Decadal variability of the extratropical response to the Madden-Julian Oscillation

Daniel Thomas Skinner¹, Adrian J Matthews¹, and David P. Stevens¹ ¹University of East Anglia

August 17, 2023

Decadal variability of the extratropical response to the Madden–Julian Oscillation

Daniel T. Skinner¹, Adrian J. Matthews^{1,2}, David P. Stevens¹

- ¹Centre for Ocean and Atmospheric Sciences, School of Mathematics, University of East Anglia
- ²Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia

Key Points:

- The extratropical response to the Madden–Julian Oscillation has changed on decadal time scales
- This decadal variability coincides with changes in low-frequency oceanic modes in both the Pacific and Atlantic basins
- Changes on decadal time scales are different to those modulated by the El Niño– Southern Oscillation on interannual scales

Corresponding author: Daniel T. Skinner, D. Skinner@uea.ac.uk

Abstract

The Madden–Julian Oscillation (MJO) is the leading mode of sub-seasonal variability in the tropical atmosphere and is a source of predictability for extratropical weather through its teleconnections. MJO teleconnection patterns can be modulated by the El Niño–Southern Oscillation (ENSO) on seasonal to interannual time scales. However, changes over decadal time scales are less well understood. ERA5 reanalysis data are used to show that the boreal winter MJO teleconnection pattern in the Northern Hemisphere has changed in recent decades in line with changes in the Pacific Decadal Oscillation and Atlantic Multidecadal Variability. Changes are seen in the circulation, temperature and precipitation responses. In particular, from 1997, intraseasonal cold anomalies appear over Europe and the eastern United States due to MJO convection over the western Pacific; these were not present 20 years previously. The decadal variability observed is not the product of aliasing of ENSO modulation of the teleconnection.

Plain Language Summary

Weather in different regions of the globe can be linked by planetary-scale atmospheric waves, and these links can help forecasters to predict the weather. One such link, or teleconnection pattern, connects changes in rainfall over Indonesia and the tropical Pacific (from a weather system called the Madden–Julian Oscillation or MJO) to changes in the weather in North America and Europe. This study assesses this teleconnection pattern in two separate time periods (roughly the mid-1970s to mid-1990s and mid-1990s to late 2010s) to analyse if and how it has changed. We find that the pattern has changed, and that this is due to large-scale changes in the background state of the atmosphere. These changes in the link between the tropics and extratropics will have implications for weather forecasts on weekly to monthly time scales.

1 Introduction

As the leading mode of sub-seasonal variability in the tropical atmosphere, the Madden–
Julian Oscillation (MJO; Madden & Julian, 1971, 1972) can influence weather around
the globe (Zhang, 2005; Jiang et al., 2020; Lin, 2022; Matthews et al., 2004; Matthews
& Meredith, 2004). Upper level divergence associated with anomalous MJO heating interacts with the jet stream to form a Rossby wave source (Sardeshmukh & Hoskins, 1988)

in the mid-latitudes. The propagation, and subsequent breaking, of these Rossby waves in the extratropics leads to changes in blocking (e.g. Henderson et al., 2016), jet dynamics (e.g. Bao & Hartmann, 2014; Kang & Tziperman, 2018) and weather regimes (e.g. Cassou, 2008; Mori & Watanabe, 2008; Lin et al., 2009, 2010; Riddle et al., 2013; Seo & Lee, 2017), which may be interpreted as teleconnection patterns.

- Currently, deterministic weather prediction is skillful up to a lead time of approximately one to two weeks in the extratropics, however this lead time can be extended by considering the effects of modes such as the MJO (Nardi et al., 2020; Kent et al., 2022), Quasi-Biennial Oscillation (QBO; Nardi et al., 2020) and El Niño-Southern Oscillation (ENSO; Patricola et al., 2020). The signature teleconnection patterns produced by these modes provide predictive skill on sub-seasonal to seasonal time scales. This skill, however, is dependent on the ability of models to reproduce the mechanisms and variability of teleconnections over a range of time scales.
- At present, even state-of-the-art General Circulation Models (GCMs) struggle to fully capture MJO teleconnections in their predictions (e.g. J. Wang et al., 2020b, 2020a). Though some are able to recreate the patterns of the teleconnections, these responses are almost universally too weak (Vitart, 2017; Lin et al., 2021; Skinner et al., 2022). This is a common feature across tropical–extratropical interactions in climate models and seasonal forecasts (Williams et al., 2023).
- ENSO is able to modulate the MJO (Kessler, 2001; Chen et al., 2016; Hsu & Xiao, 2017) and its teleconnections (Moon et al., 2011; Lee et al., 2019; Tseng et al., 2020) on seasonal to interannual time scales. However, there is little understanding of the variability of MJO teleconnections on decadal time scales. Furthermore, the extratropics have been shown to respond differently to remote forcing on interannual and decadal time scales (Seabrook et al., 2023).
- In this study, evidence of decadal variability in the extratropical response to the MJO is presented, using ERA5 reanalysis data from 1974 (the start time of reliable MJO indices) to 2018. This variability is then compared with ENSO-modulated interannual variability. Finally, we discuss the impacts of changes in the response on the weather experienced in the extratropics.

2 Data and methodology

The MJO varies on interannual (Kessler, 2001; Chen et al., 2016; Hsu & Xiao, 2017) and decadal (Jones & Carvalho, 2006; Fu et al., 2020; Wu et al., 2021) time scales. The extratropical response to the MJO is dependent on the background state of the atmosphere (Henderson et al., 2017), which can also vary on interannual and decadal time scales. These variations can be caused by changes in external forcing or in low-frequency modes of internal variability. Two key modes of variability are the Atlantic Multidecadal Variability (AMV; Kerr, 2000; Trenberth & Shea, 2006) and the Pacific Decadal Oscillation (PDO; Mantua et al., 1997; Mantua & Hare, 2002; Newman et al., 2016). Over the observational time period of 1974–2018, the AMV switches from its negative phase to positive phase around 1997. The PDO displays greater variability but moves from favouring its positive phase to negative phase, also switching around 1997 (Figure S1).

This leads us to consider changes in the extratropical response to the MJO between two non-overlapping segments: period one from 1974/75 to 1996/97, and period two from 1997/98 to 2017/18. Subsequent analysis is restricted to boreal winter (November–April) as this is when the MJO (and its teleconnections) are at their strongest (Stan et al., 2017; Jenney et al., 2019), and only considers full winter seasons. Due to an interruption in outgoing longwave radiation (OLR) data availability (Liebmann & Smith, 1996), there is no MJO index for 1978, so the 1977/78 and 1978/79 seasons are omitted. Hence our two time periods are of equal length at 21 winter seasons.

