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5Eidgenössische Technische Hochschule Zürich
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Abstract

InSight’s seismometers recorded more than 1300 events. Ninety-eight of these, named the low-frequency family, show energy

predominantly below 1 Hz down to 0.125 Hz. The Marsquake Service identified seismic phases and computed distances for 42

of these marsquakes, 26 of which have backazimuths. Hence, the locations of the majority of low-frequency family events remain

undetermined. Here, we use an envelope shape similarity approach to determine event classes and distances, and introduce

an alternative method to estimate the backazimuth. In our similarity approach, we use the highest quality marsquakes with

well-constrained distance estimates as templates, including the largest event S1222a, and assign distances to marsquakes with

relatively high signal-to-noise ratio based on their similarities to the template events. The resulting enhanced catalog allows

us to re-evaluate the seismicity of Mars. We find the Valles Marineris region to be more active than initially perceived, where

only a single marsquake (S0976a) had previously been located. We relocated two marsquakes using new backazimuth estimates,

which had reported distances of 90o, in the SW of the Tharsis region, possibly at Olympus Mons. In addition, two marsquakes

with little or no S-wave energy have been located in the NE of the Elysium Bulge. Event epicenters in Cerberus Fossae follow

a North-South trend due to uncertainties in location, while the fault system is in the NW-SE direction; therefore, these events

are re-projected along the observed fault system.
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Key Points:
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ity marsquakes from InSight as templates
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Abstract
InSight’s seismometers recorded more than 1300 events. Ninety-eight of these, named
the low-frequency family, show energy predominantly below 1 Hz down to ∼0.125 Hz.
The Marsquake Service identified seismic phases and computed distances for 42 of these
marsquakes, 26 of which have backazimuths. Hence, the locations of the majority of low-
frequency family events remain undetermined. Here, we use an envelope shape similar-
ity approach to determine event classes and distances, and introduce an alternative method
to estimate the backazimuth. In our similarity approach, we use the highest quality marsquakes
with well-constrained distance estimates as templates, including the largest event S1222a,
and assign distances to marsquakes with relatively high signal-to-noise ratio based on
their similarities to the template events. The resulting enhanced catalog allows us to re-
evaluate the seismicity of Mars. We find the Valles Marineris region to be more active
than initially perceived, where only a single marsquake (S0976a) had previously been lo-
cated. We relocated two marsquakes using new backazimuth estimates, which had re-
ported distances of ∼90◦, in the SW of the Tharsis region, possibly at Olympus Mons.
In addition, two marsquakes with little or no S-wave energy have been located in the NE
of the Elysium Bulge. Event epicenters in Cerberus Fossae follow a North-South trend
due to uncertainties in location, while the fault system is in the NW-SE direction; there-
fore, these events are re-projected along the observed fault system.

Plain Language Summary

InSight’s seismometer recorded more than 1300 events since landing on the surface
of Mars in November 2018 until it retired in December 2022. Most of the events InSight
recorded are at high frequencies ≥ 2.4Hz. The rest of the events, named the low-frequency
family, produce signals that travel through the planet’s interior, allowing us to under-
stand the interior structure when event locations can be determined using seismic ar-
rivals. However, marsquakes are often weak and do not always exhibit clear seismic phases;
therefore, they cannot be assigned distances using traditional techniques. Here, we use
the well-understood, highest-quality events as templates to investigate and assign a source
region to the weaker seismic signals. Seismicity on Mars occurs mostly along or north
of the boundary between the southern highlands and northern lowlands. Valles Marineris
is seismically more active than previous catalogs of located events imply. Further, we show
evidence that two events likely originate from the Olympus Mons region.

