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Abstract

The inversion of remote sensing signatures of internal solitary waves (ISWs) can retrieve dynamic characteristics in the ocean

interior. The ubiquitous large-amplitude ISWs limit the weakly nonlinear methods commonly used to retrieve wave parameters.

We establish the relationship between surface features and internal characteristics of ISWs in laboratory experiments through

the correspondence of the remote sensing signatures and the surface velocities of ISWs. The results show that the strong

nonlinearity makes the solution of wave-induced velocity inseparable, and ISW theories under the weakly nonlinear assumption

are inappropriate to describe strongly nonlinear ISWs from the surface. Therefore, the fully nonlinear model Dubreil–Jacotin–

Long equation is used in the retrievals and has been well verified in both the laboratory and oceans. Mooring observations

and the model show that stratification conditions differentiate the relationship between remote sensing signatures and ISW

parameters in deep and shallow seas.
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Abstract 18 

The inversion of remote sensing signatures of internal solitary waves (ISWs) can retrieve 19 

dynamic characteristics in the ocean interior. The ubiquitous large-amplitude ISWs limit the 20 

weakly nonlinear methods commonly used to retrieve wave parameters. We establish the 21 

relationship between surface features and internal characteristics of ISWs in laboratory 22 

experiments through the correspondence of the remote sensing signatures and the surface 23 

velocities of ISWs. The results show that the strong nonlinearity makes the solution of wave-24 

induced velocity inseparable, and ISW theories under the weakly nonlinear assumption are 25 

inappropriate to describe strongly nonlinear ISWs from the surface. Therefore, the fully 26 

nonlinear model Dubreil–Jacotin–Long equation is used in the retrievals and has been well 27 

verified in both the laboratory and oceans. Mooring observations and the model show that 28 

stratification conditions differentiate the relationship between remote sensing signatures and ISW 29 

parameters in deep and shallow seas. 30 

 31 

Plain Language Summary 32 

Internal solitary waves (ISWs), as nonlinear internal waves, play an essential role in oceanic 33 

human activities and ocean mixing. The surface current induced by ISWs can create rough and 34 

smooth regions on the sea surface due to the modulated roughness, hence presenting alternating 35 

bright and dark stripes in satellite images. Satellites can observe ISWs over a wide range via 36 

surface manifestations, and the internal dynamics can be calculated from surface features using 37 

retrieval methods. However, the availability of retrieval methods still needs to be verified, facing 38 

the difficulty of matching mooring observations and satellite images of the same ISW in a short 39 

time interval. According to the proportional relation of remote sensing signatures and wave-40 

induced velocities, this study establishes the relationship between surface features and internal 41 

characteristics of ISWs in laboratory experiments. Different from the weakly nonlinear models 42 

used in previous studies, a fully nonlinear model is used in the retrieval and has achieved good 43 

results in the laboratory and oceans. The model and mooring observations show the critical role 44 

of stratifications in the retrieval. This work provides a reliable dynamics model for the inversion 45 

of remote sensing signatures of ISWs into characteristics in the ocean interior. 46 
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1 Introduction 47 

Internal solitary waves (ISWs) are widespread in marginal seas (Jackson, 2007), and are 48 

usually generated due to the nonlinear steepening of internal tides (Ramp et al., 2010). With 49 

large amplitudes and strong currents, ISWs can damage ocean engineering and underwater 50 

vehicles (Huang et al., 2016; Klymak et al., 2006; Osborne & Burch, 1980). The breaking of 51 

ISWs during shoaling can cause enhanced mixing, change underwater acoustic transmission, and 52 

affect nearshore ecosystems (Alford et al., 2015; Chiu et al., 2013; Moum et al., 2003; Wang et 53 

al., 2007). 54 

ISWs create convergence and divergence zones on the sea surface, resulting in rough and 55 

smooth regions on the sea surface due to the modulated roughness (Lenain & Pizzo, 2021; Yue 56 

et al., 2022) and presenting alternating bright and dark stripes in satellite images. The 57 

characteristics of ISWs, such as wave crest length, propagation direction and propagation speed 58 

can be acquired from the images (Jackson, 2007; Liu et al., 2014; Zhao et al., 2004), while other 59 

essential characteristics such as amplitude and wavelength cannot be directly obtained. 60 

Therefore, retrieval methods of ISW parameters based on physical models have been proposed, 61 

which establish the relation between the remote sensing characteristics and other wave 62 

parameters in the ocean interior. A variety of retrieval methods were established using different 63 

ISW theories and wave-induced velocity calculation methods. 64 

A retrieval method based on the Korteweg-de Vries (KdV) equation was first proposed 65 

(Small et al., 1999; Zheng et al., 2001) and widely used for determining ISW parameters (Fan et 66 

al., 2015; Gong et al., 2021; Hong et al., 2016; Phaniharam et al., 2020; Wang et al., 2022; Xie et 67 

al., 2022). This method established the relation between the ISW distribution of stripes and their 68 

wavelengths. Then, the waveform and amplitude could be determined with stratifications. 69 

Retrieval methods using the Joseph–Kubota–Ko–Dobbs (JKKD) equation for finite depth (Pan et 70 

al., 2007), the Benjamin–Ono (BO) equation for infinite depth (Chen et al., 2011; C. Wang et al., 71 

2019) and the extended KdV (eKdV) equation (Jia et al., 2019; Xue et al., 2013) were also 72 

proposed to analyze satellite images similarly. These methods above were based on a weakly 73 

nonlinear assumption, which assumes that the amplitude of ISWs is small compared with the 74 

intrinsic vertical scale (Choi & Camassa, 1999). Under the weakly nonlinear assumption, the 75 

solution of the wave-induced velocity is considered to be separable in the horizontal and vertical 76 

directions. 77 
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However, strongly nonlinear ISWs that do not satisfy the weak nonlinearity assumption 78 

account for a large proportion of in-situ oceanic observations. (Chang et al., 2021; Huang et al., 79 

2022; Stanton & Ostrovsky, 1998; Yang et al., 2021). Although weakly nonlinear theories have 80 

been used outside their formal range of validity in some cases (Helfrich & Melville, 2006), for a 81 

detailed description of the dynamics of large-amplitude ISWs observed in the real ocean, 82 

theoretical models with strong nonlinearity are needed (Vlasenko et al., 2000). The Miyata–83 

Choi–Camassa (MCC) equation, a fully nonlinear theory of long waves was proposed and agreed 84 

well with laboratory experiments (Camassa et al., 2006; Kodaira et al., 2016). Meanwhile, 85 

without any assumptions, the fully nonlinear Dubriel–Jacotin–Long (DJL) equation has been 86 

applied effectively in the laboratory and the ocean (Camassa et al., 2018; Chang et al., 2021; 87 

Lien et al., 2014; Luzzatto-Fegiz & Helfrich, 2014). Different from the separable solution of 88 

velocity under weakly nonlinear approximation, the solution cannot be separated with strong 89 

nonlinearity. To date, strongly nonlinear effects on the retrievals of wave parameters have not 90 

been fully considered in the following two aspects: (1) the calculation of wave-induced velocities 91 

and (2) the applicability of ISW theories. The adequate modeling of  ISW dynamics should be 92 

determined in the retrieval, as mentioned by Romeiser and Graber (2015). 93 

To address the difficulty of matching mooring observations and satellite images of the 94 

same ISW in a short time interval, this paper establishes the relationship between surface 95 

features and internal characteristics of ISWs in laboratory experiments. Then the strongly 96 

nonlinear effects on retrieving ISW parameters are evaluated in terms of wave-induced velocities 97 

and ISW theories. Finally, we assess the retrieval of wave parameters in different oceanic 98 

environments. 99 

2 Methodology 100 

2.1 Laboratory experiments and data processing 101 

Experiments are conducted in the Key Laboratory of Physical Oceanography, Ocean 102 

University of China. Two layers of fluid with thickness of ℎ1 and  ℎ2 and densities of 1020kg/m3 103 

and 1040kg/m3 are injected into the tank. The depth ratio of the lower and upper layers 104 

