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Abstract

Micromagnetic tomography (MMT) aims to go beyond paleomagnetic measurements on bulk samples by obtaining magnetic

moments for individual iron-oxide grains present in a sample. To obtain accurate MMT results all magnetic sources and all

their magnetic signals should be known. Small particles (<<1 μm) are often not detected by MicroCT analyses, but do have

a magnetic signal, and therefore hamper obtaining reliable MMT results. Currently it is unknown how many of these small

‘ghost grains’ are present in basaltic samples. Here we aim to obtain a realistic grain-size distribution for iron-oxides in a

typical Hawaiian basalt. We characterize the entire grain-size range of interest to paleomagnetism, from the superparamagnetic

threshold of 40 nm to multidomain grains with sizes up to 10 μm. This requires a combination of FIB-SEM slice-and-view

and MicroCT techniques: FIB-SEM characterizes the grains between 20 nm and 1 μm and MicroCT detects iron-oxides >750

nm. The FIB-SEM and MicroCT data are combined through normalizing the grain-size distribution using the surface area of

non-magnetic minerals that are characterised in both datasets. Then, a lognormal-like grain-size distribution is acquired for the

entire grain-size range. Our dataset enables future studies to populate (MMT) models with a realistic distribution of even the

smallest iron-oxide grains, which ultimately may shed light on the confounding influence of such ghost grains on MMT results.
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Abstract15

Micromagnetic tomography (MMT) aims to go beyond paleomagnetic measurements on16

bulk samples by obtaining magnetic moments for individual iron-oxide grains present in17

a sample. To obtain accurate MMT results all magnetic sources and all their magnetic18

signals should be known. Small particles (<<1 µm) are often not detected by MicroCT19

analyses, but do have a magnetic signal, and therefore hamper obtaining reliable MMT20

results. Currently it is unknown how many of these small ‘ghost grains’ are present in21

basaltic samples. Here we aim to obtain a realistic grain-size distribution for iron-oxides22

in a typical Hawaiian basalt. We characterize the entire grain-size range of interest to23

paleomagnetism, from the superparamagnetic threshold of ∼40 nm to multidomain grains24

with sizes up to 10 µm. This requires a combination of FIB-SEM slice-and-view and Mi-25

croCT techniques: FIB-SEM characterizes the grains between 20 nm and 1 µm and Mi-26

croCT detects iron-oxides >750 nm. The FIB-SEM and MicroCT data are combined through27

normalizing the grain-size distribution using the surface area of non-magnetic minerals28

that are characterised in both datasets. Then, a lognormal-like grain-size distribution29

is acquired for the entire grain-size range. Our dataset enables future studies to popu-30

late (MMT) models with a realistic distribution of even the smallest iron-oxide grains,31

which ultimately may shed light on the confounding influence of such ghost grains on32

MMT results.33

Plain Language Summary34

Micromagnetic tomography (MMT) is a promising new technique that extracts high-35

quality magnetic information from lavas. Magnetic particles in lavas obtain a magnetic36

signal while cooling in presence of Earth’s magnetic field. However, not all particles store37

the signal well, meaning that both good and bad recorders are present. Classical pale-38

omagnetic techniques measure the magnetic signal of all recorders together, i.e. the bulk39

signal. MMT, however, acquires the signal from individual recorders in the lava, enabling40

selecting only the good recorders and rejecting the signal of bad recorders. MMT needs41

two pieces of information: (1) the surface magnetic field produced by recorders and (2)42

the location of all recorders in the lava. Unfortunately, the position of recorders smaller43

than ∼1 µm are often unknown due to measurement limitations. If these small parti-44

cles are not detected, they may scramble the calculated signal of larger recorders. To in-45

vestigate how many disruptive undetected grains are present, we scanned a small vol-46

–2–



manuscript submitted to G-cubed

ume of lava on high resolution to extract all magnetic recorders and obtain a grain-size47

distribution. With this distribution we may estimate if these small recorders distort the48

signal of larger detected grains.49
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1 Introduction50

Volcanic rocks are often perceived to be excellent recorders of paleomagnetic fields,51

although only a small portion of all minerals in a volcanic rock has magnetic properties.52

These minerals, iron-oxide grains, present in a lava acquire a magnetization by cooling53

in the Earth’s magnetic field. Their magnetization is thus a thermo-remanent magne-54

tization (TRM), and these magnetic signals are regarded to be stable, often over mil-55

lions or billions of years (e.g. Dunlop & Özdemir, 1997; Tauxe & Yamazaki, 2015).56

Small particles, or single domain (SD) grains, have two configurations for storing57

their magnetic signal: either parallel or anti-parallel to the grain’s easy axis. One of these58

two options is selected at random but with a slight preference to align with the prevail-59

ing magnetic field (e.g. Tauxe, 2010; Berndt et al., 2016). In slightly larger particles, which60

are often referred to as pseudo-single domain (PSD) grains, the magnetic signal is stored61

in a more complex vortex structure. Fortunately, this signal usually represents the orig-62

inal imparting magnetic field accurately (Nagy et al., 2017). The last group of particles63

are iron-oxides with diameters >1 µm and belong to the multi-domain (MD) class. Al-64

though these MD grains may store magnetic signals for millions of years, their expres-65

sion of the past field is often disturbed, overprinted, unstable, or lost (e.g. De Groot et66

al., 2014). This instability is caused by magnetic reassembling of the original magnetic67

structure of a grain over time to achieve energy minimization (Néel, 1955). MD grains68

are therefore mostly perceived as bad paleomagnetic recorders, while SD and PSD grains69

are considered to be more reliable recorders of paleomagnetic fields. To make it even more70

difficult, most natural rock samples consist of a mixture of SD, PSD and MD grains. The71

combination of these good and bad recorders in rocks is the main reason that generally72

only 10 to 20% of all paleointensity experiments pass sufficient selection criteria to yield73

usable results (e.g. Tauxe & Yamazaki, 2015; Nagy et al., 2017).74

To circumvent the problem of acquiring signals simultaneously from good and bad75

recorders, de Groot et al. (2018) proposed a new paleomagnetic technique to obtain mag-76

netic moments of individual iron-oxide grains in a sample: micromagnetic tomography77

(MMT). MMT infers magnetic moments by first acquiring a magnetic surface image of78

a (cut-out of a) thin-section of a sample using a surface magnetometry technique (e.g.79

a Quantum Diamond Microscope: Glenn et al., 2017). Then, the position of each iron-80

oxide grain in that sample is obtained with X-Ray micro computed tomography (MicroCT).81
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These two pieces of information are combined in a mathematical inversion to retrieve82

individual magnetic moments by minimizing residuals in the magnetic surface map. Both83

de Groot et al. (2021) and Kosters et al. (2023) have shown the capabilities of MMT on84

Hawaiian rock samples. The mathematical uncertainties of the technique have been mod-85

eled in Out et al. (2022).86

Theoretically, MMT is able to retrieve the magnetic moment of even the smallest87

SD iron-oxide particles. These particles are unfortunately often not detected by present-88

day MicroCT equipment, because these machines have resolutions down to 350-500 nm.89

As a grain can only be reliably resolved if it consists of a couple of voxels, it is only pos-90

sible to detect particles with a diameter of >1 µm. Consequently, SD and PSD parti-91

cles may produce a detectable magnetic signal in the magnetic surface scan, while they92

do not show up in the MicroCT data. This problem challenges MMT, because the method93

can only deliver unique and reliable results if all measured magnetic signals originate from94

detected iron-oxides in the sample (Fabian & De Groot, 2019). Currently it is unknown95

how many small iron-oxides that go undetected by the MicroCT analyses (i.e. ghost par-96

ticles) are present in (Hawaiian) basaltic lavas. Here we aim to image and characterize97

the distribution of these ghost particles using Focused Ion Beam Scanning Electron Mi-98

croscopy (FIB-SEM), following the slice-and-view approach of Nikolaisen et al. (2020).99

With FIB-SEM it is possible to image a sample of micrometer size with a resolution of100

