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Abstract15

Turbulent mixing in the ocean is often parameterized in terms of the downscale en-16

ergy transfer by internal waves. Expressed in terms of the vertical wavenumber spectrum17

of oceanic velocity shear (V 2
z ) and isopycnal strain (ζ2z ), the ”finescale parameterization”18

relies on several parameters, including key assumptions relating to the spectral proper-19

ties. Here we use an unsupervised learning model to identify spatial correlations between20

embedded parameters of the finescale parameterization based upon data from 1875 full-21

depth hydrographic profiles from 15 sections traversing the global ocean. The clustered22

patterns along the sections have marked horizontal and vertical spatial dependence as-23

sociated with distinct modes of spectral variation. Two clustered regions are identified24

where the underlying spectra deviate significantly from the canonical Garrett-Munk (GM)25

spectrum, suggesting potential departures from implicit assumptions about the down-26

scale energy cascade. Spectral composites in these two regions show intensification of vari-27

ance in the low and high wavenumber regimes respectively, as well as distinction in over-28

all spectral levels and geographic prevalence. Furthermore, these clusters are found to29

be associated with regions where parameterized estimates of the turbulent dissipation30

rate ϵ differ significantly (exceeding a factor of 5) from co-located in-situ observations31

measured using χ-pod temperature microstructure. Extending the methodology to other32

hydrographic datasets has the potential to reveal reasons for this parameterization bias33

and to identify the dynamical underpinnings leading to more robust parameterizations34

of oceanic turbulent mixing.35

Plain Language Summary36

Turbulent mixing caused by breaking internal waves is the primary driver of the37

vertical heat transport and is critical for closing the ocean’s energy budget. To circum-38

vent the complexities in obtaining in-situ measurements of mixing, simplified parame-39

terized models to estimate the rate of mixing are widely used by utilizing relatively eas-40

ily collected oceanic properties such as temperature and velocity as inputs. However, in-41

accuracies in predictions by these simplified models arise when certain assumptions in42

the model are violated. In this study, by incorporating data collected from a global suite43

of ship based observations, we use a data-driven approach to identify the spatial distri-44

bution of two distinct regions in the ocean where large biases in the predictions by the45

simplified models are possible. Extending this approach, future studies could potentially46

identify the underlying causes of such disparities to further improve models of turbulent47

mixing in the ocean.48

1 Introduction49

Turbulent mixing plays a critical role in the overturning circulation of the global50

ocean, driving the vertical and horizontal transport of heat and tracers (Ganachaud &51

Wunsch, 2000; Wunsch & Ferrari, 2004). While mixing at the molecular level can be ex-52

plicitly characterized by thermodynamic diffusion equations, the observed interior ocean53

stratification requires vigorous turbulent mixing that is 10-100 times stronger than that54

from molecular diffusion alone (e.g., W. H. Munk, 1966; Bryan, 1987; Talley, 2003; Cimoli55

et al., 2023), driven primarily through breaking internal waves (K. L. Polzin et al., 1997;56

Kunze et al., 2006; Whalen et al., 2012; Waterhouse et al., 2014; MacKinnon et al., 2017).57

The strength of this turbulent mixing is governed by distinct physical and dynamical pro-58

cesses which result in rich geographical patterns of mixing throughout the global ocean.59

(K. L. Polzin et al., 1997; Naveira Garabato et al., 2004; Whalen et al., 2012; Waterhouse60

et al., 2014; Whalen et al., 2018).61

Resolving the spatiotemporal patterns of turbulent mixing in the ocean from ob-62

servations is significantly challenging owing to the intermittent nature of mixing. At present,63
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the most accurate estimates of turbulent mixing come from specialized microstructure64

instrumentation deployed from ships (K. L. Polzin et al., 1997; St. Laurent et al., 2012;65

Naveira Garabato et al., 2019; Lele et al., 2021), on moorings (Moum & Nash, 2009), and66

autonomous platforms (Rudnick et al., 2013; Johnston & Rudnick, 2015; Shroyer et al.,67

2016). These microstructure instruments allow for estimates of kinetic energy dissipa-68

tion rate (ϵ) and temperature gradient variance (χ) by measuring high-frequency veloc-69

ity and/or temperature gradients. The resolved turbulent gradient spectra in the iner-70

tial subrange of turbulence are then used to compute ϵ and χ (e.g., Oakey, 1982; Gregg,71

1999; Itsweire et al., 1993). However, global microstructure observations have sparse global72

spatio-temporal coverage (Waterhouse et al., 2014).73

In response to the low abundance of microstructure observations, the community74

has embraced a set of mixing parameterizations based upon internal wave-wave inter-75

action theories called finescale parameterizations that allow for the estimate of ϵ from76

lower resolution temperature and salinity data (Henyey et al., 1986; Gregg, 1989; K. L. Polzin77

et al., 1995). These parameterizations estimate turbulent dissipation of energy by esti-78

mating the rate of downscale energy transfer through wave-wave interactions by com-79

bining the measured internal wave spectral level and theoretical and empirical models80

of wave interactions. The applicability of finescale parameterizations on the more widely81

available oceanographic ship-based and Argo-based Conductivity Temperature Depth82

(CTD) and Lowered Acoustic Doppler Current Profiler (LADCP) data has drastically83

increased the spatial coverage of mixing estimates as well as our understanding of the84

spatial geography of mixing in the ocean (e.g., Whalen et al., 2015; Kunze, 2017b) with85

overall broad agreement with measurements obtained from microstructure instrumen-86

tation (e.g., K. L. Polzin et al., 1995, 2014; Whalen et al., 2015; Whalen, 2021) Crucially87

for our work, the spectral energy level is estimated by comparing the average spectral88

level within a limited wavenumber band to the idealized Garrett-Munk (GM) model (Garrett89

& Munk, 1972; W. Munk, 1981). Since the finescale parameterizations are referenced to90

the GM model in their formulation of spectral energy transport through the internal wave91

vertical wave number space, large departures from the GM model are susceptible to en-92

gendering biased estimates (K. L. Polzin et al., 2014).93

Dissipation rates ϵ and related eddy diffusivities κ obtained from finescale param-94

eterizations show overall broad agreement with measurements obtained from microstruc-95

ture instrumentation (e.g., K. L. Polzin et al., 1995, 2014; Whalen et al., 2015; Whalen,96

2021), however, some discrepancies and biases have also been previously documented (e.g.,97

