Hephaestus: Modelling, Analysis, and Performance Evaluation of
Cross-Chain Transactions

Rafael Belchior %!, Peter Somogyvari 2, Jonas Pfannschmid 2, André Vasconcelos 2, and
Miguel Correia 2

'Blockdaemon; INESC-ID
2 Affiliation not available

December 7, 2023

Abstract

Ecosystems of multiple blockchains are now a reality. Multi-chain applications and protocols are perceived as necessary to
enable scalability, privacy, and composability. Despite being a promising emerging area, we have been witnessing devastating
attacks on cross-chain bridges that have caused billions of dollars in losses, and no apparent solution seems to emerge from the
ongoing chaos. In this paper, we present our contribution to minimizing bridge attacks, by monitoring a cross-chain model. In
particular, we aggregate cross-chain events into cross-chain transactions, and verify if they follow a set of cross-chain rules,
which then generate a model.

We propose Hephaestus, the first cross-chain model generator that captures the operational complexity of cross-chain applica-
tions. Hephaestus can generate cross-chain models from local transactions in different ledgers, realizing arbitrary cross-chain
use cases and allowing operators to monitor their applications. Monitoring helps identify outliers and malicious behavior, which
can enable programmatically stopping attacks (“a circuit breaker”), including bridge hacks.A

We conduct a detailed evaluation of our system, where we implement a cross-chain bridge use case. Our experimental results
show that Hephaestus can process 600 cross-chain transactions in less than 5.5 seconds in an environment with two blockchains

using sublinear storage, paving the way for more resilient bridge designs.

Hephaestus:
Modelling, Analysis, and Performance Evaluation
of Cross-Chain Transactions

Rafael Belchior*T, Peter Somogyvari i, Jonas Pfannschmidt T, André Vasconcelos®, Miguel Correia*

*INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Abstract—Ecosystems of multiple blockchains are now a re-
ality. Multi-chain applications and protocols are perceived as
necessary to enable scalability, privacy, and composability. De-
spite being a promising emerging area, we have been witnessing
devastating attacks on cross-chain bridges that have caused
billions of dollars in losses, and no apparent solution seems to
emerge from the ongoing chaos. In this paper, we present our
contribution to minimizing bridge attacks, by monitoring a cross-
chain model. In particular, we aggregate cross-chain events into
cross-chain transactions, and verify if they follow a set of cross-
chain rules, which then generate a model.

We propose Hephaestus, the first cross-chain model gen-
erator that captures the operational complexity of cross-chain
applications. Hephaestus can generate cross-chain models
from local transactions in different ledgers, realizing arbitrary
cross-chain use cases and allowing operators to monitor their
applications. Monitoring helps identify outliers and malicious
behavior, which can enable programmatically stopping attacks
(“a circuit breaker”), including bridge hacks. We conduct a
detailed evaluation of our system, where we implement a cross-
chain bridge use case. Our experimental results show that
Hephaestus can process 600 cross-chain transactions in less
than 5.5 seconds in an environment with two blockchains using
sublinear storage, paving the way for more resilient bridge
designs.

I. INTRODUCTION

Recently, many initiatives and projects have appeared
around the concept of blockchain interoperability (BI), where a
multi-chain ecosystem is perceived as the enabler for a scalable
and adaptable platform for various use cases [1]-[4]. To enable
such an ecosystem, bespoke distributed ledger technology
(DLT) interoperability solutions, such as cross-chain bridges
(or simply bridges), are used to connect heterogeneous DLTs,
i.e., DLTs with different privacy, security, decentralization, and
scalability properties [5]. The total value locked (TVL) in
bridges peaked in March 2022, at around $30 billion worth
of assets locked just in Ethereum (as the chain receiving the
transferred assets) [6], [7], effectively reflecting the synergistic
effects of free flow of capital, as now users can use their
capital on multiple blockchains. As of September 2023, the
TVL is still significant, collecting around 9B USD, as Figure
1 shows. With more than 40 bridging projects [8], the trend is
for projects to either mature by improving their security and
usability or disappear.

Some examples of recent mediatic attacks include the
Wormhole bridge, where the attacker stole around $325M
[9], [10], and the most significant on-chain attack in the

TBlockdaemon Accenture

cryptocurrencies history, the Axie Infinity’s Ronin Bridge [11],
which caused around $625M in losses. In February 2022,
the Wormhole bridge was attacked and resulted in $320M in
damage [12]. In June 2022, the Harmony bridge was hacked,
resulting in $100 million in losses [13]. Although hackers were
offered $1 million to return the funds to the community, it
seems that they have not complied [14]. In August 2022, the
Nomad bridge collateral was stolen, resulting in the loss of
$200M [15], despite the bridge being developed by an expert
team and audited multiple times. More recently, in July 2023,
Multichain was hacked and lost around $120 million [16].

Looking at the facts, many of the largest decentralized
finance hacks in blockchain history were performed in bridges
[17], [18], in a grand total of more than $2.5B in damages
[19], [20]. The facts show that the community still has a long
way to implement secure bridges. The trend for attackers to
exploit bridges will likely not disappear soon, as the more
value bridges they hold, the more incentive criminals will have
to attack those systems [21].

To mitigate the presented issues, we start by formalizing
the interactions between different systems (which we refer
to as domains). Cross-chain transactions (cctx) occur across
domains and consist of a set of transactions abstracted into a
logical unit of work [22], or a single atomic transaction [23].
We refer to single atomic transactions by cross-chain events
(ccevent)). These can take place in both off-chain and on-
chain systems. A ccmodel is the set of cross-chain rules that
define the conditions for cctxs to occur - originating a state
(cross-chain state). If transactions do not follow the specified
rules the ccmodel defines, the model is incorrect, and thus
there are several options for the analyst to proceed. Either
the model is under-specified, or there is “suspicious” behavior
that caused the violation of rules (e.g., malicious, such as an
attack, or non-malicious, such as a software bug). Effectively,
a ccmodel allows one to have a baseline of expected behavior
to compare ongoing cctxs with the baseline model, following
a specification-based approach to security [24].

Capturing cross-chain logic for bridges would be helpful
to formalize the protocols (and help identify bugs and bot-
tlenecks), monitor them, and act upon specific triggers. For
instance, if an attack on a bridge is detected, a monitor-
ing smart contract may pause the withdrawals, limiting the
scope and impact of the attack. However, defining cross-
chain logic is difficult because the base systems to be dealt
with are heterogeneous and decentralized, and the systems

built on top of them (e.g., decentralized applications) may
have arbitrarily complex business logic. They can comprise
multiple other systems (e.g., smart contracts). In a cross-chain
setting, automating the discovery of ccmodels and enabling its
monitoring becomes very challenging, as there need to exist
more tools to secure and monitor cross-chain applications.
This is where our work fills the gap in current knowledge.
In summary, we present the following contributions:

o We propose Hephaestus, a system that creates cc-
models for fine-grain monitoring and auditing multiple
blockchain use cases. Our system uses and extends a
state-of-the-art BI solution, Hyperledger Cacti [25].

o« To assess Hephaestus’ capabilities, we provide a
comprehensive evaluation of the system. In particular,
we validate our contributions by generating a ccmodel
of a bridge system that transfers tokens between het-
erogeneous blockchains. We tested cross-chain model
generation and monitoring capabilities of Hephaestus
according to a set of metrics (including scalability, la-
tency, and cost) on different scenarios and workloads.
After that, we present a qualitative evaluation and a
discussion of the evaluation and the proposed system.

e As a technical contribution of independent interest that
directly supports our contributions, we have developed
and improved various Hyperledger Cacti components
over several months, including blockchain connectors,
several test ledgers, the RabbitMQ test server, and several
Python notebooks that are available under an open-source
license for the community to use.

This paper is organized as follows. Section II presents the
background. In Section III we present the concept of cross-
chain transaction, and then cross-chain model, in Section
IV. Section V presents Hephaestus. After that, we present
implementation details, in Section VI, and the experimental
evaluation, in Section VII. Section VIII presents the related
work and Section IX concludes the paper.

II. BACKGROUND

This section presents the background necessary to under-
stand the paper, that is, processes, BI, and cctxs.

A. Process Mining Background and Applications

Understanding core concepts around processes is important
to construct a system that can analyze cctxs and thus create
ccmodels. A process is a set of activities (or tasks) to fulfill
a specific goal [27]. For example, behind running a proof-of-
stake blockchain, we have different processes a validator needs
to run to achieve the end goal, the network’s maintenance
process, the consensus process, and others.

The techniques for creating, analyzing, and optimizing
processes are called process mining techniques [28]. Process
mining has two sub-areas that help us in our endeavors:
process discovery and process conformance. Process discovery
aims to infer a process from an event log, that is, from a
sequence of related entries, typically represented in a table.
The entries in this table are events. An event is an occurrence
that targets an activity and a point in time, related to each other

using a case id. Events point to an activity at a certain time,
i.e., they have a timestamp. Activities are the operations that
are executed within a process. Formally, an event e is a tuple
(act, caseld, timestamp, store), where act is the activity
name, caseld is the unique reference to the event, timestamp
refers to when the event was created, and a key-value store.
The key-value is in the form {(a1,v1),...(an,vm)}, where
each a is an attribute of the event and v its value. The set of
all events is &.

The execution of a process produces what is called a frace,
an ordered list of events with the same case id. Formally, a
trace is a non-empty sequence [e1,...,e,] € [1,...,n],e; €
ENVi, g, [1,...,n] : e;.casel D = ej.casel D. An event log is a
collection of traces that refer to one or more cases. Discovering
a process model can be done in various ways (for a detailed
overview of how to generate process models, see [29]). Process
conformance checks if the incoming transactions, including
their ordering (or event entries), conform (are expected) to
an existing model, helping evaluate a property called replay
fitness. Conformance is part of process monitoring, helping
identify errors or deviations from expected behavior. Processes
have different representations. Graphical representations in-
clude BPMN diagrams [30], a helpful notation for complex
process semantics. In BPMN, events are denoted as circles, ac-
tivities as rounded squares, and gateways as diamond squares.

B. Blockchain and Interoperability

A blockchain is a distributed protocol in which a group of
nodes collectively maintains a ledger £ of ordered transac-
tions, possibly grouped into blocks [31]. Blockchains support
two basic operations: reads and writes. Keys index information
on databases; blockchains can be seen as key-value stores. A
read operation obtains the value for a certain key, while a
write operation on a key updates the value and returns true if
successful; otherwise, it returns false. The history of each key’s
values is conserved by the blockchain data structure, which
aggregates transactions (write requests) into cryptographically
signed blocks. Reads are used to capture the part of the
state relevant to interoperability processes. Reads and writes
are often mediated by smart contracts, stateful, user-defined
programs run by the nodes composing the blockchain network.

The blockchain properties that need to be satisfied for in-
teroperability are consistency and liveness, widely documented
in the literature [32]. Informally, consistency means that for a
pair of honest nodes, at every round, the global state of one
node (list of ordered transactions) is a prefix of the other node,
or vice-versa. Liveness means that if an honest node receives a
transaction in a certain round, it will be included in the ledger
and available for all nodes.