∼20 nm by slicing (or milling) through the sample and imaging the cleared surface. In101

this way, a 3D reconstruction of the sample volume with these previous undetected iron-102

oxide particles can be reconstructed. Since iron-oxide grains reflect electrons well, the103

particles are simply detected through backscattered electron images obtained with scan-104

ning electron microscopy. Nikolaisen et al. (2020) used the grain shapes to model mi-105

cromagnetic properties of the individual grains that were characterized by the FIB-SEM106

analyses. Here we will use the three dimensional characterisation of the small iron-oxides107

present in our sample to reconstruct a grain-size distribution. We combine the grain-size108

distribution obtained using the FIB-SEM with the MicroCT analyses on the same sam-109

ple material to obtain a grain-size distribution spanning both the nanometer and microm-110

eter scale. Linking these two datasets, however, is not straightforward because iron-oxides111

are not uniformly present in a rock sample but cluster around large mineral interfaces.112

We therefore use the surface area of relatively large, non-magnetic, grains in both the113

FIB-SEM and MicroCT data to normalize and combine the grain-size distributions ob-114
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Figure 1. Overview of the study area within a Hawaiian basalt examined by slice-and-view

through FIB-SEM. After the ion beam removed a 20.18 nm slice from the bottom of the study

area, a backscattered and secondary reflected electron image is recorded. Instrumental drift is

constrained by calibrating the FIB-SEM every 100 slices using the cross-correlation mark in the

top left corner.

tained from both analyses. Lastly, we will demonstrate how these particles can be placed115

in numerical models to simulate a realistic basalt sample. With these models, it might116

ultimately be possible to investigate the effect of resolution limitations of MicroCT lead-117

ing to the presence of ghost particles in MMT analyses.118

2 Grain-size distribution119

Pivotal in obtaining a realistic grain-size distribution is acquiring dimensional prop-120

erties of all iron-oxide grains present in basaltic rocks. The sample we have used in this121
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study was taken from the 1907 lava flow from Hawaii (HW-03; de Groot et al., 2013; ter122

Maat et al., 2018)). The MicroCT data of this sample had already been studied by de123

Groot et al. (2021) and Kosters et al. (2023), facilitating the detection of grains larger124

than ∼1 µm, but leaving most of the SD and PSD particles undetected. Fortunately, with125

the help of FIB-SEM (e.g. Einsle et al., 2016; Nikolaisen et al., 2020) these remaining126

SD and PSD grains could finally be made visible. FIB-SEM allows a pixel size of 10 nm127

and a field of view close to 20 by 20 µm, which enables the detection of both the small-128

est SD grains above the superparamagnetic threshold of 40 nm (Dunlop & Özdemir, 1997)129

and large MD grains of >1 µm, which are normally at the lower detection limit of Mi-130

croCT.131

2.1 Image acquisition with FIB-SEM132

We applied FIB-SEM on a sample of HW-03, following the slice-and-view proce-133

dure described in Einsle et al. (2016) and Nikolaisen et al. (2020). A 60 µm thick slice134

with a diameter of 2 mm was extracted from the specimen and coated with a nanome-135

ter thick layer of gold. Around the edges of the sample, silver was applied with a tooth-136

pick so that electrons could easily pass through the sample. The sample was placed in137

a Zeiss Crossbeam 540 after which we searched the top of the sample for a 20 x 20 µm138

area containing many small iron-oxides. This area was prepared for the slice-and-view139

procedure by first applying a 1 µm thick layer of platinum while maintaining an ion beam140

current of 700 pA and an accelerating voltage of 30 kV. This accelerating voltage did141

not change unless explicitly stated otherwise.142

Then, five 0.5 µm deep fiducials were engraved with a current of 50 pA (Fig. 1).143

The three central fiducials were created parallel to each other to enable image alignment144

during data processing. The outer two fiducials were created under an angle of 25 de-145

grees with respect to the three central fiducials. These two fiducials ensured that the real146

thickness of the individual image slices could later be checked. To make these fiducials147

visible, a 0.6 µm thick carbon layer was deposited on top of the platinum layer with an148

ion beam current of 700 pA and a dwell-time of 400 seconds. Then, three trenches with149

a depth of 25 µm and an area of 27 by 46 µm2 were eroded at three sides of the selected150

area. For this erosion procedure, we used an ion beam current kept at 15 nA with a back-151

and-forth milling pattern (bidirectional). Using the same bidirectional routine, the cur-152

rent was reduced from 15 nA to 7 nA to create smooth trenches next to the studied area.153
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Instrumental drift during measurements was reduced to a minimum by applying a cross-154

correlation mark outside the studied area (Fig. 1).155

The data acquisition process was initiated after a 20.18 nm slice of the sample area156

was removed with FIB (beam current at 1.5 nA with an accelerating voltage between157

1 to 6 kV). Backscattered and secondary reflected electrons images where obtained us-158

ing SEM, after which a 20.18 nm layer of sample was removed using FIB. After this pro-159

cedure was repeated a hundred times instrumental drift was corrected by checking align-160

ment with the cross-correlation mark. The entire process was finished in one day, in which161

601 grayscale images of both backscattered and secondary reflected electrons were saved162

in TIFF format. Each file encompassed a pixel area of 3072 x 2104 pixels with a pixel163

size of 10.09 nm and a 8-bit grayscale. The total volume of sample analysed was there-164

fore 31.0 x 21.2 x 12.1 µm3.165

2.2 Dataprocessing166

2.2.1 Extracting particles from FIB-SEM data167

After image acquisition, a grain-size distribution could be extracted from the data.168

Every data processing step was executed with Python 3 and the OpenCV library (Bradski,169

2000). We initiated our data processing by loading the 601 backscattered electron im-170

ages and aligning them using the three parallel fiducials and the matchTemplate func-171

tion of OpenCV. After alignment, we removed all duplicate images. To remove the ef-172

fects of both curtaining and the platina and carbon deposited layers, every image was173

cropped to 2600 × 1000 pixels.174

Through denoising and thresholding, SD and PSD iron-oxides could be extracted175

from FIB-SEM images as shown by Nikolaisen et al. (2020). However, we designed the176

extraction process in such a way that both the surface and the centre of each iron-oxide177

grain were properly retrieved. We initiated denoising by 2×2 binning of the 549 remain-178

ing images, which resulted into 1300 × 500 pixels per image. A non-local means denois-179

ing filter from OpenCV (fastNlMeansDenoisingMulti) was used with a search window-180

size of 20 pixels, a filter strength of 20, and template windowsize of 3 pixels applied in181

the x, y, and z-direction. Each image was then thresholded at a pixelvalue of 220. Af-182

ter thresholding, all images are stacked together into one 3D-volume. In this 3D-volume,183
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we grouped connected pixels into grains. With this high threshold, we have only obtained184

the brightest central iron-oxide pixels.185

However, the iron-oxide grains are not properly imaged yet, because the sides of186

the grains frequently have a lower pixel value than their center and thus have dropped187

out in the previous thresholding step. To correctly image the boundary of the iron-oxides188

we applied a lower threshold value of 160 instead of 220 to the previous set of images.189

Then we applied the canny edge algorithm of OpenCV (Canny). This algorithm detects190

spatial changes in pixel value and draws, based on that change, boundaries between pixel191

values. After drawing boundaries, small gaps in the boundaries were closed using the mor-192

phology close operation in order to create enclosed areas. Again, all images were com-193

bined into a 3D-volume and connected pixels were grouped into grains. However, the low194

threshold outputted both well defined grain shapes of iron-oxides and poorly defined shapes195

of other unwanted minerals. To get rid of these unwanted minerals, we mapped the grains196

obtained with high thresholding (poorly defined boundaries, most certainly iron-oxides)197

on top of the grains obtained with low thresholding (well defined boundaries, possible198

iron-oxides) to only remain with actual iron-oxides. Lastly, we removed all iron-oxides199

that extend beyond the edges of the FIB-SEM domain. We calculated the volume of 1,558200

remaining iron-oxides, and transformed these volumes into an equivalent diameter as-201

suming spherical grains.202

2.2.2 Scaling FIB-SEM and MicroCT data203

To obtain a grain-size distribution spanning the entire range of naturally occur-204

ring iron-oxides, we combined our FIB-SEM data with MicroCT data that was obtained205

on a sister specimen of HW-03 by Kosters et al. (2023). Since iron-oxides are not homo-206

geneously distributed throughout the rock, it is not straightforward to link MicroCT data207

one-to-one to FIB-SEM data based on volume. Most iron-oxides are positioned on the208

interface between larger grains (mainly plagioclase and pyroxene); especially the small-209

est iron-oxides attach themselves to this ‘honeycomb’ structure of other minerals (Fig.210

2). Because this honeycomb structure of relatively large minerals can be imaged prop-211

erly using MicroCT, it allows for extrapolating the number of undetected small iron-oxides212

from the FIB-SEM analysis to the MicroCT data and hence produce a continuous grain-213

size distribution over both analyses.214
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Figure 2. Overview of the 26.2 × 10.1 × 10.5 µm3 volume exposed to the slice-and-view pro-

cedure with FIB-SEM. The large grains are indicated by a grayish color. The iron-oxides residing

in this volume are indicated in yellow-brown. Note that most iron-oxides reside on the large min-

eral interfaces.