MacKinnon & Gregg, 2003; Waterman, Polzin, Naveira Garabato, et al., 2014). The un-98

derlying assumptions of the parameterizations are violated in many regions of the ocean,99

such as in the surface mixed layer, or where turbulent mixing is controlled by double dif-100

fusion, hydraulic jumps and strong wave-mean flow interactions over rough topography101

(Waterman, Polzin, Naveira Garabato, et al., 2014; K. L. Polzin et al., 2014). There are102

also regions where the parameterized mixing rate does not match that observations from103

microstructure for unclear reasons. A hypothesis considered here is that deviations of104

the spectral shape or other properties of the internal wave spectrum from the assumed105

GM form may be relevant (Müller & Liu, 2000; K. L. Polzin & Lvov, 2011), or variabil-106

ity in other individual parameters of the parameterization themselves, based on the lo-107

cal geography, topographic conditions and the presence of external forcing to the local108

internal wave field (Waterman, Polzin, Naveira Garabato, et al., 2014; Chinn et al., 2016;109

Pollmann, 2020). Recently, both supervised and unsupervised learning approaches have110

been used across a variety of fluid mechanical applications to provide new insight into111

fundamental relationships and patterns of variability in our oceans (Giglio et al., 2018;112

Brunton et al., 2020; Callaham et al., 2021; Kaiser et al., 2022; Mashayek et al., 2022).113

In particular, clustering techniques have proven useful in generating insights and explor-114

ing existing oceanographic data such as categorizing datasets of temperature-salinity pro-115

files (e.g., Rosso et al., 2020; Jones et al., 2019; Boehme & Rosso, 2021), classifying global116
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ecological marine provinces (Sonnewald et al., 2020) and identifying dominant dynam-117

ical balances in global ocean circulation models (Sonnewald et al., 2019).118

In this study, we employ unsupervised learning to characterize a parameter-space119

associated with large mismatches between finescale and microstructure observations of120

oceanic turbulent mixing. Drawing inspiration from unsupervised learning approaches121

in the spectral domain applied to earthquakes and astronomical observations (Johnson122

et al., 2020; Ivezic et al., 2014), we use latent features extracted from oceanic shear and123

strain spectra as well as other variables (features) used in the formulation of finescale124

parameterizations to identify regions of distinct co-variations connected to properties of125

turbulent mixing in the ocean and underlying dynamics of internal wave-wave interac-126

tions. The curated hydrographic dataset used in the study is described in Section 2, with127

the underlying principles of finescale parameterizations, feature development, dimension-128

ality reduction and clustering model laid out in Section 3. Finally, we describe the ge-129

ography and spatial characteristics of the clustering results and the interpretation of the130

results in the context of the underpinning finescale parameterization for estimating tur-131

bulent mixing in the ocean in Sections 4 and 5.132

2 Data133

2.1 Ship-based Hydrographic Data134

The principal data used in this study are 1875 profiles of high-quality full-depth135

CTD and LADCP data collected along 15 hydrographic sections from around the globe136

as part of either the Climate and Ocean Variability, Predictability and Change (CLIVAR)137

or the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) pro-138

grams, between the years 2000 and 2021 (Figure 1, Table 1). The horizontal station spac-139

ing between CTD casts is nominally 55 kilometers, with stations spaced closer in regions140

of interest (e.g. trenches, rough topography, boundary current regions). Vertically, the141

CTD-cast data used here include the profile from 500 m down to a maximum depth, usu-142

ally 6000 m, or to within 10-20 m from the seafloor. The top 500 m of the profiles are143

not considered in order to remove the surface mixed layer. Conservative temperature (θ),144

squared buoyancy frequency (N2), and potential density ρθ are calculated from the CTD145

instrumentation using the Gibbs-Seawater Oceanographic Toolbox (McDougall, 2011;146

Jackett & McDougall, 1997). The publicly available LADCP data product has an 8-meter147

vertical resolution pre-processed using procedures laid out for the GO-SHIP program (Visbeck,148

2002; Thurnherr et al., 2010). The LADCP data product for all 15 sections contains data149

binned at a nominal 1-meter resolution and with horizontal (U,V) and vertical compo-150

nent (W) of ocean velocity from the ocean surface down to the maximum CTD depth.151

All LADCP data obtained are co-located with CTD data for each CTD cast along the152

sections.153

2.2 Microstructure mixing estimates from CTD-mounted χ-pods154

Estimates of ϵ from rosette-mounted microstructure χ-pods taken along the P06155

section were obtained from cchdo.edu (see data availability statement). ϵ was estimated156

using the high wavenumber temperature gradient fluctuations dT ′/dz measured by the157

100Hz FP07 thermistor probe following the methods of Moum and Nash (2009) and Lele158

et al. (2021). The data have all been processed and cleaned including (1) removing any159

points with platform-induced noise, (2) calculating dissipation rates of the temperature160

variance, χ in 1-s bins, (3) any data in regions of very weak stratification where dT/dz161

is less than 10−4 K m−1 was removed, (4) ϵ was calculated from χ following Osborn and162

Cox (1972) and (5) data were binned into 200-m half overlapping segments, ensuring binned163

averages comparable binned finescale parameterization data (see Section 3.1).164
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3 Methods165

3.1 Estimating Mixing from Finescale Parameterizations166

Profiles of ϵ and κ are estimated from 1875 CTD stations containing a total of 64816167

spectral estimates of internal wave shear ⟨V 2
z ⟩ and strain ⟨ζ2z ⟩ variances using the finescale168

parameterization method following Gregg (1989); Henyey et al. (1986); K. L. Polzin et169

al. (1995); Kunze et al. (2006). Shear and strain variances are computed from CTD tem-170

perature and salinity and LADCP horizontal velocities profiles along the sections. Vari-171

ance levels relative to the canonical Garrett-Munk (GM) spectra (W. Munk, 1981) are172

used to relate vertical turbulent eddy diffusivity (κ) to the turbulent kinetic energy dis-173

sipation rate ϵ via the Osborn (1980) relationship κ = Γ ϵ
N2 , wherein mixing efficiency174

Γ considered to be nominally 0.2 (K. L. Polzin et al., 2014) and N is the buoyancy fre-175

quency. This relationship is further broken down as:176

κ = κ0Evzh(Rω)J(f/N), (1)

with

Evz =
⟨V 2

z ⟩2

⟨V 2
z ⟩2GM

(2)

h(Rω) =
3(Rω + 1)

2
√
2Rω

√
Rω − 1

(3)

J(f/N) =
f cosh−1(N/f)

f30 cosh−1(N0/f30)
(4)

where cosh−1 is the inverse hyperbolic cosine function, and constant values κo =177