BI is the problem of coordinating local reads and local
writes such that they satisfy some cross-chain logic. That
is, reads from ledger £; can be composed with a write-on
Lo, realizing multiple use cases, such as data transfers, asset
transfers, or asset exchanges [33]. Extensive work has been
done in this area, including using two-phase commit to provide
cctxs ACID [34] properties, where each local transaction
executes successfully, or none at all [23]. We assume that there

2019 Dec 20 - 2023 Sep 06

30D 90D 180D 1v

2023 Sep 06 00:00 (UTC)

4,430,764,865.25 USD
2,713,078.51 ETH

Fig. 1. Total value locked (TVL) in USD, on bridges, between 2019 Nov 15 — 2023 Sep 06. The green squares showcase relevant events in the bridging
ecosystem, e.g., on 24 March 2023 (last green dot), the first ZK rollup with universal solidity support was launched. Source: [26].

is a cross-chain protocol deployed that orchestrates cctxs and
defines the cross-chain rules that operate the use case. A cctx
is an abstraction rooted in a set of local transactions from
different systems (e.g., enterprise legacy system, centralized
databases, blockchains), respecting a set of rules. Further
ahead in the paper, we formally explain what these concepts
are. We will map the concept of a cctx as a set of events
(which represent local transactions) that constitute a trace over
a process model (such as a ledger write). A local transaction
is a transaction native to a given technological environment,
called domain. Examples of domains are blockchains such as
the Bitcoin network, the Ethereum main net, and centralized
databases. Transactions trigger state changes and each state
change is an event belonging to a trace. Transactions have
different life cycles, data formats, and properties as a function
of their domain.

III. CROSS-CHAIN TRANSACTIONS

In this section, we define cctxs and their atomic units, the
cross-chain events (ccevents).

A ccevent extends a local transaction with metadata. We
consider this metadata to be a set of non-native attributes (or
parameters) {a1,as, ...,a,} and their values {v1,va, ..., v, }.
A ccevent e has native attributes (e.g., an id, a timestamp, the
state key to which the transaction points (target), a payload
(smart contract call) that will yield a state change, and a sig-
nature from the originator), and non-native attributes, obtained
via a function add, i.e., e = add,«(a,data), where add is a
function that adds data item data to an attribute a of a local
transaction ¢ from ledger [. Each data item is a non-native
parameter (marked with X in Table I). The native parameters
can be obtained from the underlying domains or systems, i.e.,
retrieved from the nodes supporting the blockchains without
post-processing. Non-native parameters are externally obtained
and are used to enrich local transactions. Native parameters
may be used to calculate non-native parameters. For example,
the carbon footprint depends on native parameters (e.g., on the
native parameter cost (gas), in Ethereum).

Parameter Type Native
case ID string X
receipt ID string
timestamp Date
blockchain ID string X
invocation type string
method name string
parameters string
identity string
cost number
latency number
TABLE I

ccevent PARAMETERS, THEIR TYPE, AND NATURE (NATIVE v OR NOT X).

A cctx is a set of n ordered events £ from a subset
of domains (e.g., ledgers) {d',...d"} € D, ie, & =
{ed' €D ezkep}, where k represents the number of events
contained in a cctx. The events may follow a set of rules
R, the entity that logically connects events. Rules define
conditions that must be verified to each event within a cctx;
they depict the dependencies of each event on, for example,
global time, local state, and third-party domain state. A rule
is a datalog rule [35], [36]. A datalog rule contains a head
Re and a body, and is defined recursively. Given a set of
predicates ¢ = {(1,({2,...,(n} over a set of events &, we
have that, for a certain time interval t; a rule is given in
the form Rg; <+— ((€) (we omit ts for simplicity of
representation). The event set satisfying R¢ are the intersection
{E]GL(E) A G(E) A ... ACn(E)}, this is, for an event set to
satisfy a rule, it needs to satisfy all predicates. Each predicate
¢ can define the conditions over transactions, i.e., temporal
dependencies, the domain of a transaction, or a target function.

g eeny

For example, consider the following rule (predicate set):

Ci(e) =e* < e¥
Ca(e) =Ve:e® VeV included domains

)
¢(€) = § M
)

order dependency

(3(e) =Fe: e.cost < z event attributes
Ca(e) = ew.target = ewy.target event payload

In this predicate set, (; defines any event that occurs in the
domain d, precedes (<) any event happening in the domain
d,. The predicate (2 defines events as part of domains x or
y. Predicate (3 states that there is at least one event in the
event set, so its cost is less than z. Predicate (4 states that
the target of a transaction repeats every v transactions. Other
predicates can be set for any of the attributes of a ccevent,
in Table I. While we require each event to satisfy each sub-
predicate of (, we can also set the validity of rules as the union
{€|61(E) V () V ... V (,(E)}, or any other combination
of predicates. We assume that there is an efficient way to
transform a set of conjunction predicates into disjunctions or
other formats. To capture this variability, we define a function
verifySatisfability thattakes a predicate and an event
and outputs true if the event satisfies the given predicate and
false otherwise, i.e., verifySatisfability(e,{) —
{0,1}. We can then use this predicate for each event to assert
a rule’s validity.

To understand how this concept applies in practice, consider
the following (simplified) rule that dictates the necessary
events for a valid cross-chain asset transfer:

Cile) = (Ve(e® VeY) A Veg(

events happen in x or y

Iyy)(ew <eY)

events on x happen before y

¢h(e) = e .target = exists(a) A e”.target = lock(a)

¢ =
asset can only be locked if exists
A €Y target = mint(a)

Gl = &

(o’ is satisfied

a mint can occur in domain y

@
Let us define rule ¢, the disjunction of the ¢’ predicate
set. The predicate set ¢’ defines a set of conditions for a
cross-chain asset transfer to be valid. First, as determined
by (i, events in domain x must happen before events in
the domain y. This paves the way for a lock on a source
blockchain to be done before a mint on a target blockchain.
Predicate () states that an asset from the source blockchain
must exist before it is locked. Predicate (4 states that before
an asset is minted on the target blockchain, predicate ¢} must
be satisfied. One could add more rules, such as the time
for a mint transaction has to be done before block b, i.e.,
e.target = mint A e.timestamp < b. We illustrate a cross-
chain use case that allows asset transfers, in finer detail, in
Section VII-B.

IV. CrROSS-CHAIN MODEL

This section defines ccmodel and its artifact, ccstate. A
cemodel M is a tuple (R, cctx), where R is a set of cross-
chain rules, cctx is a set of cctxs. The cctxs originate a cross-
chain state S.

A. Properties
Cross-chain models have a set of properties:

o Verifiable correctness (safety property): a model is
valid if all ccevent e in each cctx respects the set
of rules R, ie., Vectx € M V(e € cctx)
verifySatisfability(e,R) — 1.

« Liveness: the current cross-chain state S is updated no
later than every ¢ timesteps. Updating the ccstate implies
checking the existing cctxs against the model rules.

« Probabilistic completeness: the larger the event log (i.e.,
the number of observed events and consequently cctxs),
the higher the model completeness probability.

« Replay fitness: given an observation of the real-world use
case, the matching between the events and the ccmodel
is higher than a threshold probability p.

Cross-chain models are correct if each ccevent fol-
lows each rule, as suggested by [33]. Note that the
verifySatisfability predicate can be defined in sev-
eral ways (e.g., a conjunction of rules, disjunction of rules, or a
bespoke combination). We say a model is incorrect if there are
events that do not satisfy the rules of the model. For example,
the execution of ccevents in an incorrect order as specified in
the rules causes a model to be incorrect. In this case, the model
is not secure. As ccmodels capture security by evaluating a
set of predicates on events and rules, we can capture different
safety properties, such as atomicity, double-spend protection,
and others commonly debated in the interoperability literature
(11, [33], [37], [38].

Updating a model is, in practice, polling for new cross-chain
events and matching them with the rules defined by the model.
To this end, and as each domain has its own clock, measuring
and tracking time across systems is important. Liveness states
that models need to be updated every ¢ timesteps - the time
between updates is an attacker’s time window.If a model
cannot guarantee liveness within ¢ timesteps, we say that the
model is outdated (and thus security is not guaranteed). We
will show that liveness is particularly important to detect cross-
chain attacks.

Completeness is related to precision. A precise model avoids
underfitting, a degree of measurement of how complete is the
ccmodel. Replay fitness expresses the ability to explain on-
chain behavior, i.e., how close the ccmodel is to reality. Other
properties that are interesting in our context matter, but will
be explored in future work. These generalizations measure
whether the model is too tied to specific execution instances of
a cross-chain use case. Simplicity measures whether the model
is understandable by humans. Other aspects are omitted from
the model generation, such as the task of minimizing noise,
that is, minimizing behavior that is infrequent and does not
represent the typical behavior of the process.

B. Cross-Chain State

The cross-chain state S is a key-value store that holds
attributes relevant to the cross-chain use case, i.e., they are
defined on a case-by-case basis. It is generated from the cctxs
from the ccmodel and it is similar to the world state concept
in Hyperledger Fabric. Essentially, the state contains the result

of executing all the cctxs, possibly enriched with metadata.
For example, if the use case is a bridge, the state will record
the assets locked in the source chain and the corresponding
representations minted on the target chain, for each user, and
some key metrics (see Section VI-C). Metrics are performance
attributes of a set of cctxs [39] and provide meta-information
about a cross-chain use case. These metrics indicate points of
interest in a cross-chain use case. Metrics realize a meta state,
where metrics about the formation and execution events that
lead to that state are created.

Latency: We define latency as the time between a local
transaction (via extended clients) and the creation of an
ccevent. The total latency of a cctx (d(cctx)) is given by
the latency of each event d(e) from each local transaction,
summed to the operational latency of the ccmodel generator

(6(op)):

§(cctz) = Z 6(e?j) + d(op)
i=1,..., n
G=1,...k

Vde € cctx (3)

The operational latency is the time the model generator
takes to retrieve and process the local transactions.

The latency of a ccmodel is the sum of the latency of each
cetx:

M) = > dcctx;))
i=1,....,n

Throughput: The throughput of a cctx is defined as 5(07(1:”),
and it counts the number of sets of events processed per unit
of time. Effectively, the latency for each event compresses
the issuance and processing of each local transaction (which
can take a long time depending on the blockchain), plus
operational costs. The slowest finalization time § f,,4, can be
a valuable metric to complement throughput (and help identify
bottlenecks in a cctx).

max
e;€€,deD

S fmaz = (6(ed) ®)

Cost and Revenue: Each local transaction might have a
cost of transaction fees plus operation fees (in case a relayer
or entity is transporting the local transaction payload across
chains). Inspired by [39], we define the cost c of a cctx events
as the sum of variable costs (cs) plus operational costs (cop):

c(ectr) = Z costs(€f) + cop
i=1,..., n
=1,k

Vde € cctx (6)

The environment (e.g., via our system) typically gives
information about these costs. The revenue is calculated in
a way similar to the above formula. We can then calculate the
profit of each cctx by subtracting the costs from the revenue.
The concept of revenue can be modeled as positive utility and
cost as negative utility, which sometimes maps better to real-
world applications.

