Monitoring Shelf Sea Dynamics with Ocean-Bottom Distributed Acoustic Sensing

Loïc Viens¹, Zack Jack Spica², Brent G. Delbridge¹, and Brian K. Arbic³

¹Los Alamos National Laboratory ²University of Michigan ³University of Michigan-Ann Arbor

March 16, 2023

Abstract

The mixing of ocean waters on continental shelves, which is mainly driven by waves, tides, and currents, plays a key role in the physics, biogeochemistry, and ecology of coastal regions. This study focuses on four months of continuous data recorded along a telecommunication cable offshore Oregon, USA, with Distributed Acoustic Sensing (DAS). We apply a cross-correlation approach to the continuous DAS data to infer the propagation of ocean surface gravity waves in the 3 to 100 s period range and estimate near-surface ocean flows. We observe strong spatio-temporal variations of ocean flows along the cable over four months, with strong impacts from a series of storms in late October 2021. We find that our measurements capture oceanic surface motions as those measured by nearby traditional oceanographic instruments. This study demonstrates that ocean-bottom DAS can be used to infer the dynamic properties of near-shore oceans with an unprecedented spatio-temporal resolution.

Monitoring Shelf Sea Dynamics with Ocean-Bottom **Distributed Acoustic Sensing**

Loïc Viens¹, Zack J. Spica², Brent G. Delbridge¹, and Brian K. Arbic²

• The inferred ocean flows from OBDAS data agree well with coincident measure-

 $^1 \rm Los$ Alamos National Laboratory, Los Alamos, New Mexico, USA $^2 \rm Department$ of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA 5

Key Points:
• Ocean-Bottom Distributed Acoustic Sensing (OBDAS) is used to infer the prop-
agation of ocean surface gravity waves (OSGWs) and ocean flows
• Four months of OBDAS data recorded offshore Oregon reveal modulations of OS-
GWs by bathymetry, tides, swell events, and storms

ments from buoys and high-frequency radars

1

2

3

6

7

8

9

10

11

12

Corresponding author: Loïc Viens, lviens@lanl.gov

13 Abstract

The mixing of ocean waters on continental shelves, which is mainly driven by waves, tides, 14 and currents, plays a key role in the physics, biogeochemistry, and ecology of coastal re-15 gions. This study focuses on four months of continuous data recorded along a telecom-16 munication cable offshore Oregon, USA, with Distributed Acoustic Sensing (DAS). We 17 apply a cross-correlation approach to the continuous DAS data to infer the propagation 18 of ocean surface gravity waves in the 3 to 100 s period range and estimate near-surface 19 ocean flows. We observe strong spatio-temporal variations of ocean flows along the ca-20 ble over four months, with strong impacts from a series of storms in late October 2021. 21 We find that our measurements capture oceanic surface motions as those measured by 22 nearby traditional oceanographic instruments. This study demonstrates that ocean-bottom 23 DAS can be used to infer the dynamic properties of near-shore oceans with an unprece-24 dented spatio-temporal resolution. 25

²⁶ Plain Language Summary

Continental shelves are highly active drivers affecting the ocean's biology due to 27 the ocean mixing driven by waves, tides, and currents. This study focuses on monitor-28 ing the ocean flow offshore the coast of Oregon, USA, using Distributed Acoustic Sens-29 ing (DAS). DAS is a technology that repurposes fiber-optic cables into arrays of thou-30 sands of vibration sensors. We probed 55 km of an ocean-bottom telecommunication ca-31 32 ble to measure continuous Earth's vibrations every 20 m over four months. The propagation of landward and oceanward ocean surface gravity waves in the 3 to 100 s period 33 range is inferred from the DAS data and used to estimate the ocean flow along the ca-34 ble. We observe strong spatio-temporal variations of the near-surface flow, which cor-35 relate well with observed ocean physical properties made by external measurements, such 36 as moored buoys and high-frequency radars. The high density of DAS measurements al-37 lows us to better understand the ocean flow with a high spatio-temporal resolution, which 38 is not attainable with traditional oceanographic instruments. 39

40 1 Introduction

Shelf seas, which refer to ocean waters on continental shelves, are important drivers 41 of biogeochemical ocean activity and have been recognized as highly productive zones 42 (Longhurst et al., 1995). The mixing of these shallow and nutrient-rich ocean waters is 43 driven by a complex set of physical mechanisms including tides, wind waves, swell, cur-44 rents, internal waves, and wind-forced up/down-welling. Physical models (e.g., Parker, 45 2007), which predict ocean currents and wave height, are critical to mitigate daily water-46 related hazards for mariners and to study and control local public health threats, such 47 as harmful algal blooms and oil spills. However, the resolution of existing models is too 48 coarse to accurately predict sudden, infrequent, and significant variations caused by punc-49 tual events such as storms, explosive cyclogeneses (i.e., weather bombs), and meteotsunamis 50 (Benetazzo et al., 2013). These transient and small-scale variations pose a significant haz-51 ard to populations living in coastal regions, and new observational techniques are needed 52 to monitor the dynamics of shelf seas. 53

Offshore the coast of the State of Oregon, USA, the width of the continental shelf 54 extends between 17 and 74 km from the coastline with typical maximum water depths 55 of ~ 150 m. In this region, surface currents have been studied with traditional ocean mon-56 itoring instruments, including moored buoys and current meters (Kundu & Allen, 1976; 57 Richards, 1981), acoustic Doppler current profilers (Barth et al., 2000), and onshore high-58 frequency radars (Kosro, 2005). These existing methods reveal that tides, wind-driven 59 currents, and up/down-welling events are significant contributors to the ocean circula-60 tion off the west coast of the United States (Castelao & Barth, 2005). However, the sparse 61 distribution of these measurements is insufficient to capture the full dynamics and spa-62

tial extent of surface currents. This study overcomes this limitation by deriving high spatio temporal resolution observations of ocean flow using acoustic tomography methods applied to Ocean Bottom Distributed Acoustic Sensing (OBDAS) measurements.

Classical ocean acoustic tomography uses active acoustic sources and receivers to 66 measure acoustic wave travel times and infer ocean properties such as currents and tem-67 perature (e.g. W. Munk & Wunsch, 1979). However, the relatively complex installation 68 of underwater acoustic source/receiver sensors combined with the potential impact on 69 marine life limits active ocean tomography applications. To overcome these drawbacks, 70 71 passive ocean acoustic tomography methods have also been developed (Brown et al., 2014; Godin et al., 2010; Godin, G Brown, et al., 2014). Passive tomography is based on the 72 retrieval of an approximation of the Green's function (i.e., wave propagation) between 73 two sensors by cross-correlating their continuous records (Lobkis & Weaver, 2001). In 74 a moving fluid medium, measurements of acoustic nonreciprocity, which is defined as the 75 difference between the sound propagation in opposite directions between the two sen-76 sors, can be used to determine the direction and speed of the fluid motion. This method 77 was extended to ocean surface gravity waves (OSGWs) and infra-gravity waves recorded 78 by buoys (Brown & Lu, 2016) and seafloor pressure gauges (Godin, Zabotin, et al., 2014; 79 Neale et al., 2015; Tonegawa et al., 2018; Harmon et al., 2012). Recently, OBDAS has 80 also been demonstrated to capture the pressure perturbations on the seafloor caused by 81 the propagation of OSGWs, and has been used to monitor ocean near-surface currents 82 (Williams et al., 2022). 83

The Distributed Acoustic Sensing (DAS) technology uses an interrogator unit (IU) 84 to probe fiber-optic cables and measure the vibrations (i.e., strain or strain rate) of the 85 Earth over tens of kilometers with a high spatio-temporal resolution (every $\sim 1-50$ m at 86 \sim 100-1000 Hz depending on the experimental setting, Hartog, 2017). Over the past few 87 years, DAS experiments have probed underwater telecommunication cables and recorded 88 a variety of physical signals including near-coast microseisms (Guerin et al., 2022; Xiao 89 et al., 2022; Spica et al., 2020; Viens, Perton, et al., 2022), local, regional and teleseis-90 mic earthquakes (Lior et al., 2021; Shinohara et al., 2019; Spica et al., 2022; Viens, Bonilla, 91 et al., 2022), T-phases and other acoustic waves (Rivet et al., 2021; Ugalde et al., 2021; 92 Spica et al., 2022), and ocean surface gravity waves (OSGWs) and deep-ocean water mix-93 ing processes (Mata Flores et al., 2022; Ide et al., 2021; Lindsey et al., 2019; Sladen et 94 al., 2019; Williams et al., 2019, 2022). Most of these datasets are relatively short, span-95 ning from a few days to a few weeks, and therefore do not capture the ocean's seasonal 96 dynamics. 97