5×10−6m2s−1, f30 = 7.292×10−5 rad s−1 and N0 = 5.2×10−3 rad s−1, where f30, No178

and κo denote the Coriolis frequency at 30oN latitude, the canonical GM buoyancy fre-179

quency and background diffusivity respectively.180

The angle brackets in Equation 2 indicate integration of LADCD-derived shear spec-181

tra over a wavenumber band capturing finescale internal wave shear variance (Gregg, 1989;182

K. L. Polzin et al., 2014). The factor J(f/N) in Equation 1 is a latitudinal correction183

applied to account for weaker turbulent dissipation rates found near equatorial regions184

(Henyey et al., 1986; Gregg et al., 2003), while the factor h(Rω) in Equation 3 accounts185

for deviations from the GM spectrum based on the frequency content of the internal wave186

field given by Rω, reducing to unity when Rω is set to the canonical GM value of 3 (K. L. Polzin187

et al., 1995). The dependence on strain (ζz) is introduced in the parameterization through188

the shear to strain variance ratio Rω =
⟨V 2

z ⟩
N̄⟨ζ2

z⟩
, a measure of the internal wave fields as-189

pect ratio or frequency content. This, under a monochromatic wave assumption, can be190

summarized as:191

ω

f
=

√
Rω + 1

Rω − 1
(5)

representing the contribution of near-inertial (ω/f ≈ 0) to non near-inertial internal waves192

in the domain.193

Profiles of ϵ and κ are calculated at each CTD station along the section from 200-194

m half-overlapping segments in depth using the parameterization given by Equation 1.195

It is important to note, however, that these parameterized estimates of diffusivity κ and196

dissipation rate ϵ do not sufficiently resolve mixing processes in the boundary layer, hy-197

draulic jumps, double diffusion or internal wave driven turbulence in regimes with sig-198

nificant wave-mean flow interaction (Waterman, Polzin, Naveira Garabato, et al., 2014)199

and they produce spatially averaged estimates of mixing over multiple wave periods.200
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3.2 Feature Development201

Here, we define and extract features from various attributes of the parameteriza-202

tion, to examine and understand the patterns of their cross-covariances as they relate203

to internal-wave driven mixing in the global ocean using unsupervised machine learn-204

ing.205

Building upon the parameterization in Equation 1 as the basis for feature devel-206

opment, we focus on measured shear and strain spectra which are the primary compo-207

nents of the parameterization. Buoyancy frequency normalized shear [ϕVz ] and strain208

[ϕζz ] wavenumber spectra are calculated from the Fourier transforms of the vertical LADCP209

and CTD data for shear and strain respectively. To calculate shear variance ⟨V 2
z ⟩, seg-210

ments are constructed starting from the bottom in 320 m half-overlapping windows, each211

tapered with a 10% sine2 window function to obtain its vertical wavenumber spectra (Kunze212

et al., 2006), which are then integrated between wavelengths of 320 m and 150 m to avoid213

high wavenumber instrument noise contamination (Kunze et al., 2006).214

Strain is calculated from the buoyancy frequency as ζz = (N2 − N̄2)/N̄2, where215

the mean stratification N̄2 is determined from quadratic fits to the profile segments (Kunze216

et al., 2006). Further, the strain variance is calculated by integrating the strain power217

spectrum between wavelengths of 150 m and up to 10 m while also satisfying strain vari-218

ance ⟨ξ2z⟩ < 0.2 to avoid underestimating the variance through oversaturation of the219

spectrum (Gargett, 1990). ⟨V 2
z ⟩ and ⟨ξ2z⟩ values are then normalized by the integrated220

GM model spectrum over the same respective bandwidths to represent the energy den-221

sity in the internal wave field in the units of the GM energy density (Gregg & Kunze,222

1991; W. Munk, 1981).223

Each GM-normalized shear and strain spectrum is further normalized with its re-224

spective shear and strain variances across the finescale integration band to de-emphasize225

the known relationship between internal wave spectral level and stratification (Gregg,226

1989; Kunze, 2017a). Further, we consolidate the dominant types of spectral variabil-227

ity by reducing the dimensionality of the data using Non-Negative Matrix Factorization228

(NMF) decomposition (Figure 1; described further in Section 3.2.1).229

3.2.1 NMF Decomposition of Shear and Strain Spectra230

While unsupervised learning could in theory identify clusters in any N-dimensional231

space, the quality of the resultant clustering formulation is directly proportional to the232

number of data points in the N-dimensional space. It is therefore prudent to introduce233

a low-rank approximation of the input N-dimensional space to reduce redundant co-variances234

in the data. Factor analysis and principal component analysis (PCA) are two of the many235

classical methods used to accomplish the goal of dimensionality reduction and detect-236

ing structures among the variables. Often the data to be analyzed are non-negative, and237

the low-rank data are further required to be comprised of non-negative values in order238

to avoid contradicting physical realities. Therefore, we reduce the dimensionality of the239

input spectral data using non-negative matrix factorization (NMF) (Lee & Seung, 1999;240

Berry et al., 2007) to decompose high-dimensional spectra of shear and strain into lower-241

dimensional latent spectral representations (Figure 1b). These low-dimensional embed-242

dings (Figure 1c (green box),2a-d) are further aggregated into a feature matrix along with243

other auxiliary features (Figure 2e-g) and are then used as feature inputs to the GMM244

model (Figure 1c, Section 3.2.2).245

The decomposition aims to approximate the input data matrix X, consisting of non-246

negative elements, comprised of n individual spectral data points each with m wavenum-247

bers, into a low-rank non-negative approximation consisting of a latent feature matrix248

W and corresponding hidden coefficients H. This can be expressed as: X[n×m] ≈ W[n×p]H[p×m]249