V. HEPHAESTUS: A CROSS-CHAIN MODEL GENERATOR

Hephaestus' is a software system that generates cc-
models. It first captures local transactions (ccevents) and then
generates cctxs. Those cctxs assist in generating the ccmodel,
along with a process discovery algorithm. Derived from the
cctxs we have the ccstate, which holds metrics of interest,
and a key-value store that represents the system variables with
regard to bespoke business logic.

The ccmodel holds a set of rules (as defined in Section III),
and dictates which cctxs should be issued. In particular, rules
define the order and dependencies of each ccevent that later
form a cctx. Such models can be specified or learned from the
environment. After that, such a model will continuously update
its cross-chain state in real-time during the monitoring phase
(Section V-D). This framework allows us to answer several
questions: What is the state of our cross-chain use case/pro-
tocol? Are there unexpected behaviors, i.e., deviations from
the model? What are the current bottlenecks of a given cross-
chain use case? and Is there suspicious behavior concerning
my use case, for example, an attack?

A. System Model

Cross-chain applications are structured as multi-step pro-
tocols with different types of agents. Agents are users (e.g.,
end-users, relayers [2], or protocol administrators) and smart
contracts. Users take turns doing off-chain processing and
interacting with one or more domains (e.g., submit transactions
against smart contracts). Agents are considered Byzantine,
i.e., they can attempt to deviate from a protocol. Smart con-
tracts enforce cross-chain logic. Specifically, smart contracts
running on different blockchains are trusted replicas in the
state-machine replication literature (similarly, each domain
is considered trusted, even if centralized). This assumption
implies that if a domain cannot be trusted, then safety on
cross-chain rule execution cannot be guaranteed. Domains can
only learn the state of other domains and their changes using
an agent. Of course, each domain must decide whether an
agent is telling the truth. This can be achieved with a cross-
chain protocol, where trust assumptions vary substantially [1].
Furthermore, we assume a partial synchrony model, i.e., there
is some finite unknown upper bound ¢ on the responses (e.g.,
event creation) from the underlying domains. Hephaestus
runs a global clock, i.e., it can measure time against different
domains, despite their clocks being different.

Our model assumes a cross-chain protocol that can provide
a set of rules such that the set of rules is enforced by
on-chain (e.g., smart contracts) and off-chain components
(e.g., relayers). In particular, for us to generate a correct
ccmodel, the execution of cross-chain transactions needs to
result in a consistent cross-chain state for a certain set of
rules. In our bridge example, the rules define that no double
spending occurs. This is, it is impossible to mint an asset
on a target blockchain without first locking it on the source
blockchain; similarly, it is not possible to unlock such an asset
on the source blockchain without first burning it on the target

"Hephaestus is the Greek god of metallurgy (that can connect different
chains into a single useful artifact.)

time | | 1 | >
‘ i ‘ et ez 2 . i Graphical representation
K g gtk of the model
Ledger L —_— o /)
g il oo I \ ‘ occtri— @ e o ‘ I @ Mint&burn ;
0 0---0 © 0@ mapevent@® — @ @ ©® ... @) o1 ‘ Agoritm G
| g ydr g (A dy o | @ le @ @ © =
Event pool 2 n \ e} el ! ,8 e | >
‘ o | . Eiw
i ocal transactions/ receipts 1 ccevents of type d g | ‘ occtro— © o o ‘ | © Mint, 2 transfers, & bum :;_I:‘
C 7 Co | i of X eeo0o000
Ledger Lo| ! ! 8 o |IU [octz,— o o o] ! pf_j
© 0.0 | 9} (3; . (d) map2event(©) *>| © 0 o o) (o) ‘ Q'L) |
i 1P g3 e | e ed2 RS CreateCCState(@ — S |
Event pool : i '3 : CHE) = (Vele* V €) AVeieap(e” <)
1) | ‘ ccevents of type da I3 —M%ymv—a';e— | FF;’J‘I‘;:’ Ch(e) = e*.target = exists(a) A e* target = lock(a)
| | | %‘ Metric2_ Y | (€)= Cagy is satistiea A €7 target = mint(a)
H CR @ z !
f t T t
Phase \@ Emit local transactions | @ Poll local transactions i @ Create cctxs | @ Create ccmodel
T T i 1
Output state change i ccevents : cctxs ccmodel
| | | |
I I i y

Fig. 2. Cross-chain model pipeline, spanning from phases 2 to 5.

blockchain. We will elaborate on this use case in Section VII.
Liveness ensures that all cross-chain rules from a protocol are
evaluated (executed) timely. In our example, liveness means
that “conforming parties’ assets cannot be locked up forever”.

B. System Overview

After defining our domain scope (step @), a set of mod-
ified blockchain clients, called connectors issue transactions
against target blockchains via an application (step @). These
blockchains emit events (or transaction receipts) that our con-
nectors capture. Hephaestus then collects the local transac-
tions (also called transaction receipts) in step @ and generates
ccevents enriched with metadata. After that, it generates a set
of cctxs (@) and next, it generates a ccmodel (@). The
next section will illustrate the steps in finer detail. Finally,
the monitoring phase occurs (Section V-D), where events are
constantly monitored and used to update the ccstate. Business
logic can be defined to facilitate the integration with legacy
systems or to implement audit or monitoring functionality.

C. Cross-Chain Model Generation

This section explains how to generate a model, focusing
on phases @ to @ Our pipeline is divided into phases
(cf. Figure 2): @ Emit Local Transactions, @ Poll Local
Transactions, @ Create cctxs, and @ Create ccmodel. The
monitoring phase is illustrated in the next section.

In phase , we start by listening to local transactions
in our domain set D. Each domain in our system has an
accessible event pool from which we can fetch the events used
to build the model. Without loss of generality, and to simplify
our reasoning, we look for local transactions in the domains
ledger £1 (@), and ledger Lo (). The considered trans-
actions are created and submitted by our connectors, C; and
C,, respectively. Transactions have a case id, meaning local
transactions without this special identifier are not considered.
Our clients capture the relevant transactions and send them
to the ccmodel generator, starting the next phase. In phase
@, the raw transaction receipts enter a processor module
that translates local transactions into a ccevent according to
a function map2event(txy) — ccevent.

The output of phase @ are ccevents coming from £, @
eventy, and from ledger Lo, @) events which we aggregate
onto a ccevent log, with events coming from different ledgers.
Therefore, events implement a standardized data model. After
constructing a set of events, we proceed to phase @ In this
phase, we receive an event log and output the cross-chain state
and a set of cctxs (via a createCCTXs function).

Algorithm 1: Cross-Chain State Update.
Creation of a cross-chain state from a set of ccevents
Input: Set of events £
Input: State update algorithm createCCState
Input: Cross-chain rules R
Input: Cross-chain state S
Output: Upon success returns cross-chain state S, and a
SYNC MOVE @
1 require verifySatisfability(e,R,S) //

tuple @ if cvent

(event, O.

onform to the

invalid.

2 foreach ¢ € £ do
3 // For each event in
4 if 3S[e.caselD)
5 // each cr
by case ID.

6 cc = populateCCTX(S[e.casel D], e)
7 end if
8 else
9 | cc=updateCcCTx(Sle.caselD],e)
10 end if
11 S=8SUcc
12

algorithm is parametrizable

end foreach
4 return (S’, SYNC MOVE @)

e
w

Algorithm 1 illustrates step @ It receives the pro-
cessed ccevents from step @, a state update algorithm
createCCState, a collection of rules (as specified in the
use case), and the previous ccstate (could be empty). Note
that the ccevents follow the data model specified in Section
III. Algorithm 1 is responsible for monitoring that the events
follow the rules, and is executed from time to time. Further-

more, it updates the cross-chain state (composed of metrics
and a key-value store).

First, we collect every event retrieved dynamically by the
connectors. A “require” check on line 1 verifies if the set
of ccevents respects the rules (see the defined rules for the
bridge use case in Section III). Note that the rules evaluation
might consider the current ccstate, which is why it is provided
to the verifiySatisfiability primitive. If the check
returns false, the algorithm returns an error and is handled by
the incident management component. We will describe more
details in the next subsection.

Otherwise, we iterate on the events from the set and
aggregate them into cctxs (lines 3-10). Note that cctxs are
indexed by caselD. Here, we create the metadata fields, namely
the metrics (latency, cost, throughput, in line 5) or update them
(in line 8) depending on if a cctx with identifier “caselD”
already exists. The populateCCTXs function assigns the
different metadata from ccevents and attributes (e.g., payload)
to the newly created cctx. The updateCCTx updates a cctx
based on the new information a ccevent carries. For example,
if the ccevent carries a cost, the new cost of the cctx will
have its cost incremented by e.metadata.cost. The new or
updated cctx is added or updated to our current ccstate.
Now, we need to update specific cross-chain semantics with
the function createCCState. We provide an example for
createCCState, Algorithm 2. This algorithm verifies if
the current event locks an asset on a source blockchain so
it can be minted on a target blockchain. It sets a bit to one
for each locked asset. Note that this function is illustrative
and does not reflect a complex lock-unlock mechanism. For
instance, the algorithm should check if an unlock with a newer
timestamp happened regarding a locked asset and perform user
management.

Having a cross-chain state, we initiate the ccmodel genera-
tion phase @ In this phase, we generate a ccmodel using an
algorithm G and the ccstate. Several graphical representations
are possible, such as a process tree or a BPMN model. We
provide details on this process in Section VI-D.

Algorithm 2: State update algorithm processCCState
- Verification of a lock transaction referring to asset a

Input: Cross-chain state S
Input: Case id ¢d referring to the lock
Output: Updated cross-chain state S

1 foreach cctx € S do

2 if cctx.caselD = id then

3 current event?

4 if cctx.target == verifyLock A e.target == a
then

5 // 1if current event specifie

6 S.lockedAssets[a] =1 // then set as

to locked

7 end if

8 end if

9 end foreach

10 return S

D. Cross-Chain Transaction Monitoring

In this section, we explain how we monitor transac-
tions and detect non-conformance behavior, alleviating on-
chain bridge hacks. Non-conformance behavior can be one
of three: outliers, malicious intent (bug exploitation/attack),
or non-modeled behavior. The baseline for detecting non-
conformance is a ccmodel, which corresponds to a specifica-
tion of expected behavior. We define a set of traces belonging
to the set of all possible traces {t1,...,t,} € T as a current
execution of a cross-chain use case. For each trace being
executed, we consider a set of steps s, ..., s,. We then take
the sequence of steps and perform alignment. Alignment-based
replay aims to find one of the best alignment between the trace
and the model. Each alignment creates a set of pairs (trace,
transition) such that for each pair, one of the following can
occur: 1) SYNC MOVE @ - both the trace and the model
advance in the same way during the replay, meaning we have a
match, 2) MOVE ON LOG @ - the trace that is not mimicked
in the model. This means there is a deviation between our
specification and the observed behavior.

