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Abstract

Land use and land cover change (LULCC) represents a key process of human-Earth system interaction and has profound im-

pacts on ecosystem carbon cycling. As a key input for ecosystem models, future gridded LULCC data is typically spatially

downscaled from regionally LULCC projections by integrated assessment models. The uncertainty associated with different

spatial downscaling methods and its impacts on subsequent model projections have been historically ignored and rarely exam-

ined. This study investigated this problem using two representative spatial downscaling methods and focused on the impacts

on the carbon cycle over ABoVE domain. Specifically, we used the Future Land Use Simulation model (FLUS) and Demeter

model to generate 0.25-degree gridded LULCC data with the same input of regional LULCC projections from Global Change

Analysis Model, under SSP126 and SSP585. The two sets of downscaled LULCC were used to drive CLM5 to prognostically

simulate terrestrial carbon cycle dynamics over the 21st century. The results suggest large spatial-temporal differences between

two LULCC datasets under both SSP126 and SSP585. The LULCC differences further lead to large discrepancies in the spatial

patterns of projected carbon cycle variables, which are more than 79% of the contributions of LULCC in 2100. Besides, the

difference for LULCC and carbon flux under SSP126 is generally larger than those under SSP585. This study highlights the

importance of considering the uncertainties induced by spatial downscaling process in future LULCC projections and carbon

cycle simulations.
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Key Points: 11 

• We identified a traditionally ignored source of uncertainty in model projected carbon 12 

cycle from the future land use and land cover change (LULCC) data. 13 

• Spatial downscaling is a necessary step for generating gridded LULCC data, but different 14 

downscaling methods may lead to results with large spatial differences. 15 

• The impacts of using different spatial downscaling methods are more than 79% of the 16 

contributions of future LULCC to carbon cycle projections in 2100.  17 
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Abstract 18 

Land use and land cover change (LULCC) represents a key process of human-Earth system 19 

interaction and has profound impacts on terrestrial ecosystem carbon cycling. As a key input for 20 

ecosystem models, future gridded LULCC data is typically spatially downscaled from regional 21 

LULCC projections by integrated assessment models, such as the Global Change Analysis Model 22 

(GCAM). The uncertainty associated with the different spatial downscaling methods and its 23 

impacts on the subsequent model projections have been historically ignored and rarely examined. 24 

This study investigated this problem using two representative spatial downscaling methods and 25 

focused on their impacts on the carbon cycle over the Arctic-Boreal Vulnerability Experiment 26 

(ABoVE) domain where extensive LULCC is expected. Specifically, we used the Future Land Use 27 

Simulation model (FLUS) and the Demeter model to generate 0.25-degree gridded LULCC data 28 

(i.e., LULCCFLUS and LULCCDemeter, respectively) with the same input of regional LULCC 29 

projections from GCAM, under both the low (i.e., SSP126) and high (i.e., SSP585) greenhouse 30 

gas emission scenarios. The two sets of downscaled LULCC were used to drive the Community 31 

Land Model version 5 (CLM5) to prognostically simulate the terrestrial carbon cycle dynamics 32 

over the 21st century. The results suggest large spatial-temporal differences between LULCCFLUS 33 

and LULCCDemeter, and the spatial distributions of the needleleaf evergreen boreal tree, broadleaf 34 

deciduous boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass are particularly 35 

different under both SSP126 and SSP585. The LULCC differences further lead to large 36 

discrepancies in the spatial patterns of projected gross primary productivity, ecosystem respiration, 37 

and net ecosystem exchange, which are more than 79% of the contributions of future LULCC in 38 

2100. Besides, the difference for LULCC and carbon flux under SSP126 is generally larger than 39 

those under SSP585. This study highlights the importance of considering the uncertainties induced 40 

by the spatial downscaling process in future LULCC projections and carbon cycle simulations. 41 

Plain Language Summary 42 

Land use and land cover change (LULCC) affects the carbon cycle in ecosystems. To predict 43 

future LULCC and carbon cycle changes, scientists use spatial downscaling methods to create 44 

detailed LULCC maps. However, different methods can lead to different results and can impact 45 

carbon cycle projections. Our study found that using different spatial downscaling methods can 46 

lead to a large portion of the uncertainty in future LULCC and carbon cycle projections over the 47 

Arctic-Boreal region. It is important to consider these uncertainties when studying future changes 48 

in land use and carbon cycling. 49 

1 Introduction 50 

Land use and land cover change (LULCC) represents a key human impact on the Earth system 51 

(Chen et al., 2019). It has crucial impact on many important ecological, biophysical, 52 

biogeochemical and climatic processes such as biodiversity (Semenchuk et al., 2022), energy 53 

balance (Duveiller et al., 2018; Dashti et al., 2022), carbon and water cycle (Harris et al., 2021; 54 

Friedlingstein et al., 2021; Sterling et al., 2013), and climate extremes (Findell et al., 2017). 55 

Substantial LULCC has occurred in the past several decades (Song et al., 2018; J. Liu et al., 2020) 56 

and is expected to continue in the future (Doelman et al., 2018; Friedlingstein et al., 2021; Chen 57 

et al., 2020b; Bukovsky et al., 2021). Under global climate change, the Arctic-Boreal Vulnerability 58 

Experiment (ABoVE) domain is a vulnerable hotspot region, due to the amplified warming (Liu 59 

et al., 2020), and has been used as a key representative region to understand the changes in the 60 

whole Arctic. Extensive LULCC has been observed by satellites in this region (Alcaraz-Segura et 61 
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al., 2010), such as the shrub expansion and forest cover change (Alcaraz-Segura et al., 2010; 62 

Pastick et al., 2019). Previous study found the historical LULCC over this region has large impacts 63 

on carbon cycle (Mekonnen et al., 2021). Projecting and understanding how future LULCC will 64 

evolve and its ecological impacts over the ABoVE domain are of vital importance for making 65 

mitigation and adaptation strategies and sustainable management of ecosystems in this region and 66 

the whole high-latitude area. 67 

Gridded LULCC projection is essential to analyze the spatial patterns of LULCC and to understand 68 

the impact of LULCC on important ecosystem services, e.g., carbon sequestration, in the future. 69 

Integrated Assessment Models (IAMs) are commonly used to project future LULCC under diverse 70 

global change scenarios. However, these IAM projections are usually under large political, 71 

economic, or geographical region level, and spatial downscaling is a necessary step to obtain a 72 

spatially explicit LULCC data (i.e. gridded LULCC) from the IAM projections. Recent studies 73 

have investigated the large uncertainties in the future gridded LULCC due to the difference in 74 

interpretations of narratives, model assumptions, and structure of IAMs (Riahi et al., 2017; 75 

Guivarch et al., 2022) as well as the difference in spatial resolution (Alexander et al., 2017) and 76 

LULCC definitions (Chen et al., 2020b). For instance, the computable-general equilibrium models 77 

such as the Global Change Analysis Model (GCAM) (Calvin et al., 2017, 2019), have a smaller 78 

area of projected cropland in the last half of the 21st century than the partial equilibrium models 79 

(Alexander et al., 2017) like the Model of Agricultural Production and its Impact on the 80 

Environment (MAgPIE; Popp et al., 2014), despite both models are among the major IAMs in the 81 

world. These uncertainties could propagate and result in large uncertainties in the following 82 

analyses of LULCC impacts, such as the quantification of critically important terrestrial ecosystem 83 

carbon cycle (Di Vittorio et al., 2018) in Earth System Models.  84 

However, as a key step of generating gridded LULCC data, spatial downscaling also has large 85 

uncertainties that, to the best of our knowledge, have received limited attention. The difference in 86 

the downscaled LULCC due to different spatial downscaling methods remains underexplored and 87 

it is unclear how big the difference could be. Several spatial downscaling methods, e.g., Demeter 88 

(Chen et al., 2019; Chen et al., 2020b; Vernon et al., 2018), FLUS (Dong et al., 2018; Cao et al., 89 

2010; Luo et al., 2022), Global Land-use Model 2 (Ma et al., 2019; Hurtt et al., 2020), and Platform 90 

for Land-Use and Environmental Model (Wu et al., 2019; Fujimori et al., 2018), have been widely 91 

used to disaggregate regional LULCC projections from IAMs. Although these models/methods 92 

can take in the same regional LULCC projections from the same IAM, their mechanisms of 93 

disaggregating the areal projection into grid levels are different. For instance, Demeter uses the 94 

proximal relationships defined by kernel density probabilities to process the intensification and 95 

expansion of LULCC (Vernon et al., 2018), while FLUS combines the artificial neural networks 96 

(ANN) and the mechanisms of cellular automata (CA) (Liu et al., 2017) to couple both human-97 

related and natural environmental effects and consider the interactions and competition among 98 

different land types. These differences are expected to cause diverse spatial patterns of future 99 

LULCC projections, which could further influence the subsequent projections of terrestrial 100 

ecosystem carbon fluxes, such as the gross primary productivity (GPP), ecosystem respiration 101 

(ER), and their difference net ecosystem exchange (NEE; NEE=ER-GPP).  102 

This study focuses on the future LULCC and carbon fluxes in the ABoVE domain under two 103 

Shared Socioeconomic Pathways (SSPs), i.e., SSP126 and SSP585). We aim to answer two 104 

questions: 1) how much uncertainty of the spatial pattern of LULCC could be caused by different 105 

spatial downscaling methods and 2) what are the impacts on the subsequent projections of 106 
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ecosystem carbon fluxes with the uncertain downscaled LULCC? For this purpose, we used two 107 

different spatial downscaling methods (i.e., Demeter and FLUS) to generate 0.25-degree gridded 108 

LULCC data with the same LULCC classification and definitions based on the same regional 109 

projections from GCAM from 2015 to 2100. We then used the Community Land Model version 5 110 

(CLM5) to simulate the carbon fluxes driven by the gridded LULCC data produced by Demeter 111 

and FLUS, respectively. Thereby, we quantified the differences of gridded LULCC generated by 112 

Demeter and FLUS and their impacts on future GPP, ER, and NEE projections. 113 

2 Materials and Methods 114 

2.1 Demeter and FLUS 115 

Demeter is a LULCC spatial disaggregation model developed as part of the GCAM software 116 

ecosystem and could be extended to other IAMs (Vernon et al., 2018). It uses an intensification 117 

and expansion strategy (Page et al., 2016; West et al., 2010) to perform the spatial downscaling, 118 

following a series of user-defined rules. Specifically, the treatment order defines final land type is 119 

downscaled first. Transition priorities define what type of land swaps are favored. Spatial 120 

constraints, e.g., kernel density, measure the probability density of a land type around a given grid 121 

cell. The soil workability and nutrient availability help to indicate suitability for agriculture. 122 

Detailed algorithms and optimization procedures can refer to the previous studies (Chen et al., 123 

2019; Vernon et al., 2018).  124 

FLUS is a CA-based model which can be used to explore nonlinear relationships between the 125 

complex spatial factors and multiple land types (Liu et al., 2017; Liao et al., 2020). FLUS first 126 

estimates the probability of occurrence for each LULCC on each grid cell based on ANN. Then 127 

FLUS accounts for the competition and interactions among different land types and carries out the 128 

land allocation by combining the probability-of-occurrence, user-defined conversion cost, 129 

neighborhood condition, and competition among different land types and the mechanisms of CA, 130 

self-adaptive inertia, and competition mechanism. During this stage, the land type with a higher 131 

probability-of-occurrence is more likely to be predicted as the target land type, while those with a 132 

relatively lower probability-of-occurrence can still be possibly converted based on the roulette 133 

selection mechanism.  134 

 135 

2.2 Data preparation for LULCC spatial downscaling 136 

We used the regional LULCC projections under both the low (i.e., SSP126) and high (i.e., SSP585) 137 

emission scenarios derived from GCAM (Chen et al., 2020b) as the input for the spatial 138 

downscaling (Figure S1). SSP126 describes a sustainability scenario pathway with an increase of 139 

global mean temperature by 1.5C to 2 C compared to the pre-industrial level by the end of the 140 

21st century. SSP585 describes a world that widely uses fossil-fuels and the global mean 141 

temperature increase by about 4.4 C by the end of the 21st century. Under both scenarios, GCAM 142 

projects LULCC at 5-year time step over 2015-2100 in 384 regions globally, ten of which locate 143 

in the ABoVE domain (Figure 1).  144 

Both Demeter and FLUS require a gridded land cover map at the target spatial resolution as the 145 

reference for their spatial disaggregation, and here we used the year 2015 land cover map at a 146 

spatial resolution of 500m provided by the MODerate resolution Imaging Spectroradiometer 147 

(MODIS) land cover product (MCD12Q1 C6). Specifically, we used the Plant Functional Types 148 
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(PFT) classification in MCD12Q1 (hereafter referred to MODIS_PFT) (Friedl et al., 2010), which 149 

classifies the global land surface into 11 types. However, MODIS_PFT is different from the land 150 

classification system of GCAM and that of the downstream land surface model CLM5 151 

(CLM5_PFT) (Lawrence et al., 2019). Therefore, a few reclassification steps (Figure S2) were 152 

applied to harmonize the differences, following a similar strategy used in the previous studies 153 