(Figure 1b). The matrix W can be regarded as spectral end-members whose linear com-250
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binations with the coefficient matrix H reconstruct the original data matrix X. The qual-251

ity of the approximation of X is measured using the Frobenius norm ||X −WH||2F =252 ∑
ij(X−WH)2ij and the optimization algorithm is carried out using the NMF imple-253

mentation in the Python library scikit-learn (Pedregosa et al., 2011). In this study, the254

input data matrix X for both shear and strain spectra consists of n = 67816 total spec-255

tra respectively obtained along the 15 GO-SHIP hydrographic section descibed earlier256

in Section 2.1.257

It is conceivable that the reconstruction of the original spectra gets progressively258

better with the increase in the number of NMF components (p) i.e. the addition of more259

latent dimensions. In theory, the number of latent dimensions is inversely proportional260

to the reconstruction error- hence p = m would result in a perfect reconstruction as the261

additional latent dimensions could in theory encode more of the information present in262

the original input matrix X. However, here we choose p = 2 i.e. two latent dimensions263

to represent high dimensional (m=10) shear and strain spectra, as it results in the great-264

est decrease in the reconstruction error with respect to the number of latent dimensions265

while still preserving relevant spectral characteristics (not shown). Although increasing266

the number of latent dimensions beyond two results in a better reconstruction of the orig-267

inal spectral matrix X, it can be counter-productive from an unsupervised learning stand-268

point as it can lead to inconsistencies in the final solutions produced by the clustering269

model often referred to as the “curse of dimensionality” (Bishop, 2006).270

3.2.2 Final Feature Matrix (F)271

Two NMF components each of the shear and strain spectra respectively are aggre-272

gated into a “feature matrix” F (Figure 1c) and used as input to an unsupervised learn-273

ing model (Section 3.3). The sensitivity of the final results (Section 4) to the introduc-274

tion of additional relevant features in the feature matrix- including the shear variance275

⟨V 2
z ⟩, buoyancy frequency [N] and internal wave aspect ratio Rω, all derived from the276

parameterization in Equation (1) is explored in Section 4.3. Note: The primary results277

discussed hereafter other than those specifically noted, describe the results of using only278

the 4 NMF components, two derived from the shear spectra and two derived from the279

strain spectra (Figure 1c green box, 2a-d).280

3.3 Unsupervised Learning of Turbulent Mixing Data281

An unsupervised machine learning clustering technique is used to identify groups282

with similar shear and strain spectra characteristics by applying a Gaussian Mixture Model283

(GMM) framework (e.g., Maze et al., 2017). The algorithm assumes the dataset with284

D features can be explained as derived from a mixture of K Gaussian distributions in285

D dimensions, where each feature represents a new dimension describing the data. The286

GMM model computes the parameters mean µk, covariance Σk and weights λk using the287

Expectation-Maximization algorithm in order to maximize the likelihood of the data X288

belonging to cluster k, denoted by the conditional probability distribution p(k|x). The289

probability that data X belongs to the kth component of the mixture of Gaussian dis-290

tributions is given by:291

p
(
k|x

)
=

λkN (x;µk,Σk)

ΣK
k=1λkN (x;µk,Σk)

(6)

with the multivariate normal Gaussian distribution given by:

p(x;µk,Σk) =
1√

2πD|Σ|
exp

[
− 1

2
(x− µk)

TΣ−1(x− µk)

]
(7)
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The conditional probability p(k|x) in Equation 6 over all clusters k equals 1. The292

GMM algorithm assigns the cluster label k to the component for which this conditional293

probability is maximum i.e. k = argmaxx p
(
k|x

)
. We further mask out data with a max-294

imum conditional probability less than 70% i.e. k = argmaxx[p
(
k|x

)
> 0.7] (Figure295

4a, gray) to avoid the possibility of having cluster labels with similar probability den-296

sities potentially near strong eddy or frontal forcings (Jones et al., 2019).297

The choice of the number of clusters is a subjective one, and depends on the de-298

sired application of the clustering problem. The number of optimal clusters can vary widely299

based on the criteria used for convergence, tuning and choice of hyperparameters used300

(such as type of covariances), as well as the amount of data and choice of feature inputs301

given to the clustering algorithm. Dimensionality reduction for shear and strain spec-302

tra using NMF decomposition and clustering with the GMM model in this study were303

implemented using open-source python machine learning library scikit-learn (Pedregosa304

et al., 2011). We validate the optimal number of clusters outputted from the GMM model305

initialized with a “full” covariance matrix based on Akaike and Bayesian information cri-306

terion (AIC and BIC) scores (Schwarz G, 1978; Konishi et al., 2004). The AIC and BIC307

scores were computed for the entire feature matrix F created with the entirety of the data308

collected from 15 sections (not shown) as well random subsets of it for K=2 to K=14.309

The scores computed from 50 bootstraps of the random feature matrix subsets show a310

minimum between K=7 and K=9 clusters (Figure 7, purple shading). This conclusion311

is consistent when using a different metric for optimal clustering, the silhouette coeffi-312

cient (Rousseeuw, 1987) (not shown). Although we use K=7 as the optimal number of313

clusters, the final results described in Section 4 are quantitatively the same, regardless314

of the choice of the number of clusters between K=7 and K=9 (Section 4.3).315

4 Results316

Seven distinct clusters of data are identified using the GMM model, which we ex-317

plore to gain insight into the physical and geographical patterns relevant to turbulent318

mixing. We also consider the spatial structure of clusters and their correspondence with319

patterns of mismatch between finescale and microstructure-derived estimates to further320

contextualize the results. The feature matrix F input to the GMM model is comprised321

of only the two NMF-components of the normalized shear spectra and two NMF-components322

of the normalized strain spectra (Figure 1c, green box) for approximately 70,000 data323

points, each representing a 100-m vertical segment of data collected from 1875 profiles324

along 15 GO-SHIP sections (Figure 2a-d, 3a). The GMM is constrained to 7 clusters,325

hereafter discussed and referred to by the arbitrarily assigned cluster number. In terms326

of relative proportions of the assigned cluster labels- Cluster 5 was the most prevalent,327

followed by Clusters 4, 3, 7, 2, 1, and finally 6 (Figure 3d).328

It is insightful to disentangle and isolate the original raw input data associated with329

each cluster to identify patterns that could potentially be linked to underlying physical330

mechanisms. We use the final clustering assignments to construct a composite average331

of the original “raw” shear and strain spectra belonging to each of the 7 clusters prior332

to any normalization and NMF decomposition (Section 3.2). The spectral data are “raw”333

in the sense that these spectra in their original form are the basis of the shear and strain334

variance (⟨V 2
z ⟩, ⟨ζ2z ⟩) calculations in the finescale parameterization described in Equa-335

tions 1 and 2. At the individual level, the spectral energy density of the raw spectra across336

all 15 sections span orders of magnitude and appear to have incoherent geographical dis-337

tributions and spatial dependence. However, considering the individual spectra combined338

with their corresponding clustering labels, we find that the average composite spectra339