Characterizing the mineral surface area of the larger minerals, mainly plagioclase215

and pyroxene, required reprocessing the FIB-SEM data, with this specific goal in mind.216

First, the FIB-SEM dataset was denoised using a non-local means filter; then we applied217

a median filter with a spherical footprint of 13 pixels in diameter to smooth out irreg-218

ularities at the boundaries. After this pre-processing we applied a K-means algorithm219

to create five groups of pixels. For each individual image, we removed the first group be-220

cause it corresponded to drilling artifacts. Additionally, we removed all areas smaller than221

3000 pixels, because these areas do not represent grain interfaces of the larger minerals222

present in the sample that are typically occupied by iron-oxides. Finally, the mineral sur-223

face area was calculated for the remaining pixel values using a ‘Lindblad’ algorithm (Lindblad,224

2005). The mineral surface area consisted of about 3.8 × 106 squared pixels that cor-225

respond to an area of 1.53 × 10−3 mm2. Fig. 2 shows the position of the mineral sur-226

face area together with the iron-oxides.227

To calculate the mineral surface area in the MicroCT dataset, we started with raw228

MicroCT data and processed it using Dragonfly software. After loading the DICOM files,229

we cropped about 100 µm on both sides of the sample to remove scanning residuals. To230

align the sample with the coordinate axes, we rotated the sample 0.85° clockwise around231
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the z-axis, 0.50° anticlockwise around the x-axis, and resampled the image with 0.75 µm232

pixel size. Then the image was cropped further, which resulted into a region of 1979 ×233

44 × 1901 voxels. We denoised the image by applying a non-local means filter with a234

3D spherical kernel size of 11 pixels. To create a larger contrast we applied a median fil-235

ter with a 3D spherical kernel size of 13 pixels. The different minerals were separated236

by applying a K-means filter of 3 groups, of which the group with the highest pixel value237

corresponds to iron-oxides. The other two groups chiefly consisted of plagioclase and py-238

roxene. Since we observed that SD and PSD iron-oxides tend to cluster on the interfaces239

of these minerals, we applied a ‘sobel edge detection’ filter to these groups. The result240

of this filter enabled us to create a honeycomb structure of the sample, on which we could241

populate SD and PSD iron-oxides to create realistic models of basalts. This mineral sur-242

face area of 4.00 mm2 is approximately 2,620 times larger than the surface area found243

in the FIB-SEM dataset. This means that we need to multiply the number of FIB-SEM244

grains by 2,620 to scale correctly to the MicroCT dataset. This resulted into a combined245

dataset of 4.7 ×106 FIB-SEM and 1.6 ×103 MicroCT iron-oxide grains. The FIB-SEM246

and MicroCT datasets can now be combined to produce a continuous grain-size distri-247

bution of iron-oxides for the entire range of interest (Fig. 3). The median grain-size has248

a diameter of 70 nm. From 30 to 70 nm the occurrence rapidly increases, after which the249

occurrence of grain diameters between 70 nm and 10 µm follows are more gradually de-250

caying trend.251

2.3 Constructing the grain-size distribution252

The trend in grain-size distribution can be described using a lognormal-like distri-253

bution between 20 nm and 10 µm. We have chosen the lognormal distribution, because254

this distribution is frequently used to describe grain-sizes for e.g. magnetite powders (Smirnov,255

2006; Yu et al., 2002). Nevertheless, the lognormal trend line was originally fitted to the256

10th-logarithm of the data. This logarithm ensures a better fit to grain-sizes larger than257

70 nm. Through an iterative procedure reducing the least-squares error of our fit to the258

data, we found the best fitting distribution after which we transformed it back to lin-259

ear space:260

p = 3.51 ∗ 10−6+ 5.61
d
√

2π
e−

ln2(0.60d)
6.29

if d :[0, 10] (1)
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Figure 3. Overview of the non-normalized grain-size distribution. The histograms show the

number of iron-oxides obtained from FIB-SEM or MicroCT data. The datasets are scaled to each

other using mineral surface area (see main text). The logarithmic trend line shows the fit to these

scaled distributions.

with d the diameter of the grain in µm and p the occurrence or probability of finding that261

grain-size. Note that this probability density function, or pdf, is no longer a lognormal262

distribution, yet still accurately describes the data (Fig. 3). The function is only valid263

for grain-sizes between 0 and 10 µm, although it could be extended to larger grain-sizes264

through rescaling.265

To obtain a function from which grain-sizes can be sampled, the probability den-266

sity function is integrated into a cumulative probability density function (cdf). This func-267

tion takes a grain-size as input and returns the probability of finding that grain-size or268

smaller as output. Then to actually create a sampling function, this cdf has to be inverted.269

By inverting the function, a grain-size could be obtained as function of inputted cumu-270

lative probability. However, this inverted function has no analytical expression, so we271

created a look-up table to be able to sample the function. To create this table we inputted272

100,000 diameters between 0 and 10 µm into the cdf, which returned 100,000 cumula-273

tive probabilities. Each grain-size–probability pair was then put into the table. To sam-274

ple grain-sizes from this look-up table we would generate a pool of random numbers, ob-275
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tained from a uniform distribution between 0 and 1 (U(0, 1)), equal to the number of276

samples requested. For each random number we would then extract the corresponding277

grain-size from the look-up table. Grain-sizes or probabilities not present in the table278

would be obtained through cubic interpolation of the nearest values. All Python codes279

to create and sample the grain-size distribution, and the look-up table are available in280

our repository (Out et al., 2023).281

3 Discussion282

3.1 Dataset limitations and validation283

For this study only one FIB-SEM sample was used from a specific, but typical Hawai-284

ian lava flow. How well this sample represents the sample material of site HW-03, let alone285

material from other sites, flows, and/or locations is a big unknown. Obtaining data from286

rock samples using FIB-SEM, however, is not a straightforward task; sample prepara-287

tion, machine handling, and availability of resources complicate the scanning process.288

To get the most out of our data, we decided during initial phase of the FIB-SEM anal-289

yses to target an area with the highest amount of iron-oxides in view. This implies that290

relatively many small grains will be present in our FIB-SEM study, leading to an over-291

representation of small grains in our final grain-size distribution.292

The overestimation, however, might be somewhat damped through how we con-293

structed the scaling factor. Our scaling factor is dependent on the amount of mineral294

surface area which probably scales with the number of grains. This might mean that our295

scaling factor is less sensitive to grain density variations in the studied FIB-SEM area,296

than, for example, a scaling factor based on volume. In case of volume scaling, the FIB-297

SEM area would be scaled by a factor of 24,000, independent of the number of grains298

or amount of mineral surface area present in the studied area. This would most defini-299

tively result in a severe overestimation of particles imaged by FIB-SEM compared to par-300

ticles imaged by MicroCT, because this volume scaling factor is one order of magnitude301

larger than our scaling factor. We, therefore, consider scaling by grains per mineral in-302

terface area a stable protocol to ensure comparability between FIB-SEM and MicroCT303

results as it dampens local variations of the studied area.304

To obtain an independent verification for our method of combining FIB-SEM and305

MicroCT analyses, we validated our dataset through a scanning electron microscopy (SEM)306
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image on a sister specimen from site HW03 (de Groot et al., 2013; ter Maat et al., 2018).307

Two areas of 48.2 × 71.3 µm2 and 33.2 × 49.0 µm2 within the sample were imaged with308

a resolution of 80 and 55 nm per 8-bit pixel respectively. After noise was removed, the309

images were thresholded at a pixel value of 153 to only retain iron-oxides. Then the ma-310

jor axis m and minor axis n of each grain were determined and grain diameters, d, were311

calculated using (Yu et al., 2002):312

d = 2

√
m

n

π
(2)

The diameters of the grains were sorted to produce a normalized histogram with bin-313

sizes of 0.1 µm ranging between 0.2 and 3.0 µm - straddling the transition from the FIB-314

SEM realm to the MicroCT range. We discarded grains smaller than 0.2 µm from the315