ℎ2/ℎ1vary from 3 to 10. The waves are generated by the lock–release method (Sutherland et al., 105 

2015), with nondimensional amplitudes 𝜂0/ℎ1  ranging from 0.18 to 2.50; see Table S1 in the 106 

supporting information for the detailed conditions. Two synchronous charge coupled device 107 
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(CCD) cameras with bandpass filters are set in front of the tank. The wave-induced velocity is 108 

measured by particle image velocity (PIV) (Thielicke & Stamhuis, 2014; S. Wang et al., 2019), 109 

and the waveform 𝜂(𝑥) is determined by identifying the depth where the maximal vertical 110 

density gradient is located using the synthetic Schlieren technique (Dalziel et al., 2007). The 111 

wavelength of ISWs is defined as 112 

 𝐿𝑤 =
1

2𝜂0
∫ 𝜂(𝑥)

∞

−∞

d𝑥. (1) 113 

 114 

Figure 1. Schematic of experiments. (a) ISWs captured by ENVISAT on June 18, 2008, UTC. 115 

(b) Relative image intensity along the direction of wave propagation (the red line in subfigure a). 116 
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(c) The surface horizontal velocity divergence of the ISW in the laboratory experiment. The gray 117 

and black lines present the original and smoothed results, respectively. Red dashed lines indicate 118 

the horizontal position corresponding to the maximum and minimum values. (d) Schematic 119 

diagram of the experiment in the same case as subfigure c. 120 

We consider the radar imaging theory which describes the influence of surface currents 121 

on remote sensing imaging (Alpers, 1985) as 122 

∆𝜎

𝜎0
∝ −

𝜕𝑢𝑠

𝜕𝑥
, (2) 123 

where ∆𝜎 = 𝜎 − 𝜎0 denotes the deviation of the normalized radar cross-section intensity from its 124 

mean value, 𝑢𝑠 denotes the velocities of surface currents, and the 𝑥 direction is defined as the 125 

direction of wave propagation. This means that the signal in satellite images (Figure 1a and 1b) 126 

can be calculated from the divergence of surface velocities induced by ISWs in an equilibrium 127 

and steady environment. The distance between the positive peak and the adjacent negative peak 128 

 𝐷𝑝−𝑝 in satellite images of ISWs is less affected by winds in most cases (Brandt et al., 1999; 129 

Xue et al., 2013). Hence the peak-to-peak distance 𝐷𝑝−𝑝 is chosen to characterize the surface 130 

features of ISWs in our experiments (Figure 1c and 1d), which is expressed as 131 

𝐷𝑝−𝑝 = |𝑥
|
𝜕𝑢𝑠
𝜕𝑥

=min(
𝜕𝑢𝑠
𝜕𝑥

)
− 𝑥

|
𝜕𝑢𝑠
𝜕𝑥

=max(
𝜕𝑢𝑠
𝜕𝑥

)
| . (3) 132 

2.2 Theories 133 

The weakly nonlinear ISW models we used are the KdV, JKKD, BO, and eKdV 134 

equations. For strongly nonlinear ISWs models, we consider the MCC and DJL equations (see 135 

Text S1).  136 

The wave-induced velocity used for quantifying surface divergence can be determined by 137 

the stream function (Stastna & Peltier, 2005) : 138 

𝜓(𝑥, 𝑧) = 𝑐𝜂(𝑥, 𝑧). (4) 139 

For a given waveform 𝜂(𝑥), the solution of the induced horizontal velocity under weakly 140 

nonlinear conditions has the following separable form, in which the vertical modes are 141 

independent of the horizontal location: 142 
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𝑢(𝑥, 𝑧) =
𝜕𝜓(𝑥, 𝑧)

𝜕𝑧
= 𝑐0𝜂(𝑥)

𝜕𝜙𝑏(𝑧)

𝜕𝑧
, (5) 143 

where 𝑐0 is the linear phase speed and 𝜙𝑏(𝑧) is obtained by solving the Sturm–Liouville 144 

equation, written as: 145 

(
𝑑2

𝑑𝑧2
+

𝑁𝑏
2(𝑧)

𝑐0
2 ) 𝜙𝑏(𝑧) = 0        𝜙𝑏(−𝐻) = 𝜙𝑏(0) = 0, (6) 146 

where 𝑁𝑏(𝑧) is the given background buoyancy frequency, calculated by: 147 

𝑁𝑏
2(𝑧) = −

𝑔

𝜌0

𝑑𝜌(𝑧)

𝑑𝑧
, (7) 148 

where 𝑔 is the gravitational acceleration, 𝜌(𝑧) is the density profile, and 𝜌0 is the reference 149 

density. 150 

If strong nonlinearity is considered, the isopycnal displacement caused by ISWs should 151 

be considered when calculating the vertical structure. Therefore, the vertical structure function 152 

should depend on 𝑥 as well (Apel, 2003). The solution of the induced horizontal velocity is 153 

calculated in the following inseparable form: 154 

𝑢(𝑥, 𝑧) = 𝑐𝜂(𝑥)
𝜕𝜙𝑤𝑎𝑣𝑒(𝑥, 𝑧)

𝜕𝑧
, (8) 155 

where 𝜙𝑤𝑎𝑣𝑒(𝑥, 𝑧) is the vertical structure function of strongly nonlinear ISWs, calculated by 156 

iterating the changed stratification and 𝜂(𝑥, 𝑧) with the initial value of 𝜂(𝑥) (see Text S2). 157 
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3 Results 158 

3.1 Separability of the solution of wave-induced velocity  159 

 160 

Figure 2. Experimental results with ℎ2/ℎ1=5, 𝜂0 ℎ1⁄ = 1.44. (a) The solid black line is the 161 

background density profile measured by the conductivity probe, and the dashed line is the 162 

density profile at the wave crest calculated by iteration. (b) Horizontal velocity profile at the 163 

crest, the red line, blue line, and diamond are the velocities in the separable form, inseparable 164 

form, and experiment, respectively. The legend is the same in (b, d, e). (c) Waveform. (d) 165 

Surface horizontal velocity, (e) Divergence of horizontal velocity at the surface. The red and blue 166 

dashed lines indicate the horizontal positions where the divergences reach peaks. 167 

To visually show the influence of strong nonlinearity on the structure of wave-induced 168 

velocities, here we take a case of ℎ2/ℎ1=5 and 𝜂0 ℎ1⁄ =1.44 as an example in which the 169 

amplitude is of the same magnitude as ℎ1 and shows significant nonlinearity. In terms of 170 

horizontal velocity magnitude and structure, there are differences between the velocity solutions 171 

in separable (Eq.5) and inseparable (Eq.8) forms (Figure 2b and 2d). The PIV measurements 172 
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match the velocity solution in inseparable form well in both the magnitude and the structure. In 173 

the upper layer, the solution of velocity in separable form is more than twice the inseparable 174 

form, while they are closer in the lower layer. This difference between observations and 175 

theoretical solutions in separable form was also observed in the ocean, see Fig.13 of Rong et al. 176 

(2023). This can be explained by the flow conservation that the influence of ISWs on the 177 

stratification changed the thickness of the upper and lower layers. Figure 2e shows the distances 178 

of divergence peaks, where the distance in inseparable form is larger. The differences reach a 179 

maximum of 33% in the case of 𝜂0 ℎ1⁄ = 2.20. In previous studies, the relationship between 180 

𝐷𝑝−𝑝 and  𝐿𝑤 can be obtained directly by calculating velocity in separable form, as 𝐷𝑝−𝑝 = 1.32 181 

𝐿𝑤 in the KdV equation, and the ratio is independent of the amplitude. However, the 182 

experimental results show that the ratio varies from 1.4 to 2.7 with increasing amplitude. The 183 

results calculated in the inseparable form are consistent with the experiments (see Figure S1). 184 