The idea is now to retrieve incoming ccevents at every t
timesteps and build a trace. The current trace is constructed
and encoded in the ccstate. For every incoming event, the next
step of the trace is calculated and compared against the model
(i.e., compared against the set rule R). If a trace is SYNC
MOVE @.ie., verifySatisfability returns true, then
it is common behaviour (expected). The state is updated and
returned. Otherwise, it is non-modeled behavior, and MOVE
ON LOG @, along with the point on the trace (current event)
that originated the error. The lesser ¢, the better liveness
a model provides and, consequently, the smaller the attack
window. This error triggers an incident response framework.
The framework defines how the incident should be investigated
as it can result from under-modeling or malicious behavior (for
example, an attack). The definition of an incident response
framework for briges is out of scope and is left for future
work. In any case, the end-user may inspect the event leading
to the trace and understand which parameter has caused such
behavior. Malicious behavior can come in different forms. The
most common are smart contract vulnerabilities holding the
business logic that realizes the use case. Many more attack
vectors exist, such as smart contract framework vulnerability,
dependency vulnerability, cryptographic vulnerability, network
attacks such as denial of service or network partitioning,
consensus manipulation, and others [40].

Upon detecting malicious activity, an incident response plan
can be put into practice and halt the bridge until a patch
is deployed, according to good practices [7], [41], [42]. The
most prevalent attack in bridges is a cross-chain double spend
[33], [43]: where the lock-unlock mechanism of such bridges
is bypassed. In this paper, we focus on this type of attack,
executed as a smart contract exploitation further elaborated in
Section VII-D.

VI. IMPLEMENTATION

In this section, we present the implementation. The code is
available on Github?. We developed our work as a Hyperledger
Cacti (Cacti) [25] plugin. Cacti is a blockchain integration
project supported by enterprises such as Blockdaemon, Ac-
centure, IBM, and Fujitsu, with more than 270 stars and 80
contributors. Next, we detail this paper’s relevant technical
contributions and the implementation of Hephaestus.

A. Connectors

We implemented two blockchain connectors to connect
to multiple blockchains and retrieve transactions. Connectors
are self-contained application programming interfaces that
constitute the basis for interoperability functionality. The first
connector binds our software to Hyperledger Fabric 2.2 —
a permissioned blockchain system. Fabric is designed for
enterprise-grade applications that benefit from decentraliza-
tion. It supports smart contracts (called chaincode), that can
be written in several general-purpose programming languages.
The nodes execute proposals for transactions signed and sent
to an orderer node. Orderer nodes reach consensus on the order
of transactions, batch them into blocks, and link them, creating
the blockchain. Then, new blocks are sent to the nodes on the
network. Fabric has a key-value store that holds the most up-
to-date values from the blockchain - a desirable programming
model to implement a bridge; it allows chaincodes to retrieve
state without reconstructing the blockchain. We implemented
this connector, package name cactus-plugin-ledger-connector-
fabric in Typescript, counting ~5k lines of code. We wrote
16 integration tests, accounting for ~4k lines of code. The
connector supports functionality to issue transactions (trans-
act), deploy smart contracts (deployContract), send transaction
receipts to Hephaestus, and several administrative tasks
(such as registering a new user).

The second connector connects to a Hyperledger Besu
(Besu) 1.5.1 network. Besu is an open-source Ethereum
client, that also has capabilities to span private EVM-runtime
compatible networks. It allows for interacting with Ethereum
networks, including participating in the consensus process,
developing and deploying smart contracts and decentralized
applications. Besu implements proof of authority algorithms
such as IBFT (more suitable for private networks) and proof of
work (Ethash). We implemented this connector, package name
cactus-plugin-ledger-connector-besu in Typescript, counting
~5k lines of code. We wrote 14 integration tests, accounting
for /~3k lines of code. The connector supports functionality
to issue transactions (tramsact), deploy smart contracts (de-
ployContract), send transaction receipts to Hephaestus, and
several administrative tasks (such as obtaining a raw block
from the network).

B. Test Ledgers

We implemented tools to programmatically create test net-
works for Fabric and Besu, allowing for reproducible tests

Zhttps://rafaelapb.page.link/code

Concept
Domain

Implementation Lines of code
Fabric (£1), Besu (L2) -

Domain logic Bridge smart contracts 819
Ledger client Fabric (C.1), Besu (Cz2) 17k
Test ledger Fabric and Besu test ledgers 1.8k
Model Generator Hephaestus 5.9k
Process Discovery pmépy -
Process Conformance pmépy -
TABLE II

IMPLEMENTATION EFFORT AS THE NUMBER OF LINES OF CODE CREATED,
FOR EACH PRESENTED COMPONENT

and debugging of our application, namely the tools besu-all-
in-one and fabric-all-in-one. These tools not only allow the
reproducibility of our work but also ease the developers to
create new applications and build on top of Hephaestus.
The all-in-one test ledgers are divided into two parts: 1)
a test ledger manager, a Typescript program that launches,
administrates, stops, and destroys test ledgers by binding to
a process running a Docker container, and 2) Dockerfiles
defining the networks. The Fabric test ledger manager has
~1k lines of code. The Besu test ledger manager has 428
lines of code. Other test ledgers such as corda-all-in-one and
substrate-all-in-one are available for the research community.

C. Bridge and Smart Contracts

HYPERLEDGER [

BESU

~.. HYPERLEDGERI

~ %" FABRIC :

Hephaestus

Rea
HYPERLEDGER

Fig. 3. Cross-chain bridge across Hyperledger Fabric and Hyperledger Besu

We implement a use case of asset transfers across a Hy-
perledger Besu network and a Hyperledger Fabric network as
a foundation for testing Hephaestus capabilities. A cross-
chain asset transfer triggered by an end-user generates a set
of events representing an asset lock on a source blockchain
(Besu) and an asset unlock on a target blockchain (Fabric).
This lock-unlock mechanism assures that the representation of
a minted asset is pegged to a locked asset. In asset transfers,
there is typically a third-party actor called a relayer, which
carries the proof of a lock to the target blockchain, so the mint
can occur’. Alternatively, the user can provide proof. Without
loss of generality, we use the later representation.

The use case is implemented as follows: on the Besu
network, we have a Solidity smart contract “Locker” with
two methods: create asset, and lock asset. First, a user must

3We could model the relayers behavior in our use case, by adding two
activities: submit proof, which contains a payload that certifies that an asset
was locked from the source chain, and proof submission, a payload consisting
of a proof that validates the minting of an asset. These events would be added
by a system other than the mock blockchain (e.g., relayer).

create an asset (step 1) and then lock it (step 2). On the
Fabric network, the Typescript smart contract “Minter” allows
a user to call the method mint asset (step 3), creating the
representation of the locked asset. Afterward, a user can freely
transfer that token to other users in exchange for other tokens,
using transfer asset (optional, step 4). Finally, if users want to
recover the original tokens, they run burn asset representation
(step 5). This procedure would unlock the assets on the source
chain (omitted for brevity).

D. Hephaestus Plugin

We implemented Hephaestus as a business logic plugin
for Hyperledger Cacti, written in Typescript. Its latest version
is version commit 8d8567e (stable branch), package name
cactus-plugin-cc-tx-visualization. The main class is CcTxVisu-
alization, which takes as input references different blockchain
connectors. The plugin can be run as a web service, inspecting
the event pools. After a local transaction is detected, the plugin
adds them to a temporary queue. Transactions are transformed
into events. From time to time, events are transformed into
cctxs (batched for efficiency). The data model for events and
metrics can be defined by the developer.

Hephaestus uses the cctxs to are used to build a cross-
chain state, which is made available to the applicational
layer. Models are built from ccevents, given as input to a
Python script (model generator) that, on its end, generates
the ccmodel. The model generator used the open-source li-
brary pmdpy version 2.2.20 [44]. We generate our model
using the Inductive Miner algorithm [45], and generate the
corresponding BPMN and process tree diagrams. Our plugin
counts ~5.5k lines of code. To identify misconformance,
we used an alignment technique, available in the confor-
mance_diagnostics_alignments function from the pm4py li-
brary, namely the Scipy linear solver tool.

VII. EVALUATION

Goals: The goals of the experiments are as follows. 1)
evaluate Hephaestus performance in terms of transaction
throughput, latency, and storage required. We also evaluate
the scaling capabilities concerning the number of local trans-
actions, activities, and domains. Goal 2) is to evaluate the
system’s capability to identify misconformance, given a base-
line ccmodel. In this section, we first conduct an experimental
evaluation, followed by a qualitative analysis and discussion.

Experimental Setup: We deployed an instance of
Hephaestus on Google Cloud (CPU with eight cores,
32Gb of RAM, SSD). The different event providers are
our Hyperledger Fabric connector, and the Hyperledger
Besu connector (version 1.0.0). We initialize a RabbitMQ
server serving our event collector rabbitmg-test-server. Event
emitters on the connectors are implemented as RabbitMQ
clients. Every experiment was run 50 times (where we
removed the first and last 10 runs, considering a total of
30 runs), and we report the average result, along with the
standard deviation, for each run. We share the scripts to
generate the plots and ccmodels, making the evaluation
process reproducible. Furthermore, we save the output of

each evaluation scenario* and the generated cross-chain logs’
and share it with the reader.

Metrics and Workloads: For each run, we capture the
following metrics: throughput (cctxs) and their latency, storage
cost, i.e., performance metrics. We test two scenarios under
variable workloads, which we present later in this section.
We characterize each scenario as a tuple (interoperation
mode, number of blockchains, event type, and workload).
The interoperation mode states what cross-chain feature we
are testing, asset transfers, asset exchanges, or data transfers.
While intuitive, for space limitations, we refer to [33] for
a detailed explanation. The number of domains reflects the
number of ledgers or other systems emitting events in the
scenario, namely Hyperledger Fabric, Hyperledger Besu, or
a mock blockchain (essentially, we only model the message
transmission). Finally, each workload contains details on the
number of events, activities, and domains in that scenario.
We implemented a workload generator that produces events
across different blockchains. Events are then captured by
Hephaestus.

A. Baseline: Dummy Use Case with Test Receipts

In this section, we depict the evaluation of our system using
a mock blockchain, interoperation mode asset transfer, within
a single domain. The workload consists of 6 events, 6 activ-
ities, with ccmodel generation algorithm G = inductive
miner.

The dummy use case represents a cctx composed of 6
ccevents. This transaction locks an asset from a source
blockchain and unlocks a representation of the same asset on
a target blockchain (typically using parties called relayers®).
Instead of using blockchains to collect receipts, receipts are
emitted by a single mock blockchain, which we call the fest
blockchain. The mock blockchain processes transactions as
detailed in Section VI-C, namely create asset, lock asset, mint
asset, transfer asset (optional), and burn asset representation.