(Chen et al., 2020b; Luo et al., 2022).  154 

Specifically, Demeter allows inconsistent classification systems among the input (GCAM), 155 

reference map (MODIS_PFT) and the target (CLM_PFT). The spatial downscaling can be 156 

performed with Demeter once the links among the three classification systems are defined. In 157 

contrast, the design of FLUS requires an identical land cover type classification system across 158 

input, reference and target. Therefore, we first consolidated both GCAM and MODIS_PFT type 159 

into 7 broad types and built a reclassification scheme (Table 1) for the harmonization. For Demeter, 160 

we reclassified the 11-type 500m MODIS land cover map into 18 CLM5_PFT types (Figure 1) 161 

based on the climate-based rules as described in Bonan et al. (2002), using the WorldClim V2 162 

monthly climatological temperature and precipitation data (Fick & Hijmans, 2017). The 163 

reclassified 500 m MODIS data was then aggregated to 0.25 degree to be used as the reference 164 

map for Demeter downscaling in this study. For FLUS, we reclassified the MODIS reference land 165 

cover map to a new reference map with the 7 broad types. Spatial downscaling with FLUS thus 166 

generated LULCC data in the same 7 broad types, and we finally mapped the 7 broad types into 167 

the 18 CLM5_PFT types by using a similar strategy in a previous study (Chen et al., 2020a) that 168 

iteratively assign the new label of the nearest neighbor for each map grid in each year. It must be 169 

noted that the differences in these preprocessing steps are also an inherent uncertainty source of 170 

the gridded LULCC products while using different spatial downscaling models. 171 

 172 

Figure 1. The spatial distribution of LULCC over the ABoVE domain in 2015. Different 173 

colors represent different CLM5_PFT types. 174 
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In addition, due to the errors in the geographical data (Chen et al., 2020b; Luo et al., 2022) used 175 

in GCAM, the geographical areas between GCAM regional projections and MODIS reference map 176 

are not consistent and also need to be harmonized. Specifically, for Demeter, we used the Eq. (1) 177 

to harmonize the LULCC projections (Chen et al., 2020b): 178 

𝐴𝐺𝐿𝑇,𝑢,𝐻(𝑡) = {
𝐴𝐵𝐿𝑇,𝑢,𝐵(𝑡) ×

𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡)

𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡)
                    𝑡 = 2015

     𝐴𝐺𝐿𝑇,𝑢,𝐻(𝑡 − 1)  ×
𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡)

𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡−1)
                2020 ≤ 𝑡 ≤ 2100

                                     (1) 179 

where 𝐴𝐺𝐿𝑇,𝑢,𝐻(𝑡) is the harmonized area in region u in year t for each GCAM type (GLT). 𝐴𝐵𝐿𝑇,𝑢,𝐵(𝑡) 180 

is the area in region u in the reference map in year t for each broad type (BLT). 𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡) is the 181 

area in region u from GCAM projections in year t for each GLT. 𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡) is the area in region u 182 

from GCAM projection for each BLT in year t. 183 

Considering that FLUS uses the broad land types during the spatial downscaling process, we 184 

used Eq. (2) to harmonize the regional area between GCAM and the reference map (Luo et al., 185 

2022): 186 

𝐴𝐵𝐿𝑇,𝑢,𝐻(𝑡) = {
𝐴𝐵𝐿𝑇,𝑢,𝐵(𝑡)                                                    𝑡 = 2015

     𝐴𝐵𝐿𝑇,𝑢,𝐻(𝑡 − 1)  ×
𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡)

𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡−1)
                2020 ≤ 𝑡 ≤ 2100

                   (2) 187 

where 𝐴𝐵𝐿𝑇,𝑢,𝐻  is the harmonized area in region u for each BLT. Such area harmonization for 188 

Demeter and FLUS makes sure that the input LULCC projections are adjusted to match the 189 

reference map and be consistent in our Demeter and FLUS experiments. 190 

  191 
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Table 1. LULCC reclassification scheme for GCAM type, Broad type, MODIS_PFT, and 192 

CLM5_PFT. 193 

GCAM type Broad 

type 

MODIS_

PFT 

CLM5_PFT  

RockIceDesert Barren Barren Barren 

biomass-grass_IRR, biomass-

grass_RFD, biomass-tree_IRR, 

biomass-tree_RFD, Corn_IRR, 

Corn_RFD, FiberCrop_IRR, 

FiberCrop_RFD, 

FodderGrass_IRR, 

FodderGrass_RFD, 

FodderHerb_IRR, 

FodderHerb_RFD, 

MiscCrop_IRR, 

MiscCrop_RFD, OilCrop_IRR, 

OilCrop_RFD, 

OtherArableLand, 

OtherGrain_IRR, 

OtherGrain_RFD, Root-

Tuber_IRR, Root-Tuber_RFD, 

SugarCrop_IRR, 

SugarCrop_RFD, Wheat_IRR, 

Wheat_RFD, 

Cropland Cereal 

Croplands,  

Broadleaf 

Croplands 

Crop 

Forest, 

Unmanaged Forest 

Forest Evergreen 

Needleleaf 

Trees 

Needleleaf evergreen temperate tree, 

Needleleaf evergreen boreal tree 

Deciduous 

Needleleaf 

Trees 

Needleleaf deciduous boreal tree 

Evergreen 

Broadleaf 

Trees 

Broadleaf evergreen tropical tree, Broadleaf 

evergreen temperate tree 

Deciduous 

Broadleaf 

Trees 

Broadleaf deciduous tropical tree,  

Broadleaf deciduous temperate tree,  

Broadleaf deciduous boreal tree 

Grassland, Tundra, 

Pasture, Unmanaged Pasture, 

Grass Grass C3 arctic grass, 

C3 non-arctic grass, 

C4 grass, 

Shrubland Shrub Shrub Broadleaf evergreen temperate shrub, 

Broadleaf deciduous temperate shrub, 

Broadleaf deciduous boreal shrub 

UrbanLand Urban Urban and 

Built-up 

Lands 

Urban 

None Water Water 

Bodies 

Water 
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2.3 Generating gridded LULCC with Demeter and FLUS 194 

We used two spatial downscaling methods (i.e., Demeter and FLUS) to generate the gridded 195 

LULCC data at a 5-year interval from 2015 to 2100, in line with GCAM (Figure S1). For Demeter, 196 

key parameters such as the optimal value of the ratio of allocating LULCC as intensification, and 197 

threshold percentage of suitable grid cells to accept extensified LULCC allocation used were set 198 

as the calibrated values in Chen et al. (2020b). We also used the same treatment order of each land 199 

type, and transition priority as that in Chen et al. (2020b). These rules and constraints, together 200 

with kernel density probabilities, were used to conduct the intensification and expansion to apply 201 

the projected future LULCC allocation. For FLUS, to estimate the probability of occurrence, we 202 

first collected the base map in 2015 (see Section 2.2) and 9 spatial factors (shown in Table 2), 203 

which reflect different heterogeneous characteristics (i.e., climate, topography, transportation, etc.) 204 

related to LULCC (Chen et al., 2020a; Liu et al., 2017; Luo et al., 2022) as the training data for 205 

ANN. All these spatial factors were reprojected into 500 m spatial resolution. Other parameters 206 

including sampling method, sample rate, and hidden layer were set based on Luo et al. (2022). 207 

During the allocation stage, we set the user-defined conversion cost, neighborhood condition, and 208 

competition based on the optimal values in Luo et al. (2022). Based on the based map and the 209 

abovementioned parameter configuration, we used FLUS to produce 500 m LULCC dataset in the 210 

ABoVE domain from 2015 to 2100. 211 

FLUS outputs LULCC at a spatial resolution of 500 m. We aggregated the FLUS outputs into the 212 

same resolution as Demeter (i.e., 0.25 degree), and both of them can be used as CLM5. We 213 

hereafter refer to two gridded LULCC data produced by Demeter and FLUS as LULCCDemeter and 214 

LULCCFLUS, respectively. Note that the two datasets are identical in the starting year 2015, since 215 

both Demeter and FLUS kept their downscaled maps the same as the reference map in the starting 216 

year.  217 

2.4 Projecting future carbon cycle 218 

We used CLM5 to prognostically project the future GPP, ER, and NEE under the two scenarios 219 

driven by LULCCDemeter and LULCCFLUS, respectively (Figure S1). CLM5 is the land component 220 

of the Community Earth System Model version 2.0, which is a state-of-the-art land surface model 221 

that mechanistically simulate the biogeophysical, biogeochemical, and ecological processes in the 222 

terrestrial environment simultaneously and is an effective tool to quantify impact of LULCC on 223 

carbon cycle over a wide range of spatial and temporal scales (Bonan & Doney, 2018; Cheng et 224 

al., 2021). Compared to the previous version, CLM5 generally has improved performance in 225 

capturing the dynamics of ecosystem carbon cycle (Lawrence et al., 2019).  226 

Specifically, we carried out the CLM5 simulations with biogeochemistry mode for 200 years in an 227 

“accelerated decomposition” mode, and subsequently for 400 years in regular spin-up mode by 228 

cycling through 2000-2014 to get the steady initial conditions. For the future projections from 229 

2015-2100, we first linearly interpolated the 5-year interval LULCCDemeter and LULCCFLUS into 1-230 

year interval. Then we carried out the future CLM5 simulations using the yearly LULCCDemeter, 231 

LULCCFLUS from 2015-2100 under both SSP126 and SSP585, respectively. In order to evaluate 232 

the impacts of LULCC on future ecosystem carbon cycle, we also carried out another reference 233 

2015-2100 CLM5 simulation with a static land cover in 2015. We hereafter refer to the three sets 234 

of GPP, ER, and NEE projections using LULCCDemeter, LULCCFLUS and historical LULCC in 2015 235 

as 1) GPPFLUS, ERFLUS, NEEFLUS, 2) GPPDemeter, ERDemeter, NEEDemeter, and 3) GPPReference, ERReference, 236 

NEEReference. During the spin-up and future simulations, we used the meteorological forcing data 237 
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of the Geophysical Fluid Dynamics Laboratory (GFDL) from the standard Inter-Sectoral Impact 238 

Model Intercomparison Project phase 3b (ISIMIP3b)(https://www.isimip.org/protocol/3/). The original 239 

daily GFDL forcing data was downscaled to 6-hourly based on the diurnal cycle from the Climatic 240 

Research Unit - NCEP (CRUNCEP) datasets. 241 

 242 

Table 2. Specifications of the 9 spatial factors used in FLUS during the spatial downscaling 243 

process. 244 

2.5 Evaluating the uncertainties of the gridded LULCC dynamics and their impact on future 245 

ecosystem carbon cycle 246 

To evaluate the uncertainties induced by two different spatial downscaling methods, we compared 247 

the spatial and temporal patterns of LULCCDemeter and LULCCFLUS and the resulted carbon fluxes 248 

under SSP126 and SSP585, separately. Here the uncertainties are quantified as the difference in 249 

gridded LULCC and carbon fluxes caused by using different LULCC spatial downscaling methods. 250 

We calculated the Root Mean Square Deviation (RMSD) and Bias for each CLM5_PFT type 251 

between LULCCDemeter and LULCCFLUS to quantify the spatial differences at each year: 252 

𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝐷𝑒𝑚𝑒𝑡𝑒𝑟
𝑋 = √

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝐷𝑒𝑚𝑒𝑡𝑒𝑟

𝑖 )2𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (3) 253 

𝐵𝑖𝑎𝑠𝐹𝐿𝑈𝑆,𝐷𝑒𝑚𝑒𝑡𝑒𝑟
𝑋 =

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝐷𝑒𝑚𝑒𝑡𝑒𝑟

𝑖 )𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (4) 254 

where N is the number of grid cells, X represents the variables of interest (e.g., fraction of each 255 

CLM5_PFT type, GPP, ER, or NEE), the subscript of X represents the spatial downscaling model 256 

(i.e., FLUS and Demeter), the superscript i denotes the ith grid cell, and 𝑤𝑖 is the geographic area 257 

of ith grid cell. Furthermore, we compared the difference both in the spatial pattern and temporal 258 

trend of the carbon fluxes under SSP126 and SSP585 in terms of RMSD and Bias. Besides, we 259 

also estimated the contribution of future LULCC to GPP, ER, and NEE change by calculating the 260 

RMSD and Bias between the simulations using LULCCFLUS and the reference static 2015 land 261 

cover: 262 

Spatial factor Period Spatial 
resolution 

Data source 

Annual mean temperature Climatological 
(1970-2000) 

0.5’ WorldClim v2.0 
(http://www.worldclim.org/) Annual precipitation 

DEM 1996 1 km Hengl (2018) 
Slope 
Distance to water 2015 500 m MODIS PFT (Friedl et al., 2010) 
Distance to main roads 1980-2010 500 m Global Roads Open Access Data 

Set (gROADS) 
(https://sedac.ciesin.columbia.edu/
data/set/groads-global-roads-open-
access-v1/) 

Distance to highway 

Distance to airports 2010 500 m Huang et al. (2013)Click or tap here 

to enter text. 
Distance to urban centers 2014 500 m United Nations, Department of 

Economic Social Affairs, 
Population Division  
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𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑋 = √

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑖 )2𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (5) 263 

𝐵𝑖𝑎𝑠𝐹𝐿𝑈𝑆,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑋 =

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑖 )𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (6) 264 

 265 

where the definition of different symbols is similar to Equation 3 and 4. Note that replacing 266 