Therefore, the strong nonlinearity cannot be neglected in the velocity calculation, especially with 185 

increasing wave amplitude. In Section 3.2, only the solution in inseparable form will be used to 186 

calculate velocities. 187 

3.2 Remote sensing characteristics of ISWs  188 

The relationship between remote sensing characteristics and wave parameters will be 189 

established in this section, and the applicability of each ISW theory will be evaluated by 190 

comparing it with experimental results. Here we take two cases of ℎ2/ℎ1=5, ℎ1=0.04 m, and 0.08 191 

m as examples. The results under the other stratifications are shown in Figures S2–S4. Our 192 

experiments mainly focus on the ISWs under strong nonlinearity, and the small amplitude ISWs 193 

have been fully proven to be consistent with the theoretical and experimental results in previous 194 

studies (Ostrovsky & Stepanyants, 2005). 195 
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 196 

Figure 3. Theoretical and experimental results with ℎ2/ℎ1 =5, (a) the variation of 𝐿𝑤 with 𝜂0. 197 

(b), (c), and (d) are the relationships between  𝐷𝑝−𝑝 and wavelength, amplitude, and phase speed, 198 

respectively. The red, magenta, yellow, green, light blue, and dark blue lines represent the KdV, 199 

JKKD, BO, eKdV, MCC, and DJL equations respectively. The black diamond (Exp04) and the 200 

circle (Exp08) represent the experimental results for ℎ1 =0.04 m and 0.08 m, respectively. 201 

Figures 3b-3d show the variation in wave parameters with the peak-to-peak distance 202 

𝐷𝑝−𝑝. The results from the KdV, JKKD, and BO equations show a similar pattern, in which 203 

parameters change monotonically with 𝐷𝑝−𝑝. However, for the eKdV, MCC, and DJL equations, 204 

the relationship between the wave parameters and 𝐷𝑝−𝑝 is no longer monotonic. Its typical 205 

feature is the existence of a turning point, which means that one 𝐷𝑝−𝑝 will correspond to two 206 

parameters, that is, the existence of double solutions. The selection method for double solutions 207 

can be determined by the properties of wave packets that the leading wave reaches the maximum 208 

amplitude (Xue et al., 2013). In addition, both the eKdV equation and the fully nonlinear 209 
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equations have a limiting amplitude, which varies with different stratifications (Cui et al., 2021), 210 

and the limiting amplitude of the eKdV equation is smaller than that of the MCC and DJL 211 

equations. The comparison between the theoretical and experimental results shows that it is 212 

feasible to describe the remote sensing characteristics of ISWs with theoretical models.  213 

To quantitatively compare the differences between ISW theories and experimental results 214 

in retrievals, we define the relative deviation (RD) as follows 215 

RD = |
𝜆𝑡ℎ𝑒𝑜𝑟𝑦 − 𝜆𝑒𝑥𝑝

𝜆𝑒𝑥𝑝
| ∗ 100%, (9) 216 

where 𝜆𝑡ℎ𝑒𝑜𝑟𝑦 and 𝜆𝑒𝑥𝑝 are any theoretical and experimental parameters under a specific 𝐷𝑝−𝑝. If 217 

the 𝐷𝑝−𝑝 of some experiments are smaller than the theoretical minimum value, the theoretical 218 

turning point is used to calculate its RD. In Figure 4, the KdV equation is only applicable in 219 

relatively small amplitudes at any stratification. For the eKdV equation, significant RD is caused 220 

in the retrieval with dimensionless amplitude ranging between 0.5–1, corresponding to the 221 

turning point with smaller 𝐷𝑝−𝑝 in this range. In addition, its limiting amplitude restricts its 222 

application at large amplitudes. Therefore, the eKdV equation is applicable to ISWs with small 223 

or nearly limiting amplitudes. For the MCC equation, the turning point gradually shifts to the 224 

direction of 𝐷𝑝−𝑝 lengthening with increasing depth. The RD becomes larger with the gradual 225 

failure of the long wave assumption. The DJL equation has great applicability in all conditions. 226 

In laboratory conditions, the RD of wavelength and phase speed are less than 10% in retrievals, 227 

and the RD of small amplitude is approximately 30% which is mainly caused by the relative 228 

magnitude of variation, measurement errors, and dissipations, while RD of other amplitude is 229 

reduced to 10%.  230 
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 231 

Figure 4. RD between theoretical and experimental results in retrievals using 𝐷𝑝−𝑝. (a)-(d) are RD 232 

of KdV, eKdV, MCC, and DJL equations in retrieving wavelength, (e)-(h) are RD in retrieving 233 

amplitude, and (i)-(l) are RD in retrieving phase speed. The color bar indicates RD% in each 234 

condition, and the black dashed line in (f) indicates the limiting amplitude. 235 

4 Discussion 236 

The above work explores the retrieval of wave parameters in a quasi-two-layer procedure 237 

under laboratory conditions. However, the complex environments in the ocean introduce 238 

difficulties and variety to retrieval. Therefore, the applicability of the established method is 239 

further tested with oceanic observations. 240 
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 241 

Figure 5. Relationship between 𝐷𝑝−𝑝 and amplitude of each location calculated by the DJL 242 

equation. (a) The dark line, light blue, green, orange and red lines are the results of mooring 243 

stations with depths of 200 m, 600 m, 953 m, 2762 m, and 3745 m. Dashed lines of 244 

corresponding colors indicate the maximum amplitude of the observed ISW at each station. (b) 245 

The dark blue line is the results of stations with a depth of 200m, the dots represent the measured 246 

ISWs, and their colors indicate the upper layer depth before the arrival of ISWs. The horizontal 247 

axis represents the time interval of peak-to-peak in the mooring observation. 248 

The results at several locations with long-term mooring are shown in Figure 5. The 200 m 249 

depth is S5 during the Asian Seas International Acoustics Experiment (ASIAEX) (Duda et al., 250 

2004), the 600 m depth station is LR1 of Chang et al. (2021), and the 953 m, 2762 m, and 3745 251 

m depth stations are M1, M6, and M10 of Huang et al. (2022). The yearly mean climatological 252 

WOA18 dataset is used in the DJL equation except for the location of 200 m. The stratification 253 

in 200 m depth is given by the average results of temperature profiles in observations before each 254 
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ISW arrives. In Figure 5b, 49 ISWs were observed during ASIAEX. The amplitude is defined as 255 

the maximum isotherm displacement. Using the time series of upward-looking ADCP with an 256 

interval of 1 min, we estimate 𝐷𝑝−𝑝 by  257 

𝐷𝑝−𝑝 = 𝑐 |𝑡
|
𝜕𝑢𝑠
𝜕𝑡

=min(
𝜕𝑢𝑠
𝜕𝑡

)
− 𝑡

|
𝜕𝑢𝑠
𝜕𝑡

=max(
𝜕𝑢𝑠
𝜕𝑡

)
| , (10) 258 

and the axis is set to 𝐷𝑝−𝑝/𝑐 due to the absence of the phase speed 𝑐.  Different from the 259 

laboratory results, the relationship between surface features and amplitudes is relatively scattered 260 

in the ocean. The amplitude will be greatly different under one condition. Even in a short period 261 

of 15 days, the upper layer depth will change between 30 m and 60 m corresponding to the 262 

amplitude difference, and this short-period change may be caused by surface forcing (Font et al., 263 

2022). As seen from the scatter, thicker and thinner upper layers usually correspond to smaller 264 

and larger amplitudes, respectively. The amplitudes are affected by this variation in stratification 265 

over a short period, as observed by Small et al. (1999) and Lien et al. (2014). The difficulty in 266 

obtaining real-time stratification will cause errors in retrieving the parameters of a specific ISW. 267 

Nevertheless, the DJL equation using an average stratification can still reveal the trend of wave 268 

parameters with remote sensing characteristics, which will play an important role in the 269 

statistical work of the properties of ISWs using satellite images. 270 

The curves under the measured maximum amplitude show different patterns. The 271 

amplitudes decrease approximately with the increase in 𝐷𝑝−𝑝 in a deep sea of more than 2700 m. 272 