Using four months of continuous OBDAS data recorded offshore the coast of Ore-98 gon, we infer the propagation of OSGWs in the 0.01-0.3 Hz frequency band (i.e., 3-10099 s) and the resulting ocean near-surface flow. Wind waves, which are generated by a lo-100 cal transfer of energy from the wind to the ocean surface, are generally present at the 101 higher end of the frequency spectrum (>0.1 Hz). At frequencies below 0.1 Hz, the swell, 102 which is excited by wind waves from distant storms, dominates the spectrum and dis-103 plays dispersive frequency features. Both wind waves and swell interact with coastal bathymetry 104 and are refracted and reflected as they approach the coastline. The shoaling and break-105 ing process of OSGWs can also generate infragravity (typically, 0.004–0.04 Hz) waves 106 which reflect off the coast and propagate oceanward (W. H. Munk, 1949; Janssen et al., 107 2003; Sheremet et al., 2002). 108

We first introduce the datasets used in this study and present a cross-correlation approach used to infer the propagation of OSGWs and estimate near-surface ocean flows from OBDAS data. We then present our results and compare them with more traditional ocean measurements obtained in the region of interest. We finally discuss the different physical phenomena captured by our analysis and the potential of OBDAS to probe the water column with an unprecedented spatio-temporal resolution.

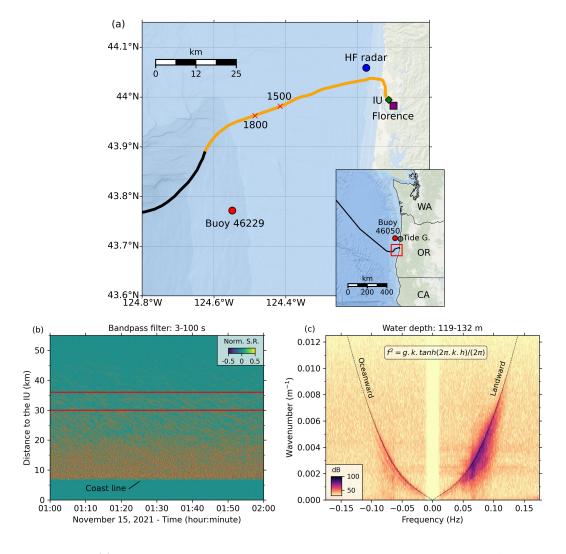


Figure 1. (a) Bathymetry map offshore Florence, Oregon, including the path of the AKORN telecommunication cable (orange and black line). The orange section of the cable is probed in this study from the IU (green diamond) and the location of channels 1500 and 1800 are high-lighted. The positions of NDBC buoy 46229 and high-frequency radar surface current measurements are shown by the red and blue circles, respectively. The inset map shows the west coast of the United States, the AKORN cable (black), the zoomed region near Florence (red square), and the locations of NDBC buoy 46050 (red circle) and a tide gauge (grey circle). (b) One hour of amplitude normalized strain-rate data bandpass filtered between 3 and 100 s recorded on November 15, 2021 along the cable. The two red lines highlight the region over which the frequency-wavenumber (f-k) analysis shown in (c) is performed (i.e., between channels 1500 and 1800). (c) f-k spectrum of the waves shown in (b) between the two red lines. The OSGW theoretical dispersion curves using a water depth (h) of 126 m are shown by the dashed lines.

115 **2 Data**

116

2.1 DAS data

A FEBUS Optics A1-R IU was used to probe the first 55 km of the Alaska-Oregon 117 Network (AKORN) telecommunication cable from Florence, Oregon, between August 118 6 and December 1, 2021 (Figure 1a). The IU recorded strain-rate data with a channel 119 spacing of 20 m, a gauge length of 40 m, and a 100 Hz sampling rate. The data are con-120 tinuous except for a 3-day gap between September 7–10. According to the cable instal-121 lation report, the first 6.3 km of the cable link the landing station to the coastline through 122 a series of pipes located along roads. The following 49 km of the probed section are buried 123 offshore under 80-100 cm of sediments. Between 6.3 and 40 km from the IU, the cable 124 is on the continental shelf with a water depth of less than ~ 150 m. The bathymetry then 125 drops from 150 to 300 m between 40 and 55 km from the IU as the cable reaches the edge 126 of the continental shelf. From the coastline, the average azimuth of the offshore cable 127 is $\sim 254^{\circ}$ from the north. This angle is close to the $\sim 275^{\circ}$ angle from the north, rep-128 resenting the direction perpendicular to the mean shoreline direction given its $\sim 5^{\circ}$ az-129 imuth from the north. 130

The continuous strain-rate data are downsampled to 10 Hz and filtered between 131 3 and 100 s using a two-pass four-pole Butterworth bandpass filter. An example one-hour 132 DAS strain-rate time series recorded along the cable is shown in Figure 1b. Both land-133 ward and oceanward propagating waves with apparent velocities slowing down as they 134 approach the coastline can be observed in the time domain. To illustrate the character-135 istics of the recorded waves, we examine a frequency-wavenumber (f-k) spectrum of the 136 time series calculated between 30 and 36 km from the IU (Figure 1c). The landward and 137 oceanward waves generally follow the OSGW dispersion relationship $f^2 = q.k \tanh(2\pi . k.h)/(2\pi)$, 138 where f is the frequency, g is the gravitational acceleration, k is the wavenumber, and 139 h is the water depth (i.e., 127 m, Mei et al., 2018). A similar behavior is observed all along 140 the cable, which indicates that the DAS strain-rate measurements are dominated by OS-141 GWs in the 3 to 100 s period range. The landward propagating waves are expected to 142 be more energetic than the oceanward propagating waves due to dissipation associated 143 with the wave breaking in the surf zone (Miche, 1951; Elgar et al., 1994), and correspond-144 ingly we observe that the landward waves have higher energy levels in the f-k domain. 145 Moreover, the landward energy spreads over a broader frequency range than the theo-146 retical relationship. This is likely caused by the fact that OSGWs cross the cable at slightly 147 oblique angles leading to higher apparent velocities and a smaller apparent wavenum-148 ber at such distances from the coastline (Williams et al., 2022). Nevertheless, landward 149 OSGWs are likely refracted by the decreasing bathymetry as they approach the coast-150 line, and their propagation should eventually yield a direction nearly perpendicularly to 151 the coastline (i.e., almost along the cable axis). 152

153

2.2 Buoy, high-frequency radar, and tide gauge data

The National Data Buoy Center (NDBC) of the National Oceanic and Atmospheric 154 Administration (NOAA) develops, operates, and maintains a network of buoys and coastal 155 stations (Evans et al., 2003). To validate the DAS results, we download the continuous 156 data (e.g., wave height and direction as well as wind speed and direction) recorded at 157 two buoys (Figure 1). Buoy 46229 is the closest to the cable (water depth: 180 m), but 158 a maintenance event prevented the data from being collected for over a month during 159 the DAS experiment. Therefore, we also analyze the continuous data collected at buoy 160 46050 (water depth: 160 m), which recorded similar data due to comparable water depths 161 (Figure S1). 162

The NDBC also distributes data from U.S. high-frequency radars through the Integrated Ocean Observing System (IOOS) Program (Harlan et al., 2010). We analyze hourly measurements of the east-west ocean surface current (i.e., top 2.4 m of the ocean) at one coastal location near the cable (Figure 1a). The east-west data are obtained from
the radial component of the surface current at several high-frequency radars, and have
a horizontal resolution of 6 km (Kim et al., 2008).

Tide gauges managed by NOAA have been measuring water levels along U.S coastlines for more than a century. We finally collect the data from a tide gauge (Station ID: 9435380), located in South Beach, Oregon, ~75 km north of the cable (Figure 1a).

