mean-variance optimization (MVO)
problems with a single constraint. All of these results can be easily generalized
to encompass several additional constraints.

Consider the following constrained MVO problem with a single factor ex-
posure constraint,

A
max ol h — §hTQh, st. BTh> B, (30)

We denote this problem MV O(«, f).

Let h(a, ) denote the optimal solution to MV O(«, 5). Our goal is to
understand the role of the constraint 37h > /3, in influencing the composition
of the optimal portfolio h(a, #). In order to pursue this goal, we define two
auxiliary unconstrained MVO problems, namely

max a’h — %hTQh MVO(a) (31)
max 37h — %hTQh MVO(B) (32)

Let h(«) and h(3) denote the optimal solutions to MV O(«) and MV O(),
respectively. Note that if STh(a) > By then h(a) is also an optimal solution
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Figure 7: The factor attributions of multi-factor strategy

to MV O(a, B) thereby rendering the constraint 57 h(a) > 3y irrelevant. Thus
for the purpose of our discussion we assume that h(«) violates the constraint
BTh(a) > By, and let n = By — ST h(a) denote the associated constraint viola-
tion. Furthermore, without loss of generality we can assume that 37QpS = 1.
The theorem that follows establishes an important link between A(), h() and
h(a, ).

Theorem 1. h(a, ) = h(a) + (n\)h(B).

Theorem 1 shows that the optimal solution to MV O(«, ) is obtained by
tilting the optimal solution h(«) to the unconstrained problem MV O(«) in
the direction h(f). Furthermore, the extent of tilting is jointly determined
by the risk aversion parameter A in MV O(a, ) and the violation 1 of the
constraint 37h > Sy by h(c). The higher the risk aversion parameter \, more
significant is the influence of the constraint 37h > 3, in determining h(a, 3).
Similarly, tighter constraints give rise to higher violation n and consequently
have greater influence in determining h(a, 3).

Theorem 1 also provides additional insights from an alignment perspective.
Note that the relationship expressed in Theorem 1 naturally extends to the
orthogonal components of h(«), h(S) and h(a, ). It has been well documented
in the literature [13, 15] that optimal portfolios associated with unconstrained
MVO problems load up on the orthogonal component of the expected returns.
For instance, if a; # 0(8. # 0) then h(a)(h(B)) will have disproportionately
higher exposure to a (5.).
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Theorem 1 extends these findings to constrained MVO problems with an
intriguing twist. It shows that h(a, 8) loads up not only on the orthogonal
component of a, by virtue of the term A(«), but also on the orthogonal com-
ponent of § due to the presence of the term (n\)h(f).

Furthermore, the extent of overloading depends directly on the magnitudes
of A and n. Specifically, highly risk averse strategies that use a higher value
of A\, or equivalently lower value of risk targets , are more likely to suffer from
misalignment arising from constraints. Of course, if the value of A\(0) is very
large (small) then the role of constraints diminishes and the portfolio holdings
start to resemble minimum variance portfolios, or the benchmark holdings in
the case of active strategies.

To summarize, the downward bias in risk prediction that arises exclusively
due to the presence of constraints should have a humped shape attaining high-
est values at moderate risk target levels. By similar arguments, it follows that
strategies with tighter constraints leading to higher values of the violation pa-
rameter (1) would betray similar characteristics. Until now we have examined
results that corroborate the role of constraints in the construction of optimal
portfolios. Next we present an interesting result that reverses the roles of
alphas and constraints altogether. Consider the following MVO problem.

1
max 37 h — %hTQh, st. a'h>ay, MVO(B,a) (33)

Theorem 2 h(«a, ) = h(S, a).

Theorem 2 shows that MV O(a, f) and MV O(S, a) have identical optimal
solutions. In other words, there is nothing sacrosanct about alphas in a con-
strained MVO problem, and the same optimal portfolio can be obtained by
switching the role of alphas and constraints. As an immediate corollary, it
follows that the misalignment between constraints and risk factors can have
as much influence, if not more, in determining the composition of optimal
holdings as that between alpha and risk factors. Furthermore, the relative sig-
nificance of misalignment due to alpha and constraints can be gauged by com-
paring the risk-aversion parameters in MV O(a, f) and MV O(f, «). Specifi-
cally, the higher the violation 7, the smaller is the risk aversion parameter in
MVO(B,a) and more prominent is the role of constraints. Notably, the ratio
of the risk aversion parameters, namely n\, is precisely the amount by which
h(«) is tilted towards h(fS) to determine the optimal solution to MV O(«, )
(see Theorem 1).