At approximately 1000 m, the amplitudes decrease monotonically except for a small area near 273 

the turning point. For the 600 m and 200 m stations, the amplitudes above the turning point will 274 

increase with increasing of  𝐷𝑝−𝑝 while those below the turning point will decrease. The 275 

selection rule in the retrieval has been mentioned in Section 4.2. Different from other stations, 276 

the maximum amplitude observed at 200 m exceeds the limitation calculated by averaged 277 

stratification, which may be caused by variations in the upper layer and the shoaling of ISWs. 278 

The relationship between the remote sensing characteristics and the wave parameters of ISWs is 279 

different at those stations. In fact, the calculation results of the DJL equation under several 280 

stratifications indicate that the different stratification characteristics in different areas are the 281 

main factors that cause the differences in the retrievals, such as shallow waters with quasi-two-282 

layer stratifications and deep seas with a main thermocline that spans hundreds of meters.  283 
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Stratification plays a critical role in the retrieval of ISW parameters from satellite images. 284 

In shallow seas, the climatological dataset cannot reflect the short-period variation in 285 

stratification, and the retrieval of parameters of a specific ISW needs additional information to 286 

improve. For the deep seas, the relatively stable stratification provides us with more possibilities 287 

for accurate retrieval.  288 

5 Conclusions 289 

In this study, we establish the relationship between the surface and internal characteristics 290 

of ISWs in dimensionless laboratory experiments. The strongly nonlinear effects of ISWs in the 291 

retrieval of wave parameters are evaluated, and a fully nonlinear model is applied in oceans. 292 

Strong nonlinearity causes the solution of the wave-induced velocity to be inseparable, and an 293 

iterative method for calculating the velocity solution in inseparable form is proposed and fits 294 

well with the experimental results. The difference in the retrieval between velocity solutions in 295 

separable and inseparable forms reaches a maximum of 33% in the range of our experimental 296 

parameters. ISW theories under weakly nonlinear assumptions have difficulty describing 297 

strongly nonlinear ISWs from the surface. The fully nonlinear DJL equation is used in the 298 

retrieval and compared with experimental results. The relative deviation of the retrieval of 299 

wavelength, amplitude, and phase speed is less than 10% in laboratory experiments except in 300 

small amplitude conditions.  301 

The determination of ISW parameters from satellite images in oceans is significantly 302 

affected by in-situ stratifications. The variation in stratification over a short period can bring 303 

errors in retrieving the parameters of a specific ISW. However, the comparison of observations 304 

and theory shows that the DJL equation using background stratifications can reveal reasonable 305 

internal characteristics of ISWs from surface features. Stratification conditions make the 306 

relationship between remote sensing signatures and ISW parameters differ in deep and shallow 307 

seas. The amplitudes of ISWs decrease monotonically with increasing 𝐷𝑝−𝑝 in deep seas, but 308 

double solutions should be considered in shallow seas. 309 

This work provides a reliable hydrodynamics model for the inversion of remote sensing 310 

signatures of ISWs into characteristics in the ocean interior. With the combination of the fully 311 

nonlinear model and the satellite imaging mechanism, more underwater information can be 312 

interpreted from remote sensing in further work.  313 
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Key Points: 10 

 The relationship between the surface and internal characteristics of internal solitary 11 

waves is established in laboratory experiments. 12 

 A fully nonlinear model is used to determine wave parameters from surface features and 13 

has been well verified. 14 

 Stratification conditions differentiate the relationship between remote sensing signatures 15 

and wave parameters in deep and shallow seas. 16 
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Abstract 18 

The inversion of remote sensing signatures of internal solitary waves (ISWs) can retrieve 19 

dynamic characteristics in the ocean interior. The ubiquitous large-amplitude ISWs limit the 20 

weakly nonlinear methods commonly used to retrieve wave parameters. We establish the 21 

relationship between surface features and internal characteristics of ISWs in laboratory 22 

experiments through the correspondence of the remote sensing signatures and the surface 23 

velocities of ISWs. The results show that the strong nonlinearity makes the solution of wave-24 

induced velocity inseparable, and ISW theories under the weakly nonlinear assumption are 25 

inappropriate to describe strongly nonlinear ISWs from the surface. Therefore, the fully 26 

nonlinear model Dubreil–Jacotin–Long equation is used in the retrievals and has been well 27 

verified in both the laboratory and oceans. Mooring observations and the model show that 28 

stratification conditions differentiate the relationship between remote sensing signatures and ISW 29 

parameters in deep and shallow seas. 30 

 31 

Plain Language Summary 32 

Internal solitary waves (ISWs), as nonlinear internal waves, play an essential role in oceanic 33 

human activities and ocean mixing. The surface current induced by ISWs can create rough and 34 

smooth regions on the sea surface due to the modulated roughness, hence presenting alternating 35 

bright and dark stripes in satellite images. Satellites can observe ISWs over a wide range via 36 

surface manifestations, and the internal dynamics can be calculated from surface features using 37 

retrieval methods. However, the availability of retrieval methods still needs to be verified, facing 38 

the difficulty of matching mooring observations and satellite images of the same ISW in a short 39 

time interval. According to the proportional relation of remote sensing signatures and wave-40 

induced velocities, this study establishes the relationship between surface features and internal 41 

characteristics of ISWs in laboratory experiments. Different from the weakly nonlinear models 42 

used in previous studies, a fully nonlinear model is used in the retrieval and has achieved good 43 

results in the laboratory and oceans. The model and mooring observations show the critical role 44 

of stratifications in the retrieval. This work provides a reliable dynamics model for the inversion 45 

of remote sensing signatures of ISWs into characteristics in the ocean interior. 46 
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1 Introduction 47 

Internal solitary waves (ISWs) are widespread in marginal seas (Jackson, 2007), and are 48 

usually generated due to the nonlinear steepening of internal tides (Ramp et al., 2010). With 49 

large amplitudes and strong currents, ISWs can damage ocean engineering and underwater 50 

vehicles (Huang et al., 2016; Klymak et al., 2006; Osborne & Burch, 1980). The breaking of 51 

ISWs during shoaling can cause enhanced mixing, change underwater acoustic transmission, and 52 

affect nearshore ecosystems (Alford et al., 2015; Chiu et al., 2013; Moum et al., 2003; Wang et 53 

al., 2007). 54 

ISWs create convergence and divergence zones on the sea surface, resulting in rough and 55 

smooth regions on the sea surface due to the modulated roughness (Lenain & Pizzo, 2021; Yue 56 

et al., 2022) and presenting alternating bright and dark stripes in satellite images. The 57 

characteristics of ISWs, such as wave crest length, propagation direction and propagation speed 58 

can be acquired from the images (Jackson, 2007; Liu et al., 2014; Zhao et al., 2004), while other 59 

essential characteristics such as amplitude and wavelength cannot be directly obtained. 60 

Therefore, retrieval methods of ISW parameters based on physical models have been proposed, 61 

which establish the relation between the remote sensing characteristics and other wave 62 

parameters in the ocean interior. A variety of retrieval methods were established using different 63 

ISW theories and wave-induced velocity calculation methods. 64 

A retrieval method based on the Korteweg-de Vries (KdV) equation was first proposed 65 

(Small et al., 1999; Zheng et al., 2001) and widely used for determining ISW parameters (Fan et 66 

al., 2015; Gong et al., 2021; Hong et al., 2016; Phaniharam et al., 2020; Wang et al., 2022; Xie et 67 

al., 2022). This method established the relation between the ISW distribution of stripes and their 68 

wavelengths. Then, the waveform and amplitude could be determined with stratifications. 69 

Retrieval methods using the Joseph–Kubota–Ko–Dobbs (JKKD) equation for finite depth (Pan et 70 

al., 2007), the Benjamin–Ono (BO) equation for infinite depth (Chen et al., 2011; C. Wang et al., 71 