(Figure 4 d, e) have distinct spectral shapes and unique slope and roll-off characteris-340

tics in vertical wavenumber space. These perceptible spectral characteristics, combined341

with the cluster spatial distributions and dependence hint at the potentially differing un-342
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derlying physical mechanisms responsible for the non-linear downscale energy transport343

and turbulent mixing in these regions.344

4.1 Identification of Non-GM Spectral Conditions & Parameterized Mix-345

ing Bias346

The finescale parameterization laid out in Equations 1-4 aims to represent nonlin-347

ear spectral energy transport in the vertical wavenumber domain based on arguments348

set forth by (Garrett & Munk, 1972, 1975, 1979), requiring careful treatment of devi-349

ations from this framework. The intent of parameterization is to encapsulate the non-350

linear internal wave-wave interaction within a finite amplitude and vertical length scales351

not only well resolved by CTD and LADCP instrumentation (used for shear and strain352

calculation) and relatively free from contamination from instrumental noise or background353

stratification, but also from the effects of competing physical and dynamical processes354

such as near-boundaries mixing, wave-mean interaction, shear-driven mixing, double dif-355

fusion which could potentially short-circuit the downscale energy transfer and the ba-356

sis of the parameterization. In observations (e.g., Gregg et al., 1993; K. L. Polzin et al.,357

1995; Brink, 1995; Eriksen, 1998), the wavenumber shear spectra at smaller wavenum-358

bers (<0.1 cpm) are relatively white (flat) with roughly equal distribution of shear vari-359

ance in this regime. The transition to turbulence occurs at length scales greater than360

0.1 cpm governed by non-linear dynamics and shear instability-driven non-local energy361

transport (Gargett et al., 1981; Gregg et al., 1993). The finescale parameterization is em-362

ployed to predict the turbulent dissipation from energy transport calculated at the in-363

termediate scales (<0.1cpm, Figure 4c, d grey vertical lines). Here, large deviations from364

GM-model prescriptions can induce biases in the estimates and are potentially emblem-365

atic of additional physical processes at play beyond wave-wave interactions (K. L. Polzin366

et al., 2014).367

Composite averages of shear and strain spectra computed within each cluster across368

all 15 sections (Figure 4c,d, Supporting Information Figure S3,S4) reveal two clusters369

(Cluster 1 and 7) with spectral characteristics differing significantly from the other clus-370

ters and from GM model spectra. Averaged shear spectra in Cluster 1 shows spectral371

levels comparable to other clusters but are characterized with steep (“red”) slope com-372

pared to GM, with spectral roll-off at much lower wavenumbers and larger vertical scales373

than the other composites. At approximately the same vertical scales, shear spectra be-374

longing to Cluster 7 show an enhancement in shear spectral power where the spectra ap-375

pear “blue” and roll-off quite steeply after shear-enhanced hump. The shear-to-strain376

ratios (Rω) implied by the Cluster 1 composite suggest a decrease in Rω at higher ver-377

tical wavenumbers which could be interpreted as an increased contribution of high fre-378

quency waves at the lower wavenumbers using linear wave approximation (Equation 4).379

Studies have suggested that this is also possible due to the presence of quasi-permanent380

finestructure from rotating stratified turbulence (K. Polzin et al., 2003; K. Polzin & Fer-381

rari, 2004).382

The deviation from the assumptions about downscale spectral energy transport across383

wavenumbers in the parameterization is explored by comparing the ratio of the finescale384

parameterized estimates of turbulent dissipation rate ϵ to the concurrent co-located in-385

situ microstructure measurements of ϵ from CTD-mounted χ-pods (Lele et al., 2021) along386

the 2017 occupation of the P06 line within each cluster. The ratio of the two different387

estimates log10
(

ϵfine

ϵχpod

)
or the “mixing bias” along the P06 section where positive (neg-388

ative) values indicate finescale over-prediction (under-prediction) compared to measure-389

ments from χ−pods (Figure 4a). The clustering from the GMM model combined with390

the mixing bias along the P06 are combined to produce estimates of average bias for each391

cluster (Figure 4c). The averaged mixing bias and 95% confidence intervals for clusters392

2-6 fall well within a factor 5 (Figure 3c,dashed black line). Clusters 1 and 7 however,393

show a high and a low bias respectively, with average disagreement between finescale and394

–9–



manuscript submitted to JGR: Oceans

χ-pod estimates as large as an order of magnitude along P06. Further, the averaged spec-395

tral properties of the clusters also reveal marked deviations from their respective canon-396

ical GM shear and strain counterparts (Figure 4d,e). The inconsistencies between the397

rate of downscale energy transfer as prescribed by the GM model (e.g. Cluster 1) and398

possible shear-enhancing high-wavenumber energy sources (e.g. Cluster 7), serve as use-399

ful indicators of potential physical-dynamical processes unresolved in the finescale pa-400

rameterizations.401

We use the clustering assignments from the GMM model along the P06 section (Fig-402

ure 4b), to compute the mixing bias for individual clusters, i.e. the averaged mixing bias403

corresponding to each cluster label along the section. We indicate the mean bias for each404

clusters with 95% confidence interval (Figure 4c, error bars) as well as the kernel den-405

sity estimate showing the overall distribution of the mixing bias for individual clusters406

(Figure 4c, violin plot). The averaged mixing bias and 95% confidence intervals for Clus-407

ters 2-6 fall well within a factor 5 (Figure 3c, (dashed black line)).408

The formulation of the finescale parameterization in Equation 1 states that diffu-409

sivity κ and dissipation rate ϵ (through the Osborn relation, Section 3.1) are proportional410

to the total integrated shear variance from shear spectra ⟨V 2
z ⟩. Considering this relation-411

ship between ⟨V 2
z ⟩ and ϵ, the mixing biases between finescale parameterized observed along412

P06 between ϵfine and ϵχ-pod likely occurs as a result of the overestimation (underesti-413

mation) of ⟨V 2
z ⟩ in locations where Cluster 1 (Cluster 7) occur (Figure 4f). In the case414

of Cluster 1, a “redder” than GM-like spectra (Figure 4e,f, pink line) results in an over-415

estimation of shear variance due to the assumed spectral shape being GM-like or flat (Fig-416

ure 4f, pink shading). The overestimated shear variance through the relationship described417

in Equation 1 engenders a highly inflated estimate of ϵfine by almost an order of mag-418

nitude (Figure 4c). A reverse mechanism occurs in the case of Cluster 7 in which an in-419

creasingly positive slope (”bluer”) compared to the GM-like spectra leads to an under-420

estimation of ⟨V 2
z ⟩ and consequently a depressed estimate of ϵfine.421

Using limited-modes of spectral variation through the NMF decomposition along422

15 sections as inputs to the GMM model, we isolated two regions where underlying shear423

and strain spectra have characteristics to induce biases in parameterized mixing estimates.424