LULCCFLUS with LULCCDemeter  in Eqs. (5-6) derives the similar results, which are not shown in 267 

the paper. To compare the relative impact of different LULCC spatial downscaling methods (i.e. 268 

FLUS and Demeter) and future LULCC to carbon flux simulations, we further calculated the ratio 269 

(Φ𝑋) of the uncertainty from different LULCC spatial downscaling methods to the contribution of 270 

future LULCC to different carbon fluxes X as: 271 

Φ𝑋 =
𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝐷𝑒𝑚𝑒𝑡𝑒𝑟

𝑋

𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑋                                                         (7) 272 

3 Results 273 

3.1 Uncertain gridded LULCC projections  274 

Results from the downscaling practices with Demeter and FLUS show large spatial difference 275 

between LULCCFLUS and LULCCDemeter under both SSP126 and SSP585. Figures S4 and S5 show 276 

the spatial patterns of future LULCCDemeter and LULCCFLUS in 2100 under SSP126 and SSP585, 277 

as well as the land cover map in 2015 as a reference. The FLUS and Demeter algorithms preserve 278 

the total area of each PFT, thus the Bias is relatively small. However, there is large difference in 279 

the spatial distributions of the four dominant PFTs over the ABoVE domain from 2020 to 2100, 280 

measured by RMSD (Figure 2). In general, the inconsistency between LULCCDemeter and 281 

LULCCFLUS rapidly increases in the first few decades and become stable afterwards under both 282 

SSP126 and SSP585, and the magnitudes and transition points are different across PFTs and 283 

scenarios (Figure 2) following the pattern of the input regional LULCC from GCAM (Figure S3). 284 

 285 

The magnitudes are generally larger under SSP126 than those under SSP585 for all the dominant 286 

PFTs (Figures 2 and 3). For example, in 2100, the RMSDs between LULCCDemeter and LULCCFLUS 287 

are 15.9%, 11.5%, 18.1%, and 18.8%, respectively for the broadleaf deciduous boreal tree, 288 

needleleaf evergreen boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass under 289 

SSP126, while those values are 7.5%, 6.2%, 11. 6%, and 10.0%, respectively under SSP585.  290 

 291 
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 292 

Figure 2. Time series of RMSD between LULCCFLUS and LULCCDemeter for 4 dominant 293 

CLM5_PFT types from 2020 to 2100 over the ABOVE domain under (a) SSP126 and (b) SSP585. 294 

Green, purple, blue, and red lines represent broadleaf deciduous boreal tree, needleleaf evergreen 295 

boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass separately. A larger RMSD value 296 

represents the larger difference between LULCCFLUS and LULCCDemeter. 297 

 298 

We further compared the areal fraction for four dominant PFTs from LULCCDemeter and 299 

LULCCFLUS in 2100 under both SSPs. As shown in Figure 3, the difference between LULCCDemeter 300 

and LULCCFLUS is not evenly distributed in the study domain under both SSPs. Under SSP126, 301 

compared to Demeter, FLUS prominently distributes up to 95% more needleleaf evergreen boreal 302 

trees and less boreal broadleaf deciduous trees in the northwestern ABoVE domain, and more 303 

boreal broadleaf deciduous shurbs and less C3 arctic grass in the northern area.  304 

 305 

we observed similar spatial patterns in the differences between LULCCFLUS and LULCCDemeter 306 

under both SSPs, although with varying magnitudes. Positive values indicate that LULCCFLUS has 307 

a greater proportion of the specific PFT compared to LULCCDemeter, while negative values indicate 308 

that LULCCDemeter has a greater proportion of the PFT compared to LULCCFLUS. For needleleaf 309 

evergreen boreal trees, the major differences are found in the western region in Alaska. Under both 310 

SSPs, in the southeastern regions, the differences show opposite signs under the two SSPs, with 311 

negative values (LULCCDemeter is larger) under SSP126 and positive values under SSP585. 312 

Southeastern regions show opposite signs of the differences between LULCCFLUS and 313 

LULCCDemeter under two scenarios with negative values under SSP126 but positive values under 314 

SSP585. For broadleaf deciduous boreal trees, under SSP126, LULCCFLUS indicates more 315 

proportion in the southeastern ABoVE domain than LULCCDemeter, while under SSP585, 316 

LULCCFLUS indicates smaller proportion in the northwestern regions, and up to 50% smaller 317 

proportion in the southeastern regions than LULCCDemeter. For broadleaf deciduous boreal shrub, 318 

LULCCFLUS overall has a larger proportion in the northern regions than LULCCDemeter under 319 

SSP126. Under SSP585, LULCCFLUS shows a smaller proportion in the southwestern regions, 320 

and a larger value in the western and northern regions than LULCCDemeter. For C3 arctic grass, 321 

LULCCFLUS shows larger differences from LULCCDemeter with heterogenetic spatial distribution 322 

under SSP126, while their difference under SSP585 is smaller, but follows a similar spatial pattern 323 

with that under SSP126.  324 

 325 
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  326 

Figure 3. The spatial differences between LULCCFLUS and LULCCDemeter (calculated as 327 

LULCCFLUS- LULCCDemeter) in 2100 for the 4 dominant CLM5_PFT: (a-b) needleleaf evergreen 328 

boreal tree, (c-d) broadleaf deciduous boreal tree, (e-f) broadleaf deciduous boreal shrub, and (g-329 

h) C3 arctic grass over the ABoVE domain under (a,c,e,g) SSP126 and (b,d,f,h) SSP585. The 330 

corresponding RMSD values (Unit: %) are shown in each panel. Positive values indicate larger 331 

PFT fraction by LULCCFLUS.  332 

3.2 Impacts of future LULCC uncertainty on terrestrial carbon cycle 333 

Figure 4 shows the differences of CLM5 estimated annual carbon fluxes over the ABoVE domain 334 

from 2015 to 2100 between using LULCCFLUS and LULCCDemeter as well as those between using 335 

LULCCFLUS and LULCCReference. The RMSD between the results using LULCCFLUS and 336 

LULCCDemeter of the estimated carbon fluxes (RMSDFLUS,Demeter) increases rapidly with time before 337 

2040, and then becomes stable from 2040 to 2100 under both scenarios. The bias between the 338 

estimated carbon fluxes (BiasFLUS,Demeter) decreases significantly before 2040 and fluctuates 339 

thereafter under SSP126, while such discrepancy is smaller and more stable under SSP585. Such 340 
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temporal trends are similar to those the differences in the LULCC (Figure 2). By 2100, the 341 

RMSDFLUS,Demeter are 120.9, 107.4, and 53.3 gC m-2 year-1for GPP, ER and NEE, respectively under 342 

SSP126, and are 53.3, 44.9, and 29.7 gC m-2 year-1, respectively under SSP585 (Figure 4a,b; Table 343 

S1). The Biases in 2100 are -1.7, -1.9, and -0.1 gC m-2 year-1 under SSP126, and 4.6, -0.6, and -344 

4.0 gC m-2 year-1 under SSP585 for GPP, ER and NEE, respectively (Figure 4c,d).  345 

Besides, RMSDFLUS,Demeter is comparable to RMSDFLUS,Reference. For example, in 2100, the ratios of 346 

the uncertainty from different LULCC spatial downscaling methods for GPP, ER, and NEE 347 

( Φ𝐺𝑃𝑃, Φ𝐸𝑅, and Φ𝑁𝐸𝐸) are 79.6%, 83.7%, and 79.7%, respectively under SSP126, and are 98.4%, 348 

93.7%, and 97.9% respectively under SSP585. Overall, the BiasFLUS,Demeter is smaller than 349 

BiasFLUS,Reference under SSP126, while under SSP585, the BiasFLUS,Demeter is similar to 350 

BiasFLUS,Reference and both of them are with small magnitudes. 351 

 352 

 353 
Figure 4. Time series of the RMSD and Bias in (blue) GPP, (red) ER, and (green) NEE, 354 

calculated based on the differences (dashed line) between the simulations using LULCCFLUS and 355 

LULCCDemeter and the difference (solid line) between the simulations using LULCCFLUS and 356 

historical LULCC in 2015, under (a, c) SSP126 and (b, d) SSP585.  357 

 358 

 359 

We further compared the spatial pattern of the difference between GPPFLUS, ERFLUS, NEEFLUS 360 

and GPPDemeter, ERDemeter, NEEDemeter under both scenarios (Figures 5, S6 and S7). Under SSP126, 361 

GPPFLUS is larger in the northwestern regions, but is smaller in the eastern regions than 362 

GPPDemeter (Figure 5). The spatial pattern and magnitude of the difference in ER are similar as 363 

GPP. For NEE, the spatial pattern of the difference is similar to GPP and ER, but with smaller 364 

magnitude and opposite direction except for the southwestern regions. SSP585 shows smaller 365 

differences in GPP, ER, and NEE than SSP126 (Figure 5). Under SSP585, the spatial pattern, 366 

signs, and magnitudes of the differences in GPP and ER are similar. Positive values can be 367 

observed in the southern, central, and western regions, while negative values are present in the 368 
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southeastern and eastern regions. For NEE, NEEFLUS shows smaller values in the southwestern 369 

but larger values in the northwestern and eastern regions than NEEDemeter. To better attribute the 370 

difference between GPPFLUS, ERFLUS, NEEFLUS and GPPDemeter, ERDemeter, NEEDemeter to the 371 

uncertainty in gridded LULCC projections, we further investigated the relationship between the 372 

difference between LULCCFLUS and LULCCDemeter for each PFT and the difference in GPP, ER, 373 

and NEE estimations (Figures 6 and S8). Overall, we found that the grid cells with larger 374 

difference between LULCCFLUS and LULCCDemeter correspond to larger differences in all the 375 

GPP, ER, and NEE under both SSP126 and SSP585.  376 

 377 

 378 
Figure 5. The spatial pattern for the differences of (a-b) GPPFLUS vs GPPDemeter, (c-d) ERFLUS vs 379 

ERDemeter, and (e-f) NEEFLUS vs NEEDemeter in 2100 between CLM5 simulations under (a,c,e) 380 

SSP126 and (b,d,f) SSP585. The corresponding RMSDFLUS,Demeter values are shown in each panel.  381 

 382 
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 383 
 384 

Figure 6. The relationship of the absolute difference in PFT fraction between LULCCFLUS and 385 

LULCCDemeter with the corresponding absolute difference in GPP (blue), ER (red), and NEE 386 

(green) under SSP126 for 4 PFTs: (a) needleleaf evergreen boreal tree, (b) broadleaf deciduous 387 

boreal tree, (c) broadleaf deciduous boreal shrub, and (d) C3 arctic grass. 388 

 389 

4 Discussion 390 

Previous studies show that LULCC can cause large uncertainties of carbon cycle estimates that is 391 

equivalent to 80% of the net effects of CO2 and climate(Di Vittorio et al., 2018). There are diverse 392 

factors that could contribute to the uncertainties of future gridded LULCC projections. In this study, 393 

we focused on quantifying the uncertainty induced by different spatial downscaling methods. Our 394 

results indicate that the differences arising from different spatial downscaling methods can be as 395 

large as 19% in terms of the RMSD for a single CLM5_PFT type in 2100 in our study region. 396 

Furthermore, the impacts of spatial downscaling methods vary with scenarios. The difference 397 

between LULCCDemeter and LULCCFLUS increases more rapidly in the first few decades under 398 

SSP126 than SSP585 (Figure 2), due to the more rapid increase of regional LULCC projections 399 

from GCAM under SSP126. The overall lower RMSDFLUS,Demeter values under SSP585 than under 400 

SSP126 is possibly due to the smaller projected regional LULCC from GCAM under SSP585 401 

compared to SSP126 (Figure S5). 402 

Although we observed large spatial discrepancies in projected carbon fluxes due to LULCC 403 

differences resulting from different spatial downscaling methods, the discrepancies in projected 404 

regional average carbon fluxes are relatively small (Figure 4). Our results are consistent with 405 

previous observational-based studies (Dashti et al., 2022), which attributed this phenomenon to 406 

the cancellation of opposing signs within a small region with similar climate forcings. Furthermore, 407 

the uncertainty of the estimated carbon fluxes from the spatial downscaling methods is generally 408 

lower under SSP585 compared to that under SSP126, due to smaller differences between 409 
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LULCCDemeter and LULCCFLUS under SSP585 than SSP126. Overall, the impacts of uncertain 410 

LULCC on carbon fluxes because of the spatial downscaling process are comparable to the impacts 411 

due to future LULCC itself (Figure 4). These stress the importance of considering the uncertainties 412 

of the LULCC spatial downscaling methods in carbon cycle projections.  413 

It is important to note that existing spatial downscaling algorithms are inherently different, despite 414 

being developed with the same objective. For example, there are several notable differences 415 

between Demeter and FLUS that may contribute to the discrepancies between the resulted LULCC 416 

product. First, Demeter and FLUS employ different algorithms/methods to determine land types 417 

and their respective area proportions in a given grid cell (Li et al., 2017; Liu et al., 2017). 418 

Theoretically, Demeter only captures the net change of LULCC (Page et al., 2016; West et al., 419 

2014), while FLUS simulates both gross and net LULCC change. For example, with a given 420 

decreased area of shrub from GCAM, we found that Demeter only simulated the shrinkage in shrub 421 

under SSP126, while FLUS simulates the shrinkage in most regions and expansions in some parts 422 

of the ABoVE domain, reflecting the different assumptions of the two models. Specifically, 423 