2019) and the extended KdV (eKdV) equation (Jia et al., 2019; Xue et al., 2013) were also 72 

proposed to analyze satellite images similarly. These methods above were based on a weakly 73 

nonlinear assumption, which assumes that the amplitude of ISWs is small compared with the 74 

intrinsic vertical scale (Choi & Camassa, 1999). Under the weakly nonlinear assumption, the 75 

solution of the wave-induced velocity is considered to be separable in the horizontal and vertical 76 

directions. 77 
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However, strongly nonlinear ISWs that do not satisfy the weak nonlinearity assumption 78 

account for a large proportion of in-situ oceanic observations. (Chang et al., 2021; Huang et al., 79 

2022; Stanton & Ostrovsky, 1998; Yang et al., 2021). Although weakly nonlinear theories have 80 

been used outside their formal range of validity in some cases (Helfrich & Melville, 2006), for a 81 

detailed description of the dynamics of large-amplitude ISWs observed in the real ocean, 82 

theoretical models with strong nonlinearity are needed (Vlasenko et al., 2000). The Miyata–83 

Choi–Camassa (MCC) equation, a fully nonlinear theory of long waves was proposed and agreed 84 

well with laboratory experiments (Camassa et al., 2006; Kodaira et al., 2016). Meanwhile, 85 

without any assumptions, the fully nonlinear Dubriel–Jacotin–Long (DJL) equation has been 86 

applied effectively in the laboratory and the ocean (Camassa et al., 2018; Chang et al., 2021; 87 

Lien et al., 2014; Luzzatto-Fegiz & Helfrich, 2014). Different from the separable solution of 88 

velocity under weakly nonlinear approximation, the solution cannot be separated with strong 89 

nonlinearity. To date, strongly nonlinear effects on the retrievals of wave parameters have not 90 

been fully considered in the following two aspects: (1) the calculation of wave-induced velocities 91 

and (2) the applicability of ISW theories. The adequate modeling of  ISW dynamics should be 92 

determined in the retrieval, as mentioned by Romeiser and Graber (2015). 93 

To address the difficulty of matching mooring observations and satellite images of the 94 

same ISW in a short time interval, this paper establishes the relationship between surface 95 

features and internal characteristics of ISWs in laboratory experiments. Then the strongly 96 

nonlinear effects on retrieving ISW parameters are evaluated in terms of wave-induced velocities 97 

and ISW theories. Finally, we assess the retrieval of wave parameters in different oceanic 98 

environments. 99 

2 Methodology 100 

2.1 Laboratory experiments and data processing 101 

Experiments are conducted in the Key Laboratory of Physical Oceanography, Ocean 102 

University of China. Two layers of fluid with thickness of ℎ1 and  ℎ2 and densities of 1020kg/m3 103 

and 1040kg/m3 are injected into the tank. The depth ratio of the lower and upper layers 104 

ℎ2/ℎ1vary from 3 to 10. The waves are generated by the lock–release method (Sutherland et al., 105 

2015), with nondimensional amplitudes 𝜂0/ℎ1  ranging from 0.18 to 2.50; see Table S1 in the 106 

supporting information for the detailed conditions. Two synchronous charge coupled device 107 
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(CCD) cameras with bandpass filters are set in front of the tank. The wave-induced velocity is 108 

measured by particle image velocity (PIV) (Thielicke & Stamhuis, 2014; S. Wang et al., 2019), 109 

and the waveform 𝜂(𝑥) is determined by identifying the depth where the maximal vertical 110 

density gradient is located using the synthetic Schlieren technique (Dalziel et al., 2007). The 111 

wavelength of ISWs is defined as 112 

 𝐿𝑤 =
1

2𝜂0
∫ 𝜂(𝑥)

∞

−∞

d𝑥. (1) 113 

 114 

Figure 1. Schematic of experiments. (a) ISWs captured by ENVISAT on June 18, 2008, UTC. 115 

(b) Relative image intensity along the direction of wave propagation (the red line in subfigure a). 116 
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(c) The surface horizontal velocity divergence of the ISW in the laboratory experiment. The gray 117 

and black lines present the original and smoothed results, respectively. Red dashed lines indicate 118 

the horizontal position corresponding to the maximum and minimum values. (d) Schematic 119 

diagram of the experiment in the same case as subfigure c. 120 

We consider the radar imaging theory which describes the influence of surface currents 121 

on remote sensing imaging (Alpers, 1985) as 122 

∆𝜎

𝜎0
∝ −

𝜕𝑢𝑠

𝜕𝑥
, (2) 123 

where ∆𝜎 = 𝜎 − 𝜎0 denotes the deviation of the normalized radar cross-section intensity from its 124 

mean value, 𝑢𝑠 denotes the velocities of surface currents, and the 𝑥 direction is defined as the 125 

direction of wave propagation. This means that the signal in satellite images (Figure 1a and 1b) 126 

can be calculated from the divergence of surface velocities induced by ISWs in an equilibrium 127 

and steady environment. The distance between the positive peak and the adjacent negative peak 128 

 𝐷𝑝−𝑝 in satellite images of ISWs is less affected by winds in most cases (Brandt et al., 1999; 129 

Xue et al., 2013). Hence the peak-to-peak distance 𝐷𝑝−𝑝 is chosen to characterize the surface 130 

features of ISWs in our experiments (Figure 1c and 1d), which is expressed as 131 

𝐷𝑝−𝑝 = |𝑥
|
𝜕𝑢𝑠
𝜕𝑥

=min(
𝜕𝑢𝑠
𝜕𝑥

)
− 𝑥

|
𝜕𝑢𝑠
𝜕𝑥

=max(
𝜕𝑢𝑠
𝜕𝑥

)
| . (3) 132 

2.2 Theories 133 

The weakly nonlinear ISW models we used are the KdV, JKKD, BO, and eKdV 134 

equations. For strongly nonlinear ISWs models, we consider the MCC and DJL equations (see 135 

Text S1).  136 

The wave-induced velocity used for quantifying surface divergence can be determined by 137 

the stream function (Stastna & Peltier, 2005) : 138 

𝜓(𝑥, 𝑧) = 𝑐𝜂(𝑥, 𝑧). (4) 139 

For a given waveform 𝜂(𝑥), the solution of the induced horizontal velocity under weakly 140 

nonlinear conditions has the following separable form, in which the vertical modes are 141 

independent of the horizontal location: 142 
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𝑢(𝑥, 𝑧) =
𝜕𝜓(𝑥, 𝑧)

𝜕𝑧
= 𝑐0𝜂(𝑥)

𝜕𝜙𝑏(𝑧)

𝜕𝑧
, (5) 143 

where 𝑐0 is the linear phase speed and 𝜙𝑏(𝑧) is obtained by solving the Sturm–Liouville 144 

equation, written as: 145 

(
𝑑2

𝑑𝑧2
+

𝑁𝑏
2(𝑧)

𝑐0
2 ) 𝜙𝑏(𝑧) = 0        𝜙𝑏(−𝐻) = 𝜙𝑏(0) = 0, (6) 146 

where 𝑁𝑏(𝑧) is the given background buoyancy frequency, calculated by: 147 

𝑁𝑏
2(𝑧) = −

𝑔

𝜌0

𝑑𝜌(𝑧)

𝑑𝑧
, (7) 148 

where 𝑔 is the gravitational acceleration, 𝜌(𝑧) is the density profile, and 𝜌0 is the reference 149 

density. 150 

If strong nonlinearity is considered, the isopycnal displacement caused by ISWs should 151 

be considered when calculating the vertical structure. Therefore, the vertical structure function 152 

should depend on 𝑥 as well (Apel, 2003). The solution of the induced horizontal velocity is 153 

calculated in the following inseparable form: 154 

𝑢(𝑥, 𝑧) = 𝑐𝜂(𝑥)
𝜕𝜙𝑤𝑎𝑣𝑒(𝑥, 𝑧)

𝜕𝑧
, (8) 155 

where 𝜙𝑤𝑎𝑣𝑒(𝑥, 𝑧) is the vertical structure function of strongly nonlinear ISWs, calculated by 156 

iterating the changed stratification and 𝜂(𝑥, 𝑧) with the initial value of 𝜂(𝑥) (see Text S2). 157 
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3 Results 158 