Spectral properties obtained in other process-based studies and certain localized envi-425

ronments have shown similarities to spectral features we identify here using a global dataset.426

Several different physical mechanics have been proposed in which non-white gradient spec-427

tra are associated with physics unresolved or problematic for finescale estimation (Kunze428

et al., 2002; Klymak et al., 2008; K. L. Polzin & Lvov, 2011; Brink, 1995; Eriksen, 1998).429

For example, well resolved spectra from a study around the Kergulean Plateau region430

(Waterman et al., 2013; Waterman, Polzin, Garabato, et al., 2014) associated with finescale431

overestimation exhibit steeper and rapid roll-offs at lower wavenumber attributed to strong432

wave-mean interactions in the region, similar to spectra found in Cluster 1. Similarly,433

generation or reflection at boundaries can inject shear at higher wavenumbers with loss434

of low-wavenumber energy and gain in high-wavenumber energy (Eriksen, 1985), as seen435

in composites from Cluster 7. Although diagnosing and interpreting the plethora of pos-436

sibilities in the physics driving such peculiarities in the spectral energy transports in wavenum-437

ber space is beyond the scope of the paper- we further aim to prognosticate the spatial438

structure distribution of regions of potential finescale mixing bias along these sections.439

4.2 Geographical Distribution440

The spatial distribution of the clusters shows a rich and varied geographical dis-441

tribution along the 15 sections considered here (Figure 3a). From a high-level perspec-442

tive, the clustering reveals a rough dependence on stratification as seen by the alignment443

in most sections with the contours of buoyancy frequency along those sections (Figure444

3a, black lines). Even though the inputs to the GMM consist of buoyancy-normalized445
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spectral data that have been standardized by their respective integrated variances in or-446

der to diminish the a priori stratification dependence, the clustering patterns neverthe-447

less reveal an ostensible relationship with buoyancy frequency (N).448

In addition to the geographical cluster assignments by individual sections, more449

insight into the distinguishing characteristics of the clustering patterns can be gained450

by looking at the spatial variations in probability densities of each clusters vertically (depth451

and height-above-bottom) and horizontally (along-section) for each section individually,452

as well as by computing composites encompassing all 15 sections (Figure 3 [b-c,e-f] 5,453

6, Supporting Information Figure S1-S2).454

The upper ocean was dominated by clusters 2, 3 and 4, each showing similar ver-455

tical distributions, with some differences in their zonal and meridional distributions. Clus-456

ter 2 forms the majority of clusters within the Southern Ocean, as seen by the increase457

in prevalence southward of 55oS along S4P, I06 and P16S , and the peak of the latitu-458

dinal distribution from the zonal composite found around 62.5oS (Figure 3e). No dis-459

tinct patterns emerge in the zonal and meridional distribution of cluster 3 and 4, sug-460

gesting minimal geographical precedence (Figure 3e, f). In depth, all three clusters be-461

come more prevalent closer to the seafloor (Figure 3c), resulting in peaks around 3000462

m, also reflecting the variations in bathymetry of the sections (Figure 3b). The presence463

of Cluster 2 in the Southern Ocean and other sections near the bottom bathymetry, for464

example, along the P06, P02 and A20 (Supporting Information Figure S2) is consistent465

with regions of low stratification and is seen clearly in the contours of buoyancy frequency466

along those sections (Figure 3a, black lines)467

Above the ocean bottom, the analysis found an increase in the relative abundance468

of clusters 5 and 6. These two cluster are prominently found in upper ocean along most469

sections between 500 m and 2000 m. Cluster 6 is the least prominent of the assigned la-470

bels and forms only 7.8% of the total assigned clusters and is mostly found in the up-471

per ocean, typically between 1500 m and 2000 m in the Atlantic ocean (e.g. a13, a16n472

16s and a10 lines). Cluster 5 is the second most common upper ocean cluster other than473

Cluster 1, with no notable zonal preference.474

Cluster 1, associated with “redder” shear spectra, is predominately found in the475

upper ocean along most sections, existing primarily between 500-1500 m depth (Figure476

3 b), with the notable exception in the Ross Sea (S4P) and Gulf of Mexico (A20) which477

show a second mid-depth around roughly 4000 m (Figure 3a, Supporting Information478

Figure S1). In addition, the zonal section composite also reveals a strongly increased pro-479

portion of Cluster 1 along the equator, with a clear peak observed within 5 degrees of480

the equator. In addition, the cluster is found most often in the subtropics with it rarely481

observed at high latitudes (Figure 3e). Meridional variability in Cluster 1 is observed482

with a vast preponderance in the Southern Hemisphere’s subtropical Atlantic and East-483

ern Pacific (Figure 3f).484

Cluster 7, associated with “bluer” shear spectra with enhanced energy at wavenum-485

bers between 150-100 m,is distributed in the mid to deep oceans, forms roughly 10.4%486

of the total cluster labels along the 15 sections (Figure 3d) and is most prevalent above487

the bottom bathymetry with a peak around 500 m from the bottom bathymetry (Fig-488

ure 3c). Zonally, an increased proportion of cluster 7 is found in the Southern Ocean,489

scattered vertically throughout the sections, with cluster 7s found from the surface all490

the way down to the bottom topography (e.g. S4P).491

4.3 Sensitivity of GMM to Number of Clusters [K] and additional fea-492

ture inputs[d]493

To test the robustness of the findings discussed above, we explore the sensitivity494

of this study to two key analysis choices. First, the effect of constraining the number to495
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cluster to 7 is tested, and second, the effect of adding additional features to the GMM496

model is explored.497

The analysis was run with a range of fixed number of clusters (K) ranging from 2498

to 14. The optimal number of class labels requires model hyperparameter tuning, and499

the results are shown by the BIC scores (Figure 7). The BIC score shows a minima at500

K=7, but with some ambiguity for K=7-9. Here, we discuss sensitivity of our final re-501

sults and conclusions to the clustering produced by the GMM model with the same four502

spectral inputs inputs, but with K=8 (Labels 0-7) as the optimal number of clusters here.503