Demeter assumes that an increasing land type can only encroach a decreasing land type, and a 424 

decreasing land type can only be encroached by an increasing land type. These results in that a 425 

decreasing land type can only shrink and an increasing land type can only expand or intensify. In 426 

contrast, FLUS estimates the combined probabilities for each land type in each grid cell (Li et al., 427 

2017; Liu et al., 2017). making it possible for a decreasing land type to expand in some regions 428 

and vice versa. Second, the spatial factors that regulate the downscaling processes in Demeter and 429 

FLUS are also different. Demeter has a set of default spatial factors that focus on soil conditions 430 

such as soil workability and nutrient availability. In contrast, FLUS typically include the soil 431 

condition along with many other spatial factors including climate background (i.e., precipitation 432 

and temperature), environmental conditions (e.g., elevation), and socioeconomic factors (i.e., city 433 

centers and transportation). In this study, we aim to represent the general performance of both 434 

spatial downscaling methods. Thus, we used the default soil conditions for Demeter, and 435 

commonly used multiple spatial factors listed in Table 2 for FLUS. Using different spatial factors 436 

may also cause the difference in the spatial pattern of the final downscaled LULCC, since these 437 

factors are important for estimating the occurrence probability of each land type at a specific grid 438 

cell, referred to as probability-of-occurrence in FLUS and suitability index in Demeter (Chen et 439 

al., 2019). 440 

Careful consideration of data characteristics, research goals, and future scenarios are critical when 441 

selecting a LULCC spatial downscaling method. Additionally, it is important to evaluate the 442 

performance and uncertainty of different methods. We recommend selecting the more suitable 443 

LULCC spatial downscaling methods based on the research requirements and the unique 444 

characteristics of each method. For example, when the land type in the regional projections is 445 

different from the land type in the base map, Demeter can be more convenient than FLUS because 446 

Demeter can avoid the post-processing steps, e.g., LULCC reclassification. If the study focuses 447 

more on the gross LULCC change rather than only the net change, FLUS may be a better choice. 448 

Compared to FLUS, Demeter does not consider socioeconomic and environment factors other than 449 

soil condition by default, but user can add those factors into Demeter based on their need. It is 450 

important to point out there are more spatial downscaling methods beyond the two models 451 

discussed in this study, such as Global Land-use Model 2, and Platform for Land-Use and 452 

Environmental Model, and thus the uncertainty analyzed here could be possibly even larger than 453 

what we show here. Thus, we appeal for attention on the uncertainties of gridded future LULCC 454 

data and their applications caused by different spatial downscaling methods, which could be taken 455 
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into consideration in the future phases of climate model intercomparison project. This study is 456 

limited in the ABoVE region, and future studies could expand the scope to other regions and the 457 

globe. 458 

5 Conclusions 459 

In this study, we investigated the impact of using different spatial downscaling methods on 460 

LULCC projections and their associated impacts on ecosystem carbon fluxes under two global 461 

change scenarios. We compared the results from two popular spatial downscaling methods, 462 

Demeter and FLUS, using the same regional area projections. Our findings showed that different 463 

spatial downscaling methods can result in large differences in the spatial pattern of LULCC and 464 

can further induce substantial variations in carbon cycle simulations. Importantly, the uncertainty 465 

introduced by spatial downscaling methods is comparable to the uncertainty arising from future 466 

LULCC on carbon cycle projections. Additionally, we observed that the uncertainties introduced 467 

by spatial downscaling methods under SSP126 were generally larger than those under SSP585, for 468 

both gridded LULCC and carbon cycle dynamics. This study highlights the importance of carefully 469 

considering the uncertainties associated with spatial downscaling processes and their implications 470 

for downstream applications. To address these uncertainties, we recommend choosing the most 471 

appropriate spatial downscaling method based on research requirements and unique characteristics 472 

of each method.  473 
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Key Points: 11 

• We identified a traditionally ignored source of uncertainty in model projected carbon 12 

cycle from the future land use and land cover change (LULCC) data. 13 

• Spatial downscaling is a necessary step for generating gridded LULCC data, but different 14 

downscaling methods may lead to results with large spatial differences. 15 

• The impacts of using different spatial downscaling methods are more than 79% of the 16 

contributions of future LULCC to carbon cycle projections in 2100.  17 
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Abstract 18 

Land use and land cover change (LULCC) represents a key process of human-Earth system 19 

interaction and has profound impacts on terrestrial ecosystem carbon cycling. As a key input for 20 

ecosystem models, future gridded LULCC data is typically spatially downscaled from regional 21 

LULCC projections by integrated assessment models, such as the Global Change Analysis Model 22 

(GCAM). The uncertainty associated with the different spatial downscaling methods and its 23 

impacts on the subsequent model projections have been historically ignored and rarely examined. 24 

This study investigated this problem using two representative spatial downscaling methods and 25 

focused on their impacts on the carbon cycle over the Arctic-Boreal Vulnerability Experiment 26 

(ABoVE) domain where extensive LULCC is expected. Specifically, we used the Future Land Use 27 

Simulation model (FLUS) and the Demeter model to generate 0.25-degree gridded LULCC data 28 

(i.e., LULCCFLUS and LULCCDemeter, respectively) with the same input of regional LULCC 29 

projections from GCAM, under both the low (i.e., SSP126) and high (i.e., SSP585) greenhouse 30 

gas emission scenarios. The two sets of downscaled LULCC were used to drive the Community 31 

Land Model version 5 (CLM5) to prognostically simulate the terrestrial carbon cycle dynamics 32 

over the 21st century. The results suggest large spatial-temporal differences between LULCCFLUS 33 

and LULCCDemeter, and the spatial distributions of the needleleaf evergreen boreal tree, broadleaf 34 

deciduous boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass are particularly 35 

different under both SSP126 and SSP585. The LULCC differences further lead to large 36 

discrepancies in the spatial patterns of projected gross primary productivity, ecosystem respiration, 37 

and net ecosystem exchange, which are more than 79% of the contributions of future LULCC in 38 

2100. Besides, the difference for LULCC and carbon flux under SSP126 is generally larger than 39 

those under SSP585. This study highlights the importance of considering the uncertainties induced 40 

by the spatial downscaling process in future LULCC projections and carbon cycle simulations. 41 

Plain Language Summary 42 

Land use and land cover change (LULCC) affects the carbon cycle in ecosystems. To predict 43 

future LULCC and carbon cycle changes, scientists use spatial downscaling methods to create 44 

detailed LULCC maps. However, different methods can lead to different results and can impact 45 

carbon cycle projections. Our study found that using different spatial downscaling methods can 46 

lead to a large portion of the uncertainty in future LULCC and carbon cycle projections over the 47 

Arctic-Boreal region. It is important to consider these uncertainties when studying future changes 48 

in land use and carbon cycling. 49 

1 Introduction 50 

Land use and land cover change (LULCC) represents a key human impact on the Earth system 51 

(Chen et al., 2019). It has crucial impact on many important ecological, biophysical, 52 

biogeochemical and climatic processes such as biodiversity (Semenchuk et al., 2022), energy 53 

balance (Duveiller et al., 2018; Dashti et al., 2022), carbon and water cycle (Harris et al., 2021; 54 

Friedlingstein et al., 2021; Sterling et al., 2013), and climate extremes (Findell et al., 2017). 55 

Substantial LULCC has occurred in the past several decades (Song et al., 2018; J. Liu et al., 2020) 56 

and is expected to continue in the future (Doelman et al., 2018; Friedlingstein et al., 2021; Chen 57 

et al., 2020b; Bukovsky et al., 2021). Under global climate change, the Arctic-Boreal Vulnerability 58 

Experiment (ABoVE) domain is a vulnerable hotspot region, due to the amplified warming (Liu 59 

et al., 2020), and has been used as a key representative region to understand the changes in the 60 

whole Arctic. Extensive LULCC has been observed by satellites in this region (Alcaraz-Segura et 61 
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al., 2010), such as the shrub expansion and forest cover change (Alcaraz-Segura et al., 2010; 62 

Pastick et al., 2019). Previous study found the historical LULCC over this region has large impacts 63 

on carbon cycle (Mekonnen et al., 2021). Projecting and understanding how future LULCC will 64 

evolve and its ecological impacts over the ABoVE domain are of vital importance for making 65 

mitigation and adaptation strategies and sustainable management of ecosystems in this region and 66 

the whole high-latitude area. 67 

Gridded LULCC projection is essential to analyze the spatial patterns of LULCC and to understand 68 

the impact of LULCC on important ecosystem services, e.g., carbon sequestration, in the future. 69 

Integrated Assessment Models (IAMs) are commonly used to project future LULCC under diverse 70 

global change scenarios. However, these IAM projections are usually under large political, 71 

economic, or geographical region level, and spatial downscaling is a necessary step to obtain a 72 

spatially explicit LULCC data (i.e. gridded LULCC) from the IAM projections. Recent studies 73 

have investigated the large uncertainties in the future gridded LULCC due to the difference in 74 

interpretations of narratives, model assumptions, and structure of IAMs (Riahi et al., 2017; 75 

Guivarch et al., 2022) as well as the difference in spatial resolution (Alexander et al., 2017) and 76 

LULCC definitions (Chen et al., 2020b). For instance, the computable-general equilibrium models 77 

such as the Global Change Analysis Model (GCAM) (Calvin et al., 2017, 2019), have a smaller 78 

area of projected cropland in the last half of the 21st century than the partial equilibrium models 79 

(Alexander et al., 2017) like the Model of Agricultural Production and its Impact on the 80 

Environment (MAgPIE; Popp et al., 2014), despite both models are among the major IAMs in the 81 

world. These uncertainties could propagate and result in large uncertainties in the following 82 

analyses of LULCC impacts, such as the quantification of critically important terrestrial ecosystem 83 

carbon cycle (Di Vittorio et al., 2018) in Earth System Models.  84 

However, as a key step of generating gridded LULCC data, spatial downscaling also has large 85 

uncertainties that, to the best of our knowledge, have received limited attention. The difference in 86 

the downscaled LULCC due to different spatial downscaling methods remains underexplored and 87 

it is unclear how big the difference could be. Several spatial downscaling methods, e.g., Demeter 88 

(Chen et al., 2019; Chen et al., 2020b; Vernon et al., 2018), FLUS (Dong et al., 2018; Cao et al., 89 

2010; Luo et al., 2022), Global Land-use Model 2 (Ma et al., 2019; Hurtt et al., 2020), and Platform 90 

for Land-Use and Environmental Model (Wu et al., 2019; Fujimori et al., 2018), have been widely 91 

used to disaggregate regional LULCC projections from IAMs. Although these models/methods 92 

can take in the same regional LULCC projections from the same IAM, their mechanisms of 93 

disaggregating the areal projection into grid levels are different. For instance, Demeter uses the 94 

proximal relationships defined by kernel density probabilities to process the intensification and 95 

expansion of LULCC (Vernon et al., 2018), while FLUS combines the artificial neural networks 96 

(ANN) and the mechanisms of cellular automata (CA) (Liu et al., 2017) to couple both human-97 

related and natural environmental effects and consider the interactions and competition among 98 

different land types. These differences are expected to cause diverse spatial patterns of future 99 

LULCC projections, which could further influence the subsequent projections of terrestrial 100 

ecosystem carbon fluxes, such as the gross primary productivity (GPP), ecosystem respiration 101 

(ER), and their difference net ecosystem exchange (NEE; NEE=ER-GPP).  102 

This study focuses on the future LULCC and carbon fluxes in the ABoVE domain under two 103 

Shared Socioeconomic Pathways (SSPs), i.e., SSP126 and SSP585). We aim to answer two 104 

questions: 1) how much uncertainty of the spatial pattern of LULCC could be caused by different 105 

spatial downscaling methods and 2) what are the impacts on the subsequent projections of 106 
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ecosystem carbon fluxes with the uncertain downscaled LULCC? For this purpose, we used two 107 

different spatial downscaling methods (i.e., Demeter and FLUS) to generate 0.25-degree gridded 108 

LULCC data with the same LULCC classification and definitions based on the same regional 109 

projections from GCAM from 2015 to 2100. We then used the Community Land Model version 5 110 

(CLM5) to simulate the carbon fluxes driven by the gridded LULCC data produced by Demeter 111 

and FLUS, respectively. Thereby, we quantified the differences of gridded LULCC generated by 112 

Demeter and FLUS and their impacts on future GPP, ER, and NEE projections. 113 

2 Materials and Methods 114 

2.1 Demeter and FLUS 115 

Demeter is a LULCC spatial disaggregation model developed as part of the GCAM software 116 

ecosystem and could be extended to other IAMs (Vernon et al., 2018). It uses an intensification 117 

and expansion strategy (Page et al., 2016; West et al., 2010) to perform the spatial downscaling, 118 

following a series of user-defined rules. Specifically, the treatment order defines final land type is 119 

downscaled first. Transition priorities define what type of land swaps are favored. Spatial 120 

constraints, e.g., kernel density, measure the probability density of a land type around a given grid 121 

cell. The soil workability and nutrient availability help to indicate suitability for agriculture. 122 

Detailed algorithms and optimization procedures can refer to the previous studies (Chen et al., 123 