We measure the performance of the following phases (see
Figure 3a): the Infrastructure Setup (phase 1), the emission and
polling of local transactions, as events Emit Local Transactions
(phase 2.1), and Poll Local Transactions (phase 2.2), the
creation of cctxs, Create cctx (phase 3.1) and the creation
of the ccmodel, Create ccmodel (phase 3.2). The infrastruc-
ture setup includes setting the event emitters (connectors,
including creating blockchain networks and initializing the
connectors), setting the event collector (RabbitMQ server), and
setting up Hephaestus. The Emit Local Transactions phase
emits test events or issues transactions against the deployed
ledgers. The Poll Local Transactions waits for the events and
sends them to Hephaestus for processing. The Create cctx
generation includes mapping the local transactions to cctxs,

4Online: https://rafaelapb.page.link/cctx-viz-output

5Online: https://rafaelapb.page.link/cctx-viz-csv

%We could model a third-party responsible for carrying proofs of on-chain
execution, the relayer [1] - yielding two more events, in addition to the
modeled six. Those two extra events are modeled as activities: generate proof,
which contains a payload that certifies an asset was locked from the source
chain (the proof), and submit proof, an event asserting a transaction with proof
was submitted to be validated.

4500 = P3, - Create ccmodel
Bl P53, - Create cctx
4000+ P, - Poll Transaction Receipts
35001 B Py - Emit Local Transactions
mmm P, - Infrastructure Setup
£ 3000
>
£ 2500
Q
©
~ 2000+
15001
1000+
500
6 events
Events
(2)
700
x=y

600{ —— storage

Storage (Kb)

0 1000 2000 3000 4000 5000 6000
Number of events

(b)

Fig. 4. Figure a) shows the latency, in milliseconds, for each phase of
the baseline test scenario. Figure b) storage requirements, in kilobytes, for
a variable number of events.

and calculating cctx metrics. Figure 4a) shows the latency
phase breakdown for the emission of six events. We can
observe that the setup phase takes around 1.5 seconds, and the
most time-consuming phase takes approximately 3 seconds,
despite being mock transactions. Figure 5 shows the same
breakdown for a variable number of events. Table III supports
this figure by reporting the mean end-to-end latency for each
phase along with the standard deviation. Phases 1 and 2.2
remain practically constant. Phase 2.1 is sublinear. Phase 3.2’s
performance indicates that after a certain threshold (between
600 and 6000 transactions), the system starts bottlenecking.

We measure the storage required for generating, storing,
and processing events into a ccmodel. Figure 4b) shows the
required storage as a function of the number of events created.
The RabbitMQ container and respective runtime data occupy
257Mb and 72.4kB, respectively. The storage requirements
appear to be sublinear to the number of events - six events
(one cctx) occupy 789 bytes, while six thousand events occupy
around 6.6Mb. For a cctx, means each cctx occupies around
789 bytes + derived data (metrics, a few bytes). Since the
metrics are five floats, a date, a string with 128 chars, and a
list of events, each cctx occupies at least 937 bytes. Finally,
the cross-chain model generation phase includes parsing the
created cctxs and generating the ccmodel. The generated
BPMN model for the dummy use case scenario is represented
in Figure 5. Each cctx takes 985 milliseconds to build.

B. Use Case: Asset Transfer across Heterogeneous Networks

In this section, we depict the evaluation of our system using
two blockchains. The interoperation mode is asset transfer

Phase 1 [Phase 2 0] Phase 3 [
—_— Phase 2.1 Phase 2.2 Phase 3.1 Phase 3.2

events n o n o n o n o n o

6 1397.53 83.06 | 0.47 0.51 | 303027 894 | 0.67 0.61 | 8351 195

60 1387.93 20.09 | 2.20 0.66 | 306897 19.07 | 1.27 045 | 872 093

600 1388.33 2226 | 13.03 3.02 | 3163.47 21.89 | 7.53 1.14 | 9821 1.51
6000 139220 18.05 | 116.97 20.67 | 3459.37 1836 | 26.5 3.42 | 265.61 4.18

TABLE III

END-TO-END PROCESS LATENCY MEAN (1) AND STANDARD DEVIATION
(o), IN MILLISECONDS, AS A FUNCTION OF THE NUMBER OF EVENTS.

within two domains. The workload is composed of batches
of 6 transactions (2 Besu plus 4 Fabric), and 6 activities, with
ccmodel generation algorithm G = inductive miner.

Next, we illustrate an asset transfer between a private net-
work running Hyperledger Besu and a private network running
Hyperledger Fabric, implementing a cross-chain bridge. The
rule set for a valid cross-chain asset transfer is illustrated in
Equation 2, from Section III. The asset transfer process is
the same as in the baseline scenario, i.e., a cctx is composed
of 6 events, where two are local blockchain transactions. An
Hephaestus instance is connected to a Fabric connector and
a Besu connector. Each connector is connected to a Fabric net-
work version 2.2 and Besu network version 21.1, respectively.
The Fabric network consists of 2 peers and 1 orderer, using
Raft as the consensus protocol of orderers and LevelDB to
maintain the local storage in each node. The Besu network
consists of a solo node network. The use case explored in this
section follows the same transaction flow as the baseline, i.e.,
transactions create asset, lock asset, mint asset, transfer asset
(two of them) and burn asset representation are issued in this
order. This flow implements a simplified version of a cross-
chain promissory note transfer [23] between Hyperledger Besu
and Hyperledger Fabric. We used the smart contracts described
in Section VI. Figure 6 depicts the normal functioning of the
bridge, and also a scenario where double spending happens.

When testing the variable workload of 6-6000 events, the
“Infrastructure Setup” and “Poll Transactions Receipt” phases
take the most time, as expected. The median latency required
for these phases is 1392 and 3469 seconds, respectively,
for 6000 events. The infrastructure setup phase takes 90%,
56%, and 12% of the overall execution latency, while the
transaction emission takes 7%, 42%, and 88%, for 6, 60, and
600 transactions, respectively. Since these phases take most
of the execution time, we illustrate the breakdown of the
remaining phases, “Poll Local Transactions”, “Create cctx”,
and “Create ccmodel”, in Figure 4. The storage requirements
are similar to the baseline use case. For a 60-event execution,
we obtain that each cctx (6 events) takes 2,04 seconds to
construct.

C. Baseline Vs. Use Case

The bottleneck for both scenarios is the infrastructure setup
(phase 1) and transaction emission phase (2.1) or polling
transactions (phase 2.2). For the use case, the bottlenecks
are the infrastructure setup (phase 1) and receipt emission
phases (phase 2.1). We observe that the infrastructure setup

I Infrastructure Setup I Emit Local Transactions

Poll Transaction Receipts I Create cctx Create ccmodel

6000 events

600 events

60 events

Number of events

6 events

=3

500 1000 1500 2000

2500

3000
Latency (ms)

3500 4000 4500 5000 5500

Fig. 5. Latency for each phase of the baseline test scenario for a variable number of events.

w initialize asset H lock asset H mint asset

transfer asset

burn asset

Fig. 6. Generated business process modelling notation model for the events generated in the baseline phase.

and transaction emission phases occupy around 97%, 98%,
and practically 100% of the execution time, depending on
if we are emitting 6,60, or 600 events, respectively. This is
expected, and we conclude the bottleneck is the transaction
execution and commitment. In the dummy use case creating
receipts is a cheaper task than retrieving them; in this use
case, the inverse happens because executing transactions on
blockchains is generally an expensive task. In a production
environment, the cross-chain throughput is limited by the
finality speed of the underlying systems: the infrastructural
part of Hephaestus is efficient in issuing the transactions
and retrieving the respective receipts. Varying the number of
domains/blockchains should not affect the creation of cctx as
all transaction receipts are interpreted as ccevents. However,
a varying number of domains might influence the overall
latency of the system depending on their transaction generation
rate. In other words, the faster a domain is, the faster the
“Emit local transactions” phase will be, and consequently, the
faster cctxs and ccstate will be processed. The latency of a
cross-chain transaction cctz;, denoted by d(cctx;), will be the
sum of the individual latencies (in case local transactions are
sequential), or bounded by the slowest domain (paralellized):
d(cctx;) = max{d(dy),...,d(d,)}. Of course, this will de-
pend on the specific cross-chain logic, as there are cases where
some local transactions can be parallelized and others not.
We leave experiments on real-world bridges, with a variable
number of domains for future work.

The complexity of transforming the receipts into events
may vary significantly, but our experiments show a very low
overhead. Furthermore, the setup phase only needs to be
performed once. We conclude that our system is scalable in
terms of latency and extensibility.

D. Preventing Cross-Chain Double-Spends

In this section, we run experiments that allow us to evaluate
if Hephaestus can detect deviations from expected behav-
ior, namely detecting double-spends.

Expected cctx
Create, lock, mint, transfer, transfer, burn

PPPD®O®®
G @FE®

Create, X , mint, transfer, transfer, burn
Observed cctx

(2)

Expected cctx

Transfer, burn, unlock, transfer

POOO®
S ed&

Transfer, X, unlock, transfer
Observed cctx

(b)

Fig. 7. Double spend detection. Figure a) shows a double spend direction
source-to-target blockchain. Figure b) shows a double spend, direction target-
to-source blockchain.

Expected behavior, or the specification, is given by the
events we emit. After generating the ccmodel, we generate
another set of events, this time in the following order: create
asset, mint asset, transfer asset, burn asset. Note that the lock
asset phase is not present - this emulates a user attempting
to mint an asset without an appropriate lock (double spend
case one). This mechanism models what happened in real-
world bridge hacks, namely the PolyNetwork bridge (using
a truncated function signature hash collisions and forced
transaction inclusions) and the Meter bridge (via inconsistent
deposit logic) [43]. Events originate on the source chain @,
or target chain). Events can lead to a SYNC MOVE @ or
MOVE ON LOG @. The latter indicates the point in the cross-
chain model where an attack has happened.

Figure 7 shows the detection of double spending. We obtain
detailed alignment information about transitions that did not
execute correctly, namely the mint before the lock, according
to Figure 7a). While it is possible to obtain a set of detailed
metrics such as throughput and cost analysis of real-time
flows, we stick to the conformance of the process (the fitness)
for the sake of space. Fitness is a simple metric used in
process mining that consists in measuring the ratio between
SYNC MOVEs and MOVE ON LOGs. We obtain that a mint
should occur after it has occurred (' MintAsset’, ’'>>'),
and fitness 82%. The trace generated by our implementation

and the expected traces differ, originating a MOVE ON LOG
@ We leave the study of applying different process mining
algorithms to create cross-chain models of different real-
world interoperability systems for future work. Along with
this future work, we will study the different trade-offs be-
tween algorithms, including performance considerations (using
metrics such as recall, precision, accuracy, F-Score, and error
rate). Further research is needed to understand the optimal
algorithms for each bridge and user cohort.