1 Introduction

The Mars InSight mission (Banerdt et al., 2020) retired on December 21, 2022, af-
ter more than four years (1446 sols or Martian days) of successful operations. The mis-
sion deployed the first seismic station (SEIS) on the surface of the planet, comprising
both a very broadband (VBB) and a short-period (SP) seismometer (Lognonné et al.,
2019; Lognonné et al., 2020). The InSight payload also contained wind and pressure sen-
sors for observing the Martian atmosphere (Banfield et al., 2020), which provided cru-
cial information for discriminating seismic events from environmental noise sources; the
HP3 temperature probe (Spohn et al., 2022); and the robotic arm and cameras used for
deploying SEIS and HP3 on the ground(Banerdt et al., 2020).

Throughout the mission, the Marsquake Service (MQS; Clinton et al., 2018) cat-
aloged more than 1300 signals of seismic origin (Table S1; InSight Marsquake Service,
2023) in the exceptionally high-quality and complete waveform dataset (Clinton et al.,
2021; Ceylan et al., 2022). Ninety-eight of these events are part of the low-frequency (LF)
event family showing energy predominantly below 1 Hz. The rest of the events contain
energy mostly above 2.4 Hz and are classified as the high-frequency (HF) family.
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For events in the LF family, when seismic phases can be identified (typically di-
rect P and S, or their surface reflections PP and SS for distant events ≳100◦), MQS de-
termines event distances using the theoretical travel times from the model set of Stähler
et al. (2021) following the single station location algorithm described in Khan et al. (2016)
and Böse et al. (2017). The location of an event is obtained when a backazimuth can also
be reliably determined (Böse et al., 2017), in current MQS practice, this follows the method
described in Zenhäusern et al. (2022) since V12 catalog (InSight Marsquake Service, 2022).

In the V14 catalog, MQS computed distances for 42 of the 98 LF family events (Fig-
ure 1a). Twenty-four of these events are fully located with a backazimuth (hence assigned
quality A), while the remaining events only have a distance estimate and are quality B
or C (Table S1). The vast majority of the fully-located events cluster at distances be-
tween 25◦ and 35◦ with a backazimuth towards the East, pointing to the Cerberus Fos-
sae region (Figure 1a).

The most distant marsquake (S0976a; Figure 1) was observed on August 25, 2021,
at a distance of 146±7◦ from InSight and a backazimuth of 101±25◦, locating the event
in the Valles Marineris region (Horleston et al., 2022). Two events (S1000a and S1094b;
hereinafter, referred to as S1000I and S1094bI for brevity) showed the first clear indi-
cation of seismic surface wave arrivals (Kim et al., 2022). Both of these events were later
confirmed as distant impacts (Posiolova et al., 2022) with Mars-calibrated moment mag-
nitudes (Böse et al., 2018) of MMa

W 4.0±0.2 and 4.1±0.2 (Figure S1) and crater diame-
ters of 130 and 150 m, respectively. Furthermore, six HF family events within 300 km
of InSight have also been confirmed as impacts (Garcia et al., 2022; Daubar et al., 2023),
which show dispersive acoustic signals propagating along a waveguide in the form of chirps
in their coda, with strong linear polarization pointing toward the source. Finally, the largest
marsquake (MMa

W 4.6±0.3) recorded by InSight is S1222a (Kawamura et al., 2023), which
occurred on May 4, 2022 (Figure S1).

Giardini et al. (2020) and Lognonné et al. (2020) give the first interpretations of
the global seismicity on Mars and interior structure using limited number of both HF
and LF family events recorded during the first year of the mission. Subsequently, body
waves have been successfully utilized for studying the crust beneath the lander (Knapmeyer-
Endrun et al., 2021; Kim, Lekic, et al., 2021; Li et al., 2022; Durán, Khan, Ceylan, Zenhäusern,
et al., 2022), Martian mantle (Khan et al., 2021; Durán, Khan, Ceylan, Zenhäusern, et
al., 2022; Durán, Khan, Ceylan, Charalambous, et al., 2022; Khan et al., 2022) and core
(Stähler et al., 2021; Durán, Khan, Ceylan, Zenhäusern, et al., 2022; Khan et al., 2022;
Irving et al., 2022). Kim et al. (2022) obtained the average crustal velocity structure along
the minor-arc paths using Rayleigh waves observed in S1000aI and S1094bI (Posiolova
et al., 2022). Most recently, surface wave studies of S1222a enabled us to further under-
stand crustal anisotropy by using fundamental-mode Rayleigh and Love waves (Beghein
et al., 2022) and together with their overtones (Kim et al., 2023). In the same record,
Rayleigh waves that orbit around Mars have been also detected and used for estimat-
ing the planet’s average crustal thickness (Kim & et al., 2023).