2019; Vernon et al., 2018).  124 

FLUS is a CA-based model which can be used to explore nonlinear relationships between the 125 

complex spatial factors and multiple land types (Liu et al., 2017; Liao et al., 2020). FLUS first 126 

estimates the probability of occurrence for each LULCC on each grid cell based on ANN. Then 127 

FLUS accounts for the competition and interactions among different land types and carries out the 128 

land allocation by combining the probability-of-occurrence, user-defined conversion cost, 129 

neighborhood condition, and competition among different land types and the mechanisms of CA, 130 

self-adaptive inertia, and competition mechanism. During this stage, the land type with a higher 131 

probability-of-occurrence is more likely to be predicted as the target land type, while those with a 132 

relatively lower probability-of-occurrence can still be possibly converted based on the roulette 133 

selection mechanism.  134 

 135 

2.2 Data preparation for LULCC spatial downscaling 136 

We used the regional LULCC projections under both the low (i.e., SSP126) and high (i.e., SSP585) 137 

emission scenarios derived from GCAM (Chen et al., 2020b) as the input for the spatial 138 

downscaling (Figure S1). SSP126 describes a sustainability scenario pathway with an increase of 139 

global mean temperature by 1.5C to 2 C compared to the pre-industrial level by the end of the 140 

21st century. SSP585 describes a world that widely uses fossil-fuels and the global mean 141 

temperature increase by about 4.4 C by the end of the 21st century. Under both scenarios, GCAM 142 

projects LULCC at 5-year time step over 2015-2100 in 384 regions globally, ten of which locate 143 

in the ABoVE domain (Figure 1).  144 

Both Demeter and FLUS require a gridded land cover map at the target spatial resolution as the 145 

reference for their spatial disaggregation, and here we used the year 2015 land cover map at a 146 

spatial resolution of 500m provided by the MODerate resolution Imaging Spectroradiometer 147 

(MODIS) land cover product (MCD12Q1 C6). Specifically, we used the Plant Functional Types 148 
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(PFT) classification in MCD12Q1 (hereafter referred to MODIS_PFT) (Friedl et al., 2010), which 149 

classifies the global land surface into 11 types. However, MODIS_PFT is different from the land 150 

classification system of GCAM and that of the downstream land surface model CLM5 151 

(CLM5_PFT) (Lawrence et al., 2019). Therefore, a few reclassification steps (Figure S2) were 152 

applied to harmonize the differences, following a similar strategy used in the previous studies 153 

(Chen et al., 2020b; Luo et al., 2022).  154 

Specifically, Demeter allows inconsistent classification systems among the input (GCAM), 155 

reference map (MODIS_PFT) and the target (CLM_PFT). The spatial downscaling can be 156 

performed with Demeter once the links among the three classification systems are defined. In 157 

contrast, the design of FLUS requires an identical land cover type classification system across 158 

input, reference and target. Therefore, we first consolidated both GCAM and MODIS_PFT type 159 

into 7 broad types and built a reclassification scheme (Table 1) for the harmonization. For Demeter, 160 

we reclassified the 11-type 500m MODIS land cover map into 18 CLM5_PFT types (Figure 1) 161 

based on the climate-based rules as described in Bonan et al. (2002), using the WorldClim V2 162 

monthly climatological temperature and precipitation data (Fick & Hijmans, 2017). The 163 

reclassified 500 m MODIS data was then aggregated to 0.25 degree to be used as the reference 164 

map for Demeter downscaling in this study. For FLUS, we reclassified the MODIS reference land 165 

cover map to a new reference map with the 7 broad types. Spatial downscaling with FLUS thus 166 

generated LULCC data in the same 7 broad types, and we finally mapped the 7 broad types into 167 

the 18 CLM5_PFT types by using a similar strategy in a previous study (Chen et al., 2020a) that 168 

iteratively assign the new label of the nearest neighbor for each map grid in each year. It must be 169 

noted that the differences in these preprocessing steps are also an inherent uncertainty source of 170 

the gridded LULCC products while using different spatial downscaling models. 171 

 172 

Figure 1. The spatial distribution of LULCC over the ABoVE domain in 2015. Different 173 

colors represent different CLM5_PFT types. 174 
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In addition, due to the errors in the geographical data (Chen et al., 2020b; Luo et al., 2022) used 175 

in GCAM, the geographical areas between GCAM regional projections and MODIS reference map 176 

are not consistent and also need to be harmonized. Specifically, for Demeter, we used the Eq. (1) 177 

to harmonize the LULCC projections (Chen et al., 2020b): 178 

𝐴𝐺𝐿𝑇,𝑢,𝐻(𝑡) = {
𝐴𝐵𝐿𝑇,𝑢,𝐵(𝑡) ×

𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡)

𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡)
                    𝑡 = 2015

     𝐴𝐺𝐿𝑇,𝑢,𝐻(𝑡 − 1)  ×
𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡)

𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡−1)
                2020 ≤ 𝑡 ≤ 2100

                                     (1) 179 

where 𝐴𝐺𝐿𝑇,𝑢,𝐻(𝑡) is the harmonized area in region u in year t for each GCAM type (GLT). 𝐴𝐵𝐿𝑇,𝑢,𝐵(𝑡) 180 

is the area in region u in the reference map in year t for each broad type (BLT). 𝐴𝐺𝐿𝑇,𝑢,𝐺(𝑡) is the 181 

area in region u from GCAM projections in year t for each GLT. 𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡) is the area in region u 182 

from GCAM projection for each BLT in year t. 183 

Considering that FLUS uses the broad land types during the spatial downscaling process, we 184 

used Eq. (2) to harmonize the regional area between GCAM and the reference map (Luo et al., 185 

2022): 186 

𝐴𝐵𝐿𝑇,𝑢,𝐻(𝑡) = {
𝐴𝐵𝐿𝑇,𝑢,𝐵(𝑡)                                                    𝑡 = 2015

     𝐴𝐵𝐿𝑇,𝑢,𝐻(𝑡 − 1)  ×
𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡)

𝐴𝐵𝐿𝑇,𝑢,𝐺(𝑡−1)
                2020 ≤ 𝑡 ≤ 2100

                   (2) 187 

where 𝐴𝐵𝐿𝑇,𝑢,𝐻  is the harmonized area in region u for each BLT. Such area harmonization for 188 

Demeter and FLUS makes sure that the input LULCC projections are adjusted to match the 189 

reference map and be consistent in our Demeter and FLUS experiments. 190 

  191 
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Table 1. LULCC reclassification scheme for GCAM type, Broad type, MODIS_PFT, and 192 

CLM5_PFT. 193 

GCAM type Broad 

type 

MODIS_

PFT 

CLM5_PFT  

RockIceDesert Barren Barren Barren 

biomass-grass_IRR, biomass-

grass_RFD, biomass-tree_IRR, 

biomass-tree_RFD, Corn_IRR, 

Corn_RFD, FiberCrop_IRR, 

FiberCrop_RFD, 

FodderGrass_IRR, 

FodderGrass_RFD, 

FodderHerb_IRR, 

FodderHerb_RFD, 

MiscCrop_IRR, 

MiscCrop_RFD, OilCrop_IRR, 

OilCrop_RFD, 

OtherArableLand, 

OtherGrain_IRR, 

OtherGrain_RFD, Root-

Tuber_IRR, Root-Tuber_RFD, 

SugarCrop_IRR, 

SugarCrop_RFD, Wheat_IRR, 

Wheat_RFD, 

Cropland Cereal 

Croplands,  

Broadleaf 

Croplands 

Crop 

Forest, 

Unmanaged Forest 

Forest Evergreen 

Needleleaf 

Trees 

Needleleaf evergreen temperate tree, 

Needleleaf evergreen boreal tree 

Deciduous 

Needleleaf 

Trees 

Needleleaf deciduous boreal tree 

Evergreen 

Broadleaf 

Trees 

Broadleaf evergreen tropical tree, Broadleaf 

evergreen temperate tree 

Deciduous 

Broadleaf 

Trees 

Broadleaf deciduous tropical tree,  

Broadleaf deciduous temperate tree,  

Broadleaf deciduous boreal tree 

Grassland, Tundra, 

Pasture, Unmanaged Pasture, 

Grass Grass C3 arctic grass, 

C3 non-arctic grass, 

C4 grass, 

Shrubland Shrub Shrub Broadleaf evergreen temperate shrub, 

Broadleaf deciduous temperate shrub, 

Broadleaf deciduous boreal shrub 

UrbanLand Urban Urban and 

Built-up 

Lands 

Urban 

None Water Water 

Bodies 

Water 
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2.3 Generating gridded LULCC with Demeter and FLUS 194 

We used two spatial downscaling methods (i.e., Demeter and FLUS) to generate the gridded 195 

LULCC data at a 5-year interval from 2015 to 2100, in line with GCAM (Figure S1). For Demeter, 196 

key parameters such as the optimal value of the ratio of allocating LULCC as intensification, and 197 

threshold percentage of suitable grid cells to accept extensified LULCC allocation used were set 198 

as the calibrated values in Chen et al. (2020b). We also used the same treatment order of each land 199 

type, and transition priority as that in Chen et al. (2020b). These rules and constraints, together 200 

with kernel density probabilities, were used to conduct the intensification and expansion to apply 201 

the projected future LULCC allocation. For FLUS, to estimate the probability of occurrence, we 202 

first collected the base map in 2015 (see Section 2.2) and 9 spatial factors (shown in Table 2), 203 

which reflect different heterogeneous characteristics (i.e., climate, topography, transportation, etc.) 204 

related to LULCC (Chen et al., 2020a; Liu et al., 2017; Luo et al., 2022) as the training data for 205 

ANN. All these spatial factors were reprojected into 500 m spatial resolution. Other parameters 206 

including sampling method, sample rate, and hidden layer were set based on Luo et al. (2022). 207 

During the allocation stage, we set the user-defined conversion cost, neighborhood condition, and 208 

competition based on the optimal values in Luo et al. (2022). Based on the based map and the 209 

abovementioned parameter configuration, we used FLUS to produce 500 m LULCC dataset in the 210 

ABoVE domain from 2015 to 2100. 211 

FLUS outputs LULCC at a spatial resolution of 500 m. We aggregated the FLUS outputs into the 212 

same resolution as Demeter (i.e., 0.25 degree), and both of them can be used as CLM5. We 213 

hereafter refer to two gridded LULCC data produced by Demeter and FLUS as LULCCDemeter and 214 

LULCCFLUS, respectively. Note that the two datasets are identical in the starting year 2015, since 215 

both Demeter and FLUS kept their downscaled maps the same as the reference map in the starting 216 

year.  217 

2.4 Projecting future carbon cycle 218 

We used CLM5 to prognostically project the future GPP, ER, and NEE under the two scenarios 219 

driven by LULCCDemeter and LULCCFLUS, respectively (Figure S1). CLM5 is the land component 220 

of the Community Earth System Model version 2.0, which is a state-of-the-art land surface model 221 

that mechanistically simulate the biogeophysical, biogeochemical, and ecological processes in the 222 

terrestrial environment simultaneously and is an effective tool to quantify impact of LULCC on 223 

carbon cycle over a wide range of spatial and temporal scales (Bonan & Doney, 2018; Cheng et 224 

al., 2021). Compared to the previous version, CLM5 generally has improved performance in 225 

capturing the dynamics of ecosystem carbon cycle (Lawrence et al., 2019).  226 

Specifically, we carried out the CLM5 simulations with biogeochemistry mode for 200 years in an 227 

“accelerated decomposition” mode, and subsequently for 400 years in regular spin-up mode by 228 

cycling through 2000-2014 to get the steady initial conditions. For the future projections from 229 

2015-2100, we first linearly interpolated the 5-year interval LULCCDemeter and LULCCFLUS into 1-230 

year interval. Then we carried out the future CLM5 simulations using the yearly LULCCDemeter, 231 

LULCCFLUS from 2015-2100 under both SSP126 and SSP585, respectively. In order to evaluate 232 

the impacts of LULCC on future ecosystem carbon cycle, we also carried out another reference 233 

2015-2100 CLM5 simulation with a static land cover in 2015. We hereafter refer to the three sets 234 

of GPP, ER, and NEE projections using LULCCDemeter, LULCCFLUS and historical LULCC in 2015 235 

as 1) GPPFLUS, ERFLUS, NEEFLUS, 2) GPPDemeter, ERDemeter, NEEDemeter, and 3) GPPReference, ERReference, 236 

NEEReference. During the spin-up and future simulations, we used the meteorological forcing data 237 



manuscript submitted to Earth’s Future 

 

 

of the Geophysical Fluid Dynamics Laboratory (GFDL) from the standard Inter-Sectoral Impact 238 

Model Intercomparison Project phase 3b (ISIMIP3b)(https://www.isimip.org/protocol/3/). The original 239 

daily GFDL forcing data was downscaled to 6-hourly based on the diurnal cycle from the Climatic 240 

Research Unit - NCEP (CRUNCEP) datasets. 241 

 242 

Table 2. Specifications of the 9 spatial factors used in FLUS during the spatial downscaling 243 

process. 244 

2.5 Evaluating the uncertainties of the gridded LULCC dynamics and their impact on future 245 

ecosystem carbon cycle 246 

To evaluate the uncertainties induced by two different spatial downscaling methods, we compared 247 

the spatial and temporal patterns of LULCCDemeter and LULCCFLUS and the resulted carbon fluxes 248 

under SSP126 and SSP585, separately. Here the uncertainties are quantified as the difference in 249 

gridded LULCC and carbon fluxes caused by using different LULCC spatial downscaling methods. 250 