¹⁷² 3 Methods: OSGW propagation and ocean flow measurements

To determine the spatio-temporal evolution of OSGWs, we select the strain-rate 173 time series recorded offshore (i.e., between channels 300 and 2500) and divide the con-174 tinuous waveforms into 10-min time windows. We apply a f-k filter to the 10-min time 175 series to separate the landward and oceanward propagating OSGWs (Figure S2), and 176 further select waves propagating within the velocity range we expect to observe the OS-177 GWs (2-50 m/s) to exclude signals such as seismic and acoustic waves traveling at higher 178 velocities. The signals are then transformed back to the time domain, demeaned, and 179 detrended. We apply 1-bit normalization to the time series (Bensen et al., 2007), which 180 involves setting the positive and negative signals to 1 and -1, respectively, to improve 181 the retrieval of the signal's phase information. For both landward and oceanward prop-182 agating OSGWs, cross-correlation functions (CCFs) are computed for each 10-minute 183 pre-processed time window by considering every 5 channels as virtual sources and the 184 15th channel before each virtual source as receivers (e.g., receiver channel 1485 for vir-185 tual source 1500; see Text S2 and Figure S2 for more details about the CCF computa-186 tion). To increase the signal-to-noise ratio of the CCFs, we stack the 10-min CCFs over 187 four hours (i.e., stack 24 CCFs) using a phase-weighted stack approach (power: 2, smooth-188 ing: 0.5 s; Schimmel & Paulssen, 1997) with a two-hour overlap. Figures 2a-b show an 189 example of the waveforms between channels 1500 and 1485. Both landward and ocean-190 ward CCFs display clear phase arrivals varying through time, but landward propagat-191 ing OSGWs exhibit stronger variations. 192

The apparent velocity of the near-surface flow can be obtained by measuring the 193 wave travel time difference between the landward and oceanward propagating OSGWs 194 (Godin, G Brown, et al., 2014). We use a stretching method (Sens-Schönfelder & We-195 gler, 2006) to estimate the relative travel time changes (dt/t) between landward and ocean-196 ward propagating waves. We stretch/compress 100 s of each four-hour landward CCF 197 starting at 10 s, and find the stretching value that best fits the corresponding oceanward 198 propagating OSGW. The stretching is performed with a grid search algorithm in two steps; 199 we first use ten values uniformly distributed between -25 and 25% of stretching to find 200 an initial guess of the stretching coefficient, and then refine the measurement by inter-201 polating the stretched waveforms 250 times between the neighboring values. The best 202 match is found using a correlation coefficient (CC) with values between 0 and 1. A value 203 of 1 indicates a perfect match between the landward and oceanward CCFs after stretch-204 ing. To ensure the reliability of the dt/t measurements, we only analyze the results where 205 the CCs after stretching are higher than 0.4 (i.e., 94.4% of the dt/t values; Figure S3). 206

We show an example of the measured relative travel time changes (dt/t) for the CCFs 207 computed between channels 1500 and 1485 in Figure 2c. For this station pair, the CCs 208 after stretching between the landward and oceanward propagating OSGWs have a mean 209 value of 0.85, which demonstrates a high similarity between the waveforms. The aver-210 age dt/t value over the four months of data in Figure 2c is 0.04 s, which indicates a gen-211 eral landward ocean near-surface flow. Moreover, clear dt/t temporal variations can be 212 observed through time, such as a strong landward flow between October 1 and 10, 2021, 213 as well as numerous short periods of time with oceanward flows. 214

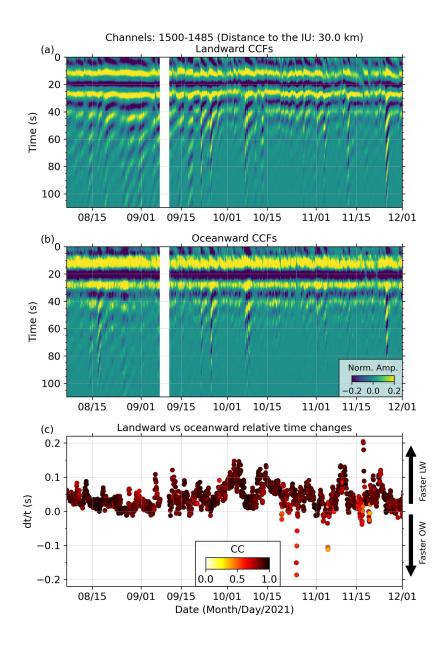


Figure 2. (a) Causal (positive) part of the amplitude normalized CCFs computed between virtual source 1500 and receiver 1485, which captures the landward (LW) propagation of OS-GWs. The amplitude is clipped for visibility. (b) Anti-causal (negative) part of the amplitude normalized CCFs computed between the same channels, which represents the oceanward (OW) propagation of OSGWs. (c) Relative travel time changes (dt/t) between the landward and oceanward propagating waves, which represent the ocean near-surface flow. Positive and negative dt/t values indicate that the ocean flow is faster landward and oceanward, respectively. The color of each data point represents the CC after stretching between the landward and oceanward propagating waves.

215 4 Results and discussion

We repeat the dt/t measurements for all the virtual source-receiver pairs along the cable and show the results in Figure 3a and the corresponding CCs after stretching in Figure S3. Over the four months of data, we observe clear spatio-temporal variations of the ocean near-surface flow along the cable.

To focus on the spatial variations of the ocean near-surface flow, we average the 220 dt/t measurements over the four months of data for each station pair (Figure 4a). Bathymetry 221 changes (retrieved from NOAA National Geophysical Data Center, 2008, Figures 3b and 222 4a) can significantly impact the propagation of OSGWs, and likely cause some of the spa-223 tial variations of the ocean flow. The regions between 12 and 20 km from the IU and on 224 the edge of the continental shelf (i.e., after 45 km), where relatively large bathymetry 225 changes happen over short distances, are mainly dominated by an oceanward flow. In 226 contrast, between 20 and 45 km from the IU, where the bathymetry is relatively flat with 227 an average slope of less than 0.5% (Figure S4), landward flow is observed. The coastal 228 region (6.3 to 12 km from the IU), which exhibits large and shallow bathymetry changes, 229 displays a mix of landward and oceanward flows. 230

Shoaling and refraction of OSGWs happen when the waves become sensitive to the 231 ocean bottom, typically at water depths (h) of less than about half of the OSGW wave-232 length $(h < 0.5\lambda)$. We estimate potential shoaling effects at 16.9 and 47.5 km from the 233 IU, where oceanward flows highlighted by average dt/t values of -0.04 s are observed. The 234 water depths at these two locations are 79 and 206 m, and should impact OSGWs with 235 wavelengths of 158 and 412 m which corresponds to wavenumbers of 0.0063 and 0.0024236 m^{-1} , respectively (Figure 4a). To relate these theoretical wavenumbers to the DAS mea-237 surements, we compute time-averaged f-k spectra around 16.9 and 47.5 km from the IU 238 (Figure S5). The theoretical wavenumbers are close to the highest energy levels of the 239 f-k spectra for wind waves (> 0.1 Hz) and swell (< 0.1 Hz) at 16.9 and 47.5 km from 240 the IU, respectively. This indicates that the oceanward flow observed in these two re-241 gions is likely caused by a velocity decrease of the incoming swell on the edge of the con-242 tinental shelf and wind waves closer to the coast. This velocity reduction may also be 243 coupled with an increase of the oceanward OSGW velocity due to the increasing water 244 depth. In addition to shoaling effects, incoming OSGWs can also be reflected towards 245 the ocean by bathymetry changes and generate oceanward near-surface flows (Sheremet 246 et al., 2002; Ardhuin et al., 2003; Ardhuin & Roland, 2012), and oceanward propagat-247 ing infragravity waves can contribute to the observed oceanward flows (Sheremet et al. 248 2002; Neale et al., 2015). However, the relatively broad frequency content of the CCFs 249 does not allow us to fully understand the driving mechanism of such spatial variations, 250 and future work should be performed to fully characterize the ocean flow. 251

To better understand the temporal variations of the ocean near-surface flow, we also show the wave height time series recorded at NDBC buoys 46229 and 46050 in Figure 3a. The dt/t variations measured at distances between 43 to 46 km from the interrogator, where the height of the water column is similar to that at the buoys (i.e., ~160 m), are generally in phase with the buoy wave height changes. Time periods with higher and lower wave heights correlate with landward and oceanward near-surface flows, respectively.