Double-spends can also happen in the contrary direction
(Figure 7b). After a user bridged an asset, they can recover
it by burning the bridged asset on the target blockchain and
unlocking the original asset on the source blockchain. Dou-
ble spending occurs when a false proof-of-burn is provided,
making the user maintain the bridged token and the original
token. This attack happened on the Polygon/Matic bridge (via
incorrect proof-of-burn verification).

As soon as double-spends are detected, several defense
mechanisms can be activated [43], limiting the scope of the
attacks. If assets are frozen in due course, double spending
can be not only alleviated but prevented. In conclusion, our
system can detect several types of attacks directly mappable
to real-world occurrences, without loss of generality.

E. Discussion

Hephaestus contributes to mitigating bridge hacks by 1)
generating a ccmodel of the bridge protocols, allowing reason-
ing about the protocol flow, bottlenecks, and possible threats
and vulnerabilities, and 2) minimizing the attack consequences
by finding active monitoring and detecting suspicious behavior
in real-time. Cross-chain models allow expressing complex
cross-chain logic without having the protocol designer focus
on timeouts, missing or corrupted information, and the techni-
calities of ad-hoc protocols. This allows the designer to focus
instead on the business logic and its monitoring and achieve
a separation of concerns.

Our tool can be extended to incorporate an incident frame-
work that is activated upon detection of a MOVE ON LOG
(e.g., freeze certain types of transactions), according to what
is starting to be explored in the industry [42]. For this,
adequate ccmodel representations are needed. We generate
BPMN models, that are good for expressing the semantics
of a cross-chain use case graphically, but research on what
is an appropriate representation of cross-chain processes is
still lacking. An important assumption is that the model is
complete, i.e., models all the desired behavior. However, this
is not always the case, and some MOVE ON LOG events can
be false negatives. Creating robust models that tolerate noise
and evaluating those models is an evolving, core challenge
in the process mining area that would have repercussions in
generating and maintaining ccmodels [28]. A consideration of
cross-chain security is that cross-chain models are deemed cor-
rect when certain predicates on incoming events are satisfied.
To this end, designing the rules is of utmost importance, likely
to be an interactive process involving different stakeholders;
another consideration is that sometimes the events that are
checked against rules are not controlled by the bridge operators

- leaving a wide attack surface for hackers. Regarding privacy,
there are multiple views on the interoperability literature [46]—
[49]. It seems that the main property for cross-chain transac-
tions is unlinkability: the inability of an external observer to
link the lock to the mint transactions. However, our system
does not provide asset transfer privacy. Further investigation
on the security and privacy of ccmodels is needed.

Finally, our system is modular - new blockchains can easily
be supported. It has the potential to be integrated into cross-
chain APIs for such purposes. The possibility of retrieving
the cumulative metrics for all cctxs processed in the ccmodel
allows enhanced and fine-grain monitoring of cross-chain
logic. For example, the revenue and cost parameters can be
adjusted according to the use case, allowing semantically en-
riching each transaction. Associating cost and revenue values
to transaction receipts would help calculate capital profit taxes
for a certain jurisdiction, for instance.

VIII. RELATED WORK

Hephaestus is the result of an inter-disciplinary work that
combines the fields of blockchain interoperability, on-chain
analytics, and process mining applied to the blockchain.

A. Bridge Hacks and Monitoring

Lee et al. explored a systematization of cross-chain bridge
hacks that supports our modeling of double spend [43].
Although some work on bridge security has been done recently
[46], [49]-[54], the space still needs systematization. Our work
puts forward the cross-chain model, a concept that unites
several efforts in the area. The work by Zhang et al. [50]
seems to be the most similar to ours. The authors create a tool
to identify miss-conformance in the lock-unlock bridge mech-
anism. However, this work is directed specifically at bridges
and not arbitrary cross-chain use cases. On the other hand,
BUNGEE is a general-agnostic framework that inspires this
work. In this paper, a tool that produces consolidated views
over user activity on different blockchains [2] is proposed.
Hephaestus can complement BUNGEE to generate met-
rics, protocol behavior patterns, and individual user activity.
Hephaestus can be deployed over interoperability protocols
such as ODAP/SAT [23], [55], [56], XCLAIM [37], and many
others [1], to provide a monitoring layer.

B. On-chain Analytics

In the field of on-chain analytics, some industry solutions
exist and are well-adopted: the Dune tool allows to Explore,
create and share crypto analytics, including key metrics for
DeFi, NFTs, and more, expressive queries, and the visual-
ization of information in dashboards. Hephaestus would
allow for the creation of a cross-chain Dune tool by cross-
referencing transactions in multiple chains [57]. Chainanalysis
provides a dashboard for investigation, compliance, and risk
management tools to assert compliance with jurisdictions and
fight fraud and illicit activities [58]. For example, it allows
one to visualize the flow of funds and track movements
across currencies. Our tool would provide possibilities to port

this monitoring for the cross-chain scenario. Metla finance
[59], Morali [60], and Rokti [61] allows a unified view of
user assets over different blockchains. Hephaestus would
allow extending the views to support arbitrary states across
blockchains. Certik provides a monitoring layer for analyzing
and monitoring blockchain protocols and DeFi projects, but
only from a security perspective [62]. Token Flow is the
closest work to ours, an analytics tool to track cross-chain
asset transfers [63]. However, Token Flow does not support
arbitrary cross-chain use cases. On the academic side, we have
several tools that allow on-chain analysis of smart contracts
for security purposes [40], [64], [65], performance [66], [66],
[67], compliance and anti-fraud [68], and others [69], [70] .
However, such projects provide a sort of meta-view over user
activity, do not provide specific information about interaction
with protocols, and are not generalizable, contrarily to this
work.

C. Process mining on blockchain

In the process mining area, some work has been done to
apply it to the blockchain. In [71], the authors used process
mining techniques to specify the behavior of the Augur pro-
tocol, discovering bottlenecks and proposing improvements.
Some tools to automatize the creation of process models from
blockchain protocols to facilitate multiple goals have been
proposed [72]-[75], but none for the cross-chain scenario.

IX. CONCLUDING REMARKS

The need for multi-chain applications introduces additional
challenges to end-users and developers, where we emphasize
new attack vectors and a large attack surface. The exploitation
of these threats leads to large-scale attacks on cross-chain
bridges. We propose Hephaestus to address this problem.

Hephaestus generates cross-chain models from observed
cross-chain events. By associating a set of transactions with a
set of rules, transactional flow can be monitored and, there-
fore, deviations from the idealized process can be detected.
This allows to timely act upon suspicious behavior that can
indicate an attack. We implemented Hephaestus, several
blockchain connectors, test ledgers, and a workload generator.
Our evaluation includes creating a cross-chain use case on
asset transfers (i.e., a bridge) composed of a pair of smart
contracts and cross-chain logic. We tested our system with
variable workloads to assess the performance and reliability
of Hephaestus. We conclude that we have low latency in
generating ccmodels for the given use case and that our tool
can scale with the number of blockchains and cctxs.

We pave the way to enable a better user experience for
the end user and protocol operators by enabling the analy-
sis, monitoring, and optimization of ccmodels. In particular,
Hephaestus can be applied over established blockchain
interoperability protocols, serving as a monitoring and audit
layer, providing better response capacity and thus enhanced
proactive security. Use cases such as reconfiguring wallets
across chains, better user interfaces for fund tracking across
different chains, managing additional base layer tokens for
gas, doing tax reports, and analyzing cross-chain maximal
extractable value do not need to be complicated.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the suggestions that
immensely helped improve this paper’s quality. This project
was partially supported by The Linux Foundation as part of
the Hyperledger Summer Internships program under the Visu-
alization and Analysis of Cross-chain Transactions project. We
thank Iulia Mihaiu for contributing with an initial exploration
of the concepts in this paper. We thank André Augusto, Kevin
Liao, Sabrina Scuri, and Nuno Nunes for suggestions that
improved this paper. This work was partially supported by
national funds through Fundagdo para a Ciéncia e a Tecnolo-
gia (FCT) with reference UIDB/50021/2020 (INESC-ID) and
2020.06837.BD, and by the European Commission through
contract 952226 (BIG). Blockdaemon supported Rafael.

REFERENCES

[1] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey
on Blockchain Interoperability: Past, Present, and Future Trends,” ACM
Computing Surveys, vol. 54, no. 8, pp. 1-41, May 2021. [Online].
Available: http://arxiv.org/abs/2005.14282

[2] R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Is My Perspective Better Than Yours? Blockchain
Interoperability with Views.” TechRxiv, Jun. 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_
Than_Yours_Blockchain_Interoperability_with_Views/20025857/1

[3] B. Pillai, K. Biswas, Z. H6u, and V. Muthukkumarasamy, “Cross-
blockchain technology: integration framework and security assump-
tions,” IEEE Access, 2022, publisher: IEEE.

[4] P. Robinson, “Survey of crosschain communications protocols,”
Computer Networks, vol. 200, p. 108488, Dec. 2021, publisher:
Elsevier. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S1389128621004321

[5] R. Belchior, J. SiiBenguth, Q. Feng, T. Hardjono, A. Vasconcelos, and
M. Correia, “A Brief History of Blockchain Interoperability,” 6 2023.
[Online]. Available: https://www.techrxiv.org/articles/preprint/A_Brief_
History_of_Blockchain_Interoperability/23418677

[6] H. Qureshi, “Axelar, Bridges, and Blockchain Globalization,”
Jun. 2022. [Online]. Available: https://medium.com/dragonfly-research/
axelar-bridges-and-blockchain-globalization- 1 1ef3bbce9f1

[7] Ethereum Engineering Group, “Security of Crosschain Transactions
and Bridges,” Nov. 2022. [Online]. Available: https://www.youtube.
com/watch?v=DJyEJVaXMNo

[8] D. Berenzon, “Blockchain Bridges,” Sep. 2021. [Online]. Available:
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44{8

[91 P. KidBold, “The Wormhole Bridge Attack Explained,”
Feb. 2022. [Online]. Available: https://kaicho.substack.com/p/
the-wormhole-bridge-attack-explained

[10] C. Faife, “Wormhole cryptocurrency platform hacked for
$325 million after error on GitHub,” Feb. 2022.
[Online]. Available: https://www.theverge.com/2022/2/3/22916111/
wormbhole-hack- github-error-325-million-theft-ethereum-solana
Rekt, “Rekt - THORChain,” 2022. [Online]. Available:
/Iwww.rekt.news/

[12] R. Behnke, “Explained: The Wormhole
2022),” Feb. 2022. [Online]. Available:
explained-the- wormhole-hack-february-2022/
FreddieChopin, “FYI, the hacker who exploited Harmony bridge
for 100 M$ 3 days ago has already started sending
stolen ETH to Tornado Cash mixer,” Jun. 2022. [Online].
Available: www.reddit.com/r/CryptoCurrency/comments/vlt4xs/fyi_the_
hacker_who_exploited_harmony_bridge_for/

[11] https:

Hack (February
https://halborn.com/

[13]

[14] M. Barrett, “Harmony’s Horizon Bridge Hack,” Jun.
2022. [Online]. Available: https://medium.com/harmony-one/
harmonys-horizon-bridge-hack-1e8d283b6d66