200-hPa streamfunction anomalies are derived from ERA5 wind data. Anomalies are calculated by removing the mean and first three harmonics of the annual cycle from the daily averaged ERA5 data. Annual cycles are calculated and removed separately for each time segment, so that the two periods may be considered independent samples. By removing separate annual cycles, the changes observed in the extratropical response to the MJO are due to changes in the interaction of the MJO with the mean state (i.e., the MJO teleconnection patterns), rather than changes in the mean state itself.

The MJO is diagnosed by the Realtime Multivariate MJO index, described by Wheeler and Hendon (2004), which is available from 1974 to present (Australian Bureau of Meteorology, 2021). The RMM index produces two values: a phase and amplitude. The phase, given by an integer between 1 and 8, signifies the zonal location of the centres of anomalous MJO convection. Phase 1 indicates enhanced convection over the western Indian

Ocean, then, through eastward motion of the MJO, phases 2–3, 4–5, and 6–7 signify enhanced convection over the eastern Indian Ocean, Maritime Continent and western Pacific respectively. By phase 8, the enhanced convection has moved into the eastern Pacific and dissipates, whilst simultaneously reforming in the western Indian Ocean. The amplitude indicates the relative strength of this anomalous convection.

10-day lagged composite maps of 200-hPa streamfunction anomaly are produced for each MJO phase, taking only days in which the MJO is 'active' (defined as amplitude greater than 1). Note that all active days are included for each MJO event, not just the first day in each phase. Statistical significance in the difference between lagged composites in the two periods is assessed using a two-tailed, two-sample t-test at the 95% significance level.

To assess the impact of upper tropospheric circulation changes on meteorological conditions, 10-day lagged MJO composite maps of 850-hPa temperature and precipitation anomalies are also created. 850-hPa temperature anomalies are derived from daily-averaged ERA5 data. Precipitation anomalies are derived from CMAP pentad-mean data, which have been interpolated to daily data.

MJO teleconnection patterns are strongest in the winter (Northern) Hemisphere, so results are presented over this domain. Discussion will be made within the context of societal impacts, so will focus on regions which are densely populated, or which impact on key weather patterns such as the North Atlantic Oscillation (NAO).

3 Decadal variability of the background state

Period one is characterised by the negative phase of the AMV and the positive phase of the PDO, whilst in period two the reverse is observed. The signatures of the AMV and PDO are visible in November–April mean HadISST sea surface temperatures (SSTs; Figure 1a). Whilst the change in AMV state is statistically significant at the 95% confidence level, the PDO SST pattern is only significant in the warm western and central North Pacific but not in the cold eastern North Pacific. There are changes in the upper tropospheric zonal wind (Figure 1b), where, as expected, there are changes in the subtropical jets (Matsumura & Horinouchi, 2016; Ruggieri et al., 2021). The northern hemisphere jet exhibits a general poleward shift in period two, particularly over the North Pacific.

Figure 1. Change in boreal winter (November–April) mean (a) SST and (b) 200-hPa zonal wind: period two (1997/98–2017/18) minus period one (1974/75–1996/97). Stippling shows the regions in which this difference is not significant at the 95% confidence level, based on a two-sample, two-tailed t-test. Period two mean 200-hPa zonal wind is plotted at 0 m s⁻¹ (dashed black contour), 20 m s⁻¹ (thin black contour), and 30 m s⁻¹ (thick black contour) in panel (b) for reference.

Around the Maritime Continent there is evidence of a strengthened Gill-type response in the period two circulation due to SST warming in the Indian Ocean and western Pacific, which in turn leads to enhanced convection. This warming is consistent with the negative PDO (western Pacific; Mantua & Hare, 2002) and with a global warming signal (Indian Ocean; Ruela et al., 2020). To the west of the Maritime Continent the equatorial easterly anomalies and off-equatorial westerly anomalies are consistent with twin anticyclones, indicating an enhanced equatorial Rossby wave response, whilst to the east of the Maritime Continent an enhanced equatorial Kelvin wave response can be seen in amplified westerlies near the equator.

Changes in SST patterns, both in the tropics and extratropics, and the corresponding changes in the upper troposphere together provide a different mean state with which the MJO and its teleconnections will interact. These changes are the combined result of both internal variability (i.e. the AMV and PDO) and long-term trends. In the present study, these changes are treated as a whole, due to the relatively short length of the dataset. Future studies, making use of climate models, may have an opportunity to untangle the effects of individual mean state variations.

The stationary Rossby wavenumber, K_s , is defined as

$$K_s = \left(\frac{\beta - \overline{u}_{yy}}{\overline{u}}\right)^{\frac{1}{2}},$$

where \overline{u} is the time-mean zonal wind, β is the meridional gradient of planetary vorticity, and \overline{u}_{yy} is the meridional gradient of time-mean relative vorticity (with the meridional wind component neglected). Since Rossby waves usually propagate in the upper troposphere, the stationary Rossby wavenumber is calculated at 200 hPa. Rossby waves are refracted towards regions of high K_s (Hoskins & Ambrizzi, 1993; Dawson et al., 2011), so local maxima in K_s can be approximated as Rossby waveguides. This approximation relies on the crude assumption that the scale of the Rossby waves is much smaller than the scale of changes in the mean state (Hoskins & Karoly, 1981; Karoly, 1983; Hoskins & Ambrizzi, 1993), however it works well in a qualitative sense.

There is relatively little qualitative change in the North Atlantic waveguide (Figure 2), however a local minimum in K_s around 30°N, 140°W in period two diverts the North Pacific waveguide towards British Columbia and central Canada. During period one, however, this waveguide merges into the North Atlantic waveguide. The effect of

Figure 2. Boreal winter (November–April) 200-hPa stationary Rossby wavenumber, K_s , for (a) period one (1974/75–1996/97) and (b) period two (1997/98–2017/18). Regions in which K_s is undefined, and Rossby waves are evanescent – that is, when $\overline{u} < 0$ or $\beta - \overline{u}_{yy} < 0$ – are denoted by hatching (//// and \mathbb{\

this diversion in the waveguide is an amplified teleconnection over Canada and stronger Rossby wave response passing over Greenland into the North Atlantic.

4 Changes in the upper tropospheric response to the MJO

4.1 Decadal changes between periods one (1974/75-1996/7) and two (1997/98-2017/18)

Upper tropospheric divergence associated with anomalous MJO convection forms an anticyclonic anomaly either side of the equator, spanning the convective centre (Figure 3). The vorticity perturbation induced by this anticyclonic anomaly produces a stationary Rossby wave, characterised by alternating cyclonic and anticyclonic anomalies across the mid-latitudes. These broad features are visible in both period one and two; however, the strength and spatial structures of the Rossby wave trains have changed.