In Figure 3c, we decompose the total wave height recorded at buoy 46050 into wind wave and swell wave height components by summing the information at frequencies higher and smaller than 0.1 Hz, respectively. During swell events, we generally observe stronger landward ocean flows (i.e., positive dt/t values) from the coast to ~40 km from the IU (Figure 3a) and stronger oceanward flows on the edge of the continental shelf (i.e., after 45 km from the IU), which indicates that swell events impact the dynamics of the entire shelf sea. The observed temporal variations in the flows are likely caused by the

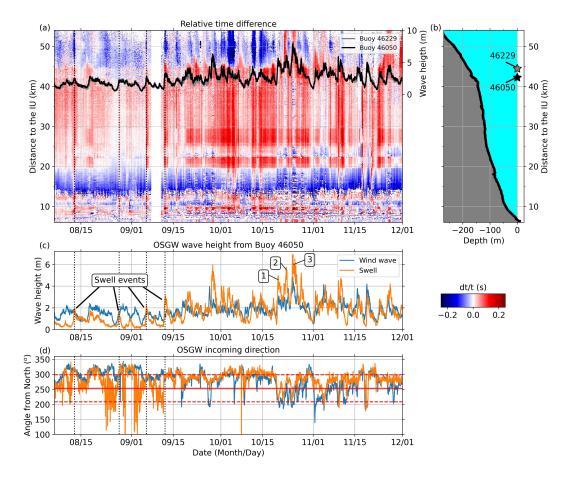


Figure 3. (a) Relative travel time changes (dt/t) between landward and oceanward propagating OSGWs along the cable over the four months of data. The dt/t data with a CC after stretching less than 0.4 are set to zero (white areas). The grey and black lines are the wave height recorded at NDBC buoys 46229 and 46050, respectively. The vertical dotted lines highlight the examples of swell events shown in (c). (b) Bathymetry profile along the cable including the location of the two buoys if they were to be along the cable. (c) OSGW (blue) and swell (orange) wave heights from buoy 46050. Examples of swell events are highlighted and their timing are indicated by the vertical dotted lines. The three storms that passed in the vicinity of the Pacific Northwest in late October 2021 are identified by numbers, with the weather bomb being the third storm. (d) OSGW (blue) and swell (orange) wave directions from buoy 46050. The solid and dashed red lines represent the azimuth of the cable (254° from the north) and the $\pm 45°$ angles, respectively

low-frequency content and low wavenumber of swell events, which are sensitive to thewater depth variations on the edge of the continental shelf.

The direction of propagation of OSGWs impacts the dt/t measurements, with larger 268 propagation angles relative to the direction of the cable resulting in faster apparent ve-269 locities (Figures 3d-4b). Substantial variations of the OSGW propagation direction are 270 observed through time, with a clear change of the general direction of propagation of swell 271 and wind waves after October 20, 2021 (Figure 3d). This change coincides with a gen-272 eral shift of the wind direction in the region of interest (Figure S6). Overall, we calcu-273 274 late that the swell and wind waves travel within a $\pm 45^{\circ}$ angle from the axe of the cable during 68% and 61% of the time, respectively. 275

To further analyze the effect of the direction of propagation of OSGWs on the dt/t276 results, we show the dt/t values for the CCFs computed between channels 2300 and 2285 277 along with the wave height at buoy 46050 from October 1 to November 30, 2021 in Fig-278 ure 4b. We focus on this specific time period as a series of three storms passed in the 279 vicinity of the Pacific Northwest (Figure 3c). The third storm evolved into an explosive 280 cyclogenesis on October 24 and generated wave heights up to 8 m at buoy 46050 (Fig-281 ure 4b). The wave height variations are generally well matched by the dt/t measurements 282 during and after the passing of the three storms, but clear differences can be observed 283 in early/mid-October (Figure 4b). The difference between the incoming angle of the OS-284 GWs and the axis of the cable is also shown in Figure 4b. When OSGWs travel within 285 a $\pm 45^{\circ}$ angle from the cable, a good agreement between the dt/t measurements and the 286 wave height measured at the buoy is observed. For larger propagation angles, there is 287 a clear discrepancy between the two types of measurements. As only the apparent ve-288 locity of the near-surface flow is measured with DAS, larger apparent surface flows are 289 expected during time periods when ocean surface waves do not travel along the axis of 290 the cable. Future studies could investigate the potential of combining both types of in-291 struments to compute a transfer function of dt/t measurements to wave height by con-292 sidering the ocean wave direction. 293

Incoming OSGWs are refracted as they reach shallower water, which should result 294 in a propagation direction that tends to be along the axis of the cable nearshore. In Fig-295 ure 4c, we compare the dt/t values computed between channels 390 and 375 with east-296 west ocean surface current measurements from high-frequency radars. Over the 1.5 months 297 of data, we generally observe similar long-term variations of the ocean flow with the two types of measurements. Daily variations of the high-frequency radar surface currents, 299 which are primarily driven by tides (Figure S7), are also matched by the dt/t measure-300 ments. However, some differences can be observed and can be explained by three phe-301 nomena. First, high-frequency radar only captures the surface current over the first 2.4 302 m of the ocean. The exact sampling depth of the dt/t measurements is unknown due to 303 the large period range used in this study, but is likely deeper than that of the radar mea-304 surements. Second, the high-frequency radar measurements are centered 2 km north of 305 channel 390 (Figure 1a) and are averaged over a 6 by 6 km horizontal grid, which is dif-306 ferent from OBDAS measurements between two channels located 300 m apart. Finally, 307 while OSGWs are expected to travel almost along the axis of the cable, we cannot ex-308 clude deviations of the angle of incoming OSGWs that would impact the dt/t measure-309 ments. 310

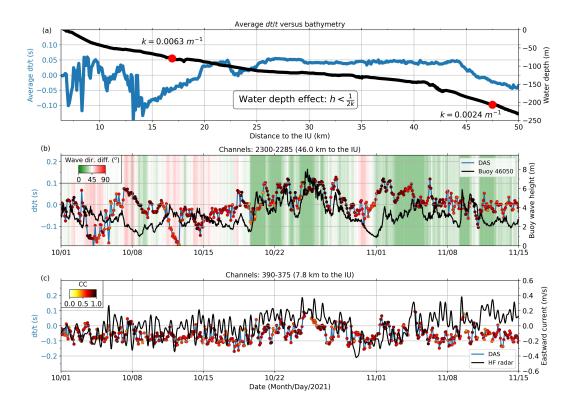


Figure 4. (a) Average dt/t values (blue) over four months for each channel pair along the cable. The bathymetry profile is shown in black. The wavenumbers at which OSGWs are theoretically affected by the ocean bottom at two locations are also indicated. (b) Comparison between relative time changes (dt/t) obtained from DAS channels located approximately where the ocean depth is 160 m (colored dots and blue line) and buoy 46050 wave height measurements (black). The background color corresponds to the absolute difference between the average wave direction between 0.05 and 0.5 Hz and the direction of the cable. Angles of zero and 90 degrees correspond to waves traveling parallel and perpendicular to the cable, respectively. (c) Relative travel time changes (dt/t) versus eastward surface currents obtained by high-frequency radar at a location near channel 390.

5 Conclusions

We demonstrated that OBDAS can be used to monitor shelf sea dynamics by an-312 alyzing four months of continuous strain-rate data recorded offshore the coast of Ore-313 gon. The DAS data are used to infer the propagation of landward and ocean OSGWs 314 and estimate near-surface ocean flows, which are shown to be modulated by tides, swell 315 events, and storms. The extent of the cable over 49 km from the coast also allowed us 316 to characterize the effect of bathymetry changes on the ocean-surface flow as OSGWs 317 are impacted by strong bathymetry changes. We finally observed a good correlation be-318 tween the ocean flow measured with OBDAS and those obtained with external measure-319 ments, especially when OSGWs propagate along the axis of the cable. 320

Our measurements demonstrate the potential of OBDAS to investigate the dynamics of near-surface flows with an unprecedented spatio-temporal resolution. Such measurements of the water column could potentially be critical for a variety of offshore applications, including rapid tsunami early warning after large subduction earthquakes and to improve energy production from wave turbines.

³²⁶ 6 Open Research

The archiving of the data and codes developed to perform the technical analysis and to reproduce the figures is underway and pending LANL approval. The data and codes will be made publicly available on GitHub-Zenodo upon completion of LANL internal review.