The large number of noisy events is not surprising, since marsquakes are low-amplitude
and the background seismic noise at InSight is highly variable. Interpreting these nois-
ier events without any distance estimate is challenging. In order to overcome this lim-
itation, Giardini et al. (2020) introduced an alignment-based methodology where the weak
marsquakes are assigned a distance depending on their similarities with the highest-quality
events whose distances were assumed fixed or anchored. In their approach, the events
are visually aligned based on the predicted travel times of seismic phases using an in-
terior reference model. Since V3 catalog (InSight Marsquake Service, 2020), MQS adopted
this visual alignment approach in their locations as an alternative to interpret the events
using a recent reference model from Stähler et al. (2021).
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While the structural studies thus far have used the events with the highest signal-
to-noise (SNR) ratio, the vast majority of the seismic events and their waveform char-
acteristics (e.g., secondary arrivals in the signal coda and high-frequency content of some
LF family events) remain to be understood. Here, we extend the visual alignment ap-
proach by introducing the Dynamic Time Warping algorithm (Sakoe & Chiba, 1978),
and apply it to a larger set of LF family events now available. We first classify the rel-
atively weaker signals using the events with the highest SNR ratio as templates. Then,
we re-evaluate the seismicity on Mars in light of similarities and known tectonic regions.

Figure 1. Distance and backazimuth distribution of the LF-family events in (a) the V14 cat-

alog (InSight Marsquake Service, 2023), and (b) this study. The confirmed impacts, S1000aI

and S1094bI , are denoted by stars. The 6 events labelled in bold-face have locations that are

newly introduced or are modified in this study. Note a number of events without back azimuths

also have their distances revised. Diamonds indicate events in V14 where the distance is only

provided by visual alignments. The colors and marker sizes show the event qualities as indicated

in Table S1. The histograms indicate the number of events for distance (top) and backazimuth

(right). A majority of the catalog includes events at distances around 30◦ and a backazimuth

towards East (80–100◦), pointing to the Cerberus Fossae region. The hatched regions show events

without backazimuth or distance estimates. The errors bars show the uncertainties in distance

and backazimuth. See Figure S1 for the distance and MMa
W distributions, and Table S2 for a sum-

mary of re-evaluated events and our modifications. CF: Cerberus Fossae, VM: Valles Marineris.

2 Data and methods

For our analysis, we use spectral envelopes derived from the 20 samples-per-second
(sps) VBB waveform data from the LF family events cataloged during the entire mis-
sion. All the events and waveforms (InSight Mars SEIS Data Service, 2019b, 2019a) are
publicly available with the release of the V14 catalog (InSight Marsquake Service, 2023).
A breakdown of the catalog, including the HF events, is provided in Table S1.

Our method builds on the visual alignment approach of Giardini et al. (2020). In
the visual alignments, event envelopes of both low SNR events and high quality are com-
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pared, and weaker events are assigned a relative distance using the envelope similarities,
theoretical travel time curves and the events with pick-based distances as anchors. How-
ever, the low SNR events are often found to be similar to multiple template events, i.e.,
in the shape and length of their S-wave coda. Consequently, interpretation of events is
often challenging and ambiguous.

In order to address these particular cases, we introduce the dynamic time warp-
ing (DTW; Sakoe & Chiba, 1978) algorithm to measure event similarity using the shape
of their spectral envelopes (Figures 2 and 3). Additionally, we use an alternative approach
to determine new backazimuths for a subset of evets using a grid search for the wave-
form envelopes, as illustrated in Figure 4. Finally, we provide distances for the events
with lower SNR by finding the best matches to the collection of high-quality template
events, with addition insights from backazimuths in some cases, and separate the seis-
micity into classes (Figure 5). Our analysis assumes the source and structural effects along
the propagation path, such as attenuation and scattering, are negligible.