Over western North America there are substantial changes to the upper tropospheric circulation 10 days after MJO phases 1–2 and phases 5–6. In period two, the Rossby wave train initiated over the central North Pacific after MJO phases 1–2 extends over Canada, producing an cyclonic (anticyclonic) anomaly over British Columbia after phases 1–2 (5–6). This feature is not observed in period one. This change may be attributed to the deflection of Rossby waves into Canada as discussed in Section 3.

Continuing the Rossby wave train into the North Atlantic and Europe, we see the canonical NAO+ and NAO- responses (Cassou, 2008) after phases 3 and 6 respectively. Most notably, we see a strengthened anticyclonic anomaly (corresponding to a weakening of the Icelandic Low) in the North Atlantic after phase 6. Whilst a broad cyclonic anomaly is present over southern Europe and the North Atlantic in period one, a strengthened and tilted cyclonic anomaly covers the entirety of Europe in period two. This anomalous low pressure centre (Figure S5) will bring polar air masses across western Europe, which are colder than the air advected from eastern Europe in period one. It also represents a strengthening of the NAO- response that we would expect to see following phase 6 (Cassou, 2008). Period two is characterised by AMV+ in the North Atlantic, which weakens the meridional temperature gradient across the North Atlantic, favouring NAO-conditions. This compounds and amplifies the NAO- response to MJO phase 6.

Overall, there are a considerable number of changes in the upper tropospheric circulation response to the MJO between periods 1 and 2. Now we compare these decadal

Figure 3. Lag 10-day composites of boreal winter (November–April) 200-hPa streamfunction anomaly for each of the eight MJO phases. Thick black contours represent period two, and shading shows the difference – period two (1997/98–2017/18) minus period one (1974/75–1996/7) – wherever this difference is significant at the 95% level. The contour interval for both the line and shaded contours is $2 \times 10^6 \,\mathrm{m^2 s^{-1}}$, and dashed contours represent negative values. The zero contour has been omitted. The percentage of the spatial domain in which the difference is significant is stated in the top right of each panel.

variations against known interannual variability (Section 4.2) and assess the impacts of these changes (Section 5).

4.2 Interannual changes associated with ENSO

Whilst the MJO is the leading mode of tropical variability on sub-seasonal timescales, ENSO is the leading mode on interannual time scales. ENSO modulates MJO teleconnection patterns on interannual time scales (Roundy et al., 2010; Moon et al., 2011; Lee et al., 2019; Tseng et al., 2020), so it seems natural to compare this variability with the changes observed on decadal time scales. We expect to see some agreement because the ENSO SST pattern projects heavily onto the PDO SST pattern (the key difference being the relative strength of the North and tropical Pacific anomalies). On the other hand, there is evidence that the interaction between Pacific SST variability and the extratropics can be dependent on time scale (Seabrook et al., 2023). If the decadal variability discussed in Section 4.1 is an aliasing of the interannual ENSO variability, similar changes to the MJO response between El Niño and La Niña as between period one and two might be expected.

However, the spatial patterns of the decadal variability in the extratropical response to the MJO (Figure 3) and the interannual variability in the extratropical response to the MJO (Figures S2 and S3) take different forms. Even with the connection between the PDO and ENSO, there is no evidence that the observed decadal variability is due to aliasing of ENSO-modulated interannual variability.

5 Impacts of changes to MJO teleconnections

The observed changes in the upper tropospheric circulation response to the MJO between periods one and two will in turn lead to changes in the weather experienced in the extratropics. 10-day lagged composites of 850-hPa temperature anomaly are calculated using ERA5 data (Figure 4 (a–d)). Similarly, CMAP precipitation data are used to create 10-day lagged composites of precipitation anomaly (Figure 4 (e–h)). Due to the availability of CMAP data, precipitation composites were calculated from 1979/80 to 1996/97 for period one and from 1997/98 to 2015/16 for period two.

The response in lower tropospheric temperature to the MJO in period two (black contours in Figure 4 (a–d)) is generally qualitatively consistent with previous studies (e.g.

Figure 4. Change in 10-day lagged composites of (a–d) 850-hPa temperature and (e–h) precipitation anomalies over North America, Europe, and North Africa for MJO phases 1, 2, 5 and 6 (see Figure S4 for remaining phases). Difference – period two (1997/98–2017/18) minus period one (1974/75–1996/7) – is colour shaded wherever it is significant at the 95% level, with change in precipitation anomaly plotted on a logarithmic scale. Period two composites are overlaid as black contours for reference. Solid contours represent positive values, dashed contours represent negative values and the zero contour has been omitted. Contour levels are the same for the line contours as they are for the shaded contours.

Seo et al. (2016) Figure 1, Zhou et al. (2012) Figure 3, accounting for 1–2 phase shift as a result of the 10-day lag used here). There are some differences between the exact response to each MJO phase in these studies due to differences in the time domains and data sets used; however, our results match previous results to leading order.

There are significant and coherent changes in the lower tropospheric temperature response to the MJO from period one to period two. These changes are consistent with the differences observed in the upper tropospheric circulation response (and hence with the lower tropospheric circulation response, having confirmed equivalent barotropic behaviour in the extratropics). Where responses have changed significantly between periods one and two, this usually corresponds to a strengthening of the teleconnection (since the shaded difference tends to be of the same sign as the black contours for period two).

Changes in the temperature response to the MJO over western Canada after MJO phases 1 and 5 are consistent with the changes in the upper tropospheric circulation and are exacerbated by the presence of the Rocky Mountains. In MJO phase 1 there is a cold shift in the response. In period one there is anomalous south-easterly flow from the central United States to western Canada, whereas in period two colder air is advected westward from northern Canada. Conversely, after MJO phase 5 warming is observed over western Canada in period two, as warmer air is transported north-westward from the midwestern United States.

Changes in the response to MJO phase 6 will also have significant impacts on human populations across the northern hemisphere. Over eastern North America there is a shift to a cold anomaly, from anomalous southward advection from northern Canada rather than westward from the Atlantic. Interestingly, this cold anomaly is more often associated with the response to later MJO phases (e.g. Schreck et al., 2013), indicating a shift in the mechanisms of the response.

Across Europe, the strengthened and tilted cyclonic anomaly in period two has induced a strong cold anomaly. This feature is not present in period one but has a strength of -1.5 K in period two. The cold anomaly over Europe, paired with the eastern North American cold anomaly and warm anomaly over Greenland and Northern Canada bares considerable resemblance to the temperature pattern associated with the negative phase of the North Atlantic Oscillation (NAO—; C. Wang et al., 2010). Moreover, the average NAO index value at 10-day lag after MJO phase 6 has increased in magnitude (i.e. has

become more negative) by approximately 33% in period two, compared to period one. MJO phase 6 is known to precede NAO— (Cassou, 2008; Lin et al., 2009), so the strengthening of these patterns suggests a strengthened link between MJO phase 6 and the NAO— (Figure S5).