331 Acknowledgments

L.V. was partially supported by NSF award EAR2022716 and is currently supported by the Chick Keller Fellowship from the Center for Space and Earth Science (CSES) at Los Alamos National Laboratory (LANL). CSES is funded by LANL's Laboratory Directed Research and Development (LDRD) program under project number 20210528CR. Z.J.S.

acknowledges support from the Air Force Research Laboratory grant FA9453-21-2-0018.

³³⁷ We thank Alaska Communication for providing access to its subsea fiber infrastructure,

and are grateful to the NOAA for providing buoy and coastal station data. The manuscript

has a Los Alamos National Laboratory Unlimited Release Number (LA-UR-23-22290).
 Competing interests: The authors declare that they have no competing interests.

341 **References**

342	Ardhuin, F., O'Reilly, W. C., Herbers, T. H. C., & Jessen, P. F. (2003). Swell
343	transformation across the continental shelf. part i: Attenuation and di-
344	rectional broadening. Journal of Physical Oceanography, 33(9), 1921 -
345	1939. Retrieved from https://journals.ametsoc.org/view/journals/
346	phoc/33/9/1520-0485_2003_033_1921_statcs_2.0.co_2.xml doi:
347	10.1175/1520-0485(2003)033(1921:STATCS)2.0.CO;2
348	Ardhuin, F., & Roland, A. (2012). Coastal wave reflection, directional spread,
349	and seismoacoustic noise sources. Journal of Geophysical Research: Oceans,
350	117(C11). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
351	abs/10.1029/2011JC007832 doi: https://doi.org/10.1029/2011JC007832
352	Barth, J. A., Pierce, S. D., & Smith, R. L. (2000). A separating coastal upwelling
353	jet at cape blanco, oregon and its connection to the california current system.
354	Deep Sea Research Part II: Topical Studies in Oceanography, 47(5), 783-810.
355	Retrieved from https://www.sciencedirect.com/science/article/pii/
356	S0967064599001277 doi: https://doi.org/10.1016/S0967-0645(99)00127-7
357	Benetazzo, A., Carniel, S., Sclavo, M., & Bergamasco, A. (2013). Wave-current
358	interaction: Effect on the wave field in a semi-enclosed basin. Ocean Mod-
359	elling, 70, 152-165. Retrieved from https://www.sciencedirect.com/
360	science/article/pii/S1463500312001862 (Ocean Surface Waves) doi:
361	https://doi.org/10.1016/j.ocemod.2012.12.009
362	Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti,
363	M. P., Yang, Y. (2007). Processing seismic ambient noise data to obtain
364	reliable broad-band surface wave dispersion measurements. Geophys. J. Int.,
365	169, 1239-1260. doi: $10.1111/j.1365-246X.2007.03374.x$
366	Brown, M. G., Godin, O. A., Williams, N. J., Zabotin, N. A., Zabotina, L., &
367	Banker, G. J. (2014). Acoustic green's function extraction from ambient
368	noise in a coastal ocean environment. Geophys. Res. Lett., 41(15), 5555-5562.
369	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
370	10.1002/2014GL060926 doi: https://doi.org/10.1002/2014GL060926
371	Brown, M. G., & Lu, C. (2016). Green's function retrieval in a field of ran-
372	dom water waves. Wave Motion, 60, 8-19. Retrieved from https://
373	www.sciencedirect.com/science/article/pii/S0165212515001171 doi:
374	https://doi.org/10.1016/j.wavemoti.2015.08.003
375	Castelao, R. M., & Barth, J. A. (2005). Coastal ocean response to summer up-
376	welling favorable winds in a region of alongshore bottom topography variations

377 378	off oregon. Journal of Geophysical Research: Oceans, 110(C10). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
379	2004JC002409 doi: https://doi.org/10.1029/2004JC002409
380	Elgar, S., Herbers, T. H. C., & Guza, R. T. (1994). Reflection of ocean surface
381	gravity waves from a natural beach. Journal of Physical Oceanography,
382	24(7), 1503 - 1511. Retrieved from https://journals.ametsoc.org/view/
383	journals/phoc/24/7/1520-0485_1994_024_1503_roosgw_2_0_co_2.xml doi:
384	10.1175/1520-0485(1994)024(1503:ROOSGW)2.0.CO;2
385	Evans, D., Conrad, C. L., & Paul, F. M. (2003). Handbook of automated data qual-
386	ity control checks and procedures of the national data buoy center (Tech. Rep.
387	Nos. Document 03–02). NOAA National Data Buoy Center Tech.
388	Godin, O. A., G Brown, M., Zabotin, N. A., Zabotina, L. Y., & Williams, N. J.
389	(2014). Passive acoustic measurement of flow velocity in the straits of florida.
390	Geoscience Letters, $1(1)$, 16. Retrieved from https://doi.org/10.1186/
391	s40562-014-0016-6 doi: 10.1186/s40562-014-0016-6
392	Godin, O. A., Zabotin, N. A., & Goncharov, V. V. (2010). Ocean tomography with
393	acoustic daylight. Geophys. Res. Lett., 37(13). Retrieved from https://
394 395	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL043623 doi: https://doi.org/10.1029/2010GL043623
396	Godin, O. A., Zabotin, N. A., Sheehan, A. F., & Collins, J. A. (2014). Interfer-
397	ometry of infragravity waves off new zealand. Journal of Geophysical Research:
398	Oceans, 119(2), 1103-1122. Retrieved from https://agupubs.onlinelibrary
399	.wiley.com/doi/abs/10.1002/2013JC009395 doi: https://doi.org/10.1002/
400	2013JC009395
401	Guerin, G., Rivet, D., van den Ende, M. P. A., Stutzmann, E., Sladen, A., & Am-
402	puero, JP. (2022). Quantifying microseismic noise generation from coastal
403	reflection of gravity waves recorded by seafloor DAS. Geophys. J. Int., 231(1),
404	394-407. Retrieved from https://doi.org/10.1093/gji/ggac200 doi:
405	$10.1093/ extrm{gji}/ extrm{ggac200}$
406	Harlan, J., Terrill, E., Hazard, L., Keen, C., Barrick, D., Whelan, C., Kohut,
407	J. (2010). The integrated ocean observing system high-frequency radar net-
408	work: Status and local, regional, and national applications. <i>Marine Technology</i>
409	Society Journal, 44(6), 122-132. doi: doi:10.4031/MTSJ.44.6.6
410	Harmon, N., Henstock, T., Srokosz, M., Tilmann, F., Rietbrock, A., & Barton,
411	P. (2012). Infragravity wave source regions determined from ambient $C_{\text{regularized}}$ Between $P_{\text{regularized}}$ Between $P_{\text{regularized}}$ Between $P_{\text{regularized}}$
412	noise correlation. Geophys. Res. Lett., 39(4). Retrieved from https://
413	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL050414 doi: https://doi.org/10.1029/2011GL050414
414	
415	Hartog, A. (2017). An introduction to distributed optical fibre sensors. CRC Press. doi: https://doi.org/10.1201/9781315119014
416	Ide, S., Araki, E., & Matsumoto, H. (2021). Very broadband strain-rate measure-
417	ments along a submarine fiber-optic cable off cape muroto, nankai subduction
418	zone, japan. Earth, Planets and Space, 73(1), 1–10.
419	Janssen, T. T., Battjes, J. A., & van Dongeren, A. R. (2003). Long waves
420 421	induced by short-wave groups over a sloping bottom. Journal of Geo-
421	physical Research: Oceans, 108(C8). Retrieved from https://agupubs
423	.onlinelibrary.wiley.com/doi/abs/10.1029/2002JC001515 doi:
424	https://doi.org/10.1029/2002JC001515
425	Kim, S. Y., Terrill, E. J., & Cornuelle, B. D. (2008). Mapping surface currents from
426	hf radar radial velocity measurements using optimal interpolation. Journal of
427	Geophysical Research: Oceans, 113(C10). Retrieved from https://agupubs
428	.onlinelibrary.wiley.com/doi/abs/10.1029/2007JC004244 doi: https://
429	doi.org/10.1029/2007JC004244
430	Kosro, P. M. (2005). On the spatial structure of coastal circulation off newport,
431	oregon, during spring and summer 2001 in a region of varying shelf width.