2.1 Similarity analysis

0 500 1000
Time after event start [s]

Vertical component
S1222a
S0173a

Similarity distance: 0.83

0.0 0.5 1.0

a) b)

Distance

Figure 2. Example of the DTW method (Sakoe & Chiba, 1978) to determine the shape simi-

larity between the spectral envelopes of two of the high-quality marsquakes, S1222a and S0173a.

(a) The final optimal point-wise pairings between the event envelopes. The light-brown lines

indicate matching data points with minimum distance in ∥L1∥ norm. (b) The warping path and

cross-similarity matrix. The color bar shows the normalized distance measure for similarity, with

larger values indicating less similarity. The warping path would be perfectly diagonal (dashed

line) if the envelopes were identical. The deviation from the ideal path for these two events is

reasonably close to the diagonal.

The data processing workflow we use to generate envelopes is summarized in Fig-
ure S2. First, we remove the instrument response to obtain acceleration time series and
rotate the VBB data into the ZNE (vertical-North-East) coordinate frame. Then, we com-
pute spectrograms for all three components using a window length of 30 s and an over-
lap of 60%. Finally, we obtain the envelopes by summing the spectral amplitudes in power
for each component in linear scale along the frequency axis between 0.25 and 0.9 Hz, which
is a frequency window that is rich in energy for the majority of LF family events (Ceylan
et al., 2022). The upper bound is intentionally below 1 Hz to avoid an artifact caused
by the electronics (Zweifel et al., 2021). The envelopes have a sample point every 12 sec-
onds. Although different parameters in terms of physical units, window lengths and over-
laps can be used, the selected parameters are preferred through experience gathered through-
out the mission so as to allow for comparison of events from different distances. We use
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the vertical component for measuring envelope similarities since it is the least-contaminated
by atmospheric disturbances.

For data regularization in advance of the DTW (Figures 2 and 3), a short time-
window around significant glitches in the time series are masked in the spectral envelopes.
Glitches are ubiquitous artifacts observed in the data (Scholz et al., 2020; Ceylan et al.,
2021) and may lead to inaccurate interpretations (Kim, Davis, et al., 2021). For mask-
ing, we replace the original envelope values with the mean of adjacent data points. The
glitch windows have been manually identified by the MQS. The spectral envelopes start
90 s prior to the energy onset as marked in the V14 catalog. The end times are man-
ually assigned for the few events that have a very long duration (>1h); otherwise, we use
the signal end from the catalog (InSight Marsquake Service, 2023). For similarity met-
rics, the point-wise distances in Figure 2a are computed using the ∥L1∥ norm because
of its stability and relative insensitivity to noisy time series. The final similarity values
(Figure S3) are normalized with the warping path length to account for differences in
the duration of the time series.

The DTW method is not suitable to use in an automated style for our purposes.
For instance, an event with no apparent S-wave energy may show a relatively higher de-
gree of similarity to another event with strong S-wave (e.g., S1097a and S0235b in Fig-
ure 3a and b). Therefore, an a-priori knowledge of events for their available phase picks,
polarization attributes and P- and S-wave coda lengths are required for interpretation.

2.2 Backazimuth estimation

Backazimuth is defined as the angle between the seismic station and epicenter with
respect to North in a station-centric coordinate frame. MQS initally determined back-
azimuth from the 3-component particle motions in the time domain (Böse et al., 2017),
though recently migrated to a more rigorous approach using polarization measured us-
ing both P and S-wave arrivals in the frequency-time domain (Zenhäusern et al., 2022).
MQS does not assign backazimuths when the results from either method are interpreted
to be unstable.