SEM data because they would be constructed from two pixels or less. On top of the SEM316

grain-size data, we overlaid the FIB-SEM and MicroCT normalized data (Fig. 4). The317

SEM data misses some of the smaller grains, as expected. The trends in the FIB-SEM+MicroCT318

and SEM datasets for grain-sizes >0.3 µm, however, correspond well. Taking into ac-319

count that SEM and FIB-SEM are very different scanning techniques compared to Mi-320

croCT, we are confident that our constructed grain-size distribution is a proper descrip-321

tion of the actual grain-size distribution of iron-oxides in our samples, although it may322

emphasize small, sub-micron, grains.323

3.2 Building models of the physical distribution of iron-oxides324

MMT struggles with the smallest particles as they are not detected by MicroCT325

acquisitions. Although these grains are invisible for MicroCTs, they might still produce326

a signal in a magnetic surface scan, possibly leading to incorrect magnetic moments of327

other detected particles (Fabian & De Groot, 2019; Out et al., 2022). However, with the328

grain-size distribution presented here, it is now possible to study the effect of these ghost329

grains through generating realistic grain models of basalt and simulating their effect on330

MMT results in future studies.331

To generate a realistic model of the physical distribution of iron-oxide grains in a332

basaltic sample, we aim to populate a honeycomb structure of the larger minerals ob-333

tained from MicroCT analyses with a simulated distribution of small iron-oxides that334

the MicroCT would miss (Fig. 5). The first step is to extract a honeycomb structure and335
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Figure 4. Verification of MicroCT and FIB-SEM data using separate SEM imaged iron-oxides

using normalized histograms. Note that the distribution is similar for the two data-series except

for the smallest grain-sizes.

the large iron-oxides from a scanned basaltic sample and determine the resolution of the336

MicroCT. The MicroCT resolution determines how many ghost grains are missing per337

mm2 honeycomb structure. By multiplying this ghost grain density (Figure 6) with the338

honeycomb structure surface area extracted from MicroCT images, we can calculate the339

total number of missing grains. Then we use the grain-size distribution obtained in this340

study to make a list of the missing ghost grains and their diameters by feeding the num-341

ber of missing ghost grains together with the MicroCT resolution into the grain-size dis-342

tribution sampling function (available in the repository of Out et al., 2023). Finally, we343

simulate grains from the list of ghost grains and place them on the honeycomb struc-344

ture obtained from the MicroCT analysis besides the larger iron-oxide particles that were345

already detected. Hence, by extracting the honeycomb structure and MicroCT resolu-346

tion, we are able to simulate a realistic distribution of all iron-oxides in a basaltic sam-347

ple, with diameters down to the superparamagnetic range.348

As an example we consider a hypothetical MicroCT analysis with a resolution of349

0.1 µm that produced a honeycomb structure with a surface area of 4 mm2. Then we350

would need to populate this honeycomb structure with 9 × 105 particles per mm2 (dashed351

line in Fig. 6). This implies that we miss 3.6 × 106 ghost grains in the entire sample with352
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Figure 5. Overview of the protocol to build realistic models of the physical distribution of

iron-oxides in a basalt. By segmenting the MicroCT image, we only retain the honeycomb struc-

ture and the visible iron-oxides. The MicroCT resolution is required as input for the relation to

sample the grain-size distribution of iron-oxides (Fig. 6). Multiplying the ghost grain density

with the honeycomb surface area extracted from the MicroCT image, we are able to determine

how many grains are left undetected by MicroCT. Given the MicroCT resolution and the number

of ghost grains, we sample the grain-size distribution function (see Out et al., 2023) to obtain a

list of grain diameters. These grain diameters are used to construct particles that are randomly

placed on the extracted honeycomb structure. A graphical overview can be found in the supple-

mentary information (Figure S1).

–16–



manuscript submitted to G-cubed

Figure 6. Maximum probability and particles per mm2 mineral interface area as function of

MicroCT resolution. Based on this figure we can determine how many grains have to be sampled

from the provided grain-size distribution. By providing the maximum cumulative probability to

the grain-size distribution, we can select the maximum grain-size that should be sampled. For

example, for 4 mm2 mineral interface area and a MicroCT resolution of 0.1 µm, we would sample

900.000 particles/mm2 × 4 mm2 = 3.6 million particles with a maximum cumulative probability

of 0.57. For a resolution larger than 1.0 µm, we would sample 1.20 million grains per mm2 min-

eral interface area.

–17–



manuscript submitted to G-cubed

a surface area of 4 mm2. To obtain the list of grains that we need to add to the honey-353

comb structure we sample the grain-size distribution 3.6 million times using a maximum354

cumulative probability of 0.57 (dashed line in Fig. 6) for grains with a diameter between355

0 and 0.1 µm. These grains are then randomly placed on the honeycomb structure to-356

gether next to the larger iron-oxide particles that were already detected with MicroCT.357

3.3 Implications for Micromagnetic Tomography358

The results of previous MMT based on synthetic samples in which the grain size359

distribution was controlled (e.g. (most) results in de Groot et al., 2018, 2021)) are most360

likely not disturbed by ghost grains, because the iron-oxide grains have been sieved for361

a size larger than the MicroCT resolution. For that reason, their sample mainly consisted362

of particles larger than 5 µm, which could be easily detected by MicroCT. However, the363

natural basalt samples used by de Groot et al. (2021) and Kosters et al. (2023) undoubt-364

edly contain undetected ghost grains. Both articles study the magnetic moment of 1,646365

iron-oxides detected by MicroCT in a 30 µm thin section of Hawaiian basaltic rock, which366

is a sister-specimen as subjected to our study. The resolution of the MicroCT used in367

those studies is ∼1 µm and the mineral surface area is ∼4 mm2. According to Fig. 6,368

this implies the existence of 4.8 × 106 undetected particles, which results in ∼3,000 ghost369

grains per detected iron-oxide.370

All of these ghost grains might scramble the signal of the detected iron-oxides lead-371

ing to erroneous magnetic moments for the detected grains produced by the MMT in-372

version. Remarkably, both studies do not present unrealistic magnetic moments for the373

detected iron-oxide particles, and their results are (somewhat) interpretable in terms of374

magnetic moment and direction. Also, reported trends as function of grain-size and mag-375

netic treatment follow expectations based on earlier work (e.g. Dunlop & Özdemir, 1997).376

It is therefore likely that, although high in number, the small ghost grains do not have377

a large enough magnetic moment to have a major contribution to magnetic signal on the378

surface of the sample. Another possibility is that the spatial resolution of the surface mag-379

netometry data might not be sufficient to locate the weak signal of these ghost particles.380

As its magnetic moment is highly dependent on the size of a grain (Dunlop & Özdemir,381

1997) it is likely that the magnetic moments of larger grains are less affected by ghost382

grains in an MMT inversion, compared to grains that are just above the detection thresh-383

old of the MicroCT analysis used. To characterise the reliability of MMT results as func-384
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tion of grain size, a future study that models the impact of the undetected ghost grains385

on MMT results is critical.386

4 Conclusions387

Here we produced a grain-size distribution of all iron-oxides larger than the super-388

paramagnetic threshold in an Hawaiian basalt by combining MicroCT and FIB-SEM data389

of sister-specimens. The MicroCT and FIB-SEM datasets could not be combined one-390

to-one due to volume difference, so they were scaled using the interface area of large, non-391

iron-oxide, minerals present in the sample (i.e. honeycomb structure), because iron-oxides392

tend to cluster on the edges of large minerals. Through this scaling procedure we have393

created a lognormal-like distribution between 20 nm to 10 µm that spans the range of394

SD, PSD, and MD iron-oxides. This distribution is probably a slight overestimation of395

the concentration of iron-oxide grains, caused by the choice of FIB-SEM study area with396

relatively many iron-oxides. This grain-size distribution can be used to populate real-397

istic models of the physical distribution of iron-oxides in a sample; and makes it possi-398

ble to assess the impact of undetected ghost grains on micromagnetic and MMT stud-399

ies. Due to the high demands of both MicroCT and FIB-SEM analyses we could only400

process one sample from a well-characterised Hawaiian lava flow in this study. Future401

studies can build on our theory of combining FIB-SEM and MicroCT data through the402

surface area of the honeycomb structure of larger minerals produced by the MicroCT anal-403

ysis to study other sample material as well.404
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de Groot, L. V., Fabian, K., Béguin, A., Reith, P., Barnhoorn, A., & Hilgenkamp,438