The clustering distribution using K=8 and four inputs is overall very similar to the dis-504

tribution with K=7. The additional 8th class label is assigned to regions in the upper505

ocean and seems to split regions assigned to Cluster 1 in Figure 3a into two regions with506

labels 4 and 6 (Supporting Information Figure S5a).507

This is further supported by the mean strain and shear spectra calculated from com-508

posite averages of individual cluster labels across the whole dataset (Supporting Infor-509

mation Figure S5b,c). Clusters 4 and 6 are associated with shear spectra with negative510

slopes whereas Cluster 5 (similar to Cluster 7 in Figure 3a) has a positive slope. Fur-511

ther, we see a similar association of finescale biased ϵ with regions in Clusters 4 and 6512

over-predicting ϵ, while regions within Cluster 5 under-predict ϵ compared to measure-513

ments from χ-pods along the P06 section. Similarly, we tested K=9 (not shown) and it514

did not change the key findings of this study. Thus, while minor qualitative differences515

are to be expected with clustering assignments for each of the clusters with the results516

discussed in Figure 3 and 4, we do not find any quantitative differences in the iteration517

of results discussed above with the final conclusions of the study.518

Second, the sensitivity of the final results to the incorporation of additional fea-519

tures as inputs to the GMM model is explored. The decision boundaries delineating one520

cluster from the next in the GMM model is a function of the means and covariances that521

describe the multi-dimensional Gaussian distributions. In general, addition or subtrac-522

tion of feature inputs to the clustering model, aside from varying the dimensionality of523

the clustering space, can greatly affect these means and covariances and as a consequence524

the delineation and distribution of individual clusters in space. In an effort to critique525

the final results as not merely serendipitous artifacts attributable to the choice of fea-526

ture inputs, various permutations of feature inputs to the GMM are explored, all derived527

from parameters in the finescale parameterizations (Section 3.1, Equations 1-5). We com-528

pare our main results to a GMM run using seven feature inputs consisting of four shear529

and strain spectra NMF decompositions, shear variance ⟨V 2
z ⟩, buoyancy frequency (N)530

and the internal wave aspect-ratio Rω (Figure 2a-g) with seven output clusters (Labels531

0-6).532

Compared to the four feature run presented in the main text, the seven feature run533

produces clusters that are highly correlated to buoyancy frequency as seen in the align-534

ment with buoyancy frequency contours along most of the 15 sections (Supporting In-535

formation Figure S6a, black solid lines). The results also show an overall higher poste-536

rior probability of clustering assignment as seen in the reduction in probability mask ap-537

plied for posterior probabilities less than 70% (Supporting Information Figure S6a, grey538

mask). However, computing averaged strain and shear spectra composites for each clus-539

ter as before shows two clusters associated with large deviations from the GM-model shape540

(Supporting Information Figure S6b,c, Clusters 2 and Cluster 4). Biases in finescale ϵ541

estimates also exist for the same two clusters with regions along Cluster 4 overpredict-542

ing and regions along Cluster 2 underpredicting ϵ compared to observations to χ-pods543

along the P06 section (Supporting Information Figure S6d). With no significant quan-544

titative differences in the results relating to the finescale bias, we recentered the focus545

of the main text on describing and discussing the results from the four-feature GMM out-546

put (Figure 2a-d).547
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5 Conclusions548

In this study, we use a novel unsupervised learning approach with a Gaussian Mix-549

ture Model (Jeff A. Bilmes, 1998; Bishop, 2006) to cluster and identify patterns of tur-550

bulent mixing-related features derived from fundamental constituents of finescale param-551

eterizations of internal wave-driven turbulent mixing in the ocean using a global dataset552

of ship-based hydrographic CTD and LADCP data collected on 15 GO-SHIP lines. Us-553

ing an NMF decomposition of oceanic shear and strain spectra, we extracted spectral554

features consisting of encoded information about spectral level, shapes and slopes (Sec-555

tion 3.2,Figure 1, 2). These features once aggregated into a feature matrix are clustered556

using the GMM model into seven different domains characterizing and delineating their557

collective variation in the N-dimensional space represented by the extracted features. The558

class labels roughly align with stratification in the ocean on average vary with depth and559

height-above-bottom across the global ocean. Latitudinal and longitudinal variations among560

the clusters are more convoluted.561

Further, we explore the implications and potential effects of spectral deviations in562

wavenumber space from the canonical Garrett and Munk (GM) internal wave spectrum563

(Garrett & Munk, 1972, 1975, 1979), for application of the finescale parameterizations564

to global data collected along 15 GO-SHIP sections. We identify the average compos-565

ite shear and strain spectra associated with each of the seven clusters revealing two clus-566

ters (Cluster 1 and Cluster 7) associated with distinct spectra differing significantly from567

both the other composites and GM model in their wavenumber distribution of shear and568

strain spectral energy. Since the wavenumber distribution dictates the rate of energy trans-569

port and downscale energy transfer from large to smaller scales and ultimately to wave-570

breaking scales, the spectral characteristics within each cluster are ultimately tied to un-571

derlying physical mechanisms at play for turbulent mixing to occur in those regions. While572

uncovering the underlying mechanisms at play driving each cluster’s spectral distribu-573

tion is beyond the scope of this paper, we explore the robustness of mixing estimates ob-574

tained from finescale parameterizations in these regions further.575

Studies have previously found large biases in finescale parameterized estimates where576

physical and dynamical environments short-circuit the underlying assumptions of the pa-577

rameterizations, for e.g. regions in the surface mixed layer, near boundaries or where tur-578

bulent mixing is controlled by double diffusion, hydraulic jumps and strong wave-mean579

flow interactions over rough topography (Waterman, Polzin, Naveira Garabato, et al.,580

2014; K. L. Polzin et al., 2014; MacKinnon & Gregg, 2003). Our analysis is consistent581

with prior studies regarding the broad agreement between finescale parameterized and582

microstructure estimates of mixing in the open ocean thermocline where the underly-583

ing assumptions made in the parameterizations apply (K. L. Polzin et al., 1995, 2014;584

Whalen et al., 2015; Waterman, Polzin, Naveira Garabato, et al., 2014). However, based585

on the wavenumber distribution of global oceanic shear and strain spectra, we provide586

a rationale behind large biases in finescale parameterized estimates as well as identify587

their potential global spatial distribution based on data along 15 GO-SHIP lines.588

Two clusters associated with high and low-biased finescale ϵ estimates when com-589

pared to co-located temperature microstructure observations from χ-pods along the P06590

section were identified. The clusters are distinct in their spatial distribution along the591

P06 section. Cluster 1 associated with regions of finescale overestimation is primarily592

found in the upper ocean between 500 m and 2000 m in depth, while Cluster 7 is linked593

to regions of finescale underestimation and is found mostly in the deeper ocean below594

3000 m with an increased abundance roughly 500 m-1000 m above the bottom bathymetry595