Precipitation anomalies (Figure 4 (e-h)) are less spatially coherent than the corresponding 850-hPa temperature anomalies. Nevertheless, statistically significant changes in the extratropical precipitation response to the MJO from period one to period two are observed in some locations. In particular, the cold shift over central and southern Europe in MJO phase 6 is associated with a wet shift there, which is the opposite of what would usually be expected in boreal winter (Madden & Williams, 1978; Crhová & Holtanová, 2018). Over southern Europe this is due to the formation of a wet anomaly in period two, whereas in central/western Europe this is due to a switch from dry to slightly wet anomaly. An explanation for the change in southern Europe is that the cyclonic anomaly is associated with a low pressure anomaly. The centre of this low pressure covers southern Europe in period two, whereas in period one the centre is located off the west coast of North Africa. The low pressure over Europe will generally lead to cloudier, wetter weather and hence the positive precipitation anomaly.

6 Conclusions

Evidence has been found in ERA5 reanalysis data, showing that the extratropical response to the MJO changes on decadal time scales. ENSO is known to modulate MJO teleconnection patterns on interannual time scales, however the decadal variability we have observed differs from this ENSO-modulated variability and is not an example of aliasing over different time scales.

With only 4 decades of data, however, we are unable to conclusively attribute these changes to either external forcing or internal modes of variability. We hypothesise that low-frequency modes such as the AMV and PDO play a role in modulating MJO teleconnections, and by using climate models to increase our sample size we hope to examine this hypothesis further.

Changes in teleconnection patterns have impacts on meteorological conditions, particularly temperature and precipitation, which will directly affect human populations.

These impacts are widespread, covering large portions of the extratropical Northern Hemisphere.

Skillful prediction of MJO teleconnections are vital to skillful seasonal forecasting in the extratropics (Kent et al., 2022), which in turn impacts on various industries (Palmer, 2002), including transportation (Palin et al., 2016; Karpechko et al., 2015), agriculture (Cantelaube & Terres, 2005; Challinor et al., 2005) and energy (Clark et al., 2017; Bloomfield et al., 2021). Finding clear evidence of decadal variability in the extratropical response to the MJO is a key step towards improved MJO-induced predictability in the extratropics and opens exciting opportunities for further refinement.

Open Research

All data used in the preparation of this manuscript are publicly available. ERA5 wind, geopotential and temperature data were provided by the Copernicus Climate Data Store (Hersbach et al., 2020; Copernicus Climate Change Service, 2023a, 2023b). HadISST SST data were provided by the Met Office Hadley Centre (UK Met Office, 2022; Rayner et al., 2003). The MJO index was accessed from the Australian Bureau of Meteorology (2021) and Nino 3.4 index from the US National Oceanic and Atmospheric Administration Earth System Research Laboratories (2022). The AMV index data were provided by the Climate Analysis Section, NCAR (Trenberth & Shea, 2006). The PDO index data were provided by the National Centres for Environmental Information, NOAA (Mantua, 1999). The NAO index data were provided by the National Oceanic and Atmospheric Administration Earth System Research Laboratories (2023). CMAP precipitation data (Xie & Arkin, 1997) were provided by the NOAA PSL.

Acknowledgments

AJM was partially funded by the Natural Environment Research Council through the
TerraMaris project (grant NE/R016704/1). The authors would like to thank the two anonymous reviewers for their comprehensive and constructive comments, which have undoubtedly improved the quality of the manuscript.

- References 317 Australian Bureau of Meteorology. (2021). RMM data [Dataset]. Retrieved from 318 http://www.bom.gov.au/climate/mjo 319 Bao, M., & Hartmann, D. L. (2014). The response to MJO-like forcing in a non-320 linear shallow-water model. Geophysical Research Letters, 41(4), 1322–1328. 321 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1002/2013GL057683 doi: 10.1002/2013GL057683Bloomfield, H. C., Brayshaw, D. J., Gonzalez, P. L. M., & Charlton-Perez, A. 324 (2021).Sub-seasonal forecasts of demand and wind power and solar power 325 generation for 28 European countries. Earth System Science Data, 13(5), 2259 - 2274.Retrieved from https://essd.copernicus.org/articles/13/ 2259/2021/ doi: 10.5194/essd-13-2259-2021 Cantelaube, P., & Terres, J.-M. (2005). Seasonal weather forecasts for crop yield 329 modelling in Europe. Tellus A: Dynamic Meteorology and Oceanography, 330 57(3), 476-487. doi: 10.3402/tellusa.v57i3.14669 331 Cassou, C. (2008). Intraseasonal interaction between the Madden–Julian Oscillation 332
- Cassou, C. (2008). Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. *Nature*, 455 (7212), 523-527. Retrieved from https://doi.org/10.1038/nature07286 doi: 10.1038/nature07286
- Challinor, A. J., Slingo, J. M., Wheeler, T. R., & Doblas–Reyes, F. J. (2005). Probabilistic simulations of crop yield over western India using the DEMETER
 seasonal hindcast ensembles. *Tellus A: Dynamic Meteorology and Oceanogra-*phy, 57(3), 498–512. doi: 10.3402/tellusa.v57i3.14670
- Chen, X., Ling, J., & Li, C. (2016). Evolution of the Madden-Julian Oscillation in two types of El Niño. *Journal of Climate*, 29(5), 1919 – 1934. Retrieved from https://journals.ametsoc.org/view/journals/clim/29/5/ jcli-d-15-0486.1.xml doi: 10.1175/JCLI-D-15-0486.1
- Clark, R. T., Bett, P. E., Thornton, H. E., & Scaife, A. A. (2017). Skilful seasonal predictions for the European energy industry. *Environmental Research Letters*, 12(2), 024002. Retrieved from https://dx.doi.org/10.1088/1748-9326/aa57ab doi: 10.1088/1748-9326/aa57ab
- Copernicus Climate Change Service. (2023a). ERA5 hourly data on pressure levels
 from 1940 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi: 10.24381/cds.bd0915c6

```
Copernicus Climate Change Service.
                                             (2023b).
                                                         ERA5 hourly data on single levels
350
            from 1940 to present [Dataset]. Copernicus Climate Change Service (C3S) Cli-
351
            mate Data Store (CDS). doi: 10.24381/cds.adbb2d47
352
      Crhová, L., & Holtanová, E.
                                     (2018).
                                                Simulated relationship between air temper-
353
            ature and precipitation over Europe: sensitivity to the choice of RCM and
354
            GCM. International Journal of Climatology, 38(3), 1595–1604. Retrieved from
355
            https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5256
356
            doi: 10.1002/joc.5256
      Dawson, A., Matthews, A. J., & Stevens, D. P.
                                                          (2011).
                                                                      Rossby wave dynam-
358
            ics of the North Pacific extra-tropical response to El Niño: Importance of
359
            the basic state in coupled GCMs.
                                                Climate dynamics, 37(1), 391-405.
                                                                                      doi:
            10.1007/s00382-010-0854-7
361
      Fu, Z., Hsu, P.-C., & Liu, F. (2020). Factors regulating the multidecadal changes in
362
            MJO amplitude over the twentieth century. Journal of Climate, 33(22), 9513 –
363
            9529. Retrieved from https://journals.ametsoc.org/view/journals/clim/
364
            33/22/jcliD200111.xml doi: 10.1175/JCLI-D-20-0111.1
365
      Henderson, S. A., Maloney, E. D., & Barnes, E. A.
                                                               (2016).
                                                                             The influence
366
            of the Madden–Julian Oscillation on northern hemisphere winter block-
367
                     Journal of Climate, 29(12), 4597–4616.
                                                                 Retrieved from https://
368
            journals.ametsoc.org/view/journals/clim/29/12/jcli-d-15-0502.1.xml
            doi: 10.1175/JCLI-D-15-0502.1
370
      Henderson, S. A., Maloney, E. D., & Son, S.-W. (2017). Madden-Julian Oscillation
371
            Pacific teleconnections: The impact of the basic state and MJO representation
            in General Circulation Models.
                                             Journal of Climate, 30(12), 4567–4587.
373
            10.1175/JCLI-D-16-0789.1
374
      Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J.,
375
            ... Thépaut, J.-N. (2020). The ERA5 global reanalysis.
                                                                         Quarterly Journal
376
            of the Royal Meteorological Society, 146(730), 1999–2049.
                                                                           Retrieved from
377
            https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803
378
            10.1002/qj.3803
379
      Hoskins, B. J., & Ambrizzi, T.
                                          (1993).
                                                      Rossby wave propagation on a realis-
380
            tic longitudinally varying flow.
                                                 Journal of Atmospheric Sciences, 50(12),
```