In an attempt to increase the number of events with assigned backazimuths, we adopt
a grid search method using the envelope timeseries. A variation of this approach has been
successfully applied to determine the backazimuth of the HF events in Stähler et al. (2022).
Here, using well documented events, we demonstrate that our approch can recover sim-
ilar backazimuths to other methods. Figures 4 and S4–S6 show how this approach per-
forms for the 2 distant impacts as well as the large events S0235b and S1222a.

In order to find the most plausible rotation angle range, we rotate the spectral en-
velopes for 360◦ with an increment of 2◦. Ideally, in the presence of P-waves, the energy
ratio of vertical (Z) and radial (R) components compared to the transverse (T) must be
maximized when the rotation is in the same direction as the true backazimuth. As a re-
liability check, the transverse-to-radial ratio should have maxima at 90◦ perpendicular
to the vertical-to-transverse component ratio. In our test cases, the cross-power of Z and
R components (Z.R/T ) better accentuates the results (Figure 4c, S4-S6), which makes
picking backazimuths easier. We choose the backazimuth values using the first concen-
trated amplitude ratios in the time window directly after the initial phase arrivals and
assign the uncertainties visually. Since we only use envelope amplitudes, we cannot elim-
inate the 180◦ ambiguity (Figure 4).

3 Results and discussion

The InSight seismicity catalog (Clinton et al., 2021; Ceylan et al., 2022) is a col-
lective inventory of work from the InSight science team that includes not only the lo-
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cations provided by MQS, but also locations of known impacts (Posiolova et al., 2022;
Garcia et al., 2022), alternative source interpretations (Kedar et al., 2021), seismic phase
picks (e.g. Khan et al., 2021; Stähler et al., 2021; Durán, Khan, Ceylan, Zenhäusern, et
al., 2022), and distance and seismic phase assignments from the visual alignments (Giardini
et al., 2020). Our analysis below provides new, updated alignments that allows us to as-
sign distances to substantially more of the LF family of events, coral events into classes
or group, enabling us to re-evaluate our understanding of Martian seismicity. A sum-
mary of the work is shown in Figure 5, where the various event groups are present in terms
of their distance from the InSight lander. These results can be expected to included in
final, post-mission catalog releases from MQS.

The map of the seismicity of Mars as contained in the MQS V14 catalog (InSight
Marsquake Service, 2023) is summarized in Figure 6a, while our interpretation result-
ing from this analysis is in Figure 6b (also see Figures S10–S12 for each class discussed
below). The seismicity on Mars appears to occur along or to the North of the dichotomy
boundary. Furthermore, it is notable that 2 of the 3 template events from distances >90◦

are the S1000aI and S1094bI impacts.

3.1 Distant events cluster

The so-called distant events (Figure 7) are a class of seismic signals that are bound
between the 2 most distant template events, S1000I and S0976a. The low SNR signals
that match this group lack any indication of P-energy and exhibit relatively long energy
packages, which we interpret as S-wave coda. The visual alignments placed these events
at distances >90◦ using the length of the S-wave coda as a proxy for distance (Figures 6a
and S11). The two distant template events, the only ones to lie beyond the core shadow,
did not occur until late in the mission over 2.5 years after landing. Therefore, although
the weak events now assigned at this distance occurred early on the mission, there was
no possibility to constrain their event distances until recently.

MQS locates S0976a in the Valles Marineris region (Horleston et al., 2022), 146±7◦

away from InSight. S1000aI occurred in Tempe Terra at a distance of 126◦ (Figure 6a)
(Posiolova et al., 2022). In this context, we note that an independent joint seismic event-
location and structure-inversion scheme predicts a location for S1000aI in excellent agree-
ment with the imaged location (Durán, Khan, Ceylan, Zenhäusern, et al., 2022). The
length of the S-wave coda for distant events is more comparable to S1000aI as it is shorter
than S0976a (Figures 5 and 7), suggesting that these events occurred at a distance range
of ∼130–140◦, possibly closer to S1000aI .