(Figure 3b,c). Both along the P06 section and averaged globally, the two cluster regions596

consist of roughly 20% of the total clustered data.597

More work is needed to further our understanding of the underlying dynamical pro-598

cesses and the geographical distribution of various flavors of internal wave-wave inter-599
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actions found in the ocean. Regardless of the cause, this study has shown that caution600

must be used when applying finescale parameterizations ubiquitously throughout the ocean.601

We show there are regions of the ocean where the prevalence of more ”“red” or more “blue”602

spectra energy could lead to biases in estimates of mixing derived from finescale param-603

eterization that assume a GM-like universal form. This study could serve as a template604

to apply unsupervised machine learning approaches to localized process-based hydrographic605

studies or in engineering innovative features derived from hydrographic observations in606

an effort to understand the geographical and spatial distribution of the underlying dy-607

namics.608

Line Profiles Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

a20 74 2.9 9.4 17.3 28.8 22.8 6.2 12.6
a22 90 1.9 15.2 15.7 28.5 17.1 6.9 14.8
a13 128 10.2 1.5 13.1 19.3 36.5 12.9 6.4
a16n 119 8.5 1.6 12.9 18.5 35.5 15.3 7.8
a16s 111 9.5 2.2 15.0 24.7 27.4 10.6 10.6
i06 56 13.2 22.7 11.4 7.6 33.0 2.5 9.5
i08 114 5.7 12.8 13.7 16.0 34.6 5.2 12.0
i07 110 8.6 2.4 15.4 23.5 31.4 9.0 9.7
p18 209 2.6 2.9 17.5 34.9 19.2 10.5 12.4
p16s 86 8.6 20.5 11.6 14.0 29.8 2.8 12.6
p02 159 9.8 17.6 11.7 14.0 31.1 4.9 10.9
a10 116 16.5 1.6 11.6 17.0 35.7 10.9 6.7
s4p 72 0.5 36.1 11.9 19.6 9.1 3.6 19.2
p06 244 7.9 10.8 12.9 18.5 31.8 7.1 11.0
i05 187 25.3 10.8 9.7 8.2 35.7 3.0 6.3

TOTAL 1875 9.4 9.8 13.4 19.6 29.6 7.8 10.4

Table 1. Total number of full-depth profiles for each of the 15 GO-SHIP lines in the study

along with the percentage distribution of each cluster from the GMM model output along a given

line corresponding to results described in the main text and Figure 3.
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Figure 1. Method schematic shows the locations of the Raw CTD and LADCP data along

the 15 GO-SHIP lines in the study which are used to create primary features consisting of spec-

tral and non-spectral data (see Section 3.2). (b) An example showing dimensionality reduction

through NMF decomposition for shear spectra, converting high m dimensional spectra in the

input data matrix X into lower p dimensional spectral features in the form of a latent feature

matrix W and a corresponding hidden coefficient matrix H respectively (see Section 3.2.1). (c)

Two latent spectral features each (p=2) of shear and strain are aggregated into a feature matrix

F (green box, see Section 3.2.2), with additional features (see Section 4.3) are used as inputs to

the GMM model to generate cluster mappings for all GO-SHIP sections (Table 1).
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Figure 2. Example of geographical feature distribution along the P18 section for 7 different

features with normalized magnitudes used for clustering using the GMM model including NMF-1

shear spectra (a), NMF-2 shear spectra (b), NMF-1 strain spectra (c), NMF-2 strain spectra (d),

shear variance ⟨V 2
z ⟩ (e), buoyancy frequency [N] (f) and Rω (g).
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Figure 3. a) Resulting clustering along the 15 GO-SHIP lines produced by the GMM model

with feature matrix based on the NMF features (Figure 2a-d). PDF showing the abundance and

variation of individual clusters as a function of depth (b) and height above bottom bathymetry

across all 15 GO-SHIP lines (c). Relative percentage distribution of the seven clusters from the

GMM model with a posterior probability greater than 70% which are considered for the anal-

ysis (d). The zonal (e) and meridional (f) PDF computed from a composites of 10 zonal and 5

meridional sections respectively, with the location of CTD stations for the zonal and meridional

sections are shown ( black vertical lines in e and f).
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Figure 4. a) Ratio of estimates of turbulent dissipation rate from the finescale parameteri-

zation to measurements from CTD-mounted χ-pods taken concurrently along the P06 section

expressed as log10
(

ϵfine
ϵχpod

)
, b) Cluster assignments from the GMM model along the P06 section

(same as Figure 3a), c) Mean, 95% confidence intervals and violin plot computed for the ratio

log10
(

ϵfine
ϵχpod

)
from Figure 4a for seven clustered regions shown in Figure 4b, d-e). Mean strain

and shear spectra computed as a composite average for the clusters computed using all 15 sec-

tions with 99% confidence intervals using computed using a χ2 distribution (Chatfield et al.,

1987) considering only 1/10th degrees of freedom for better visibility (color shading). The average

GM spectral levels are shown in the dashed black line, with the integration limits to calculate

strain and shear variance shown by solid grey vertical lines. Slopes for shear spectra roll-offs

between k−1 and k−4 are shown with high wavenumber asymptote k−2 representing inertial sub-

range in the GM model, f) Schematic outlining how biases in estimates of turbulent mixing could

arise from spectra deviating from the assumed GM-like shape in the finescale parameterization

(Equation 1) by either overestimating (Cluster 1) or underestimating (Cluster 7) shear ⟨V 2
z ⟩ and

strain variance ⟨ζ2z ⟩ calculated by integrating the respective spectra in the finescale wavenumber

band.
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Figure 5. Posterior probabilities (%) p
(
k|x

)
of data belonging to each of the clusters (1-7)

as calculated with Equation 6 from the GMM model along the I05 section. Final cluster as-

signment of a data point belonging to a cluster k as shown in Figure 4 is made by computing

k = argmaxx p
(
k|x

)
as described in Section 3.3 .
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Figure 6. Histogram of the total percent posterior probabilities along the I05 section summed

across all the clusters
∑K

k=1 p
(
k|x

)
in 10% bins between 40% to 100% (top left). Additionally,

histogram of the percent posterior probabilities in each individual clusters k=1-7 corresponding

to Figure 5 are displayed as well. Data displayed in each bin are normalized by number of data-

points in the 10% bin with the most data.

Figure 7. The BIC scores versus the specified number of clusters, with the means (solid blue

line) and standard deviations (error bars) calculated from 50 random subsets of the data is also

shown with the range of the smallest BIC values (between k=7 and k=9) is indicated (purple

shading)
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