Retrieved from https://journals.ametsoc.org/view/

1661 - 1671.

382

```
journals/atsc/50/12/1520-0469_1993_050_1661_rwpoar_2_0_co_2.xml
                                                                                    doi:
383
            10.1175/1520-0469(1993)050(1661:RWPOAR)2.0.CO;2
384
      Hoskins, B. J., & Karoly, D. J. (1981). The steady linear response of a spherical at-
385
            mosphere to thermal and orographic forcing. Journal of Atmospheric Sciences,
386
            38(6), 1179–1196.
                                  Retrieved from https://journals.ametsoc.org/view/
387
            journals/atsc/38/6/1520-0469_1981_038_1179_tslroa_2_0_co_2.xml
                                                                                    doi:
388
            10.1175/1520-0469(1981)038(1179:TSLROA)2.0.CO;2
389
      Hsu, P.-C., & Xiao, T. (2017). Differences in the initiation and development of the
390
           Madden-Julian Oscillation over the Indian Ocean associated with two types of
                      Journal of Climate, 30(4), 1397 - 1415. Retrieved from https://
           El Niño.
392
            journals.ametsoc.org/view/journals/clim/30/4/jcli-d-16-0336.1.xml
            doi: 10.1175/JCLI-D-16-0336.1
394
      Jenney, A. M., Nardi, K. M., Barnes, E. A., & Randall, D. A.
                                                                     (2019).
                                                                                The sea-
395
            sonality and regionality of MJO impacts on North American temperature.
396
            Geophysical Research Letters, 46(15), 9193–9202.
                                                                Retrieved from https://
397
            agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083950
398
            10.1029/2019GL083950
399
      Jiang, X., Adames, Á. F., Kim, D., Maloney, E. D., Lin, H., Kim, H., ... Klinga-
400
            man, N. P. (2020). Fifty years of research on the Madden–Julian Oscillation:
401
                                                              Journal of Geophysical Re-
            Recent progress, challenges, and perspectives.
402
            search:\ Atmospheres,\ 125(17),\ e2019JD030911.
                                                               Retrieved from https://
            agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030911
            10.1029/2019JD030911
405
      Jones, C., & Carvalho, L. M. V.
                                        (2006).
                                                  Changes in the activity of the Madden-
406
            Julian Oscillation during 1958–2004. Journal of Climate, 19(24), 6353 – 6370.
407
           Retrieved from https://journals.ametsoc.org/view/journals/clim/19/
408
            24/jcli3972.1.xml doi: 10.1175/JCLI3972.1
409
      Kang, W., & Tziperman, E.
                                    (2018).
                                               The MJO-SSW teleconnection: Interaction
410
            between MJO-forced waves and the midlatitude jet.
                                                                    Geophysical Research
411
            Letters, 45(9), 4400-4409. Retrieved from https://agupubs.onlinelibrary
412
            .wiley.com/doi/abs/10.1029/2018GL077937 doi: 10.1029/2018GL077937
      Karoly, D. J. (1983). Rossby wave propagation in a barotropic atmosphere. Dy-
414
            namics of Atmospheres and Oceans, 7(2), 111-125. Retrieved from https://
415
```