Considering the lack of any energy that we interpret to be P-wave, as well as the
emergent nature of the S-energy, the envelope-based back azimuth approach was not used
to try further constrain locations for these events. The only evidence of tectonic-related
seismic activity at these distances is from Valles Marineris. Valles Marineris is one of the
largest canyons in the whole Solar system (Coles et al., 2019) and has been proposed as
one of the most plausible candidates to produce marsquakes, using both surface fault-
ing observations (Golombek et al., 1992) and joint inversion of gravity and topography
data (Gudkova et al., 2017). It is reasonable to assume that the region is more active
than might be suggested on account of the observation of a single event. Therefore, we
assign these events a distance of 130–140◦, and suggest that the source region could be
in the western part of Valles Marineris (Figure 6b and d).

3.2 Assigning locations to S1153a and S1415a

In V14 catalog, MQS provides only distance estimates for S1153a and S1415a at
84.8±10◦ and 88.2±9.6◦, respectively. In addition to being the only events in the cat-
alog with phase-based distances at this distance, the frequency content of the events are
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also remarkably similar (Figure S8). Furthermore, they show a high degree of similar-
ity in all three components (Figures 8a and S7), suggesting that most likely both events
originated from the same region.

MQS does not assign a backazimuth to either of these events due to their emer-
gent P-arrivals and contaminated waveform characteristics (Figure S8). Applying the
envelope-based grid search approach for S1153a, we obtain a backazimuth estimate of
85±30◦ with the 180◦ ambiguity (Figure 8a), which places the event in a region SW of
Olympus Mons. A reliable backazimuth pick was not possible for S1415a, although the
P-wave energy partitioning between the horizontal components imply a value similar to
S1153a in a more NE-SW direction (Figure 8b). Considering the large uncertainties for
S1153a, we assume both events occurred roughly in the same region and locate them SW
of Olympus Mons (Figure 6b and S10).

It is noted that in the V14 catalog and seen in Figure 1a, there is a cluster of aligned
events assigned also to this distance. As described in the previous subsection, all these
aligned events have been moved further away from InSight to Valles Marineris.

3.3 Events near to S1094bI : S0185a and S0234c

The S1094bI impact crater was detected in Amazonis Planitia at a distance of 58.5◦

with a backazimuth of 51.4◦. Two relatively weak events S0185a and S0234c are shown
to have strong similarity, as demonstrated in Figures 9 and S7b. The distance for S0185a
is calculated by MQS as 60±20◦. S0234c is assigned a distance of around 70◦ through
visual alignment. Neither of the events have MQS assigned backazimuths. Our similar-
ity metrics confirm that S1094bI is very similar to S0185a, and similar to S0234c (Fig-
ure S7). Therefore, we do not modify the previously reported distances.

No reliable backazimuth for either S0185a and S0234c can be obtained from our
envelope-based grid search approach. The closest seismic event with a location is S1102a
(73.3±5◦), located in Syrtis Major Planum (Figure 6), though this event is 20◦ further
out. The MQS distances for S0185a and S0234c coincide well with the eastern portion
of Syrtis Major Planum; however, it is difficult to assign a specific source region with-
out any indication of backazimuth for either of the events.

3.4 Events similar to S0899d: marsquakes with weak or no S-waves

S0899d has a strong arrival that can clearly be associated to a P-wave via its ver-
tical polarization which indicates that the event comes from a direction to the North of
InSight with a backazimuth of 22±30◦ (Table 1, Figure 6). A subset of weak marsquakes,
like S0899d, also show little-to-no S-wave energy (Figure 10) in the vertical component
or have an S–to–P ratio ∼1. The template for this class of events is S0899d, which does
not have a pick-based location, although visual alignments suggest a distance of ∼46◦

due to its similarity to S0183a.

Here, using the envelopes, we identify for the first time S-wave arrivals for S0899d
and S1097a on the horizontal components Figure 10), and modify their aligned distances
from 46◦ to 32◦ by aligning the event against the theoretical travel times from the ref-
erence model (Figures 5 and 6). S0183a remains an outlier: although the event clusters
with S0899d in terms of envelope characteristics, its epicenter in the V14 catalog is at
a distance of 46◦ (Figure 6). Khan et al. (2021) provides an alternative distance range
and locates S0183a at 54–59◦ using differential arrival times of seismic phases from mul-
tiple events and the current knowledge of mineralogy.