3.1 Separability of the solution of wave-induced velocity  159 

 160 

Figure 2. Experimental results with ℎ2/ℎ1=5, 𝜂0 ℎ1⁄ = 1.44. (a) The solid black line is the 161 

background density profile measured by the conductivity probe, and the dashed line is the 162 

density profile at the wave crest calculated by iteration. (b) Horizontal velocity profile at the 163 

crest, the red line, blue line, and diamond are the velocities in the separable form, inseparable 164 

form, and experiment, respectively. The legend is the same in (b, d, e). (c) Waveform. (d) 165 

Surface horizontal velocity, (e) Divergence of horizontal velocity at the surface. The red and blue 166 

dashed lines indicate the horizontal positions where the divergences reach peaks. 167 

To visually show the influence of strong nonlinearity on the structure of wave-induced 168 

velocities, here we take a case of ℎ2/ℎ1=5 and 𝜂0 ℎ1⁄ =1.44 as an example in which the 169 

amplitude is of the same magnitude as ℎ1 and shows significant nonlinearity. In terms of 170 

horizontal velocity magnitude and structure, there are differences between the velocity solutions 171 

in separable (Eq.5) and inseparable (Eq.8) forms (Figure 2b and 2d). The PIV measurements 172 
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match the velocity solution in inseparable form well in both the magnitude and the structure. In 173 

the upper layer, the solution of velocity in separable form is more than twice the inseparable 174 

form, while they are closer in the lower layer. This difference between observations and 175 

theoretical solutions in separable form was also observed in the ocean, see Fig.13 of Rong et al. 176 

(2023). This can be explained by the flow conservation that the influence of ISWs on the 177 

stratification changed the thickness of the upper and lower layers. Figure 2e shows the distances 178 

of divergence peaks, where the distance in inseparable form is larger. The differences reach a 179 

maximum of 33% in the case of 𝜂0 ℎ1⁄ = 2.20. In previous studies, the relationship between 180 

𝐷𝑝−𝑝 and  𝐿𝑤 can be obtained directly by calculating velocity in separable form, as 𝐷𝑝−𝑝 = 1.32 181 

𝐿𝑤 in the KdV equation, and the ratio is independent of the amplitude. However, the 182 

experimental results show that the ratio varies from 1.4 to 2.7 with increasing amplitude. The 183 

results calculated in the inseparable form are consistent with the experiments (see Figure S1). 184 

Therefore, the strong nonlinearity cannot be neglected in the velocity calculation, especially with 185 

increasing wave amplitude. In Section 3.2, only the solution in inseparable form will be used to 186 

calculate velocities. 187 

3.2 Remote sensing characteristics of ISWs  188 

The relationship between remote sensing characteristics and wave parameters will be 189 

established in this section, and the applicability of each ISW theory will be evaluated by 190 

comparing it with experimental results. Here we take two cases of ℎ2/ℎ1=5, ℎ1=0.04 m, and 0.08 191 

m as examples. The results under the other stratifications are shown in Figures S2–S4. Our 192 

experiments mainly focus on the ISWs under strong nonlinearity, and the small amplitude ISWs 193 

have been fully proven to be consistent with the theoretical and experimental results in previous 194 

studies (Ostrovsky & Stepanyants, 2005). 195 
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 196 

Figure 3. Theoretical and experimental results with ℎ2/ℎ1 =5, (a) the variation of 𝐿𝑤 with 𝜂0. 197 

(b), (c), and (d) are the relationships between  𝐷𝑝−𝑝 and wavelength, amplitude, and phase speed, 198 

respectively. The red, magenta, yellow, green, light blue, and dark blue lines represent the KdV, 199 

JKKD, BO, eKdV, MCC, and DJL equations respectively. The black diamond (Exp04) and the 200 

circle (Exp08) represent the experimental results for ℎ1 =0.04 m and 0.08 m, respectively. 201 

Figures 3b-3d show the variation in wave parameters with the peak-to-peak distance 202 

𝐷𝑝−𝑝. The results from the KdV, JKKD, and BO equations show a similar pattern, in which 203 

parameters change monotonically with 𝐷𝑝−𝑝. However, for the eKdV, MCC, and DJL equations, 204 

the relationship between the wave parameters and 𝐷𝑝−𝑝 is no longer monotonic. Its typical 205 

feature is the existence of a turning point, which means that one 𝐷𝑝−𝑝 will correspond to two 206 

parameters, that is, the existence of double solutions. The selection method for double solutions 207 

can be determined by the properties of wave packets that the leading wave reaches the maximum 208 

amplitude (Xue et al., 2013). In addition, both the eKdV equation and the fully nonlinear 209 
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equations have a limiting amplitude, which varies with different stratifications (Cui et al., 2021), 210 

and the limiting amplitude of the eKdV equation is smaller than that of the MCC and DJL 211 

equations. The comparison between the theoretical and experimental results shows that it is 212 

feasible to describe the remote sensing characteristics of ISWs with theoretical models.  213 

To quantitatively compare the differences between ISW theories and experimental results 214 

in retrievals, we define the relative deviation (RD) as follows 215 

RD = |
𝜆𝑡ℎ𝑒𝑜𝑟𝑦 − 𝜆𝑒𝑥𝑝

𝜆𝑒𝑥𝑝
| ∗ 100%, (9) 216 

where 𝜆𝑡ℎ𝑒𝑜𝑟𝑦 and 𝜆𝑒𝑥𝑝 are any theoretical and experimental parameters under a specific 𝐷𝑝−𝑝. If 217 

the 𝐷𝑝−𝑝 of some experiments are smaller than the theoretical minimum value, the theoretical 218 

turning point is used to calculate its RD. In Figure 4, the KdV equation is only applicable in 219 

relatively small amplitudes at any stratification. For the eKdV equation, significant RD is caused 220 

in the retrieval with dimensionless amplitude ranging between 0.5–1, corresponding to the 221 

turning point with smaller 𝐷𝑝−𝑝 in this range. In addition, its limiting amplitude restricts its 222 

application at large amplitudes. Therefore, the eKdV equation is applicable to ISWs with small 223 

or nearly limiting amplitudes. For the MCC equation, the turning point gradually shifts to the 224 

direction of 𝐷𝑝−𝑝 lengthening with increasing depth. The RD becomes larger with the gradual 225 

failure of the long wave assumption. The DJL equation has great applicability in all conditions. 226 

In laboratory conditions, the RD of wavelength and phase speed are less than 10% in retrievals, 227 

and the RD of small amplitude is approximately 30% which is mainly caused by the relative 228 

magnitude of variation, measurement errors, and dissipations, while RD of other amplitude is 229 

reduced to 10%.  230 
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 231 

Figure 4. RD between theoretical and experimental results in retrievals using 𝐷𝑝−𝑝. (a)-(d) are RD 232 

of KdV, eKdV, MCC, and DJL equations in retrieving wavelength, (e)-(h) are RD in retrieving 233 

amplitude, and (i)-(l) are RD in retrieving phase speed. The color bar indicates RD% in each 234 

condition, and the black dashed line in (f) indicates the limiting amplitude. 235 

4 Discussion 236 

The above work explores the retrieval of wave parameters in a quasi-two-layer procedure 237 

under laboratory conditions. However, the complex environments in the ocean introduce 238 

difficulties and variety to retrieval. Therefore, the applicability of the established method is 239 

further tested with oceanic observations. 240 
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 241 

Figure 5. Relationship between 𝐷𝑝−𝑝 and amplitude of each location calculated by the DJL 242 

equation. (a) The dark line, light blue, green, orange and red lines are the results of mooring 243 

stations with depths of 200 m, 600 m, 953 m, 2762 m, and 3745 m. Dashed lines of 244 

corresponding colors indicate the maximum amplitude of the observed ISW at each station. (b) 245 

The dark blue line is the results of stations with a depth of 200m, the dots represent the measured 246 

ISWs, and their colors indicate the upper layer depth before the arrival of ISWs. The horizontal 247 

axis represents the time interval of peak-to-peak in the mooring observation. 248 