- www.sciencedirect.com/science/article/pii/0377026583900131 doi: 10 416 .1016/0377-0265(83)90013-1417 Karpechko, A. Y., Peterson, K. A., Scaife, A. A., Vainio, J., & Gregow, H. (2015).418 Skilful seasonal predictions of Baltic sea ice cover. Environmental Research 419 Letters, 10(4), 044007. Retrieved from https://dx.doi.org/10.1088/ 420 1748-9326/10/4/044007 doi: 10.1088/1748-9326/10/4/044007 421 Kent, C., Scaife, A. A., & Dunstone, N. (2022).What potential for improving 422 sub-seasonal predictions of the winter NAO? Atmospheric Science Letters, 423 n/a(n/a), e1146. Retrieved from https://rmets.onlinelibrary.wiley.com/ 424 doi/abs/10.1002/asl.1146 doi: 10.1002/asl.1146 425 Kerr, R. A. (2000).A North Atlantic climate pacemaker for the centuries. 426 ence, 288(5473), 1984-1985. Retrieved from https://www.science.org/doi/ 427 abs/10.1126/science.288.5473.1984 doi: 10.1126/science.288.5473.1984 428 Kessler, W. S. (2001).EOF representations of the Madden–Julian Oscilla-429 tion and its connection with ENSO. Journal of Climate, 14(13), 3055 -3061. Retrieved from https://journals.ametsoc.org/view/journals/ 431 clim/14/13/1520-0442_2001_014_3055_erotmj_2.0.co_2.xml doi: $10.1175/1520-0442(2001)014\langle 3055:EROTMJ \rangle 2.0.CO; 2$ 433 Lee, R. W., Woolnough, S. J., Charlton-Perez, A. J., & Vitart, F. **ENSO** (2019).modulation of MJO teleconnections to the North Atlantic and Europe. Geo-435 physical Research Letters, 46(22), 13535–13545. Retrieved from https:// 436 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084683 doi: 437 10.1029/2019GL084683 438 Liebmann, B., & Smith, C. (1996). Description of a complete (interpolated) outgo-439 ing longwave radiation dataset. Bulletin of the American Meteorological Soci-440 ety, 77(6), 1275-1277. 441 Lin, H. (2022).The Madden–Julian Oscillation. Atmosphere-Ocean, 60(3-4),442 338-359. Retrieved from https://doi.org/10.1080/07055900.2022.2072267 443 doi: 10.1080/07055900.2022.2072267 444 Lin, H., Brunet, G., & Derome, J. (2009).An observed connection between the 445
- North Atlantic Oscillation and the Madden-Julian Oscillation. Journal of Climate, 22(2), 364-380. Retrieved from https://journals.ametsoc.org/view/
 journals/clim/22/2/2008jcli2515.1.xml doi: 10.1175/2008JCLI2515.1

```
Lin, H., Brunet, G., & Fontecilla, J. S. (2010). Impact of the Madden-Julian Oscil-
449
            lation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geo-
450
            physical Research Letters, 37(19), L19803. Retrieved from https://doi.org/
451
            10.1029/2010GL044315 doi: 10.1029/2010GL044315
452
      Lin, H., Huang, Z., Hendon, H., & Brunet, G.
                                                         (2021).
                                                                     NAO influence on the
453
            MJO and its prediction skill in the subseasonal-to-seasonal prediction mod-
454
                     Journal of Climate, 34 (23), 9425–9442.
                                                                 Retrieved from https://
455
            journals.ametsoc.org/view/journals/clim/34/23/JCLI-D-21-0153.1.xml
            doi: 10.1175/JCLI-D-21-0153.1
457
      Madden, R. A., & Julian, P. R. (1971). Detection of a 40-50 day oscillation in the
458
            zonal wind in the tropical Pacific.
                                                   Journal of Atmospheric Sciences, 28(5),
            702 - 708.
                             Retrieved from https://doi.org/10.1175/1520-0469(1971)
460
            028<0702:DOAD0I>2.0.C0;2
                                                    doi: 10.1175/1520-0469(1971)028(0702:
461
            DOADOI \rangle 2.0.CO; 2
462
      Madden, R. A., & Julian, P. R.
                                            (1972).
                                                          Description of global-scale circu-
463
            lation cells in the tropics with a 40-50 day period.
                                                                          Journal of Atmo-
464
            spheric Sciences, 29(6), 1109–1123.
                                                        Retrieved from https://doi.org/
465
            10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
                                                                             doi: 10.1175/
466
            1520-0469(1972)029(1109:DOGSCC)2.0.CO;2
467
      Madden, R. A., & Williams, J. (1978). The correlation between temperature and
468
            precipitation in the United States and Europe.
                                                                 Monthly Weather Review,
            106(1), 142-147.
                                   Retrieved from https://journals.ametsoc.org/view/
            journals/mwre/106/1/1520-0493_1978_106_0142_tcbtap_2_0_co_2.xml
                                                                                       doi:
471
            10.1175/1520-0493(1978)106\langle0142:TCBTAP\rangle2.0.CO;2
472
      Mantua, N. J.
                                  The Pacific Decadal Oscillation: a brief overview for non-
                       (1999).
473
            specialists. Encyclopedia of Environmental Change.
474
      Mantua, N. J., & Hare, S. R. (2002). The Pacific Decadal Oscillation. Journal of
475
            Oceanography, 58, 35-44. doi: 10.1023/A:1015820616384
476
      Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C.
                                                                                    (1997).
477
            A Pacific interdecadal climate oscillation with impacts on salmon produc-
478
                        Bulletin of the American Meteorological Society, 78(6), 1069–1080.
            tion.
479
            Retrieved from https://journals.ametsoc.org/view/journals/bams/
```

doi: 10.1175/

78/6/1520-0477_1997_078_1069_apicow_2_0_co_2.xml

```
1520-0477(1997)078(1069:APICOW)2.0.CO;2
482
      Matsumura, S., & Horinouchi, T.
                                          (2016).
                                                    Pacific Ocean decadal forcing of long-
483
            term changes in the western Pacific subtropical high.
                                                                    Scientific Reports, 6,
           37765. Retrieved from https://www.nature.com/articles/srep37765
485
            10.1038/\text{srep}37765
486
      Matthews, A. J., Hoskins, B. J., & Masutani, M.
                                                          (2004).
                                                                     The global response
487
            to tropical heating in the Madden—Julian Oscillation during the northern
488
            winter. Quarterly Journal of the Royal Meteorological Society, 130(601), 1991-
489
                    Retrieved from https://rmets.onlinelibrary.wiley.com/doi/abs/
490
            10.1256/qj.02.123 doi: 10.1256/qj.02.123
491
      Matthews, A. J., & Meredith, M. P.
                                            (2004).
                                                      Variability of Antarctic circumpolar
492
            transport and the Southern Annular Mode associated with the Madden-Julian
493
                          Geophysical Research Letters, 31 (24), L24312.
            Oscillation.
                                                                          Retrieved from
494
           https://doi.org/10.1029/2004GL021666 doi: 10.1029/2004GL021666
495
      Moon, J. Y., Wang, B., & Ha, K. J.
                                             (2011).
                                                        ENSO regulation of MJO telecon-
496
            nection.
                       Climate Dynamics, 37, 1133–1149.
                                                            Retrieved from https://link
497
            .springer.com/article/10.1007/s00382-010-0902-3
                                                                     doi: 10.1007/s00382
498
            -010-0902-3
499
      Mori, M., & Watanabe, M. (2008).
                                            The growth and triggering mechanisms of the
500
           PNA: A MJO-PNA coherence. Journal of the Meteorological Society of Japan,
501
            86(1), 213–236. doi: 10.2151/jmsj.86.213
502
      Nardi, K. M., Baggett, C. F., Barnes, E. A., Maloney, E. D., Harnos, D. S., &
503
            Ciasto, L. M.
                             (2020).
                                        Skillful all-season S2S prediction of U.S. precipita-
504
            tion using the MJO and QBO.
                                              Weather and Forecasting, 35(5), 2179–2198.
505
           Retrieved from https://journals.ametsoc.org/view/journals/wefo/35/5/
            wafD190232.xml doi: 10.1175/WAF-D-19-0232.1
      National Oceanic and Atmospheric Administration Earth System Research
508
                                        Niño 3.4 SST Index [Dataset].
           Laboratories.
                             (2022).
                                                                          Retrieved from
           https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
510
      National Oceanic and Atmospheric Administration Earth System Research Labora-
511
            tories. (2023). North Atlantic Oscillation (NAO) [Dataset]. Retrieved from
           https://psl.noaa.gov/data/timeseries/daily/NAO/
513
      Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Lorenzo,
```