S1012d and S1197a were not assigned a backazimuth in V14. Using the envelope
grid search method, we propose that the events have backazimuths of 60±35◦ and 65±40◦,
respectively (Figure 11). This means the events locate close to S0325a, so there is now
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a cluster of three events in this class (Figures 6 and S11). Due to the 180◦ ambiguity,
it is possible that these events are on the opposite side of the azimuth semicircle. How-
ever, the observed seismicity on Mars appears to occur along or North of the equatorial
dichotomy (Figure 6); therefore, we find our preferred backazimuth more plausible.

The tectonic source behind this event class has yet to be discovered. Giardini et
al. (2020) and Khan et al. (2021) explain the lack of S-waves with distance and suggest
that S-waves are attenuated between ∼40-60◦ where seismic waves propagate through
a low-velocity layer in the mantle. With more data available, the epicenters determined
by MQS and our re-locations imply a scattered and closer distribution of these events;
hence, distance alone cannot explain the lack of S-waves. We cannot assign a single re-
gion for these events; therefore, we attribute the decrease in S-wave energy to geomet-
rical spreading due to strong 3D mantle structure or an S-wave low velocity layer in the
lithosphere (Giardini et al., 2020; Khan et al., 2021), or source mechanism.

Table 1. Location parameters of S0899d class. The V14 distances with asterisks are assigned

using the visual alignment rather than phase picks. We modified the previously assigned dis-

tances for S0899d and S1097a using new S-picks on Figure 7, and calculated new backazimuths

for S1197a and S1012d (Figure 11). BAZ: backazimuth.

Event name V14 V14 This study This study
Distance (◦) BAZ (◦) Distance (◦) BAZ (◦)

S0183a 46.0±17.0 85±17 – –
S0899d 46.7±10∗ 22±30 32±10 –
S1197a 32.0±1.5 – – 65±40
S1097a 46.2±10∗ 318±20 32±10 –
S1012d 38.2±3.3 – – 60±35
S0325a 39.7±6.1 57±20 – –

3.5 S1222a and the Cerberus Fossae class

S1222a, which occurred on May 4, 2022, is the largest event (MMa
W 4.6±0.2) recorded

since landing. The event is 37◦±1.6 away from InSight, and unlike most of the LF fam-
ily, shows clear Rayleigh and Love waves including their overtones. The MQS backaz-
imuth estimate for S1222a is 101±8◦ (Kawamura et al., 2023), while using the envelope-
based approach we obtain 125◦±15 which is also consistent with the direction of prop-
agation from the minor-arc surface waves (Kim et al., 2023). This suggests that the event
perhaps originated closer to the Martian dichotomy boundary (Andrews-Hanna et al.,
2008) than the location reported in V14 catalog. Interestingly, although the event did
not originate in the Cerberus Fossae, we observe that the S1222a envelopes are largely
similar to those of the LF events with excess energy in the S-wave coda from Cerberus
Fossae (Figure 2 and 12).

InSight did not record any tectonic events closer than 25◦ from the station (Fig-
ure 1a). A large number of the LF-family events, which show relatively clear P- and S-
wave arrivals, are located in the Cerberus Fossae region, 25–35◦ away from the station
due East (Durán, Khan, Ceylan, Zenhäusern, et al., 2022; Stähler et al., 2022). Within
this cluster of events, the decay of P- and S-wave coda is similar, although some events
show excess energy in their coda (e.g. S0173a vs S0235b; Figure S9). No new events were
added to this cluster class though our study.

Stähler et al. (2022) attributes the seismicity in the Cerberus region to the active
deformation caused by recent volcanism. The authors also show that the HF events come
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from a similar direction as the LF family events located in the region and propose that
all HF events originate from the central part of Cerberus Fossae in the form of very shal-
low events associated with large active volcanic dykes.