[15] C. Faife, “Nomad crypto bridge loses $200 mil-
lion in ”chaotic” hack,” Aug. 2022. [On-
line]. Available: https://www.theverge.com/2022/8/2/23288785/

nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
R. News. Multichain hacked for the third time - R3KT news. rekt.
[Online]. Available: https://www.rekt.news/

(16]

http://arxiv.org/abs/2005.14282
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/1
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/1
https://linkinghub.elsevier.com/retrieve/pii/S1389128621004321
https://linkinghub.elsevier.com/retrieve/pii/S1389128621004321
https://www.techrxiv.org/articles/preprint/A_Brief_History_of_Blockchain_Interoperability/23418677
https://www.techrxiv.org/articles/preprint/A_Brief_History_of_Blockchain_Interoperability/23418677
https://medium.com/dragonfly-research/axelar-bridges-and-blockchain-globalization-11ef3bbce9f1
https://medium.com/dragonfly-research/axelar-bridges-and-blockchain-globalization-11ef3bbce9f1
https://www.youtube.com/watch?v=DJyEJVaXMNo
https://www.youtube.com/watch?v=DJyEJVaXMNo
https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8
https://kaicho.substack.com/p/the-wormhole-bridge-attack-explained
https://kaicho.substack.com/p/the-wormhole-bridge-attack-explained
https://www.theverge.com/2022/2/3/22916111/wormhole-hack-github-error-325-million-theft-ethereum-solana
https://www.theverge.com/2022/2/3/22916111/wormhole-hack-github-error-325-million-theft-ethereum-solana
https://www.rekt.news/
https://www.rekt.news/
https://halborn.com/explained-the-wormhole-hack-february-2022/
https://halborn.com/explained-the-wormhole-hack-february-2022/
www.reddit.com/r/CryptoCurrency/comments/vlt4xs/fyi_the_hacker_who_exploited_harmony_bridge_for/
www.reddit.com/r/CryptoCurrency/comments/vlt4xs/fyi_the_hacker_who_exploited_harmony_bridge_for/
https://medium.com/harmony-one/harmonys-horizon-bridge-hack-1e8d283b6d66
https://medium.com/harmony-one/harmonys-horizon-bridge-hack-1e8d283b6d66
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
https://www.theverge.com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-contract-cryptocurrency
https://www.rekt.news/

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

The Block Research, “Largest DeFi exploits,” 2022. [Online].
Available: https://www.theblock.co/data/decentralized-finance/exploits/
largest-defi-exploits

Zach, Ally, “A Year of Bridge Exploits,” Aug. 2022. [Online].
Available: https://messari.io/report/a-year-of-bridge-exploits

The Straits Times, “Cryptocurrency-bridge hacks top $1.36
billion in little over a year,” The Straits Times, Apr.
2022. [Online]. Available: https://www.straitstimes.com/tech/tech-news/
cryptocurrency-bridge- hacks- top- 136-billion-in-little- over-a-year

N. Team, “The Road to Recovery,” Aug. 2022. [Online]. Available: https:
//medium.com/nomad-xyz-blog/the-road-to-recovery-6abeSeec8ft1

V. Buterin, “Vitalik Buterin on cross-chain bridges,” 2022. [Online].
Available: www.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_
the_efs_research_team_pt_7_07_january/hrngyk8/

D. Auvrilionis and T. Hardjono, “Towards Blockchain-enabled Open
Architectures for Scalable Digital Asset Platforms,” Oct. 2021,
publisher: ArXiv. [Online]. Available: https://www.scienceopen.com/
document?vid=c60d84b9-911e-45a5-ab92-864ee24ec771

R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono, “HERMES:
Fault-Tolerant Middleware for Blockchain Interoperability,” Future Gen-
eration Computer Systems, Mar. 2021.

C. Ko, M. Ruschitzka, and K. Levitt, “Execution monitoring of security-
critical programs in distributed systems: a specification-based approach,”
in Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat.
No0.97CB36097), May 1997, pp. 175-187, iSSN: 1081-6011.

H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman,
P. Somogyvari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior,
“Hyperledger Cactus Whitepaper,” Hyperledger Foundation, Tech. Rep.,
2020. [Online]. Available: https://github.com/hyperledger/cactus/blob/
master/docs/whitepaper/whitepaper.md

L2BEAT - The state of the layer two ecosystem. [Online]. Available:
https://12beat.com/scaling/summary

R. Belchior, S. Guerreiro, A. Vasconcelos, and M. Correia, “A
survey on business process view integration: past, present and future
applications to blockchain,” Business Process Management Journal,
vol. ahead-of-print, no. ahead-of-print, Jan. 2022. [Online]. Available:
https://doi.org/10.1108/BPMIJ- 11-2020-0529

W. Van Der Aalst, “Process mining: Overview and opportunities,” ACM
Transactions on Management Information Systems (TMIS), vol. 3, no. 2,
pp. 1-17, 2012, publisher: ACM New York, NY, USA.

J. Kiister, K. Ryndina, and H. Gall, “Generation of business process
models for object life cycle compliance,” in International Conference
on Business Process Management, vol. 4714 LNCS. Springer, Berlin,
2007, pp. 165-181.

R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software
Technology, vol. 50, no. 12, pp. 1281-1294, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584908000323
R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia, “Can We Share the Same Perspective? Blockchain
Interoperability with Views,” Oct. 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_
Than_Yours_Blockchain_Interoperability_with_Views/20025857/3

J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone protocol:
Analysis and applications,” in Advances in Cryptology, vol. 9057, 2015,
pp. 281-310, iSSN: 16113349.

R. Belchior, L. Riley, T. Hardjono, A. Vasconcelos, and M. Correia, “Do
You Need a Distributed Ledger Technology Interoperability Solution?”
Distributed Ledger Technologies: Research and Practice, Sep. 2022,
just Accepted. [Online]. Available: https://doi.org/10.1145/3564532

J. Han, H. E, G. Le, and J. Du, “Survey on NoSQL database,” in 2011
6th International Conference on Pervasive Computing and Applications,
2011, pp. 363-366.

P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and
R. Sears, “Dedalus: Datalog in Time and Space,” in Datalog Reloaded,
ser. Lecture Notes in Computer Science, O. de Moor, G. Gottlob,
T. Furche, and A. Sellers, Eds. Berlin, Heidelberg: Springer, 2011,
pp. 262-281.

T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou, “Datalog and
Recursive Query Processing,” Foundations and Trends® in Databases,
vol. 5, no. 2, pp. 105-195, Nov. 2013, publisher: Now Publishers,
Inc. [Online]. Available: https://www.nowpublishers.com/article/Details/
DBS-017

A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in 2019 IEEE Symposium on Security and Privacy (SP). 1EEE,
2019, pp. 193-210.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: Communication
across distributed ledgers,” in International Conference on Financial
Cryptography and Data Security. Springer, 2021, pp. 3-36.

1. Mihaiu, R. Belchior, S. Scuri, and N. Nunes,
“A Framework to Evaluate Blockchain Interoperability So-
lutions,” TechRxiv, Tech. Rep., Dec. 2021. [Online].

Available: https://www.techrxiv.org/articles/preprint/A_Framework_to_
Evaluate_Blockchain_Interoperability_Solutions/17093039

B. Putz and G. Pernul, “Detecting Blockchain Security Threats,” in 2020
IEEE International Conference on Blockchain (Blockchain), Nov. 2020,
pp- 313-320.

C. Page, “Binance hit by $100 million blockchain bridge hack,”
Oct. 2022. [Online]. Available: https://techcrunch.com/2022/10/07/
blockchain-bridge-hack/

Chainlink, “Cross-Chain Interoperability Protocol (CCIP) | Chainlink,”
2022. [Online]. Available: https://chain.link/cross-chain

S.-S. Lee, A. Murashkin, M. Derka, and J. Gorzny, “SoK: Not
Quite Water Under the Bridge: Review of Cross-Chain Bridge
Hacks,” Oct. 2022, arXiv:2210.16209 [cs]. [Online]. Available:
http://arxiv.org/abs/2210.16209

A. Berti, S. J. Van Zelst, and W. van der Aalst, “Process mining for
python (PM4Py): bridging the gap between process-and data science,”
arXiv preprint arXiv:1905.06169, 2019.

W. M. van der Aalst and A. Berti, “Discovering object-centric Petri nets,”
Fundamenta informaticae, vol. 175, no. 1-4, pp. 1-40, 2020, publisher:
10S Press.

T. Haugum, B. Hoff, M. Alsadi, and J. Li, “Security and Privacy
Challenges in Blockchain Interoperability - A Multivocal Literature
Review,” in Proceedings of the International Conference on Evaluation
and Assessment in Software Engineering 2022, ser. EASE ’22. New
York, NY, USA: Association for Computing Machinery, Jun. 2022, pp.
347-356. [Online]. Available: https://doi.org/10.1145/3530019.3531345
A. Deshpande and M. Herlihy, “Privacy-Preserving Cross-Chain Atomic
Swaps,” in Financial Cryptography and Data Security, ser. Lecture
Notes in Computer Science, M. Bernhard, A. Bracciali, L. J. Camp,
S. Matsuo, A. Maurushat, P. B. Rgnne, and M. Sala, Eds. = Cham:
Springer International Publishing, 2020, pp. 540-549.

Z. Yin, B. Zhang, J. Xu, K. Lu, and K. Ren, “Bool Network: An Open,
Distributed, Secure Cross-Chain Notary Platform,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 3465-3478, 2022,
conference Name: IEEE Transactions on Information Forensics and
Security.

J. Wang, J. Cheng, Y. Yuan, H. Li, and V. S. Sheng, “A Survey on Privacy
Protection of Cross-Chain,” in Advances in Artificial Intelligence and
Security, ser. Communications in Computer and Information Science,
X. Sun, X. Zhang, Z. Xia, and E. Bertino, Eds. Cham: Springer
International Publishing, 2022, pp. 283-296.

J. Zhang, J. Gao, Y. Li, Z. Chen, Z. Guan, and Z. Chen, “Xscope:
Hunting for Cross-Chain Bridge Attacks,” Aug. 2022, arXiv:2208.07119
[cs]. [Online]. Available: http://arxiv.org/abs/2208.07119

Y. Zhang, Z. Ge, Y. Long, and D. Gu, “UCC: Universal and Committee-
based Cross-chain Framework,” in Information Security Practice and
Experience, ser. Lecture Notes in Computer Science, C. Su, D. Gritzalis,
and V. Piuri, Eds. Cham: Springer International Publishing, 2022, pp.
93-111.