432	Journal of Geophysical Research: Oceans, 110(C10). Retrieved from https://
433	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JC002769 doi:
434	https://doi.org/10.1029/2004JC002769
435	Kundu, P. K., & Allen, J. S. (1976). Some three-dimensional characteristics of
436	low-frequency current fluctuations near the oregon coast. Journal of Physical
437	Oceanography, 6(2), 181 - 199. Retrieved from https://journals.ametsoc
438	.org/view/journals/phoc/6/2/1520-0485_1976_006_0181_stdcol_2_0_co_2
439	.xml doi: $10.1175/1520-0485(1976)006\langle 0181:STDCOL \rangle 2.0.CO;2$
440	Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. (2019). Illuminating seafloor
441	faults and ocean dynamics with dark fiber distributed acoustic sensing. <i>Science</i> , <i>366</i> (6469), 1103–1107.
442	Lior, I., Sladen, A., Rivet, D., Ampuero, JP., Hello, Y., Becerril, C., Chris-
443 444	tos, M. (2021). On the Detection Capabilities of Underwater Distributed
444	Acoustic Sensing. Journal of Geophysical Research: Solid Earth, 126(3),
446	e2020JB020925. doi: 10.1029/2020JB020925
447	Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the Green's function
448	in the correlations of a diffuse field. The Journal of the Acoustical Society of
449	America, 110(6), 3011–3017. doi: 10.1121/1.1417528
450	Longhurst, A., Sathyendranath, S., Platt, T., & Caverhill, C. (1995). An estimate of
451	global primary production in the ocean from satellite radiometer data. Journal
452	of Plankton Research, 17(6), 1245-1271. Retrieved from https://doi.org/10
453	.1093/plankt/17.6.1245 doi: 10.1093/plankt/17.6.1245
454	Mata Flores, D., Sladen, A., Ampuero, JP., Mercerat, E. D., & Rivet, D. (2022).
455	Monitoring deep sea currents with seafloor distributed acoustic sensing. Sub-
456	mitted to JGR - Oceans.
457	Mei, C. C., Stiassnie, M. A., & Yue, D. KP. (2018). Theory and applications of
458	ocean surface waves (3rd ed.). World Scientific. Retrieved from https://www
459	.worldscientific.com/doi/abs/10.1142/10212 doi: 10.1142/10212
460	Miche, M. (1951). Le pouvoir reflechissant des ouvrages maritimes exposes a l'action de la houle. Annales de Ponts et Chaussées, 121, 285-319. Retrieved from
461	https://cir.nii.ac.jp/crid/1573668924778624768
462 463	Munk, W., & Wunsch, C. (1979). Ocean acoustic tomography: a scheme for large
464	scale monitoring. Deep Sea Research Part A. Oceanographic Research Papers,
465	26(2), 123-161. Retrieved from https://www.sciencedirect.com/science/
466	article/pii/0198014979900736 doi: https://doi.org/10.1016/0198-0149(79)
467	90073-6
468	Munk, W. H. (1949). Surf beats. Eos, Transactions American Geophysical Union,
469	30(6), 849-854. Retrieved from https://agupubs.onlinelibrary.wiley
470	.com/doi/abs/10.1029/TR030i006p00849 doi: https://doi.org/10.1029/
471	TR030i006p00849
472	Neale, J., Harmon, N., & Srokosz, M. (2015). Source regions and reflection of
473	infragravity waves offshore of the u.s.s pacific northwest. Journal of Geo-
474	physical Research: Oceans, 120(9), 6474-6491. Retrieved from https://
475	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JC010891 doi: https://doi.org/10.1002/2015JC010891
476	NOAA National Geophysical Data Center. (2008). Central oregon coastal digi-
477 478	tal elevation model. Retrieved from https://www.ncei.noaa.gov/access/
478	metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:11500
480	Parker, B. (2007). Tidal analysis and prediction, noaa special publication nos co-
481	ops 3 (Tech. Rep.). U.S. Department of Commerce, National Oceanic and At-
482	mospheric Administration.
483	Richards, F. A. (Ed.). (1981). Coastal upwelling (Vol. 1). Washington, D. C.: AGU.
484	Rivet, D., de Cacqueray, B., Sladen, A., Roques, A., & Calbris, G. (2021). Prelim-
485	inary assessment of ship detection and trajectory evaluation using distributed
486	acoustic sensing on an optical fiber telecom cable. The Journal of the Acousti-

487	cal Society of America, 149(4), 2615–2627.
488	Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coher-
489	ent signals through phase-weighted stacks. Geophys. J. Int., 130, 497-505. doi:
490	10.1111/j.1365-246X.1997.tb05664.x
491	Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and
492	seasonal variations of seismic velocities at merapi volcano, indonesia. Geo-
493	phys. Res. Lett., 33, L21302. Retrieved from http://dx.doi.org/10.1029/
494	2006GL027797 doi: 10.1029/2006GL027797
495	Sheremet, A., Guza, R. T., Elgar, S., & Herbers, T. H. C. (2002). Observations
496	of nearshore infragravity waves: Seaward and shoreward propagating com-
497	ponents. Journal of Geophysical Research: Oceans, 107(C8), 10-1-10-10.
498	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
499	10.1029/2001JC000970 doi: https://doi.org/10.1029/2001JC000970
500	Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., Sakai, S., Hamakawa, M.,
501	Kubota, S. (2019). Distributed acoustic sensing measurement by us-
502	ing seafloor optical fiber cable system off sanriku for seismic observation. In
502	Oceans 2019 mts/ieee seattle (p. 1-4). doi: 10.23919/OCEANS40490.2019
505	.8962757
	Sladen, A., Rivet, D., Ampuero, JP., De Barros, L., Hello, Y., Calbris, G., &
505 506	Lamare, P. (2019). Distributed sensing of earthquakes and ocean-solid earth
507	interactions on seafloor telecom cables. Nature Communications, $10(1)$, 1–8.
	Spica, Z. J., Castellanos, J. C., Viens, L., Nishida, K., Akuhara, T., Shinohara, M.,
508 509	& Yamada, T. (2022). Subsurface imaging with ocean-bottom distributed
510	acoustic sensing and water phases reverberations. <i>Geophys. Res. Lett.</i> , 49(2),
510	e2021GL095287. doi: https://doi.org/10.1029/2021GL095287
	Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T.
512	(2020). Marine sediment characterized by ocean-bottom fiber-optic seis-
513	mology. $Geophys. Res. Lett., 47(16), e2020GL088360.$ (e2020GL088360)
514	10.1029/2020GL088360) doi: https://doi.org/10.1029/2020GL088360
515	Tonegawa, T., Fukao, Y., Shiobara, H., Sugioka, H., Ito, A., & Yamashita, M.
516	(2018). Excitation location and seasonal variation of transoceanic infra-
517	gravity waves observed at an absolute pressure gauge array. Journal of
518	Geophysical Research: Oceans, 123(1), 40-52. Retrieved from https://
519 520	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JC013488 doi:
520	https://doi.org/10.1002/2017JC013488
521	Ugalde, A., Becerril, C., Villaseñor, A., Ranero, C. R., Fernández-Ruiz, M. R.,
	Martin-Lopez, S., Martins, H. F. (2021). Noise Levels and Signals Ob-
523 524	served on Submarine Fibers in the Canary Islands Using DAS. Seism. Res.
524	Lett., $93(1)$, $351-363$. Retrieved from https://doi.org/10.1785/0220210049
526	doi: 10.1785/0220210049
520	Viens, L., Bonilla, L. F., Spica, Z. J., Nishida, K., Yamada, T., & Shinohara, M.
528	(2022). Nonlinear earthquake response of marine sediments with distributed
520	acoustic sensing. $Geophysical Research Letters, 49(21), e2022GL100122.$
530	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
530	10.1029/2022GL100122 (e2022GL100122 2022GL100122) doi: https://
532	doi.org/10.1029/2022GL100122
	Viens, L., Perton, M., Spica, Z. J., Nishida, K., Yamada, T., & Shinohara, M.
533 534	(2022). Understanding surface wave modal content for high-resolution imaging
535	of submarine sediments with distributed acoustic sensing. <i>Geophys. J. Int.</i> ,
536	232(3), 1668-1683. Retrieved from https://doi.org/10.1093/gji/ggac420
530	doi: 10.1093/gji/ggac420
	Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z.,
538 539	González-Herráez, M., & Martins, H. F. (2019). Distributed sensing of mi-
539	croseisms and teleseisms with submarine dark fibers. <i>Nature communications</i> ,
540	10(1), 1-11.
2.1	