We calculated the Root Mean Square Deviation (RMSD) and Bias for each CLM5_PFT type 251 

between LULCCDemeter and LULCCFLUS to quantify the spatial differences at each year: 252 

𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝐷𝑒𝑚𝑒𝑡𝑒𝑟
𝑋 = √

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝐷𝑒𝑚𝑒𝑡𝑒𝑟

𝑖 )2𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (3) 253 

𝐵𝑖𝑎𝑠𝐹𝐿𝑈𝑆,𝐷𝑒𝑚𝑒𝑡𝑒𝑟
𝑋 =

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝐷𝑒𝑚𝑒𝑡𝑒𝑟

𝑖 )𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (4) 254 

where N is the number of grid cells, X represents the variables of interest (e.g., fraction of each 255 

CLM5_PFT type, GPP, ER, or NEE), the subscript of X represents the spatial downscaling model 256 

(i.e., FLUS and Demeter), the superscript i denotes the ith grid cell, and 𝑤𝑖 is the geographic area 257 

of ith grid cell. Furthermore, we compared the difference both in the spatial pattern and temporal 258 

trend of the carbon fluxes under SSP126 and SSP585 in terms of RMSD and Bias. Besides, we 259 

also estimated the contribution of future LULCC to GPP, ER, and NEE change by calculating the 260 

RMSD and Bias between the simulations using LULCCFLUS and the reference static 2015 land 261 

cover: 262 

Spatial factor Period Spatial 
resolution 

Data source 

Annual mean temperature Climatological 
(1970-2000) 

0.5’ WorldClim v2.0 
(http://www.worldclim.org/) Annual precipitation 

DEM 1996 1 km Hengl (2018) 
Slope 
Distance to water 2015 500 m MODIS PFT (Friedl et al., 2010) 
Distance to main roads 1980-2010 500 m Global Roads Open Access Data 

Set (gROADS) 
(https://sedac.ciesin.columbia.edu/
data/set/groads-global-roads-open-
access-v1/) 

Distance to highway 

Distance to airports 2010 500 m Huang et al. (2013)Click or tap here 

to enter text. 
Distance to urban centers 2014 500 m United Nations, Department of 

Economic Social Affairs, 
Population Division  
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𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑋 = √

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑖 )2𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (5) 263 

𝐵𝑖𝑎𝑠𝐹𝐿𝑈𝑆,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑋 =

∑ 𝑤𝑖(𝑋𝐹𝐿𝑈𝑆
𝑖 −𝑋𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑖 )𝑁
1

∑ 𝑤𝑖
𝑁
1

                                                        (6) 264 

 265 

where the definition of different symbols is similar to Equation 3 and 4. Note that replacing 266 

LULCCFLUS with LULCCDemeter  in Eqs. (5-6) derives the similar results, which are not shown in 267 

the paper. To compare the relative impact of different LULCC spatial downscaling methods (i.e. 268 

FLUS and Demeter) and future LULCC to carbon flux simulations, we further calculated the ratio 269 

(Φ𝑋) of the uncertainty from different LULCC spatial downscaling methods to the contribution of 270 

future LULCC to different carbon fluxes X as: 271 

Φ𝑋 =
𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝐷𝑒𝑚𝑒𝑡𝑒𝑟

𝑋

𝑅𝑀𝑆𝐷𝐹𝐿𝑈𝑆,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑋                                                         (7) 272 

3 Results 273 

3.1 Uncertain gridded LULCC projections  274 

Results from the downscaling practices with Demeter and FLUS show large spatial difference 275 

between LULCCFLUS and LULCCDemeter under both SSP126 and SSP585. Figures S4 and S5 show 276 

the spatial patterns of future LULCCDemeter and LULCCFLUS in 2100 under SSP126 and SSP585, 277 

as well as the land cover map in 2015 as a reference. The FLUS and Demeter algorithms preserve 278 

the total area of each PFT, thus the Bias is relatively small. However, there is large difference in 279 

the spatial distributions of the four dominant PFTs over the ABoVE domain from 2020 to 2100, 280 

measured by RMSD (Figure 2). In general, the inconsistency between LULCCDemeter and 281 

LULCCFLUS rapidly increases in the first few decades and become stable afterwards under both 282 

SSP126 and SSP585, and the magnitudes and transition points are different across PFTs and 283 

scenarios (Figure 2) following the pattern of the input regional LULCC from GCAM (Figure S3). 284 

 285 

The magnitudes are generally larger under SSP126 than those under SSP585 for all the dominant 286 

PFTs (Figures 2 and 3). For example, in 2100, the RMSDs between LULCCDemeter and LULCCFLUS 287 

are 15.9%, 11.5%, 18.1%, and 18.8%, respectively for the broadleaf deciduous boreal tree, 288 

needleleaf evergreen boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass under 289 

SSP126, while those values are 7.5%, 6.2%, 11. 6%, and 10.0%, respectively under SSP585.  290 

 291 
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 292 

Figure 2. Time series of RMSD between LULCCFLUS and LULCCDemeter for 4 dominant 293 

CLM5_PFT types from 2020 to 2100 over the ABOVE domain under (a) SSP126 and (b) SSP585. 294 

Green, purple, blue, and red lines represent broadleaf deciduous boreal tree, needleleaf evergreen 295 

boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass separately. A larger RMSD value 296 

represents the larger difference between LULCCFLUS and LULCCDemeter. 297 

 298 

We further compared the areal fraction for four dominant PFTs from LULCCDemeter and 299 

LULCCFLUS in 2100 under both SSPs. As shown in Figure 3, the difference between LULCCDemeter 300 

and LULCCFLUS is not evenly distributed in the study domain under both SSPs. Under SSP126, 301 

compared to Demeter, FLUS prominently distributes up to 95% more needleleaf evergreen boreal 302 

trees and less boreal broadleaf deciduous trees in the northwestern ABoVE domain, and more 303 

boreal broadleaf deciduous shurbs and less C3 arctic grass in the northern area.  304 

 305 

we observed similar spatial patterns in the differences between LULCCFLUS and LULCCDemeter 306 

under both SSPs, although with varying magnitudes. Positive values indicate that LULCCFLUS has 307 

a greater proportion of the specific PFT compared to LULCCDemeter, while negative values indicate 308 

that LULCCDemeter has a greater proportion of the PFT compared to LULCCFLUS. For needleleaf 309 

evergreen boreal trees, the major differences are found in the western region in Alaska. Under both 310 

SSPs, in the southeastern regions, the differences show opposite signs under the two SSPs, with 311 

negative values (LULCCDemeter is larger) under SSP126 and positive values under SSP585. 312 

Southeastern regions show opposite signs of the differences between LULCCFLUS and 313 

LULCCDemeter under two scenarios with negative values under SSP126 but positive values under 314 

SSP585. For broadleaf deciduous boreal trees, under SSP126, LULCCFLUS indicates more 315 

proportion in the southeastern ABoVE domain than LULCCDemeter, while under SSP585, 316 

LULCCFLUS indicates smaller proportion in the northwestern regions, and up to 50% smaller 317 

proportion in the southeastern regions than LULCCDemeter. For broadleaf deciduous boreal shrub, 318 

LULCCFLUS overall has a larger proportion in the northern regions than LULCCDemeter under 319 

SSP126. Under SSP585, LULCCFLUS shows a smaller proportion in the southwestern regions, 320 

and a larger value in the western and northern regions than LULCCDemeter. For C3 arctic grass, 321 

LULCCFLUS shows larger differences from LULCCDemeter with heterogenetic spatial distribution 322 

under SSP126, while their difference under SSP585 is smaller, but follows a similar spatial pattern 323 

with that under SSP126.  324 

 325 
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  326 

Figure 3. The spatial differences between LULCCFLUS and LULCCDemeter (calculated as 327 

LULCCFLUS- LULCCDemeter) in 2100 for the 4 dominant CLM5_PFT: (a-b) needleleaf evergreen 328 

boreal tree, (c-d) broadleaf deciduous boreal tree, (e-f) broadleaf deciduous boreal shrub, and (g-329 

h) C3 arctic grass over the ABoVE domain under (a,c,e,g) SSP126 and (b,d,f,h) SSP585. The 330 

corresponding RMSD values (Unit: %) are shown in each panel. Positive values indicate larger 331 

PFT fraction by LULCCFLUS.  332 

3.2 Impacts of future LULCC uncertainty on terrestrial carbon cycle 333 

Figure 4 shows the differences of CLM5 estimated annual carbon fluxes over the ABoVE domain 334 

from 2015 to 2100 between using LULCCFLUS and LULCCDemeter as well as those between using 335 

LULCCFLUS and LULCCReference. The RMSD between the results using LULCCFLUS and 336 

LULCCDemeter of the estimated carbon fluxes (RMSDFLUS,Demeter) increases rapidly with time before 337 

2040, and then becomes stable from 2040 to 2100 under both scenarios. The bias between the 338 

estimated carbon fluxes (BiasFLUS,Demeter) decreases significantly before 2040 and fluctuates 339 

thereafter under SSP126, while such discrepancy is smaller and more stable under SSP585. Such 340 
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temporal trends are similar to those the differences in the LULCC (Figure 2). By 2100, the 341 

RMSDFLUS,Demeter are 120.9, 107.4, and 53.3 gC m-2 year-1for GPP, ER and NEE, respectively under 342 

SSP126, and are 53.3, 44.9, and 29.7 gC m-2 year-1, respectively under SSP585 (Figure 4a,b; Table 343 

S1). The Biases in 2100 are -1.7, -1.9, and -0.1 gC m-2 year-1 under SSP126, and 4.6, -0.6, and -344 

4.0 gC m-2 year-1 under SSP585 for GPP, ER and NEE, respectively (Figure 4c,d).  345 

Besides, RMSDFLUS,Demeter is comparable to RMSDFLUS,Reference. For example, in 2100, the ratios of 346 

the uncertainty from different LULCC spatial downscaling methods for GPP, ER, and NEE 347 

( Φ𝐺𝑃𝑃, Φ𝐸𝑅, and Φ𝑁𝐸𝐸) are 79.6%, 83.7%, and 79.7%, respectively under SSP126, and are 98.4%, 348 

93.7%, and 97.9% respectively under SSP585. Overall, the BiasFLUS,Demeter is smaller than 349 

BiasFLUS,Reference under SSP126, while under SSP585, the BiasFLUS,Demeter is similar to 350 

BiasFLUS,Reference and both of them are with small magnitudes. 351 

 352 

 353 
Figure 4. Time series of the RMSD and Bias in (blue) GPP, (red) ER, and (green) NEE, 354 

calculated based on the differences (dashed line) between the simulations using LULCCFLUS and 355 

LULCCDemeter and the difference (solid line) between the simulations using LULCCFLUS and 356 

historical LULCC in 2015, under (a, c) SSP126 and (b, d) SSP585.  357 

 358 

 359 

We further compared the spatial pattern of the difference between GPPFLUS, ERFLUS, NEEFLUS 360 

and GPPDemeter, ERDemeter, NEEDemeter under both scenarios (Figures 5, S6 and S7). Under SSP126, 361 

GPPFLUS is larger in the northwestern regions, but is smaller in the eastern regions than 362 

GPPDemeter (Figure 5). The spatial pattern and magnitude of the difference in ER are similar as 363 

GPP. For NEE, the spatial pattern of the difference is similar to GPP and ER, but with smaller 364 

magnitude and opposite direction except for the southwestern regions. SSP585 shows smaller 365 

differences in GPP, ER, and NEE than SSP126 (Figure 5). Under SSP585, the spatial pattern, 366 

signs, and magnitudes of the differences in GPP and ER are similar. Positive values can be 367 

observed in the southern, central, and western regions, while negative values are present in the 368 
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southeastern and eastern regions. For NEE, NEEFLUS shows smaller values in the southwestern 369 

but larger values in the northwestern and eastern regions than NEEDemeter. To better attribute the 370 

difference between GPPFLUS, ERFLUS, NEEFLUS and GPPDemeter, ERDemeter, NEEDemeter to the 371 

uncertainty in gridded LULCC projections, we further investigated the relationship between the 372 

difference between LULCCFLUS and LULCCDemeter for each PFT and the difference in GPP, ER, 373 

and NEE estimations (Figures 6 and S8). Overall, we found that the grid cells with larger 374 

difference between LULCCFLUS and LULCCDemeter correspond to larger differences in all the 375 

GPP, ER, and NEE under both SSP126 and SSP585.  376 

 377 

 378 
Figure 5. The spatial pattern for the differences of (a-b) GPPFLUS vs GPPDemeter, (c-d) ERFLUS vs 379 

ERDemeter, and (e-f) NEEFLUS vs NEEDemeter in 2100 between CLM5 simulations under (a,c,e) 380 

SSP126 and (b,d,f) SSP585. The corresponding RMSDFLUS,Demeter values are shown in each panel.  381 

 382 
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 383 
 384 

Figure 6. The relationship of the absolute difference in PFT fraction between LULCCFLUS and 385 

LULCCDemeter with the corresponding absolute difference in GPP (blue), ER (red), and NEE 386 