The results at several locations with long-term mooring are shown in Figure 5. The 200 m 249 

depth is S5 during the Asian Seas International Acoustics Experiment (ASIAEX) (Duda et al., 250 

2004), the 600 m depth station is LR1 of Chang et al. (2021), and the 953 m, 2762 m, and 3745 251 

m depth stations are M1, M6, and M10 of Huang et al. (2022). The yearly mean climatological 252 

WOA18 dataset is used in the DJL equation except for the location of 200 m. The stratification 253 

in 200 m depth is given by the average results of temperature profiles in observations before each 254 



manuscript submitted to Geophysical Research Letters 

 

ISW arrives. In Figure 5b, 49 ISWs were observed during ASIAEX. The amplitude is defined as 255 

the maximum isotherm displacement. Using the time series of upward-looking ADCP with an 256 

interval of 1 min, we estimate 𝐷𝑝−𝑝 by  257 

𝐷𝑝−𝑝 = 𝑐 |𝑡
|
𝜕𝑢𝑠
𝜕𝑡

=min(
𝜕𝑢𝑠
𝜕𝑡

)
− 𝑡

|
𝜕𝑢𝑠
𝜕𝑡

=max(
𝜕𝑢𝑠
𝜕𝑡

)
| , (10) 258 

and the axis is set to 𝐷𝑝−𝑝/𝑐 due to the absence of the phase speed 𝑐.  Different from the 259 

laboratory results, the relationship between surface features and amplitudes is relatively scattered 260 

in the ocean. The amplitude will be greatly different under one condition. Even in a short period 261 

of 15 days, the upper layer depth will change between 30 m and 60 m corresponding to the 262 

amplitude difference, and this short-period change may be caused by surface forcing (Font et al., 263 

2022). As seen from the scatter, thicker and thinner upper layers usually correspond to smaller 264 

and larger amplitudes, respectively. The amplitudes are affected by this variation in stratification 265 

over a short period, as observed by Small et al. (1999) and Lien et al. (2014). The difficulty in 266 

obtaining real-time stratification will cause errors in retrieving the parameters of a specific ISW. 267 

Nevertheless, the DJL equation using an average stratification can still reveal the trend of wave 268 

parameters with remote sensing characteristics, which will play an important role in the 269 

statistical work of the properties of ISWs using satellite images. 270 

The curves under the measured maximum amplitude show different patterns. The 271 

amplitudes decrease approximately with the increase in 𝐷𝑝−𝑝 in a deep sea of more than 2700 m. 272 

At approximately 1000 m, the amplitudes decrease monotonically except for a small area near 273 

the turning point. For the 600 m and 200 m stations, the amplitudes above the turning point will 274 

increase with increasing of  𝐷𝑝−𝑝 while those below the turning point will decrease. The 275 

selection rule in the retrieval has been mentioned in Section 4.2. Different from other stations, 276 

the maximum amplitude observed at 200 m exceeds the limitation calculated by averaged 277 

stratification, which may be caused by variations in the upper layer and the shoaling of ISWs. 278 

The relationship between the remote sensing characteristics and the wave parameters of ISWs is 279 

different at those stations. In fact, the calculation results of the DJL equation under several 280 

stratifications indicate that the different stratification characteristics in different areas are the 281 

main factors that cause the differences in the retrievals, such as shallow waters with quasi-two-282 

layer stratifications and deep seas with a main thermocline that spans hundreds of meters.  283 
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Stratification plays a critical role in the retrieval of ISW parameters from satellite images. 284 

In shallow seas, the climatological dataset cannot reflect the short-period variation in 285 

stratification, and the retrieval of parameters of a specific ISW needs additional information to 286 

improve. For the deep seas, the relatively stable stratification provides us with more possibilities 287 

for accurate retrieval.  288 

5 Conclusions 289 

In this study, we establish the relationship between the surface and internal characteristics 290 

of ISWs in dimensionless laboratory experiments. The strongly nonlinear effects of ISWs in the 291 

retrieval of wave parameters are evaluated, and a fully nonlinear model is applied in oceans. 292 

Strong nonlinearity causes the solution of the wave-induced velocity to be inseparable, and an 293 

iterative method for calculating the velocity solution in inseparable form is proposed and fits 294 

well with the experimental results. The difference in the retrieval between velocity solutions in 295 

separable and inseparable forms reaches a maximum of 33% in the range of our experimental 296 

parameters. ISW theories under weakly nonlinear assumptions have difficulty describing 297 

strongly nonlinear ISWs from the surface. The fully nonlinear DJL equation is used in the 298 

retrieval and compared with experimental results. The relative deviation of the retrieval of 299 

wavelength, amplitude, and phase speed is less than 10% in laboratory experiments except in 300 

small amplitude conditions.  301 

The determination of ISW parameters from satellite images in oceans is significantly 302 

affected by in-situ stratifications. The variation in stratification over a short period can bring 303 

errors in retrieving the parameters of a specific ISW. However, the comparison of observations 304 

and theory shows that the DJL equation using background stratifications can reveal reasonable 305 

internal characteristics of ISWs from surface features. Stratification conditions make the 306 

relationship between remote sensing signatures and ISW parameters differ in deep and shallow 307 

seas. The amplitudes of ISWs decrease monotonically with increasing 𝐷𝑝−𝑝 in deep seas, but 308 

double solutions should be considered in shallow seas. 309 

This work provides a reliable hydrodynamics model for the inversion of remote sensing 310 

signatures of ISWs into characteristics in the ocean interior. With the combination of the fully 311 

nonlinear model and the satellite imaging mechanism, more underwater information can be 312 

interpreted from remote sensing in further work.  313 
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Text S1. Solutions of internal solitary wave theories 

The Korteweg–de Vires (KdV) equation (Korteweg & de Vries, 1895) has the 

solution  

𝜂(𝑥, 𝑡) = 𝜂0sech2(𝑋 𝜆⁄ ), (S1) 

where 𝑋 = 𝑥 − 𝑐𝑡, 𝜂0 is the amplitude. 

𝑐0 = √
𝑔Δ𝜌

𝜌

ℎ1ℎ2

ℎ1 + ℎ2
, (S2) 

𝑐 = 𝑐0 +
𝛼𝜂0

3
, (S3) 

λ2 =
12𝛽

𝛼𝜂0
, (S4) 

where 𝑔 is the gravitational acceleration, Δ𝜌 is the density difference, 𝜌 is the reference 

density, ℎ1 and ℎ2 are the thickness of the upper layer and the lower layer, respectively. 

The parameters 

𝛼 =
3

2
𝑐0

ℎ1 − ℎ2

ℎ1ℎ2
, (S5) 

𝛽 =
𝑐0ℎ1ℎ2

6
. (S6) 

For Joseph–Kubota–Ko–Dobbs (JKKD) equation (Joseph, 1977; Kubota et al., 

1978), we consider the solution used by Zheng et al. (1993) 

𝜂(𝑥, 𝑡) =
𝜂0

[cosh2𝑎𝑋 + (sinh2𝑎𝑋) 𝑎2𝑏2⁄ ]
, (S7) 

𝑐0 = √
gΔ𝜌ℎ1

𝜌1
, (S8) 

𝑐 = 𝑐0 {1 +
ℎ1

2𝐻
[1 +

𝐻

𝑏
(1 − 𝑎2𝑏2)]} , (S9) 

𝑏 =
4ℎ1

2

3𝜂0
. (S10) 

The parameter 𝑎 is parameter satisfying the relationship 

𝑎𝑏tan(𝑎𝐻) = 1. (S11) 

The Benjamin–Ono (BO) equation (Benjamin, 1967; Ono, 1975) has the solution 



 

 

3 

 

𝜂(𝑥, 𝑡) =
𝜂0

1 + (𝑋 𝜆⁄ )2
. (S12) 

𝑐 = 𝑐0 +
𝛼𝜂0

4
, (S13) 

where 𝑐0 is the same as in Eq. S8. 