H. (2018). Determining individual particle magnetizations in assemblages of439

micrograins. Geophysical Research Letters, 45 (7), 2995–3000.440
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Yu, Y., Dunlop, D. J., & Özdemir, Ö. (2002). Partial anhysteretic remanent mag-512

netization in magnetite 1. additivity. Journal of Geophysical Research: Solid513

Earth, 107 (B10), EPM–7.514

–23–



manuscript submitted to G-cubed

Modeling the Distribution of Iron-oxides in Basalt by1

combining FIB-SEM and MicroCT Measurements2

Frenk Out1, Rosa A. de Boer1, John Walmsley2, Lennart V. de Groot13

1Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University,4

Budapestlaan 17, 3584 CD Utrecht, The Netherlands.5

2Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB36

0FS Cambridge, United Kingdom.7

Key Points:8

• We produced a grain-size distribution of iron-oxides in a typical Hawaiian basalt9

from the superparamagnetic threshold (∼40 nm) to 10 micron10

• We combined FIB-SEM and MicroCT data from sister specimens by normalizing11

them to the mineral surface area of the non-magnetic minerals12

• Our grain-size distribution can be used to populate realistic models of iron-oxides13

in a Hawaiian basalt14
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Abstract15

Micromagnetic tomography (MMT) aims to go beyond paleomagnetic measurements on16

bulk samples by obtaining magnetic moments for individual iron-oxide grains present in17

a sample. To obtain accurate MMT results all magnetic sources and all their magnetic18

signals should be known. Small particles (<<1 µm) are often not detected by MicroCT19

analyses, but do have a magnetic signal, and therefore hamper obtaining reliable MMT20

results. Currently it is unknown how many of these small ‘ghost grains’ are present in21

basaltic samples. Here we aim to obtain a realistic grain-size distribution for iron-oxides22

in a typical Hawaiian basalt. We characterize the entire grain-size range of interest to23

paleomagnetism, from the superparamagnetic threshold of ∼40 nm to multidomain grains24

with sizes up to 10 µm. This requires a combination of FIB-SEM slice-and-view and Mi-25

croCT techniques: FIB-SEM characterizes the grains between 20 nm and 1 µm and Mi-26

croCT detects iron-oxides >750 nm. The FIB-SEM and MicroCT data are combined through27

normalizing the grain-size distribution using the surface area of non-magnetic minerals28

that are characterised in both datasets. Then, a lognormal-like grain-size distribution29

is acquired for the entire grain-size range. Our dataset enables future studies to popu-30

late (MMT) models with a realistic distribution of even the smallest iron-oxide grains,31

which ultimately may shed light on the confounding influence of such ghost grains on32

MMT results.33

Plain Language Summary34

Micromagnetic tomography (MMT) is a promising new technique that extracts high-35

quality magnetic information from lavas. Magnetic particles in lavas obtain a magnetic36

signal while cooling in presence of Earth’s magnetic field. However, not all particles store37

the signal well, meaning that both good and bad recorders are present. Classical pale-38

omagnetic techniques measure the magnetic signal of all recorders together, i.e. the bulk39

signal. MMT, however, acquires the signal from individual recorders in the lava, enabling40

selecting only the good recorders and rejecting the signal of bad recorders. MMT needs41

two pieces of information: (1) the surface magnetic field produced by recorders and (2)42

the location of all recorders in the lava. Unfortunately, the position of recorders smaller43

than ∼1 µm are often unknown due to measurement limitations. If these small parti-44

cles are not detected, they may scramble the calculated signal of larger recorders. To in-45

vestigate how many disruptive undetected grains are present, we scanned a small vol-46
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ume of lava on high resolution to extract all magnetic recorders and obtain a grain-size47

distribution. With this distribution we may estimate if these small recorders distort the48

signal of larger detected grains.49
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1 Introduction50

Volcanic rocks are often perceived to be excellent recorders of paleomagnetic fields,51

although only a small portion of all minerals in a volcanic rock has magnetic properties.52

These minerals, iron-oxide grains, present in a lava acquire a magnetization by cooling53

in the Earth’s magnetic field. Their magnetization is thus a thermo-remanent magne-54

tization (TRM), and these magnetic signals are regarded to be stable, often over mil-55

lions or billions of years (e.g. Dunlop & Özdemir, 1997; Tauxe & Yamazaki, 2015).56

Small particles, or single domain (SD) grains, have two configurations for storing57

their magnetic signal: either parallel or anti-parallel to the grain’s easy axis. One of these58

two options is selected at random but with a slight preference to align with the prevail-59

ing magnetic field (e.g. Tauxe, 2010; Berndt et al., 2016). In slightly larger particles, which60

are often referred to as pseudo-single domain (PSD) grains, the magnetic signal is stored61

in a more complex vortex structure. Fortunately, this signal usually represents the orig-62

inal imparting magnetic field accurately (Nagy et al., 2017). The last group of particles63

are iron-oxides with diameters >1 µm and belong to the multi-domain (MD) class. Al-64

though these MD grains may store magnetic signals for millions of years, their expres-65

sion of the past field is often disturbed, overprinted, unstable, or lost (e.g. De Groot et66

al., 2014). This instability is caused by magnetic reassembling of the original magnetic67

structure of a grain over time to achieve energy minimization (Néel, 1955). MD grains68

are therefore mostly perceived as bad paleomagnetic recorders, while SD and PSD grains69

are considered to be more reliable recorders of paleomagnetic fields. To make it even more70

difficult, most natural rock samples consist of a mixture of SD, PSD and MD grains. The71

combination of these good and bad recorders in rocks is the main reason that generally72

only 10 to 20% of all paleointensity experiments pass sufficient selection criteria to yield73

usable results (e.g. Tauxe & Yamazaki, 2015; Nagy et al., 2017).74

To circumvent the problem of acquiring signals simultaneously from good and bad75

recorders, de Groot et al. (2018) proposed a new paleomagnetic technique to obtain mag-76

netic moments of individual iron-oxide grains in a sample: micromagnetic tomography77

(MMT). MMT infers magnetic moments by first acquiring a magnetic surface image of78

a (cut-out of a) thin-section of a sample using a surface magnetometry technique (e.g.79

a Quantum Diamond Microscope: Glenn et al., 2017). Then, the position of each iron-80

oxide grain in that sample is obtained with X-Ray micro computed tomography (MicroCT).81
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These two pieces of information are combined in a mathematical inversion to retrieve82

individual magnetic moments by minimizing residuals in the magnetic surface map. Both83

de Groot et al. (2021) and Kosters et al. (2023) have shown the capabilities of MMT on84

Hawaiian rock samples. The mathematical uncertainties of the technique have been mod-85

eled in Out et al. (2022).86

Theoretically, MMT is able to retrieve the magnetic moment of even the smallest87

SD iron-oxide particles. These particles are unfortunately often not detected by present-88

day MicroCT equipment, because these machines have resolutions down to 350-500 nm.89

As a grain can only be reliably resolved if it consists of a couple of voxels, it is only pos-90

sible to detect particles with a diameter of >1 µm. Consequently, SD and PSD parti-91

cles may produce a detectable magnetic signal in the magnetic surface scan, while they92

do not show up in the MicroCT data. This problem challenges MMT, because the method93

can only deliver unique and reliable results if all measured magnetic signals originate from94

detected iron-oxides in the sample (Fabian & De Groot, 2019). Currently it is unknown95

how many small iron-oxides that go undetected by the MicroCT analyses (i.e. ghost par-96

ticles) are present in (Hawaiian) basaltic lavas. Here we aim to image and characterize97

the distribution of these ghost particles using Focused Ion Beam Scanning Electron Mi-98

croscopy (FIB-SEM), following the slice-and-view approach of Nikolaisen et al. (2020).99

With FIB-SEM it is possible to image a sample of micrometer size with a resolution of100

∼20 nm by slicing (or milling) through the sample and imaging the cleared surface. In101

this way, a 3D reconstruction of the sample volume with these previous undetected iron-102

oxide particles can be reconstructed. Since iron-oxide grains reflect electrons well, the103

particles are simply detected through backscattered electron images obtained with scan-104

ning electron microscopy. Nikolaisen et al. (2020) used the grain shapes to model mi-105

cromagnetic properties of the individual grains that were characterized by the FIB-SEM106

analyses. Here we will use the three dimensional characterisation of the small iron-oxides107

present in our sample to reconstruct a grain-size distribution. We combine the grain-size108

distribution obtained using the FIB-SEM with the MicroCT analyses on the same sam-109

ple material to obtain a grain-size distribution spanning both the nanometer and microm-110

eter scale. Linking these two datasets, however, is not straightforward because iron-oxides111

are not uniformly present in a rock sample but cluster around large mineral interfaces.112