Next we briefly discuss a solution approach, namely the Alpha Alignment
Factor (AAF) methodology, to address misalignment arising from constraints.
We limit our discussion to key insights and refer the readers to [15] for further
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details. Since the focus of this paper is misalignment arising exclusively from
constraints, we assume that a; = 0 in the discussion that follows. Recall that
if «; = 0, then the only source of misalignment is the orthogonal component
of 8. In fact, in this case it can be easily shown that the orthogonal component
of implied alpha () and 3, point in the same direction i.e. mVL = mb’r
The AAF approach recognizes the possibility of systematic risk in the orthog-
onal component of implied alpha, and penalizes the exposure of the portfolio
to v1. In our special setting, the AAF optimization problem can be stated as,

max o’ h — g(hTQh +v(hTy)?) st. BTh> By, (MVO(AAF)) (34)

where y = ”B_lLH B1, and v is the systematic risk associated with y. Note that
MVO(AAF) can be obtained from MV O(«, ) by replacing the covariance
matrix () by an augmented covariance matrix Q, = QQ + vyy’ that has
an additional variance term vyy? to capture systematic risks in portfolios by
virtue of exposure to 3. Net we discuss some important characteristics of
the optimal solution, say h,, to MVO(AAF), and compare them with those
of h(a, B).

Under certain assumptions as laid out in [15], it can be shown that the

predicted risk of hy, namely ,/hTQ,h,, is an unbiased estimate of the realized

risk of h,. In other words, while solving MV O(AAF') the optimizer uses an
unbiased risk estimate while choosing the optimal portfolio. The same cannot
be said about MV O(«). Since the systematic risk of h(a, ) that arises by
virtue of exposure to 8, is not captured by (), and hence goes unaccounted
during the optimization phase, it follows that the optimizers ability to select
portfolios that have optimal ex-post risk adjusted performance is severely cur-
tailed while solving MV O(«, ). This statement can be made precise by using
the concept of utility function as described below (see [15] for further details).

Let U(h) = a”h30?(h) denote the utility function associated with an ar-
bitrary portfolio h; o(h) denotes the realized risk of h. It can be shown that
U(h,) > U(h(a, 8)), and the inequality is strict provided Bx # 0 and v > 0.
Thus using the AAF approach not only gives unbiased risk estimates but also
improves the ex-post utility function. Phrased using the concept of efficient
frontiers, AAF approach pushes the ex-post frontier upwards thereby allowing
the PM to access portfolios that lie above the traditional efficient frontier.
The section that follows illustrates this pushing frontier phenomenon using
the USER model. To summarize, misalignment arising from constraints is as
important and harmful as that arising from misaligned alpha factors. It not
only creates statistically significant biases in risk prediction but also obfuscates
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the ability of the optimizer to solve the quintessential asset allocation problem.
AAF approach attacks this problem at its very core; it recognizes the existence
of latent systematic risk factors, creates disincentives for the optimizer to load
up on such factors, and delivers portfolios that not only have readily available
unbiased risk estimates but also superior ex-post risk-adjusted performance.

We conclude this section on an important practical note. Admittedly, the
violation parameter n plays a very important role in the narrative presented
above. We would like to remind the readers that the violation of constraints
by optimal portfolios derived using the unconstrained MVO model is a very
common phenomenon; such portfolios are often un-investable due to concen-
trated long/short positions in certain stocks, excessive turnover, violation of
IPS mandates, unacceptable exposures to certain industries/sectors, or simply
because they defy common wisdom. Thus constraints are an inextricable com-
ponent of any quantitative strategy, and as illustrated by the results presented
in this paper their contribution to FAP cannot be relegated to secondary con-
siderations.

6 Conclusion

In this report, we first review the economic rationale of the BAB factor, de-
scribe the practical way of constructing single factor basket. We then introduce
the multifactor model and discussed the estimation methods. We also include
here a brief introduction of constructing multi-factor portfolios. Finally, we
present a theoretical model on estimating the effects of constraints on the
portfolio

Appendices

A Constrained Regression
Our problem is as follows: calculate
min ||Az — b||2,s.t. Bx=d (35)

where A € R"* B € RP**. We assume the following
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en>k>p
e B has rank p
e A has rank g where p+q > k

We simultaneously decompose A and B via the generalized singular value

decomposition, thus
A=UxX! (36)

B=VAX"! (37)

and partition the above as follows

0]y
A=U, Upp Uni] | 0 Zpey [XBI} (38)
0 0 P
-1
B=V[A, 0] [;((21] (39)
k—p

We assume without loss of generality that the singular values of A have been
sorted so that all zero singular values lie within the block ¥,. If we make the
simple transformation of variables

xemy= |2 (40)

then we may rephrase the problem as
min [|UpX,y, + Uk—pEk—pYi—p — 0|2 (41)

such that
VA, =d (42)

Note that the constraint is now uniquely solvable, viz.
yp = AV (43)

This may be substituted into the minimization equation, resulting in the un-
constrained problem X
min [|Ug—pXe—py—p — bl (44)

where

b=0b-US,A'Vd (45)
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This is easily shown to have the solution

Ykp = S Ul b (46)
And so, we arrive at the final solution

_ AJ'VTd
VTS UL (b= U0 VT d)
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