References
Balling, P. and Schou, J. (2013), ‘Femtosecond-laser ablation dynamics
of dielectrics: basics and applications for thin films’, Rep Prog
Phys, 76, 036502.
Bäuerle, D. (2011), Laser processing and chemistry,
4th ed., Springer, Heidelberg.
Berger, G., Gildenhaar, R. and Ploska, U. (1995), ‘Rapid resorbable
glassy crystalline materials on the basis of calcium alkali
orthophosphates’, Biomaterials, 16, 1241–1248.
Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. and
Tünnermann, A. (1996), ‘Femtosecond, picosecond and nanosecond laser
ablation of solids’, Appl Phys A, 63, 109-115.
Gattass, R. R. and Mazur, E. (2008), ‘Femtosecond laser micromachining
in transparent materials’, Nature Photonics, 2, 219-225.
Gildenhaar, R., Berger, G., Lehmann, E., Stiller, M., Koch, C.,
Ducheyne, P., Rack, A., Seligmann, H., Jonscher, S. and Knabe, C.
(2007), ‘A comparative study of the biodegradability of
calciumalkali-orthophosphate ceramics in vitro and in vivo’, Key
Eng Mater, 330–332, 63–66.
Kenar, H., Akman, E., Kacar, E., Demir, A., Park, H., Abdul-Khaliq, H.,
Aktas, C. and Karaoz, E. (2013), ‘Femtosecond laser treatment of 316L
improves its surface nanoroughness and carbon content and promotes
osseointegration: An in vitro evaluation’, Colloids and Surfaces
B: Biointerfaces, 108, 305-312.
Krahl, T., Gildenhaar, R., Kenning, H., Berger, G. and Jäger, C. (2009),
‘Predicting phase compositions of samples in the ternary system
Ca2KNa(PO4)2-Ca3(PO4)2-Ca2P2O7
using 31P MAS NMR’, Bioceramics, 22, 11–14.
Krüger, J. and Kautek, W. (1999), ‘The femtosecond pulse laser: a new
tool for micromachining’, Laser Physics, 9, 30-40.
Küper, S. and Stuke, M. (1987), ‘Femtosecond uv excimer laser ablation’,
Appl Phys B , 44, 199-204.
Lenzner, M., Krüger, J., Kautek, W. and Krausz, F. (1999), ‘Precision
laser ablation of dielectrics in the 10-fs regime’, Appl Phys A,
68, 369-371.
Liu, J. M. (1982), ‘Simple technique for measurements of pulsed
Gaussian-beam spot sizes’, Opt Lett, 7, 196-198.
Narayan, R. (2009), Biomedical Materials, Springer,
Heidelberg.
Sibbett, W., Lagatsky, A. A. and Brown, C. T. A. (2012), ‘The
development and application of femtosecond laser systems’, Opt
Express, 20, 6989-7001.
Spence, D. E., Kean, P. N. and Sibbett, W. (1991), ‘60-fsec pulse
generation from a self-mode-locked Ti:sapphire laser’, Opt Lett,
16, 42–44.
Srinivasan, R., Sutcliffe, E. and Braren, B. (1987), ‘Ablation and
etching of polymethylmethacrylate by very short (160 fs) ultraviolet
(308 nm) laser pulses’, Appl Phys Lett, 51, 1285-1287.
Strickland, D. and Mourou, G. (1985), ‘Compression of amplified chirped
optical pulses’, Opt Commun, 56, 219-221.
Suchanek, W. and Yoshimura, M. (1998), ‘Processing and properties of
hydroxyapatite-based biomaterials for use as hard tissue replacement
implants‘, J Mater Res, 13, 94–117.
Sugioka, K. and Cheng, Y. (2014), ‘Ultrafast lasers - reliable tools for
advanced materials processing’, Light: Science & Applications,
3, e149; doi:10.1038/lsa.2014.30.
Symietz, C., Lehmann, E., Gildenhaar, R., Krüger, J. and Berger, G.
(2010), ‘Femtosecond laser induced fixation of calcium alkali phosphate
ceramics on titanium alloy bone implant material‘, Acta Biomater,
6, 3318-3324.
Symietz, C., Lehmann, E., Gildenhaar, R., Koter, R., Berger, G. and
Krüger, J. (2011), ‘Fixation of bioactive calcium alkali phosphate on
Ti6Al4V implant material with femtosecond laser pulses‘, Appl Surf
Sci, 257, 5208-5212.
Symietz, C., Lehmann, E., Gildenhaar, R., Hackbarth, A., Berger, G. and
Krüger, J. (2012), ‘Mechanical stability of Ti6Al4V implant material
after femtosecond laser irradiation‘, J Appl Phys, 112, 023103.
Vorobyev, A. Y. and Guo, C. (2013), ‘Direct femtosecond laser surface
nano/microstructuring and its applications’, Laser Photonics Rev,
7, 385–407.