We therefore use the surface area of relatively large, non-magnetic, grains in both the113

FIB-SEM and MicroCT data to normalize and combine the grain-size distributions ob-114
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Figure 1. Overview of the study area within a Hawaiian basalt examined by slice-and-view

through FIB-SEM. After the ion beam removed a 20.18 nm slice from the bottom of the study

area, a backscattered and secondary reflected electron image is recorded. Instrumental drift is

constrained by calibrating the FIB-SEM every 100 slices using the cross-correlation mark in the

top left corner.

tained from both analyses. Lastly, we will demonstrate how these particles can be placed115

in numerical models to simulate a realistic basalt sample. With these models, it might116

ultimately be possible to investigate the effect of resolution limitations of MicroCT lead-117

ing to the presence of ghost particles in MMT analyses.118

2 Grain-size distribution119

Pivotal in obtaining a realistic grain-size distribution is acquiring dimensional prop-120

erties of all iron-oxide grains present in basaltic rocks. The sample we have used in this121
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study was taken from the 1907 lava flow from Hawaii (HW-03; de Groot et al., 2013; ter122

Maat et al., 2018)). The MicroCT data of this sample had already been studied by de123

Groot et al. (2021) and Kosters et al. (2023), facilitating the detection of grains larger124

than ∼1 µm, but leaving most of the SD and PSD particles undetected. Fortunately, with125

the help of FIB-SEM (e.g. Einsle et al., 2016; Nikolaisen et al., 2020) these remaining126

SD and PSD grains could finally be made visible. FIB-SEM allows a pixel size of 10 nm127

and a field of view close to 20 by 20 µm, which enables the detection of both the small-128

est SD grains above the superparamagnetic threshold of 40 nm (Dunlop & Özdemir, 1997)129

and large MD grains of >1 µm, which are normally at the lower detection limit of Mi-130

croCT.131

2.1 Image acquisition with FIB-SEM132

We applied FIB-SEM on a sample of HW-03, following the slice-and-view proce-133

dure described in Einsle et al. (2016) and Nikolaisen et al. (2020). A 60 µm thick slice134

with a diameter of 2 mm was extracted from the specimen and coated with a nanome-135

ter thick layer of gold. Around the edges of the sample, silver was applied with a tooth-136

pick so that electrons could easily pass through the sample. The sample was placed in137

a Zeiss Crossbeam 540 after which we searched the top of the sample for a 20 x 20 µm138

area containing many small iron-oxides. This area was prepared for the slice-and-view139

procedure by first applying a 1 µm thick layer of platinum while maintaining an ion beam140

current of 700 pA and an accelerating voltage of 30 kV. This accelerating voltage did141

not change unless explicitly stated otherwise.142

Then, five 0.5 µm deep fiducials were engraved with a current of 50 pA (Fig. 1).143

The three central fiducials were created parallel to each other to enable image alignment144

during data processing. The outer two fiducials were created under an angle of 25 de-145

grees with respect to the three central fiducials. These two fiducials ensured that the real146

thickness of the individual image slices could later be checked. To make these fiducials147

visible, a 0.6 µm thick carbon layer was deposited on top of the platinum layer with an148

ion beam current of 700 pA and a dwell-time of 400 seconds. Then, three trenches with149

a depth of 25 µm and an area of 27 by 46 µm2 were eroded at three sides of the selected150

area. For this erosion procedure, we used an ion beam current kept at 15 nA with a back-151

and-forth milling pattern (bidirectional). Using the same bidirectional routine, the cur-152

rent was reduced from 15 nA to 7 nA to create smooth trenches next to the studied area.153
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Instrumental drift during measurements was reduced to a minimum by applying a cross-154

correlation mark outside the studied area (Fig. 1).155

The data acquisition process was initiated after a 20.18 nm slice of the sample area156

was removed with FIB (beam current at 1.5 nA with an accelerating voltage between157

1 to 6 kV). Backscattered and secondary reflected electrons images where obtained us-158

ing SEM, after which a 20.18 nm layer of sample was removed using FIB. After this pro-159

cedure was repeated a hundred times instrumental drift was corrected by checking align-160

ment with the cross-correlation mark. The entire process was finished in one day, in which161

601 grayscale images of both backscattered and secondary reflected electrons were saved162

in TIFF format. Each file encompassed a pixel area of 3072 x 2104 pixels with a pixel163

size of 10.09 nm and a 8-bit grayscale. The total volume of sample analysed was there-164

fore 31.0 x 21.2 x 12.1 µm3.165

2.2 Dataprocessing166

2.2.1 Extracting particles from FIB-SEM data167

After image acquisition, a grain-size distribution could be extracted from the data.168

Every data processing step was executed with Python 3 and the OpenCV library (Bradski,169

2000). We initiated our data processing by loading the 601 backscattered electron im-170

ages and aligning them using the three parallel fiducials and the matchTemplate func-171

tion of OpenCV. After alignment, we removed all duplicate images. To remove the ef-172

fects of both curtaining and the platina and carbon deposited layers, every image was173

cropped to 2600 × 1000 pixels.174

Through denoising and thresholding, SD and PSD iron-oxides could be extracted175

from FIB-SEM images as shown by Nikolaisen et al. (2020). However, we designed the176

extraction process in such a way that both the surface and the centre of each iron-oxide177

grain were properly retrieved. We initiated denoising by 2×2 binning of the 549 remain-178

ing images, which resulted into 1300 × 500 pixels per image. A non-local means denois-179

ing filter from OpenCV (fastNlMeansDenoisingMulti) was used with a search window-180

size of 20 pixels, a filter strength of 20, and template windowsize of 3 pixels applied in181

the x, y, and z-direction. Each image was then thresholded at a pixelvalue of 220. Af-182

ter thresholding, all images are stacked together into one 3D-volume. In this 3D-volume,183
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we grouped connected pixels into grains. With this high threshold, we have only obtained184

the brightest central iron-oxide pixels.185

However, the iron-oxide grains are not properly imaged yet, because the sides of186

the grains frequently have a lower pixel value than their center and thus have dropped187

out in the previous thresholding step. To correctly image the boundary of the iron-oxides188

we applied a lower threshold value of 160 instead of 220 to the previous set of images.189

Then we applied the canny edge algorithm of OpenCV (Canny). This algorithm detects190

spatial changes in pixel value and draws, based on that change, boundaries between pixel191

values. After drawing boundaries, small gaps in the boundaries were closed using the mor-192

phology close operation in order to create enclosed areas. Again, all images were com-193

bined into a 3D-volume and connected pixels were grouped into grains. However, the low194

threshold outputted both well defined grain shapes of iron-oxides and poorly defined shapes195

of other unwanted minerals. To get rid of these unwanted minerals, we mapped the grains196

obtained with high thresholding (poorly defined boundaries, most certainly iron-oxides)197

on top of the grains obtained with low thresholding (well defined boundaries, possible198

iron-oxides) to only remain with actual iron-oxides. Lastly, we removed all iron-oxides199

that extend beyond the edges of the FIB-SEM domain. We calculated the volume of 1,558200

remaining iron-oxides, and transformed these volumes into an equivalent diameter as-201

suming spherical grains.202

2.2.2 Scaling FIB-SEM and MicroCT data203

To obtain a grain-size distribution spanning the entire range of naturally occur-204

ring iron-oxides, we combined our FIB-SEM data with MicroCT data that was obtained205

on a sister specimen of HW-03 by Kosters et al. (2023). Since iron-oxides are not homo-206

geneously distributed throughout the rock, it is not straightforward to link MicroCT data207

one-to-one to FIB-SEM data based on volume. Most iron-oxides are positioned on the208

interface between larger grains (mainly plagioclase and pyroxene); especially the small-209

est iron-oxides attach themselves to this ‘honeycomb’ structure of other minerals (Fig.210

2). Because this honeycomb structure of relatively large minerals can be imaged prop-211

erly using MicroCT, it allows for extrapolating the number of undetected small iron-oxides212

from the FIB-SEM analysis to the MicroCT data and hence produce a continuous grain-213

size distribution over both analyses.214
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Figure 2. Overview of the 26.2 × 10.1 × 10.5 µm3 volume exposed to the slice-and-view pro-

cedure with FIB-SEM. The large grains are indicated by a grayish color. The iron-oxides residing

in this volume are indicated in yellow-brown. Note that most iron-oxides reside on the large min-

eral interfaces.