Williams, E. F., Zhan, Z., Martins, H. F., Fernández-Ruiz, M. R., Martín-López, S., 542 González-Herráez, M., & Callies, J. (2022). Surface gravity wave interferome-543 try and ocean current monitoring with ocean-bottom das. Journal of Geophys-544 *ical Research: Oceans*, 127(5), e2021JC018375. Retrieved from https:// 545 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JC018375 546 (e2021JC018375 2021JC018375) doi: https://doi.org/10.1029/2021JC018375 547 Xiao, H., Tanimoto, T., Spica, Z. J., Gaite, B., Ruiz-Barajas, S., Pan, M., & Viens, 548 L. (2022). Locating the precise sources of high-frequency microseisms using 549 Geophys. Res. Lett., 49(17), e2022GL099292. distributed acoustic sensing. 550 (e2022GL099292 2022GL099292) doi: https://doi.org/10.1029/2022GL099292

551

-16-

Supporting Information for "Monitoring Shelf Sea Dynamics with Ocean-Bottom Distributed Acoustic Sensing"

Loïc Viens¹ Zack J. Spica², Brent G. Delbridge¹, and Brian K. Arbic ²

 $^1 \mathrm{Los}$ Alamos National Laboratory, Los Alamos, New Mexico, USA

²Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA

Contents of this file

- 1. Text S1 to S7 $\,$
- 2. Figures S1 to S7

Text S1.

NDBC buoy 46229 is close to the fiber-optic cable, but a maintenance event prevented the data from being recorded between October 10 and November 14, 2021. In Figure S1, we show the wave height waveforms recorded at NDBC buoys 46229 and 46050 (locations in Figure 1). While the two buoys are located \sim 100 km from each other, their water depths are relatively similar (180 m for buoy 46229 and 160 m for buoy 46050). The wave height

waveforms are very similar as the two buoys are located above similar water depths, and we primarily use the continuous data from buoy 46050 in the main manuscript.

Text S2.

To separate the landward and oceanward propagating OSGWs, we apply a f-k filter to each 10-min time series. In Figures S2a-b, we show an example of 10-min f - k filtered time series along the cable, which characterize the landward and oceanward propagating OSGWs. For each virtual source-receiver pair, we compute cross-correlation functions (CCFs) from both landward and oceanward f - k filtered 10-min time windows in the frequency domain as

$$CCF_{v-r}(t) = F^{-1}\left(\frac{\hat{s}_r \hat{s}_v^*}{\{|\hat{s}_v|\}\{|\hat{s}_r|\}}\right),\tag{1}$$

where \hat{s}_v and \hat{s}_r are the Fourier transform of 10-min f-k filtered strain-rate records at the virtual source (s_v) and receiver (s_r) channels, respectively. The * symbol represents the complex conjugate. The denominator of Equation 1 (i.e., $\{|\hat{s}_v|\}\{|\hat{s}_r|\}$) represents spectral whitening, where $\{\cdot\}$ is a smoothing of the absolute amplitude spectrum $(|\cdot|)$ using a running-mean average algorithm over 30 discrete frequency samples (Bensen et al., 2007). The inverse Fourier transform (F^{-1}) is finally applied to retrieve the 10-min CCFs in the time domain.

Examples of CCFs computed between channel 1000 (virtual source) and all the nearby channels (receivers) are shown in Figures S2c–d. Both landward (Figure S2c) and ocean-ward (Figure S2d) propagating waves can be observed in the 10-min CCFs. Note that only the CCF computed between each virtual source and the 15th channel before the

virtual source is used in the main manuscript (e.g., CCF between virtual source 1000 and receiver 985).

To increase the signal-to-noise ratio, we stack the CCFs over four hours using a phaseweighted stack approach with a power of 2 and a smoothing of 0.5 s (Schimmel & Paulssen, 1997).

Text S3.

We show the correlation coefficients (CCs) after stretching along the cable for the four months of data in Figure S3a. Only the dt/t results with CCs after stretching higher than 0.4 are analyzed in the main manuscript. We illustrate the spatio-temporal dt/t data selection with a binary representation of the CCs after stretching (i.e., CC values higher and lower than 0.4) in Figure S3b. Finally, we show a histogram of the CC values in Figure S3c, which highlights that 94.4% of the CC after stretching values are above 0.4.

Text S4.

We show the bathymetry and its slope along the cable in Figure S4. The slope is computed along the array using a sliding horizontal distance of 500 m. Offshore, the largest slopes are observed between 6.3-12 km, 12-20 km, and after 40 km from the IU.

Text S5.

In the main manuscript, we focus on two regions of the cable where an oceanward surface flow is observed (i.e., dt/t values of -0.04 s). The water depths for these two regions are 79 and 206 m (i.e., 16.9 and 47.5 km from the IU). For such water depths, OSGWs with wavelengths of 158 and 412 m, or wavenumbers of 0.0063 and 0.0024 m⁻¹, respectively,

should theoretically start feeling the bottom of the ocean. In Figure S5, we show daily f-k spectra of the data at those two locations. Between 16.4 and 17.4 km from the IU (Figure S5a), the highest energy level for wind waves (i.e., above 0.1 Hz) is found for a wavenumber of 0.006 m⁻¹, which is very close to the 0.0063 m⁻¹ theoretical value. Between 47 and 48 km from the IU (Figure S5b), the maximum energy, which corresponds to the swell energy, is found at a frequency of 0.06 Hz and a wavenumber of 0.002 m⁻¹, which is also very close to the theoretical wavenumber value of 0.0024 m⁻¹. This analysis shows that incoming waves with the most energy start feeling the bottom of the ocean at these two locations, which likely decreases their velocities. The shoaling of incoming waves is likely responsible for the oceanward flow of the ocean's near surface at these two locations.

Text S6.

We show the hourly wind direction and speed recorded at NDBC buoy 46050 in Figure S6. The wind is primarily coming from the North in August and September. In October and November, a clear change of the wind direction can be observed, with winds primarily blowing from the South.

Text S7.

In Figure S7, we show a comparison of the tide gauge data recorded in South Beach, OR, and the high-frequency surface current measurements near the fiber-optic cable. Rising and falling tides generally correlate with stronger landward and oceanward surface currents measured by the high-frequency radar.

References

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti,

M. P., ... Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. *Geophys. J. Int.*, 169, 1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x

:

Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. *Geophys. J. Int.*, 130, 497-505. doi: 10.1111/ j.1365-246X.1997.tb05664.x

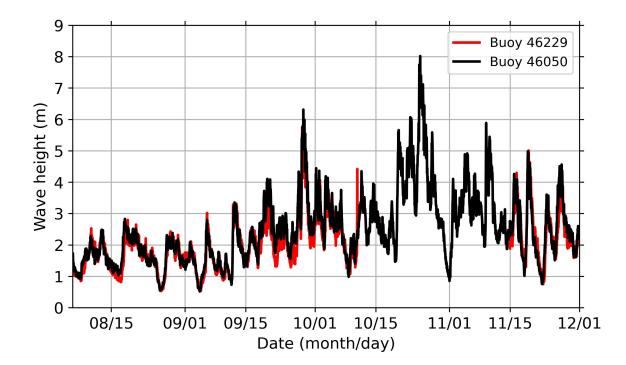


Figure S1. Comparison between the wave height recorded by buoys 46229 (red) and 46050 (black). Buoy 46229 is the closest to the cable, but has a data gap between October 10 and November 14, 2021.