(green) under SSP126 for 4 PFTs: (a) needleleaf evergreen boreal tree, (b) broadleaf deciduous 387 

boreal tree, (c) broadleaf deciduous boreal shrub, and (d) C3 arctic grass. 388 

 389 

4 Discussion 390 

Previous studies show that LULCC can cause large uncertainties of carbon cycle estimates that is 391 

equivalent to 80% of the net effects of CO2 and climate(Di Vittorio et al., 2018). There are diverse 392 

factors that could contribute to the uncertainties of future gridded LULCC projections. In this study, 393 

we focused on quantifying the uncertainty induced by different spatial downscaling methods. Our 394 

results indicate that the differences arising from different spatial downscaling methods can be as 395 

large as 19% in terms of the RMSD for a single CLM5_PFT type in 2100 in our study region. 396 

Furthermore, the impacts of spatial downscaling methods vary with scenarios. The difference 397 

between LULCCDemeter and LULCCFLUS increases more rapidly in the first few decades under 398 

SSP126 than SSP585 (Figure 2), due to the more rapid increase of regional LULCC projections 399 

from GCAM under SSP126. The overall lower RMSDFLUS,Demeter values under SSP585 than under 400 

SSP126 is possibly due to the smaller projected regional LULCC from GCAM under SSP585 401 

compared to SSP126 (Figure S5). 402 

Although we observed large spatial discrepancies in projected carbon fluxes due to LULCC 403 

differences resulting from different spatial downscaling methods, the discrepancies in projected 404 

regional average carbon fluxes are relatively small (Figure 4). Our results are consistent with 405 

previous observational-based studies (Dashti et al., 2022), which attributed this phenomenon to 406 

the cancellation of opposing signs within a small region with similar climate forcings. Furthermore, 407 

the uncertainty of the estimated carbon fluxes from the spatial downscaling methods is generally 408 

lower under SSP585 compared to that under SSP126, due to smaller differences between 409 
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LULCCDemeter and LULCCFLUS under SSP585 than SSP126. Overall, the impacts of uncertain 410 

LULCC on carbon fluxes because of the spatial downscaling process are comparable to the impacts 411 

due to future LULCC itself (Figure 4). These stress the importance of considering the uncertainties 412 

of the LULCC spatial downscaling methods in carbon cycle projections.  413 

It is important to note that existing spatial downscaling algorithms are inherently different, despite 414 

being developed with the same objective. For example, there are several notable differences 415 

between Demeter and FLUS that may contribute to the discrepancies between the resulted LULCC 416 

product. First, Demeter and FLUS employ different algorithms/methods to determine land types 417 

and their respective area proportions in a given grid cell (Li et al., 2017; Liu et al., 2017). 418 

Theoretically, Demeter only captures the net change of LULCC (Page et al., 2016; West et al., 419 

2014), while FLUS simulates both gross and net LULCC change. For example, with a given 420 

decreased area of shrub from GCAM, we found that Demeter only simulated the shrinkage in shrub 421 

under SSP126, while FLUS simulates the shrinkage in most regions and expansions in some parts 422 

of the ABoVE domain, reflecting the different assumptions of the two models. Specifically, 423 

Demeter assumes that an increasing land type can only encroach a decreasing land type, and a 424 

decreasing land type can only be encroached by an increasing land type. These results in that a 425 

decreasing land type can only shrink and an increasing land type can only expand or intensify. In 426 

contrast, FLUS estimates the combined probabilities for each land type in each grid cell (Li et al., 427 

2017; Liu et al., 2017). making it possible for a decreasing land type to expand in some regions 428 

and vice versa. Second, the spatial factors that regulate the downscaling processes in Demeter and 429 

FLUS are also different. Demeter has a set of default spatial factors that focus on soil conditions 430 

such as soil workability and nutrient availability. In contrast, FLUS typically include the soil 431 

condition along with many other spatial factors including climate background (i.e., precipitation 432 

and temperature), environmental conditions (e.g., elevation), and socioeconomic factors (i.e., city 433 

centers and transportation). In this study, we aim to represent the general performance of both 434 

spatial downscaling methods. Thus, we used the default soil conditions for Demeter, and 435 

commonly used multiple spatial factors listed in Table 2 for FLUS. Using different spatial factors 436 

may also cause the difference in the spatial pattern of the final downscaled LULCC, since these 437 

factors are important for estimating the occurrence probability of each land type at a specific grid 438 

cell, referred to as probability-of-occurrence in FLUS and suitability index in Demeter (Chen et 439 

al., 2019). 440 

Careful consideration of data characteristics, research goals, and future scenarios are critical when 441 

selecting a LULCC spatial downscaling method. Additionally, it is important to evaluate the 442 

performance and uncertainty of different methods. We recommend selecting the more suitable 443 

LULCC spatial downscaling methods based on the research requirements and the unique 444 

characteristics of each method. For example, when the land type in the regional projections is 445 

different from the land type in the base map, Demeter can be more convenient than FLUS because 446 

Demeter can avoid the post-processing steps, e.g., LULCC reclassification. If the study focuses 447 

more on the gross LULCC change rather than only the net change, FLUS may be a better choice. 448 

Compared to FLUS, Demeter does not consider socioeconomic and environment factors other than 449 

soil condition by default, but user can add those factors into Demeter based on their need. It is 450 

important to point out there are more spatial downscaling methods beyond the two models 451 

discussed in this study, such as Global Land-use Model 2, and Platform for Land-Use and 452 

Environmental Model, and thus the uncertainty analyzed here could be possibly even larger than 453 

what we show here. Thus, we appeal for attention on the uncertainties of gridded future LULCC 454 

data and their applications caused by different spatial downscaling methods, which could be taken 455 
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into consideration in the future phases of climate model intercomparison project. This study is 456 

limited in the ABoVE region, and future studies could expand the scope to other regions and the 457 

globe. 458 

5 Conclusions 459 

In this study, we investigated the impact of using different spatial downscaling methods on 460 

LULCC projections and their associated impacts on ecosystem carbon fluxes under two global 461 

change scenarios. We compared the results from two popular spatial downscaling methods, 462 

Demeter and FLUS, using the same regional area projections. Our findings showed that different 463 

spatial downscaling methods can result in large differences in the spatial pattern of LULCC and 464 

can further induce substantial variations in carbon cycle simulations. Importantly, the uncertainty 465 

introduced by spatial downscaling methods is comparable to the uncertainty arising from future 466 

LULCC on carbon cycle projections. Additionally, we observed that the uncertainties introduced 467 

by spatial downscaling methods under SSP126 were generally larger than those under SSP585, for 468 

both gridded LULCC and carbon cycle dynamics. This study highlights the importance of carefully 469 

considering the uncertainties associated with spatial downscaling processes and their implications 470 

for downstream applications. To address these uncertainties, we recommend choosing the most 471 

appropriate spatial downscaling method based on research requirements and unique characteristics 472 

of each method.  473 

Acknowledgments 474 

This research was supported by the National Aeronautics and Space Administration (NASA) 475 

through Terrestrial Ecology: Arctic Boreal Vulnerability Experiment (ABoVE) grants 476 

NNH18ZDA001N (award number 80HQTR19T0055) to Min Chen. 477 

 478 

Open Research 479 

MODIS LULCC data are publicly accessible at the Google Earth Engine Platform: 480 

https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD12Q1. The 481 

future LULCC and carbon flux data is available at 482 

https://doi.org/10.6084/m9.figshare.22236652.v4. 483 

The GCAM model can be freely downloaded in https://github.com/JGCRI/gcam-core/releases. 484 

Demeter and FLUS are freely available from https://github.com/JGCRI/demeter, and 485 

http://www.geosimulation.cn/FLUS.html, respectively. 486 

References 487 

Alcaraz-Segura, D., Chuvieco, E., Epstein, H. E., Kasischke, E. S., & Trishchenko, A. (2010). Debating the greening 488 

vs. browning of the North American boreal forest: Differences between satellite datasets. Global Change 489 

Biology, 16(2), 760–770. https://doi.org/10.1111/j.1365-2486.2009.01956.x 490 

Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C., Batista e Silva, F., Brown, C., Butler, A., 491 

Calvin, K., Dendoncker, N., Doelman, J. C., Dunford, R., Engström, K., Eitelberg, D., Fujimori, S., Harrison, 492 

P. A., Hasegawa, T., Havlik, P., Holzhauer, S., … Rounsevell, M. D. A. (2017). Assessing uncertainties in 493 

land cover projections. Global Change Biology, 23(2), 767–781. https://doi.org/10.1111/gcb.13447 494 

Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in 495 

Earth system models. Science, 359(6375). https://doi.org/10.1126/science.aam8328 496 

Bonan, G. B., Levis, S., Kergoat, L., & Oleson, K. W. (2002). Landscapes as patches of plant functional types: An 497 

integrating concept for climate and ecosystem models. Global Biogeochemical Cycles, 16(2), 5-1-5–23. 498 

https://doi.org/10.1029/2000gb001360 499 



manuscript submitted to Earth’s Future 

 

 

Bukovsky, M. S., Gao, J., Mearns, L. O., & O’Neill, B. C. (2021). SSP-Based Land-Use Change Scenarios: A 500 

Critical Uncertainty in Future Regional Climate Change Projections. Earth’s Future, 9(3), 1–18. 501 

https://doi.org/10.1029/2020EF001782 502 

Cao, M., Zhu, Y., Quan, J., Zhou, S., Lü, G., & Chen, M. (2010). Spatial sequential modeling and predication of 503 

global land use and land cover changes by integrating a global change assessment model and cellular 504 

automata. 0–1. https://doi.org/10.1029/2019EF001228 505 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., 506 

Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., & Myneni, R. B. (2019). China and India lead in greening 507 

of the world through land-use management. Nature Sustainability, 2(2), 122–129. 508 

https://doi.org/10.1038/s41893-019-0220-7 509 

Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Qiu, Y., Wu, Q., & Huang, K. (2020a). 510 

Global projections of future urban land expansion under shared socioeconomic pathways. Nature 511 

Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-14386-x 512 

Chen, M., Vernon, C. R., Graham, N. T., Hejazi, M., Huang, M., Cheng, Y., & Calvin, K. (2020b). Global land use 513 

projections for 2015-2100 at 0.05-degree resolution under diverse Shared Socioeconomic Pathways and 514 

Representative Concentration Pathways. Scientific Data, Submitted. https://doi.org/10.1038/s41597-020-515 

00669-x 516 

Chen, M., Vernon, C. R., Huang, M., Calvin, K. v, Kraucunas, I. P., Northwest, P., Division, G. C., & Northwest, P. 517 

(2019). Calibration and analysis of the uncertainty in downscaling global land use and land cover projections 518 

from GCAM using Demeter (v1.0.0). 1753–1764. 519 

Cheng, Y., Huang, M., Zhu, B., Bisht, G., Zhou, T., Liu, Y., Song, F., & He, X. (2021). Validation of the 520 

Community Land Model Version 5 Over the Contiguous United States (CONUS) Using In Situ and Remote 521 

Sensing Data Sets. Journal of Geophysical Research: Atmospheres, 126(5), 1–27. 522 

https://doi.org/10.1029/2020JD033539 523 

Dashti, H. et al. Underestimation of the impact of land cover change on the biophysical environment of the Arctic 524 

and Boreal Region of North America. Environmental Research Letters (2022) doi:10.1088/1748-9326/ac8da7. 525 

Di Vittorio, A. V., Mao, J., Shi, X., Chini, L., Hurtt, G., & Collins, W. D. (2018). Quantifying the Effects of 526 

Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates. Geophysical 527 

Research Letters, 45(2), 974–982. https://doi.org/10.1002/2017GL075124 528 

Doelman, J. C., Stehfest, E., Tabeau, A., van Meijl, H., Lassaletta, L., Gernaat, D. E. H. J., Neumann-Hermans, K., 529 

Harmsen, M., Daioglou, V., Biemans, H., van der Sluis, S., & van Vuuren, D. P. (2018). Exploring SSP land-530 

use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based 531 

climate change mitigation. Global Environmental Change, 48(December 2017), 119–135. 532 

https://doi.org/10.1016/j.gloenvcha.2017.11.014 533 

Dong, N., You, L., Cai, W., Li, G., & Lin, H. (2018). Land use projections in China under global socioeconomic and 534 

emission scenarios: Utilizing a scenario-based land-use change assessment framework. Global Environmental 535 

Change, 50(April), 164–177. https://doi.org/10.1016/j.gloenvcha.2018.04.001 536 

Duveiller, G., Hooker, J., & Cescatti, A. (2018). The mark of vegetation change on Earth’s surface energy balance. 537 

Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-02810-8 538 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land 539 

areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 540 

Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lintner, B. R., Malyshev, S., Santanello, J. A., & Shevliakova, 541 

E. (2017). The impact of anthropogenic land use and land cover change on regional climate extremes. Nature 542 

Communications, 8(1), 1–9. https://doi.org/10.1038/s41467-017-01038-w 543 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS 544 

Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing 545 

of Environment, 114(1), 168–182. https://doi.org/10.1016/j.rse.2009.08.016 546 

Friedlingstein, P., Jones, M., Sullivan, M. O., & Hauck, J. (2021). Global Carbon Budget 2021. November. 547 

https://doi.org/10.5194/essd-2021-386 548 

Fujimori, S., Hasegawa, T., Ito, A., Takahashi, K., & Masui, T. (2018). Data descriptor: Gridded emissions and 549 

land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Scientific Data, 5, 550 

1–13. https://doi.org/10.1038/sdata.2018.210 551 

Fujimori, S., Masui, T., & Matsuoka, Y. (2014). Development of a global computable general equilibrium model 552 

coupled with detailed energy end-use technology. Applied Energy, 128, 296–306. 553 

https://doi.org/10.1016/j.apenergy.2014.04.074 554 



manuscript submitted to Earth’s Future 

 

 

Guivarch, C., Le Gallic, T., Bauer, N., Fragkos, P., Huppmann, D., Jaxa-Rozen, M., Keppo, I., Kriegler, E., Krisztin, 555 

T., Marangoni, G., Pye, S., Riahi, K., Schaeffer, R., Tavoni, M., Trutnevyte, E., van Vuuren, D., & Wagner, F. 556 

(2022). Using large ensembles of climate change mitigation scenarios for robust insights. Nature Climate 557 

Change, 12(5), 428–435. https://doi.org/10.1038/s41558-022-01349-x 558 

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., 559 

Herold, M., Houghton, R. A., Potapov, P. v., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., 560 

Turubanova, S. A., & Tyukavina, A. (2021). Global maps of twenty-first century forest carbon fluxes. Nature 561 

Climate Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020-00976-6 562 

Hengl, T. (2018). Global DEM derivatives at 250 m, 1 km and 2 km based on the MERIT DEM [Dataset]. Zenodo. 563 

https://doi.org/https://doi.org/10.5281/zenodo.1447210 564 

Huang, Z., Wu, X., Garcia, A. J., Fik, T. J., & Tatem, A. J. (2013). An Open-Access Modeled Passenger Flow 565 

Matrix for the Global Air Network in 2010. 8(5). https://doi.org/10.1371/journal.pone.0064317 566 

Hurtt, G., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B., Calvin, K., Doelman, J., Fisk, J., Fujimori, S., 567 

Goldewijk, K. K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J., 568 

Kennedy, J., Kristzin, T., Lawrence, D., … Zhang, X. (2020). Harmonization of Global Land-Use Change and 569 

Management for the Period 850&amp;#8211;2100 (LUH2) for CMIP6. Geoscientific Model Development 570 

Discussions, April, 1–65. https://doi.org/10.5194/gmd-2019-360 571 

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., 572 

McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening 573 

inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010 574 

Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-lamberty, B., Cui, R. Y., Vittorio, A. di, Dorheim, K., Edmonds, J., 575 

Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., Mcjeon, H., Smith, S. J., Snyder, 576 

A., … Calvin, C. K. (2019). GCAM v5 . 1 : representing the linkages between energy , water , land , climate , 577 

and economic systems. 677–698. 578 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., 579 

van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., 580 

Sacks, W. J., Shi, M., Vertenstein, M., … Zeng, X. (2019). The Community Land Model Version 5: 581 

Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in 582 

Modeling Earth Systems, 11(12), 4245–4287. https://doi.org/10.1029/2018MS001583 583 

Li, X., Chen, G., Liu, X., Liang, X., Wang, S., Chen, Y., Pei, F., & Xu, X. (2017). A New Global Land-Use and 584 

Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment 585 

Interactions. Annals of the American Association of Geographers, 107(5), 1040–1059. 586 

https://doi.org/10.1080/24694452.2017.1303357 587 

Liao, W., Liu, X., Xu, X., Chen, G., Liang, X., Zhang, H., & Li, X. (2020). Projections of land use changes under 588 

the plant functional type classification in different SSP-RCP scenarios in China. Science Bulletin, xxxx. 589 

https://doi.org/10.1016/j.scib.2020.07.014 590 

Liu, J., Wennberg, P. O., Parazoo, N. C., Yin, Y., & Frankenberg, C. (2020). Observational Constraints on the 591 

Response of High‐Latitude Northern Forests to Warming. AGU Advances, 1(4). 592 

https://doi.org/10.1029/2020av000228 593 

Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., & Pei, F. (2017a). A future land use simulation 594 

model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape 595 

and Urban Planning, 168(November), 94–116. https://doi.org/10.1016/j.landurbplan.2017.09.019 596 

Luo, M., Hu, G., Chen, G., Liu, X., Hou, H., & Li, X. (2022). 1 km land use/land cover change of China under 597 

comprehensive socioeconomic and climate scenarios for 2020–2100. Scientific Data, 9(1), 1–13. 598 

https://doi.org/10.1038/s41597-022-01204-w 599 

Ma, L., Hurtt, G., Chini, L., Sahajpal, R., Pongratz, J., Frolking, S., Stehfest, E., Klein Goldewijk, K., O’ Leary, D., 600 

& Doelman, J. (2019). Global Transition Rules for Translating Land-use Change (LUH2) To Land-cover 601 

Change for CMIP6 using GLM2. Geoscientific Model Development, July, 1–30. https://doi.org/10.5194/gmd-602 

2019-146-supplement 603 

Mekonnen, Z. A., Riley, W. J., Berner, L. T., Bouskill, N. J., Torn, M. S., Iwahana, G., Breen, A. L., Myers-Smith, 604 

I. H., Criado, M. G., Liu, Y., Euskirchen, E. S., Goetz, S. J., Mack, M. C., & Grant, R. F. (2021). Arctic tundra 605 

shrubification: a review of mechanisms and impacts on ecosystem carbon balance. In Environmental Research 606 

Letters (Vol. 16, Issue 5). IOP Publishing Ltd. https://doi.org/10.1088/1748-9326/abf28b 607 

Page, Y. Le, West, T. O., Link, R., & Patel, P. (2016). Downscaling land use and land cover from the Global 608 

Change Assessment Model for coupling with Earth system models. 3055–3069. https://doi.org/10.5194/gmd-9-609 

3055-2016 610 



manuscript submitted to Earth’s Future 

 

 

Pastick, N. J., Jorgenson, M. T., Goetz, S. J., Jones, B. M., Wylie, B. K., Minsley, B. J., Genet, H., Knight, J. F., 611 

Swanson, D. K., & Jorgenson, J. C. (2019). Spatiotemporal remote sensing of ecosystem change and causation 612 

across Alaska. Global Change Biology, 25(3), 1171–1189. https://doi.org/10.1111/gcb.14279 613 

Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., Müller, C., Biewald, A., 614 

Rolinski, S., Stevanovic, M., & Dietrich, J. P. (2014). Land-use protection for climate change mitigation. 615 

Nature Climate Change, 4(12), 1095–1098. https://doi.org/10.1038/nclimate2444 616 

Riahi, K., Vuuren, D. P. Van, Kriegler, E., Edmonds, J., Neill, B. C. O., Fujimori, S., Bauer, N., Calvin, K., Dellink, 617 

R., Fricko, O., Lutz, W., Popp, A., Crespo, J., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, 618 

J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy , land use , and greenhouse 619 

gas emissions implications : An overview. 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 620 

Semenchuk, P., Plutzar, C., Kastner, T., Matej, S., Bidoglio, G., Erb, K. H., Essl, F., Haberl, H., Wessely, J., 621 

Krausmann, F., & Dullinger, S. (2022). Relative effects of land conversion and land-use intensity on terrestrial 622 

vertebrate diversity. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28245-4 623 

Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. 624 

(2018). Global land change from 1982 to 2016. Nature, 560(7720), 639–643. https://doi.org/10.1038/s41586-625 

018-0411-9 626 

Sterling, S. M., Ducharne, A., & Polcher, J. (2013). The impact of global land-cover change on the terrestrial water 627 

cycle. Nature Climate Change, 3(4), 385–390. https://doi.org/10.1038/nclimate1690 628 

Vernon, C. R., Page, Y. Le, Chen, M., Huang, M., Calvin, K. V, Kraucunas, P., & Braun, C. J. (2018). Demeter – A 629 

Land Use and Land Cover Change Disaggregation Model. Journal of Open Research Software, 6(1), 15. 630 

https://doi.org/http://doi.org/10.5334/jors.208 631 

West, T. O., Brandt, C. C., Baskaran, L. M., Hellwinckel, C. M., Mueller, R., Bernacchi, C. J., Bandaru, V., Yang, 632 

B., Wilson, B. S., Marland, G., Nelson, R. G., De La Torre Ugarte, D. G., & Post, W. M. (2010). Cropland 633 

carbon fluxes in the United States: Increasing geospatial resolution of inventory-based carbon accounting. 634 

Ecological Applications, 20(4), 1074–1086. https://doi.org/10.1890/08-2352.1 635 

West, T. O., Page, Y. Le, Huang, M., Wolf, J., & Thomson, A. M. (2014). Downscaling global land cover 636 

projections from an integrated assessment model for use in regional analyses : results and evaluation for the 637 

US from 2005 to 2095. https://doi.org/10.1088/1748-9326/9/6/064004 638 

Wu, W., Hasegawa, T., Ohashi, H., Hanasaki, N., Liu, J., Matsui, T., Fujimori, S., Masui, T., & Takahashi, K. 639 

(2019). Global advanced bioenergy potential under environmental protection policies and societal 640 

transformation measures. GCB Bioenergy, 11(9), 1041–1055. https://doi.org/10.1111/gcbb.12614 641 

  642 

 643 

 644 

https://doi.org/10.1038/nclimate2444


 

 

1 

 

 

[Earth’s Future] 

Supporting Information for 

Uncertain spatial pattern of future land use and land cover change and its impacts 

on terrestrial carbon cycle over the Arctic–Boreal region of North America 

Meng Luo1, Fa Li1, Dalei Hao2, Qing Zhu3, Hamid Dashti1, Min Chen1 

1Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA. 

2Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 

USA 

3Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 

Corresponding author: Min Chen (mchen392@wisc.edu)  

 

Contents of this file  

 

Figures S1 to S8 

Tables S1  

 

Introduction  

The supplementary materials include 2 flowcharts that illustrate the procedure of 

future gridded LULCC projections using FLUS and Demeter and subsequent carbon 

cycle simulations, and 6 figures and 1 table that show the spatio-temporal 

comparison between LULCC downscaled by FLUS and Demeter, and carbon flux 

projections using the two downscaled LULCC data. 

 

  

mailto:email@address.edu)


 

 

2 

 

 

 

Figure S1. Flowchart of future gridded LULCC projections using FLUS and 

Demeter and subsequent carbon cycle simulations. 
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Figure S2. Schemes of LULCC reclassification and harmonization during the 

spatial downscaling process using Demeter and FLUS. 
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Figure S3. The spatial pattern of LULCCFLUS (a, d, g, j) and LULCCDemeter (b, e, h, l) in 

2100 for SSP126 and historical LULCC in 2015 (c, f, i, l) over the ABoVE domain for 

the 4 dominant CLM5_PFT: (a-c) needleleaf evergreen boreal tree, (d-f) broadleaf 

deciduous boreal tree, (g-i) broadleaf deciduous boreal shrub, and (j-l) C3 arctic 

grass. The color with blue (red) represents there is small (large) area fraction of a 

specific CLM5_PFT. 
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Figure S4. The spatial pattern of LULCCFLUS (a, d, g, j) and LULCCDemeter (b, e, h, k) in 

2100 for SSP585 and historical LULCC in 2015 (c, f, i, l) over the ABoVE domain for 

the 4 dominant CLM5_PFT: (a-c) needleleaf evergreen boreal tree, (d-f) broadleaf 

deciduous boreal tree, (g-i) broadleaf deciduous boreal shrub, and (j-l) C3 arctic 

grass. The color with blue (red) represents there is small (large) area fraction of a 

specific CLM5_PFT. 
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Figure S5. Time series of the harmonized LULCC area projections of four 

dominant broad LULCC types: (a) Forest, (b) Shrub, (c) Grass, (d) Crop from GCAM 

during 2015-2100 over the main regions of the ABoVE domain under SSP126 and 

SSP585. In each panel, blue and red lines represent the projection under SSP126 

and SSP585, separately. 

 

  



 

 

7 

 

 

  
 

Figure S6. The spatial pattern of (a-c) GPP, (d-f) ER, and (g-i) NEE in 2100 using 

LULCCFLUS, LULCCDemeter and historical LULCC in 2015 under SSP126. 
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Figure S7. The spatial pattern of (a-c) GPP, (d-f) ER, and (g-i) NEE in 2100 using 

LULCCFLUS, LULCCDemeter and historical LULCC in 2015 under SSP585. 

  



 

 

9 

 

 

Figure S8. The relationship of the absolute difference in PFT fraction between 

LULCCFLUS and LULCCDemeter with the absolute difference in GPP (blue), ER (red), 

and NEE (green) under SSP585 for 4 PFTs: (a) needleleaf evergreen boreal tree, (b) 

broadleaf deciduous boreal tree, (c) broadleaf deciduous boreal shrub, and (d) C3 

arctic grass. 
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Table S1. Statistical differences in GPP, ER, and NEE between the simulations using 

LULCCDemeter and LULCCFLUS separately, in 2100 under SSP126 and SSP585.  

 SSP126 SSP585 

 RMSD 

(gC/m2/year) 

Bias 

(gC/m2/year) 

RMSD 

(gC/m2/year) 

Bias 

(gC/m2/year) 

GPP 120.9 1.7 53.3 -4.6 

NEE 107.4 1.9 44.9 0.6 

ER 53.3 0.1 29.7 4.0 

 

 