Characterizing the mineral surface area of the larger minerals, mainly plagioclase215

and pyroxene, required reprocessing the FIB-SEM data, with this specific goal in mind.216

First, the FIB-SEM dataset was denoised using a non-local means filter; then we applied217

a median filter with a spherical footprint of 13 pixels in diameter to smooth out irreg-218

ularities at the boundaries. After this pre-processing we applied a K-means algorithm219

to create five groups of pixels. For each individual image, we removed the first group be-220

cause it corresponded to drilling artifacts. Additionally, we removed all areas smaller than221

3000 pixels, because these areas do not represent grain interfaces of the larger minerals222

present in the sample that are typically occupied by iron-oxides. Finally, the mineral sur-223

face area was calculated for the remaining pixel values using a ‘Lindblad’ algorithm (Lindblad,224

2005). The mineral surface area consisted of about 3.8 × 106 squared pixels that cor-225

respond to an area of 1.53 × 10−3 mm2. Fig. 2 shows the position of the mineral sur-226

face area together with the iron-oxides.227

To calculate the mineral surface area in the MicroCT dataset, we started with raw228

MicroCT data and processed it using Dragonfly software. After loading the DICOM files,229

we cropped about 100 µm on both sides of the sample to remove scanning residuals. To230

align the sample with the coordinate axes, we rotated the sample 0.85° clockwise around231
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the z-axis, 0.50° anticlockwise around the x-axis, and resampled the image with 0.75 µm232

pixel size. Then the image was cropped further, which resulted into a region of 1979 ×233

44 × 1901 voxels. We denoised the image by applying a non-local means filter with a234

3D spherical kernel size of 11 pixels. To create a larger contrast we applied a median fil-235

ter with a 3D spherical kernel size of 13 pixels. The different minerals were separated236

by applying a K-means filter of 3 groups, of which the group with the highest pixel value237

corresponds to iron-oxides. The other two groups chiefly consisted of plagioclase and py-238

roxene. Since we observed that SD and PSD iron-oxides tend to cluster on the interfaces239

of these minerals, we applied a ‘sobel edge detection’ filter to these groups. The result240

of this filter enabled us to create a honeycomb structure of the sample, on which we could241

populate SD and PSD iron-oxides to create realistic models of basalts. This mineral sur-242

face area of 4.00 mm2 is approximately 2,620 times larger than the surface area found243

in the FIB-SEM dataset. This means that we need to multiply the number of FIB-SEM244

grains by 2,620 to scale correctly to the MicroCT dataset. This resulted into a combined245

dataset of 4.7 ×106 FIB-SEM and 1.6 ×103 MicroCT iron-oxide grains. The FIB-SEM246

and MicroCT datasets can now be combined to produce a continuous grain-size distri-247

bution of iron-oxides for the entire range of interest (Fig. 3). The median grain-size has248

a diameter of 70 nm. From 30 to 70 nm the occurrence rapidly increases, after which the249

occurrence of grain diameters between 70 nm and 10 µm follows are more gradually de-250

caying trend.251

2.3 Constructing the grain-size distribution252

The trend in grain-size distribution can be described using a lognormal-like distri-253

bution between 20 nm and 10 µm. We have chosen the lognormal distribution, because254

this distribution is frequently used to describe grain-sizes for e.g. magnetite powders (Smirnov,255

2006; Yu et al., 2002). Nevertheless, the lognormal trend line was originally fitted to the256

10th-logarithm of the data. This logarithm ensures a better fit to grain-sizes larger than257

70 nm. Through an iterative procedure reducing the least-squares error of our fit to the258

data, we found the best fitting distribution after which we transformed it back to lin-259

ear space:260

p = 3.51 ∗ 10−6+ 5.61
d
√

2π
e−

ln2(0.60d)
6.29

if d :[0, 10] (1)
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Figure 3. Overview of the non-normalized grain-size distribution. The histograms show the

number of iron-oxides obtained from FIB-SEM or MicroCT data. The datasets are scaled to each

other using mineral surface area (see main text). The logarithmic trend line shows the fit to these

scaled distributions.

with d the diameter of the grain in µm and p the occurrence or probability of finding that261

grain-size. Note that this probability density function, or pdf, is no longer a lognormal262

distribution, yet still accurately describes the data (Fig. 3). The function is only valid263

for grain-sizes between 0 and 10 µm, although it could be extended to larger grain-sizes264

through rescaling.265

To obtain a function from which grain-sizes can be sampled, the probability den-266

sity function is integrated into a cumulative probability density function (cdf). This func-267

tion takes a grain-size as input and returns the probability of finding that grain-size or268

smaller as output. Then to actually create a sampling function, this cdf has to be inverted.269

By inverting the function, a grain-size could be obtained as function of inputted cumu-270

lative probability. However, this inverted function has no analytical expression, so we271

created a look-up table to be able to sample the function. To create this table we inputted272

100,000 diameters between 0 and 10 µm into the cdf, which returned 100,000 cumula-273

tive probabilities. Each grain-size–probability pair was then put into the table. To sam-274

ple grain-sizes from this look-up table we would generate a pool of random numbers, ob-275
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tained from a uniform distribution between 0 and 1 (U(0, 1)), equal to the number of276

samples requested. For each random number we would then extract the corresponding277

grain-size from the look-up table. Grain-sizes or probabilities not present in the table278

would be obtained through cubic interpolation of the nearest values. All Python codes279

to create and sample the grain-size distribution, and the look-up table are available in280

our repository (Out et al., 2023).281

3 Discussion282

3.1 Dataset limitations and validation283

For this study only one FIB-SEM sample was used from a specific, but typical Hawai-284

ian lava flow. How well this sample represents the sample material of site HW-03, let alone285

material from other sites, flows, and/or locations is a big unknown. Obtaining data from286

rock samples using FIB-SEM, however, is not a straightforward task; sample prepara-287

tion, machine handling, and availability of resources complicate the scanning process.288

To get the most out of our data, we decided during initial phase of the FIB-SEM anal-289

yses to target an area with the highest amount of iron-oxides in view. This implies that290

relatively many small grains will be present in our FIB-SEM study, leading to an over-291

representation of small grains in our final grain-size distribution.292

The overestimation, however, might be somewhat damped through how we con-293

structed the scaling factor. Our scaling factor is dependent on the amount of mineral294

surface area which probably scales with the number of grains. This might mean that our295

scaling factor is less sensitive to grain density variations in the studied FIB-SEM area,296

than, for example, a scaling factor based on volume. In case of volume scaling, the FIB-297

SEM area would be scaled by a factor of 24,000, independent of the number of grains298

or amount of mineral surface area present in the studied area. This would most defini-299

tively result in a severe overestimation of particles imaged by FIB-SEM compared to par-300

ticles imaged by MicroCT, because this volume scaling factor is one order of magnitude301

larger than our scaling factor. We, therefore, consider scaling by grains per mineral in-302

terface area a stable protocol to ensure comparability between FIB-SEM and MicroCT303

results as it dampens local variations of the studied area.304

To obtain an independent verification for our method of combining FIB-SEM and305

MicroCT analyses, we validated our dataset through a scanning electron microscopy (SEM)306

–13–



manuscript submitted to G-cubed

image on a sister specimen from site HW03 (de Groot et al., 2013; ter Maat et al., 2018).307

Two areas of 48.2 × 71.3 µm2 and 33.2 × 49.0 µm2 within the sample were imaged with308

a resolution of 80 and 55 nm per 8-bit pixel respectively. After noise was removed, the309

images were thresholded at a pixel value of 153 to only retain iron-oxides. Then the ma-310

jor axis m and minor axis n of each grain were determined and grain diameters, d, were311

calculated using (Yu et al., 2002):312

d = 2

√
m

n

π
(2)

The diameters of the grains were sorted to produce a normalized histogram with bin-313

sizes of 0.1 µm ranging between 0.2 and 3.0 µm - straddling the transition from the FIB-314

SEM realm to the MicroCT range. We discarded grains smaller than 0.2 µm from the315

