References
Balling, P. and Schou, J. (2013), ‘Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films’, Rep Prog Phys, 76, 036502.
Bäuerle, D. (2011), Laser processing and chemistry, 4th ed., Springer, Heidelberg.
Berger, G., Gildenhaar, R. and Ploska, U. (1995), ‘Rapid resorbable glassy crystalline materials on the basis of calcium alkali orthophosphates’, Biomaterials, 16, 1241–1248.
Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. and Tünnermann, A. (1996), ‘Femtosecond, picosecond and nanosecond laser ablation of solids’, Appl Phys A, 63, 109-115.
Gattass, R. R. and Mazur, E. (2008), ‘Femtosecond laser micromachining in transparent materials’, Nature Photonics, 2, 219-225.
Gildenhaar, R., Berger, G., Lehmann, E., Stiller, M., Koch, C., Ducheyne, P., Rack, A., Seligmann, H., Jonscher, S. and Knabe, C. (2007), ‘A comparative study of the biodegradability of calciumalkali-orthophosphate ceramics in vitro and in vivo’, Key Eng Mater, 330–332, 63–66.
Kenar, H., Akman, E., Kacar, E., Demir, A., Park, H., Abdul-Khaliq, H., Aktas, C. and Karaoz, E. (2013), ‘Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation’, Colloids and Surfaces B: Biointerfaces, 108, 305-312.
Krahl, T., Gildenhaar, R., Kenning, H., Berger, G. and Jäger, C. (2009), ‘Predicting phase compositions of samples in the ternary system Ca2KNa(PO4)2-Ca3(PO4)2-Ca2P2O7 using 31P MAS NMR’, Bioceramics, 22, 11–14.
Krüger, J. and Kautek, W. (1999), ‘The femtosecond pulse laser: a new tool for micromachining’, Laser Physics, 9, 30-40.
Küper, S. and Stuke, M. (1987), ‘Femtosecond uv excimer laser ablation’, Appl Phys B , 44, 199-204.
Lenzner, M., Krüger, J., Kautek, W. and Krausz, F. (1999), ‘Precision laser ablation of dielectrics in the 10-fs regime’, Appl Phys A, 68, 369-371.
Liu, J. M. (1982), ‘Simple technique for measurements of pulsed Gaussian-beam spot sizes’, Opt Lett, 7, 196-198.
Narayan, R. (2009), Biomedical Materials, Springer, Heidelberg.
Sibbett, W., Lagatsky, A. A. and Brown, C. T. A. (2012), ‘The development and application of femtosecond laser systems’, Opt Express, 20, 6989-7001.
Spence, D. E., Kean, P. N. and Sibbett, W. (1991), ‘60-fsec pulse generation from a self-mode-locked Ti:sapphire laser’, Opt Lett, 16, 42–44.
Srinivasan, R., Sutcliffe, E. and Braren, B. (1987), ‘Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses’, Appl Phys Lett, 51, 1285-1287.
Strickland, D. and Mourou, G. (1985), ‘Compression of amplified chirped optical pulses’, Opt Commun, 56, 219-221.
Suchanek, W. and Yoshimura, M. (1998), ‘Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants‘, J Mater Res, 13, 94–117.
Sugioka, K. and Cheng, Y. (2014), ‘Ultrafast lasers - reliable tools for advanced materials processing’, Light: Science & Applications, 3, e149; doi:10.1038/lsa.2014.30.
Symietz, C., Lehmann, E., Gildenhaar, R., Krüger, J. and Berger, G. (2010), ‘Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material‘, Acta Biomater, 6, 3318-3324.
Symietz, C., Lehmann, E., Gildenhaar, R., Koter, R., Berger, G. and Krüger, J. (2011), ‘Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses‘, Appl Surf Sci, 257, 5208-5212.
Symietz, C., Lehmann, E., Gildenhaar, R., Hackbarth, A., Berger, G. and Krüger, J. (2012), ‘Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation‘, J Appl Phys, 112, 023103.
Vorobyev, A. Y. and Guo, C. (2013), ‘Direct femtosecond laser surface nano/microstructuring and its applications’, Laser Photonics Rev, 7, 385–407.