514

```
E. D., ... Smith, C. A.
                                        (2016).
                                                     The Pacific Decadal Oscillation, revis-
515
                      Journal of Climate, 29(12), 4399-4427.
            ited.
                                                                  Retrieved from https://
516
            journals.ametsoc.org/view/journals/clim/29/12/jcli-d-15-0508.1.xml
517
            doi: 10.1175/JCLI-D-15-0508.1
518
      Palin, E. J., Scaife, A. A., Wallace, E., Pope, E. C. D., Arribas, A., & Brookshaw,
519
            A. (2016). Skillful seasonal forecasts of winter disruption to the U.K. transport
520
                         Journal of Applied Meteorology and Climatology, 55(2), 325 - 344.
            system.
521
            Retrieved from https://journals.ametsoc.org/view/journals/apme/55/2/
            jamc-d-15-0102.1.xml doi: 10.1175/JAMC-D-15-0102.1
      Palmer, T. N.
                         (2002).
                                     The economic value of ensemble forecasts as a tool for
524
            risk assessment: From days to decades.
                                                            Quarterly Journal of the Royal
525
            Meteorological Society, 128(581), 747-774.
                                                                  Retrieved from https://
526
            rmets.onlinelibrary.wiley.com/doi/abs/10.1256/0035900021643593
527
            doi: 10.1256/0035900021643593
528
      Patricola, C. M., O'Brien, J. P., Risser, M. D., Rhoades, A. M., O'Brien, T. A.,
529
            Ullrich, P. A., ... Collins, W. D.
                                                (2020).
                                                          Maximizing ENSO as a source of
            western US hydroclimate predictability. Climate Dynamics, 54, 351–372. doi:
531
            10.1007/s00382-019-05004-8
532
      Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Row-
533
            ell, D. P., ... Kaplan, A.
                                         (2003).
                                                   Global analyses of sea surface tempera-
534
            ture, sea ice, and night marine air temperature since the late nineteenth cen-
535
                    Journal of Geophysical Research: Atmospheres, 108(D14).
                                                                                 Retrieved
536
            from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
537
            2002JD002670 doi: 10.1029/2002JD002670
538
      Riddle, E. E., Stoner, M. B., Johnson, N. C., L'Heureux, M. L., Collins, D. C., &
539
            Feldstein, S. B.
                               (2013).
                                          The impact of the MJO on clusters of wintertime
540
            circulation anomalies over the North American region. Climate Dynamics, 40,
541
            1749-1766. doi: 10.1007/s00382-012-1493-y
542
      Roundy, P. E., MacRitchie, K., Asuma, J., & Melino, T.
                                                                   (2010).
                                                                               Modulation
543
            of the global atmospheric circulation by combined activity in the Madden-
544
            Julian Oscillation and the El Niño-Southern Oscillation during boreal win-
545
                    Journal of Climate, 23(15), 4045 - 4059.
                                                                 Retrieved from https://
            journals.ametsoc.org/view/journals/clim/23/15/2010jcli3446.1.xml
```

```
doi: 10.1175/2010JCLI3446.1
548
      Ruela, R., Sousa, M., deCastro, M., & Dias, J. (2020). Global and regional evolu-
549
            tion of sea surface temperature under climate change.
                                                                     Global and Planetary
550
            Change, 190, 103190.
                                       Retrieved from https://www.sciencedirect.com/
551
            science/article/pii/S0921818120300813
                                                            doi: 10.1016/j.gloplacha.2020
552
            .103190
553
      Ruggieri, P., Bellucci, A., Nicolí, D., Athanasiadis, P. J., Gualdi, S., Cassou, C.,
554
            ... Zampieri, M.
                                  (2021).
                                              Atlantic Multidecadal Variability and North
555
            Atlantic jet: A multimodel view from the Decadal Climate Prediction
                        Journal of Climate, 34(1), 347 - 360.
                                                                Retrieved from https://
557
            journals.ametsoc.org/view/journals/clim/34/1/JCLI-D-19-0981.1.xml
            doi: 10.1175/JCLI-D-19-0981.1
559
      Sardeshmukh, P. D., & Hoskins, B. J. (1988). The generation of global rotational
560
            flow by steady idealized tropical divergence. Journal of Atmospheric Sciences,
561
            45(7), 1228 - 1251.
                                  Retrieved from https://journals.ametsoc.org/view/
562
            journals/atsc/45/7/1520-0469_1988_045_1228_tgogrf_2_0_co_2.xml
563
            10.1175/1520-0469(1988)045\langle 1228:TGOGRF \rangle 2.0.CO; 2
564
      Schreck, C. J., III, Cordeira, J. M., & Margolin, D. (2013). Which MJO events af-
565
            fect North American temperatures? Monthly Weather Review, 141(11), 3840-
566
            3850. Retrieved from https://journals.ametsoc.org/view/journals/mwre/
            141/11/mwr-d-13-00118.1.xml doi: 10.1175/MWR-D-13-00118.1
      Seabrook, M., Smith, D. M., Dunstone, N. J., Eade, R., Hermanson, L., Scaife,
            A. A., & Hardiman, S. C. (2023). Opposite impacts of interannual and decadal
            Pacific variability in the extratropics.
                                                      Geophysical Research Letters, 50(2),
571
            e2022GL101226.
                                 Retrieved from https://agupubs.onlinelibrary.wiley
572
            .com/doi/abs/10.1029/2022GL101226 doi: 10.1029/2022GL101226
573
      Seo, K.-H., & Lee, H.-J. (2017). Mechanisms for a PNA-like teleconnection pattern
574
            in response to the MJO.
                                        Journal of the Atmospheric Sciences, 74(6), 1767-
575
            1781. Retrieved from https://journals.ametsoc.org/view/journals/atsc/
576
            74/6/jas-d-16-0343.1.xml doi: 10.1175/JAS-D-16-0343.1
577
      Seo, K.-H., Lee, H.-J., & Frierson, D. M. W.
                                                      (2016).
                                                                  Unraveling the telecon-
578
            nection mechanisms that induce wintertime temperature anomalies over
            the northern hemisphere continents in response to the MJO.
                                                                               Journal of
```

```
the Atmospheric Sciences, 73(9), 3557–3571.
                                                                Retrieved from https://
581
           journals.ametsoc.org/view/journals/atsc/73/9/jas-d-16-0036.1.xml
582
           doi: 10.1175/JAS-D-16-0036.1
583
      Skinner, D. T., Matthews, A. J., & Stevens, D. P. (2022). North Atlantic Oscilla-
584
            tion response to the Madden—Julian Oscillation in a coupled climate model.