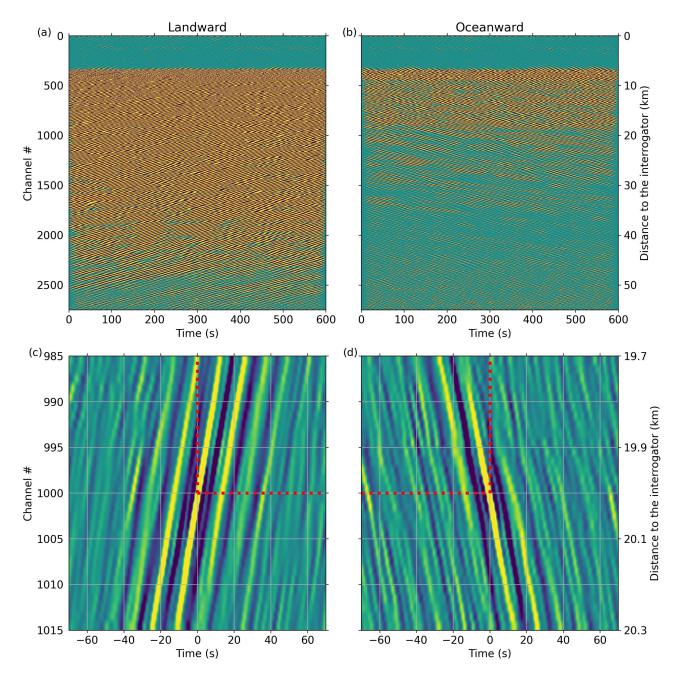


Figure S2. (a) Landward propagating OSGWs obtained after applying a f - k filter to a 10-min strain-rate dataset. (b) Same as (a) for oceanward propagating waves. (c) 10-min CCFs computed using channel 1000 as the virtual source and all the nearby channels as receivers. The dashed red lines determine the quadrant representing landward propagating waves used in this study. Note that only the CCF computed between virtual source 1000 and receiver 985 is used in the analysis of the main manuscripMar(d) Statue 202(c,) for 52 pmanward propagating waves.

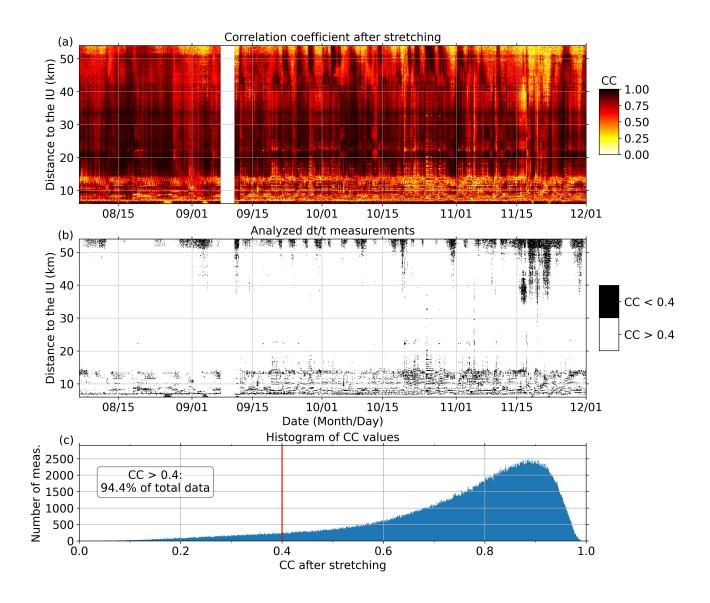


Figure S3. (a) Correlation coefficients (CCs) after stretching for the four months of data along the cable. (b) Binary representation of the selected dt/t measurements for CC after stretching values higher than 0.4. (c) Histogram of CC after stretching values. The vertical red line highlights the CC after stretching value of 0.4.

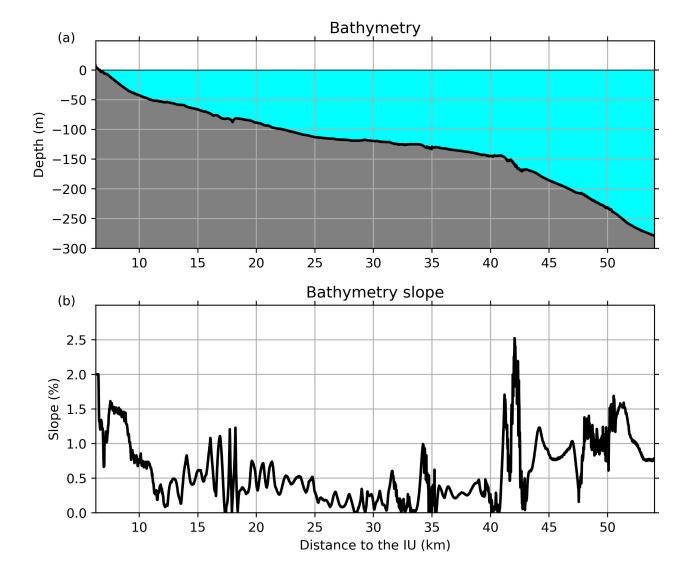


Figure S4. (a) Bathymetry profile along the cable. (b) Slope of the bathymetry profile.

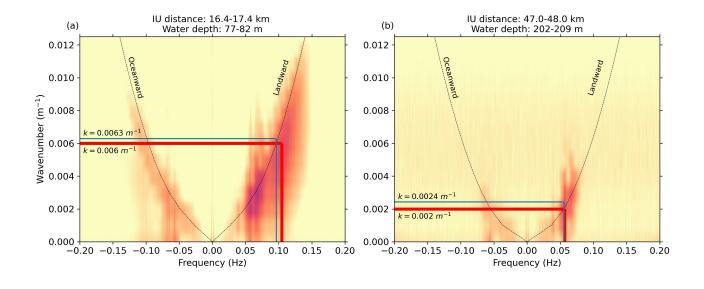
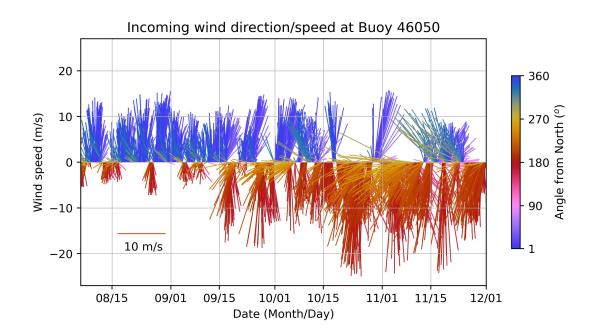
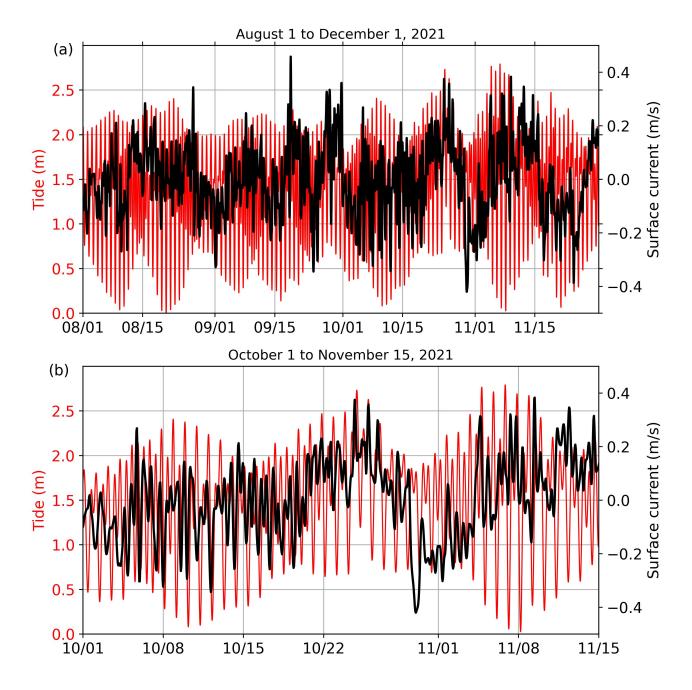




Figure S5. (a) Average f-k analysis performed between the data recorded between 16.4 and 17.4 km from the IU over one day of data. The red line highlights the frequency and wavenumber for which the maximum energy is found above 0.1 Hz. The blue line represents the theoretical wavenumber and frequency for a water depth of 79 m. (b) Same as (a) for the data recorded between 47 and 48 km from the IU and a water depth of 206 m.

Figure S6. Hourly wind direction and speed recorded at Buoy 46050. The direction is the direction the wind is coming from in degrees clockwise from the true North, and the length of each line represents the wind speed.

Figure S7. (a) Tide gauge (red) versus high-frequency radar east-west surface current (black) measurements between August 1 and December 1, 2021. (b) Same as (a) between October 1 and November 15, 2021.