SEM data because they would be constructed from two pixels or less. On top of the SEM316

grain-size data, we overlaid the FIB-SEM and MicroCT normalized data (Fig. 4). The317

SEM data misses some of the smaller grains, as expected. The trends in the FIB-SEM+MicroCT318

and SEM datasets for grain-sizes >0.3 µm, however, correspond well. Taking into ac-319

count that SEM and FIB-SEM are very different scanning techniques compared to Mi-320

croCT, we are confident that our constructed grain-size distribution is a proper descrip-321

tion of the actual grain-size distribution of iron-oxides in our samples, although it may322

emphasize small, sub-micron, grains.323

3.2 Building models of the physical distribution of iron-oxides324

MMT struggles with the smallest particles as they are not detected by MicroCT325

acquisitions. Although these grains are invisible for MicroCTs, they might still produce326

a signal in a magnetic surface scan, possibly leading to incorrect magnetic moments of327

other detected particles (Fabian & De Groot, 2019; Out et al., 2022). However, with the328

grain-size distribution presented here, it is now possible to study the effect of these ghost329

grains through generating realistic grain models of basalt and simulating their effect on330

MMT results in future studies.331

To generate a realistic model of the physical distribution of iron-oxide grains in a332

basaltic sample, we aim to populate a honeycomb structure of the larger minerals ob-333

tained from MicroCT analyses with a simulated distribution of small iron-oxides that334

the MicroCT would miss (Fig. 5). The first step is to extract a honeycomb structure and335
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Figure 4. Verification of MicroCT and FIB-SEM data using separate SEM imaged iron-oxides

using normalized histograms. Note that the distribution is similar for the two data-series except

for the smallest grain-sizes.

the large iron-oxides from a scanned basaltic sample and determine the resolution of the336

MicroCT. The MicroCT resolution determines how many ghost grains are missing per337

mm2 honeycomb structure. By multiplying this ghost grain density (Figure 6) with the338

honeycomb structure surface area extracted from MicroCT images, we can calculate the339

total number of missing grains. Then we use the grain-size distribution obtained in this340

study to make a list of the missing ghost grains and their diameters by feeding the num-341

ber of missing ghost grains together with the MicroCT resolution into the grain-size dis-342

tribution sampling function (available in the repository of Out et al., 2023). Finally, we343

simulate grains from the list of ghost grains and place them on the honeycomb struc-344

ture obtained from the MicroCT analysis besides the larger iron-oxide particles that were345

already detected. Hence, by extracting the honeycomb structure and MicroCT resolu-346

tion, we are able to simulate a realistic distribution of all iron-oxides in a basaltic sam-347

ple, with diameters down to the superparamagnetic range.348

As an example we consider a hypothetical MicroCT analysis with a resolution of349

0.1 µm that produced a honeycomb structure with a surface area of 4 mm2. Then we350

would need to populate this honeycomb structure with 9 × 105 particles per mm2 (dashed351

line in Fig. 6). This implies that we miss 3.6 × 106 ghost grains in the entire sample with352
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Figure 5. Overview of the protocol to build realistic models of the physical distribution of

iron-oxides in a basalt. By segmenting the MicroCT image, we only retain the honeycomb struc-

ture and the visible iron-oxides. The MicroCT resolution is required as input for the relation to

sample the grain-size distribution of iron-oxides (Fig. 6). Multiplying the ghost grain density

with the honeycomb surface area extracted from the MicroCT image, we are able to determine

how many grains are left undetected by MicroCT. Given the MicroCT resolution and the number

of ghost grains, we sample the grain-size distribution function (see Out et al., 2023) to obtain a

list of grain diameters. These grain diameters are used to construct particles that are randomly

placed on the extracted honeycomb structure. A graphical overview can be found in the supple-

mentary information (Figure S1).
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Figure 6. Maximum probability and particles per mm2 mineral interface area as function of

MicroCT resolution. Based on this figure we can determine how many grains have to be sampled

from the provided grain-size distribution. By providing the maximum cumulative probability to

the grain-size distribution, we can select the maximum grain-size that should be sampled. For

example, for 4 mm2 mineral interface area and a MicroCT resolution of 0.1 µm, we would sample

900.000 particles/mm2 × 4 mm2 = 3.6 million particles with a maximum cumulative probability

of 0.57. For a resolution larger than 1.0 µm, we would sample 1.20 million grains per mm2 min-

eral interface area.
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a surface area of 4 mm2. To obtain the list of grains that we need to add to the honey-353

comb structure we sample the grain-size distribution 3.6 million times using a maximum354

cumulative probability of 0.57 (dashed line in Fig. 6) for grains with a diameter between355

0 and 0.1 µm. These grains are then randomly placed on the honeycomb structure to-356

gether next to the larger iron-oxide particles that were already detected with MicroCT.357

3.3 Implications for Micromagnetic Tomography358

The results of previous MMT based on synthetic samples in which the grain size359

distribution was controlled (e.g. (most) results in de Groot et al., 2018, 2021)) are most360

likely not disturbed by ghost grains, because the iron-oxide grains have been sieved for361

a size larger than the MicroCT resolution. For that reason, their sample mainly consisted362

of particles larger than 5 µm, which could be easily detected by MicroCT. However, the363

natural basalt samples used by de Groot et al. (2021) and Kosters et al. (2023) undoubt-364

edly contain undetected ghost grains. Both articles study the magnetic moment of 1,646365

iron-oxides detected by MicroCT in a 30 µm thin section of Hawaiian basaltic rock, which366

is a sister-specimen as subjected to our study. The resolution of the MicroCT used in367

those studies is ∼1 µm and the mineral surface area is ∼4 mm2. According to Fig. 6,368

this implies the existence of 4.8 × 106 undetected particles, which results in ∼3,000 ghost369

grains per detected iron-oxide.370

All of these ghost grains might scramble the signal of the detected iron-oxides lead-371

ing to erroneous magnetic moments for the detected grains produced by the MMT in-372

version. Remarkably, both studies do not present unrealistic magnetic moments for the373

detected iron-oxide particles, and their results are (somewhat) interpretable in terms of374

magnetic moment and direction. Also, reported trends as function of grain-size and mag-375

netic treatment follow expectations based on earlier work (e.g. Dunlop & Özdemir, 1997).376

It is therefore likely that, although high in number, the small ghost grains do not have377

a large enough magnetic moment to have a major contribution to magnetic signal on the378

surface of the sample. Another possibility is that the spatial resolution of the surface mag-379

netometry data might not be sufficient to locate the weak signal of these ghost particles.380

As its magnetic moment is highly dependent on the size of a grain (Dunlop & Özdemir,381

1997) it is likely that the magnetic moments of larger grains are less affected by ghost382

grains in an MMT inversion, compared to grains that are just above the detection thresh-383

old of the MicroCT analysis used. To characterise the reliability of MMT results as func-384
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tion of grain size, a future study that models the impact of the undetected ghost grains385

on MMT results is critical.386

4 Conclusions387

Here we produced a grain-size distribution of all iron-oxides larger than the super-388

paramagnetic threshold in an Hawaiian basalt by combining MicroCT and FIB-SEM data389

of sister-specimens. The MicroCT and FIB-SEM datasets could not be combined one-390

to-one due to volume difference, so they were scaled using the interface area of large, non-391

iron-oxide, minerals present in the sample (i.e. honeycomb structure), because iron-oxides392

tend to cluster on the edges of large minerals. Through this scaling procedure we have393

created a lognormal-like distribution between 20 nm to 10 µm that spans the range of394

SD, PSD, and MD iron-oxides. This distribution is probably a slight overestimation of395

the concentration of iron-oxide grains, caused by the choice of FIB-SEM study area with396

relatively many iron-oxides. This grain-size distribution can be used to populate real-397

istic models of the physical distribution of iron-oxides in a sample; and makes it possi-398

ble to assess the impact of undetected ghost grains on micromagnetic and MMT stud-399

ies. Due to the high demands of both MicroCT and FIB-SEM analyses we could only400

process one sample from a well-characterised Hawaiian lava flow in this study. Future401

studies can build on our theory of combining FIB-SEM and MicroCT data through the402

surface area of the honeycomb structure of larger minerals produced by the MicroCT anal-403

ysis to study other sample material as well.404
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1. Graphical overview of building a realistic iron-oxide model

Figure S1. Graphical overview of the protocol to build a realistic iron-oxide model. See section

3.2 of the main text for an explanation of the protocol.