585
            Weather, 77(6), 201-205.
                                          Retrieved from https://rmets.onlinelibrary
586
            .wiley.com/doi/10.1002/wea.4215 doi: 10.1002/wea.4215
587
      Stan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., & Schumacher,
588
           C. (2017). Review of tropical–extratropical teleconnections on intraseasonal
589
           time scales. Reviews of Geophysics, 55(4), 902-937. Retrieved from https://
590
           agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016RG000538
                                                                                     doi:
591
            10.1002/2016RG000538
592
      Trenberth, K. E., & Shea, D. J.
                                         (2006).
                                                     Atlantic hurricanes and natural vari-
593
           ability in 2005.
                              Geophysical Research Letters, 33(12), L12704.
                                                                               Retrieved
           from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
           2006GL026894 doi: 10.1029/2006GL026894
      Tseng, K.-C., Maloney, E., & Barnes, E. A. (2020). The consistency of MJO telecon-
           nection patterns on interannual time scales. Journal of Climate, 33(9), 3471 -
           3486. Retrieved from https://doi.org/10.1175/JCLI-D-19-0510.1
599
      UK Met Office. (2022). Met Office Hadley Centre observations datasets [Dataset].
600
           Retrieved from https://www.metoffice.gov.uk/hadobs/hadisst/data/
601
           download.html
602
      Vitart, F. (2017). Madden-Julian Oscillation prediction and teleconnections in the
603
           S2S database. Quarterly Journal of the Royal Meteorological Society, 143(706),
604
           2210-2220. Retrieved from https://rmets.onlinelibrary.wiley.com/doi/
605
           pdf/10.1002/qj.3079 doi: 10.1002/qj.3079
606
      Wang, C., Liu, H., & Lee, S.-K.
                                        (2010).
                                                  The record-breaking cold temperatures
607
           during the winter of 2009/2010 in the northern hemisphere. Atmospheric Sci-
608
            ence Letters, 11(3), 161-168. Retrieved from https://rmets.onlinelibrary
609
            .wiley.com/doi/abs/10.1002/asl.278 doi: 10.1002/asl.278
610
      Wang, J., Kim, H., Kim, D., Henderson, S. A., Stan, C., & Maloney, E. D. (2020a).
611
           MJO teleconnections over the PNA region in climate models. Part II: Im-
           pacts of the MJO and basic state.
                                                       Journal of Climate, 33(12), 5081 -
613
```

```
Retrieved from https://doi.org/10.1175/JCLI-D-19-0865.1
                 5101.
                                                                                                                           doi:
614
                 10.1175/JCLI-D-19-0865.1
615
         Wang, J., Kim, H., Kim, D., Henderson, S. A., Stan, C., & Maloney, E. D.
616
                 (2020b). MJO teleconnections over the PNA region in climate models. Part I:
617
                 Performance- and process-based skill metrics. Journal of Climate, 33(3), 1051
618
                 - 1067. Retrieved from https://doi.org/10.1175/JCLI-D-19-0253.1
619
                 10.1175/JCLI-D-19-0253.1
620
         Wheeler, M. C., & Hendon, H. H.
                                                                   (2004).
                                                                                       An all-season real-time multi-
621
                 variate MJO index: Development of an index for monitoring and pre-
                 diction.
                                    Monthly Weather Review, 132(8), 1917–1932.
                                                                                                            Retrieved from
623
                 https://journals.ametsoc.org/view/journals/mwre/132/8/1520-0493
                 2004_{132_{1917_{aarmmi}}} 2.0.co_{2.xml} doi: 10.1175/1520-0493(2004)132\langle 1917: 10.1175/1520-0493(2004)12\rangle
625
                 AARMMI \rangle 2.0.CO; 2
626
         Williams, N. C., Scaife, A. A., & Screen, J. A.
                                                                                 (2023).
                                                                                                 Underpredicted ENSO
627
                 teleconnections in seasonal forecasts.
                                                                              Geophysical Research Letters, 50(5),
628
                 e2022GL101689.
                                                Retrieved from https://agupubs.onlinelibrary.wiley
629
                  .com/doi/abs/10.1029/2022GL101689 doi: 10.1029/2022GL101689
630
         Wu, N., Li, Y., Li, J., Feng, L.-C., & Liu, F.
                                                                             (2021).
                                                                                            Decadal changes of the in-
631
                 traseasonal oscillation during 1979-2016.
                                                                                   Advances in Climate Change Re-
632
                 search, 12(6), 772-782.
                                                        Retrieved from https://www.sciencedirect.com/
633
                 science/article/pii/S1674927821001507 doi: 10.1016/j.accre.2021.10.001
         Xie, P., & Arkin, P. A.
                                               (1997).
                                                                Global precipitation: A 17-year monthly anal-
635
                 ysis based on gauge observations, satellite estimates, and numerical model
                 outputs.
                                         Bulletin of the American Meteorological Society, 78(11), 2539-
637
                 2558.
                                  Retrieved from https://journals.ametsoc.org/view/journals/
638
                 bams/78/11/1520-0477_1997_078_2539_gpayma_2_0_co_2.xml
                                                                                                                           doi:
639
                 10.1175/1520-0477(1997)078(2539:GPAYMA)2.0.CO;2
640
         Zhang, C.
                            (2005).
                                           Madden–Julian Oscillation.
                                                                                      Reviews of Geophysics, 43(2),
641
                                Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
642
                 pdf/10.1029/2004RG000158 doi: https://doi.org/10.1029/2004RG000158
643
         Zhou, S., L'Heureux, M., Weaver, S., & Kumar, A.
                                                                                       (2012).
                                                                                                      A composite study
644
                 of the MJO influence on the surface air temperature and precipitation over
                 the continental United States.
                                                               Climate Dynamics, 38(7-8), 1459–1471.
```

10.1007/s00382-011-1001-9