T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh,
and D. Song, “zkBridge: Trustless Cross-chain Bridges Made
Practical,” Oct. 2022, arXiv:2210.00264 [cs]. [Online]. Available:
http://arxiv.org/abs/2210.00264

C. Pedreira, R. Belchior, M. Matos, and A. Vasconcelos, “Securing
Cross-Chain Asset Transfers on Permissioned Blockchains,” Jun.
2022. [Online]. Available: https://www.techrxiv.org/articles/preprint/
Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_
Permissioned_Blockchains/19651248/3

A. Augusto, R. Belchior, A. Vasconcelos, and T. Hardjono, “Resilient
Gateway-Based N-N Cross-Chain Asset Transfers,” Nov. 2022.
[Online]. Available: https://www.techrxiv.org/articles/preprint/Resilient_
Gateway-Based_N-N_Cross-Chain_Asset_Transfers/20016815/2

M. Hargreaves, T. Hardjono, and R. Belchior, “Open Digital
Asset Protocol draft 02,” Internet Engineering Task Force, Tech.
Rep., 2021. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-hargreaves-odap-02

R. Belchior, M. Correia, and T. Hardjono, “Gateway Crash Recovery
Mechanism draft v1,” IETF, Tech. Rep., 2021. [Online]. Available:
https://datatracker.ietf.org/doc/draft-belchior- gateway-recovery/

“Dune.” [Online]. Available: https://dune.com/home

https://www.theblock.co/data/decentralized-finance/exploits/largest-defi-exploits
https://www.theblock.co/data/decentralized-finance/exploits/largest-defi-exploits
https://messari.io/report/a-year-of-bridge-exploits
https://www.straitstimes.com/tech/tech-news/cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year
https://www.straitstimes.com/tech/tech-news/cryptocurrency-bridge-hacks-top-136-billion-in-little-over-a-year
https://medium.com/nomad-xyz-blog/the-road-to-recovery-6abe5eec8ff1
https://medium.com/nomad-xyz-blog/the-road-to-recovery-6abe5eec8ff1
www.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
www.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
https://www.scienceopen.com/document?vid=c60d84b9-911e-45a5-ab92-864ee24ec771
https://www.scienceopen.com/document?vid=c60d84b9-911e-45a5-ab92-864ee24ec771
https://github.com/hyperledger/cactus/blob/master/docs/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/master/docs/whitepaper/whitepaper.md
https://l2beat.com/scaling/summary
https://doi.org/10.1108/BPMJ-11-2020-0529
https://www.sciencedirect.com/science/article/pii/S0950584908000323
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/3
https://www.techrxiv.org/articles/preprint/Is_My_Perspective_Better_Than_Yours_Blockchain_Interoperability_with_Views/20025857/3
https://doi.org/10.1145/3564532
https://www.nowpublishers.com/article/Details/DBS-017
https://www.nowpublishers.com/article/Details/DBS-017
https://www.techrxiv.org/articles/preprint/A_Framework_to_Evaluate_Blockchain_Interoperability_Solutions/17093039
https://www.techrxiv.org/articles/preprint/A_Framework_to_Evaluate_Blockchain_Interoperability_Solutions/17093039
https://techcrunch.com/2022/10/07/blockchain-bridge-hack/
https://techcrunch.com/2022/10/07/blockchain-bridge-hack/
https://chain.link/cross-chain
http://arxiv.org/abs/2210.16209
https://doi.org/10.1145/3530019.3531345
http://arxiv.org/abs/2208.07119
http://arxiv.org/abs/2210.00264
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248/3
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248/3
https://www.techrxiv.org/articles/preprint/Trustable_Blockchain_Interoperability_Securing_Asset_Transfers_on_Permissioned_Blockchains/19651248/3
https://www.techrxiv.org/articles/preprint/Resilient_Gateway-Based_N-N_Cross-Chain_Asset_Transfers/20016815/2
https://www.techrxiv.org/articles/preprint/Resilient_Gateway-Based_N-N_Cross-Chain_Asset_Transfers/20016815/2
https://datatracker.ietf.org/doc/html/draft-hargreaves-odap-02
https://datatracker.ietf.org/doc/html/draft-hargreaves-odap-02
https://datatracker.ietf.org/doc/draft-belchior-gateway-recovery/
https://dune.com/home

(58]
[59]
[60]
[61]
[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Chainanalysis, “The Blockchain Data Platform - Chainalysis,” 2022.
[Online]. Available: https://www.chainalysis.com/

Metla, “Metla - the ultimate crypto dashboard,” 2022. [Online].
Available: https://metla.com/

Moralis, “Moralis The Web3 Development Workflow,” 2022. [Online].
Available: https://moralis.io/

Rokti, “Rokti portfolio tracker,” 2022. [Online]. Available: https:
/frotki.com

Certik, “CertiK Blockchain Security Leaderboard,” 2022. [Online].
Available: https://www.certik.com

Token Flow, “Token Flow Insights,” 2022. [Online]. Available:
https://tokenflow.live

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

B. Putz, F. Bohm, and G. Pernul, “HyperSec: Visual Analytics for
blockchain security monitoring,” in IFIP International Conference on
ICT Systems Security and Privacy Protection. Springer, 2021, pp. 165—
180.

P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A Detailed and Real-
Time Performance Monitoring Framework for Blockchain Systems,” in
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), May 2018,
pp. 134-143.

M. Bartoletti, S. Lande, L. Pompianu, and A. Bracciali, “A general
framework for blockchain analytics,” in Proceedings of the 1st Workshop
on Scalable and Resilient Infrastructures for Distributed Ledgers, 2017,
pp. 1-6.

D. N. Dillenberger, P. Novotny, Q. Zhang, P. Jayachandran, H. Gupta,
S. Hans, D. Verma, S. Chakraborty, J. Thomas, M. Walli, and others,
“Blockchain analytics and artificial intelligence,” IBM Journal of Re-
search and Development, vol. 63, no. 2/3, pp. 5-1, 2019, publisher:
IBM.

N. Tovanich, N. Soulié, N. Heulot, and P. Isenberg, “An Empirical
Analysis of Pool Hopping Behavior in the Bitcoin Blockchain,” in
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), May 2021, pp. 1-9.

B. Nasrulin, M. Muzammal, and Q. Qu, “Chainmob: Mobility analytics
on blockchain,” in 2018 19th IEEE International Conference on Mobile
Data Management (MDM). 1EEE, 2018, pp. 292-293.

R. Hobeck, C. Klinkmiiller, H. Bandara, I. Weber, and W. M. van der
Aalst, “Process mining on blockchain data: a case study of Augur,” in
International conference on business process management. Springer,
2021, pp. 306-323.

M. Miiller and P. Ruppel, “Process Mining for Decentralized Ap-
plications,” in 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON), Apr. 2019, pp. 164-169.
C. Klinkmiiller, A. Ponomarev, A. B. Tran, I. Weber, and W. van der
Aalst, “Mining Blockchain Processes: Extracting Process Mining Data
from Blockchain Applications,” in Business Process Management:
Blockchain and Central and Eastern Europe Forum, ser. Lecture Notes
in Business Information Processing, C. Di Ciccio, R. Gabryelczyk,
L. Garcia-Banuelos, T. Hernaus, R. Hull, M. Indihar §temberger, A. K3,
and M. Staples, Eds. Cham: Springer International Publishing, 2019,
pp- 71-86.

R. Miihlberger, S. Bachhofner, C. Di Ciccio, L. Garcia-Bafuelos, and
O. Lopez-Pintado, “Extracting Event Logs for Process Mining from
Data Stored on the Blockchain,” in Business Process Management
Workshops, ser. Lecture Notes in Business Information Processing,
C. Di Francescomarino, R. Dijkman, and U. Zdun, Eds. Cham: Springer
International Publishing, 2019, pp. 690-703.

F. Corradini, F. Marcantoni, A. Morichetta, A. Polini, B. Re, and
M. Sampaolo, “Enabling Auditing of Smart Contracts Through Process
Mining,” in From Software Engineering to Formal Methods and Tools,
and Back: Essays Dedicated to Stefania Gnesi on the Occasion
of Her 65th Birthday, ser. Lecture Notes in Computer Science,
M. H. ter Beek, A. Fantechi, and L. Semini, Eds. Cham: Springer
International Publishing, 2019, pp. 467-480. [Online]. Available:
https://doi.org/10.1007/978-3-030-30985-5_27

Rafael Belchior is a researcher at INESC-ID
(Distributed Systems Group) and a Ph.D. student
at Técnico Lisboa. Studying the intersection of
blockchain interoperability and security, he focuses
on enabling interoperability across heterogeneous
systems and building resilient blockchain infrastruc-
ture.

Peter Somogyvari is a technology architect manager
at Accenture, where he is one of the maintainers
of the top-level Hyperledger project called Cacti,
which aims to be an enterprise-grade framework
for blockchain integration/interoperability. He has
spoken at Hyperledger Global Forum in 2020 and
2021 and several other technology conferences.

Jonas Pfannschmidt has more than 15 years of
professional experience in software engineering with
a focus on Blockchain, Cloud, and Financial Ser-
vices. In his current roles as Principal Blockchain
Engineer, R&D lead, and Director of Blockdae-
mon Ltd. he builds institutional-grade Blockchain
infrastructure to stake, deploy, and scale leading
Blockchain networks.

André Vasconcelos is Assistant Professor (Professor
Auxiliar) in the Department of Computer Science
and Engineering, Instituto Superior Tecnico, Lis-
bon University, and researcher in Information and
Decision Support Systems Lab at INESC-ID, in
Enterprise Architecture domains, namely represen-
tation and modeling of Architectures of Information
Systems, and Evaluation of Information Systems
Architectures.

Miguel Correia is a Full Professor at Instituto
Superior Tecnico (IST), Universidade de Lisboa,
in Lisboa, Portugal. He is vice president for fac-
ulty at DEIL. He is the coordinator of the Doctoral
Program in Information Security at IST. He is a
senior researcher at INESC-ID, and a member of the
Distributed Systems Group (GSD). He is co-chair of
the European Blockchain Partnership that is design-
ing the European Blockchain Services Infrastructure
(EBSI).

https://www.chainalysis.com/
https://metla.com/
https://moralis.io/
https://rotki.com
https://rotki.com
https://www.certik.com
https://tokenflow.live
https://doi.org/10.1007/978-3-030-30985-5_27

	Introduction
	Background
	Process Mining Background and Applications
	Blockchain and Interoperability

	Cross-chain Transactions
	Cross-Chain Model
	Properties
	Cross-Chain State

	Hephaestus: a cross-chain model generator
	System Model
	System Overview
	Cross-Chain Model Generation
	Cross-Chain Transaction Monitoring

	Implementation
	Connectors
	Test Ledgers
	Bridge and Smart Contracts
	Hephaestus Plugin

	Evaluation
	Baseline: Dummy Use Case with Test Receipts
	Use Case: Asset Transfer across Heterogeneous Networks
	Baseline Vs. Use Case
	Preventing Cross-Chain Double-Spends
	Discussion

	Related Work
	Bridge Hacks and Monitoring
	On-chain Analytics
	Process mining on blockchain

	Concluding Remarks
	References
	Biographies
	Rafael Belchior
	Peter Somogyvari
	Jonas Pfannschmidt
	André Vasconcelos
	Miguel Correia