𝜆 =
4𝛽

𝛼𝜂0
, (S14) 

𝛼 = −
3𝑐0

2ℎ1
, (S15) 

𝛽 =
𝑐0ℎ1𝜌2

2𝜌1
. (S16) 

If the higher-order nonlinear terms were took into account in the KdV equation, the 

extended KdV (eKdV) equation (Grimshaw et al., 2004; Kakutani & Yamasaki, 1978) has 

the solution 

𝜂(𝑥, 𝑡) =
𝜂0

𝐵 + (1 − 𝐵)cosh2(𝑋 𝜆⁄ )
. (S17) 

𝑐 = 𝑐0 +
1

3
𝜂0 (𝛼 +

1

2
𝛾𝜂0) , (S18) 

𝜆2 =
12𝛽

𝜂0 (𝛼 +
1
2 𝛾𝜂0)

, (S19) 

𝐵 =
−𝛾𝜂0

2𝛼 + 𝛾𝜂0
, (S20) 

the parameters 𝛼 and 𝛽 are the same as in Eq. S5 and Eq. S6, the parameter  

𝛾 =
3𝑐0

(ℎ1ℎ2)2
[
7

8
(ℎ1 − ℎ2)2 − (

ℎ1
3 + ℎ2

3

ℎ1 + ℎ2
)] . (S21) 

The solution of Miyata–Choi–Camassa (MCC) equation (Camassa et al., 2006; 

Choi & Camassa, 1999; Miyata, 1988) is a nonlinear ordinary differential equation 

(
𝜕𝜂(𝑥, 𝑡)

𝜕𝑋
)

2

= 𝛿
𝜂2(𝜂 − 𝑎−)(𝜂 − 𝑎+)

𝜂 − 𝑎∗
, (S22) 

the parameter 

𝛿 =
3𝑔Δ𝜌

𝑐2(𝜌1ℎ1
2 − 𝜌2ℎ2

2)
, (S23) 
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𝑐2 =
𝑐0

2(ℎ1 − 𝜂0)(ℎ2 + 𝜂0)

ℎ1ℎ2 − (𝑐0
2 𝑔⁄ )𝜂0

, (S24) 

where 𝑐0 is the same as in Eq. S2. 

𝑎∗ =
ℎ1ℎ2

ℎ2 − ℎ1
, (S25) 

where 𝑎− and 𝑎+ are the two roots of a quadratic equation 

𝜂2 + 𝑞1𝜂 + 𝑞2 = 0, (S26) 

𝑞1 = −(𝑐2 𝑔⁄ ) + ℎ2 − ℎ1,  𝑞2 = ℎ1ℎ2(𝑐2 𝑐0
2⁄ − 1). (S27) 

Without any assumption about the wavelength and amplitude, Dubreil–Jacotin–

Long (DJL) (Long, 1953) is established, the equation is as follows 

𝛻2𝜂 +
𝑁2(𝑧 − 𝜂)

𝑐2
𝜂 = 0, (S28) 

where isopycnal displacement 𝜂 is a function of 𝑥 and 𝑧, 𝑐 is the phase speed, 𝑁 is the 

buoyancy frequency, expressed as: 

𝑁2(𝑧) = −
𝑔

𝜌0

𝑑𝜌(𝑧)

𝑑𝑧
, (S29) 

where 𝑔 is the gravitational acceleration, 𝜌(𝑧) is the density profile, 𝜌0 is the reference 

density. It should be noted that the DJL equation does not have explicit solutions, which 

can only be solved by the numerical method (Dunphy et al., 2011; Stastna & Lamb, 

2002).  
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Text S2. Iteration procedure of the solution of wave-induced velocity in inseparable 

form 

When the ISW which has a waveform of 𝜂(𝑥) exists, the buoyancy frequency in 

the domain can be expressed as  

𝑁𝑤𝑎𝑣𝑒
𝑖 [𝑧 + 𝜂𝑖−1(𝑥, 𝑧)] = {

0         0 ≤ 𝑧 ≤ −𝜂𝑖−1(𝑥, 𝑧)

𝑁𝑏(𝑧)   − 𝐻 − 𝜂𝑖−1(𝑥, 𝑧) ≤ 𝑧 < 0  
, (S30) 

where 𝐻 is the total depth of the domain,  𝑁𝑏(𝑧) is the background buoyancy frequency, 𝑖 

presents the iterations. The 𝜂𝑖−1(𝑥, 𝑧) is calculated by the following equation with the 

initial value of 𝜂(𝑥)  

𝜂𝑖(𝑥, 𝑧) = 𝜂(𝑥)𝜙𝑤𝑎𝑣𝑒
𝑖(𝑥, 𝑧),     𝜂0(𝑥, 𝑧) = 𝜂(𝑥), (S31) 

where the vertical structure function 𝜙𝑖(𝑥, 𝑧) is calculated by  

(
𝑑2

𝑑𝑧2
+

𝑁𝑤𝑎𝑣𝑒
2 𝑖

(𝑥, 𝑧)

𝑐0
2 ) 𝜙𝑤𝑎𝑣𝑒

𝑖(𝑥, 𝑧) = 0        𝜙𝑤𝑎𝑣𝑒(𝑥, −𝐻) = 𝜙𝑤𝑎𝑣𝑒(𝑥, 0) = 0, (S32) 

where 𝑐0 is the linear phase speed. Therefore, according to the convergent iteration results, 

the solution of wave-induced horizontal velocity can be expressed as  

𝑢(𝑥, 𝑧) = 𝑐
𝜕𝜂(𝑥, 𝑧)

𝜕𝑧
= 𝑐𝜂(𝑥)

𝜕𝜙𝑤𝑎𝑣𝑒(𝑥, 𝑧)

𝜕𝑧
. (S33) 
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Table S1. Summary of experimental conditions  

Case ℎ1(m) ℎ2(m) ℎ2/ℎ1 𝜂0/ℎ1 

1 0.04 0.12 3 0.21-0.89 

2 0.04 0.16 4 0.18-1.21 

3 0.04 0.20 5 0.49-1.71 

3(b) 0.08 0.40 5 0.34-1.49 

4 0.04 0.24 6 0.46-2.06 

5 0.04 0.28 7 0.50-2.35 

6 0.04 0.32 8 0.43-2.50 

7 0.04 0.40 10 0.46-2.36 
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Figure S1. The variation of the ratio of 𝐷𝑝−𝑝 to wavelength with amplitude. The green dots 

are measured in experiments, and the red and blue dots are calculated by the solution of 

velocity in separable and inseparable forms, respectively. Each color from light to dark 

corresponds to the ℎ2/ℎ1 from 3 to 10. 
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Figure S2.  Theoretical and experimental results of wavelength retrievals under different 

stratifications, (a)-(g) are the relationships between 𝐷𝑝−𝑝 and wavelength with ℎ2/ℎ1 from 

3 to 10 respectively. The red, magenta, yellow, green, light blue, and dark blue lines 

represent the KdV, JKKD, BO, eKdV, MCC, and DJL equations respectively, and the black 

diamond and circle represent the experimental results that ℎ1 = 0.04 m and 0.08 m, 

respectively. 
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Figure S3.  Theoretical and Experimental results of amplitude retrievals under different 

stratifications, (a)-(g) are the relationships between 𝐷𝑝−𝑝 and amplitude with ℎ2/ℎ1 from 

3 to 10 respectively. The red, magenta, yellow, green, light blue, and dark blue lines 

represent the KdV, JKKD, BO, eKdV, MCC, and DJL equations respectively, and the 

black diamond and circle represent the experimental results that ℎ1 =0.04 m and 0.08 m, 

respectively. 
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Figure S4.  Theoretical and Experimental results of phase speed retrievals under different 

stratifications, (a)-(g) are the relationships between 𝐷𝑝−𝑝 and phase speed with ℎ2/ℎ1 from 

3 to 10 respectively. The red, magenta, yellow, green, light blue, and dark blue lines 

represent the KdV, JKKD, BO, eKdV, MCC, and DJL equations respectively, and the black 

diamond and circle represent the experimental results that ℎ1 = 0.04 m and 0.08 m, 

respectively. 