The strike of the Cerberus Fossae fault system is directed NW-SE (yellow lines in
Figures 6c and S13), while the epicenters of Cerberus events follow an N-S trend. In or-
der to be consistent with the surface observations (Knapmeyer et al., 2006; Perrin et al.,
2022), we project all Cerberus events to the center of the fault system while maintain-
ing their reported distances.

4 Conclusions

Contrary to pre-mission expectation (Knapmeyer et al., 2006), we find that over
the lifetime of the mission, InSight did not observe a wide distribution of seismicity across
the planet. Except for S1222a, seismicity was not observed on wrinkle ridges. Instead,
the seismicity appears to focus on isolated tectonic features in a few distance ranges and
locations along or North of the Martian dichotomy (Figure 6), implying that contrac-
tion due to cooling is not the dominant driver of present-day Martian tectonics, as pro-
posed for other smaller terrestrial planets, Mercury and the Moon (Byrne et al., 2014):

(i) A number of low SNR events that due to their very long duration are likely dis-
tant events and were originally located by visual alignments at distances >90◦,
are found to be highly similar to the impact event S1000aI at 126◦ away from In-
Sight. In light of the only evidence of a tectonic region at these distances from S0976a,
these events are likely to occur in southern Tharsis region, plausibly in western
Valles Marineris (Figure 6b and d). The absence of observed seismicity from the
heavily faulted Tharsis region had been puzzling beforehand, but can now be ex-
plained by the fact that SS and PP waves from these distances are generally highly
scattered and can only be identified as such by comparison to template events such
as the S1000aI .

(ii) Two events (S1153a and S1415a) have similar envelope shape (Figure 8b) and spec-
tral content (Figure S2). These events have distances around 90◦ as computed by
MQS. We find a backazimuth of 85◦ for S1153a (Figure 8a), and locate both of
these events in the approximate area of Olympus Mons (Figure 6), which is sur-
rounded by a basal scarp of 2–10 km height and thrust faults as young as <40Ma
(Weller, 2015).

(iii) S0185a and S0234c can be paired with the impact S1094bI . The event distances
are compatible with a source region at a distance of ∼60◦ (Figure 5 and 9); how-
ever, since S0185a and S0234c have no convincing indication of backazimuth, we
are not able to identify a single source region.

(iv) A subset of events (S0899d class) show little or no S-wave energy, specifically on
the vertical component (Figure 5). We computed backazimuths for two of the events
in this class (S1012d, S1197a; Figure 11). This class of events shows no spatial clus-
tering; therefore, the source region is unknown. The lack of stronger S-waves re-
mains puzzling. Possible reasons are source mechanism, geometrical spreading due
to strong 3D mantle structure or a relatively thin S-wave low velocity zone due
to a velocity inversion in the lithosphere(Khan et al., 2021).

(v) The main seismogenic region on InSight’s hemisphere of Mars (Figure 1) remains
to be the central part of Cerberus Fossae (InSight Marsquake Service, 2023; Stähler
et al., 2022), with original MQS epicenters aligned in a N-S trend (Figure 6a and
c). Since the faults in the region have a strike along NW-SE direction (Perrin et
al., 2022), we re-assign those events to the center of the Cerberus Fault system.

Our re-locations have no effect on the recent interior models (e.g. Khan et al., 2021;
Stähler et al., 2021; Kim et al., 2022) since we do not adjust the locations or seismic phase
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picks for the high-quality events. However, our re-evaluations of e.g., the distant event
class, are potentially important for future studies aiming at the deep interior of Mars (e.g.
Irving et al., 2022), as well as regional seismicity and global stress field estimates of the
planet (e.g. Knapmeyer et al., 2023).

5 Open Research

The waveform data and seismicity catalog are avaliable from InSight Mars SEIS
Data Service (2019a) and InSight Mars SEIS Data Service (2019b). The InSight seismic-
ity catalog is from InSight Marsquake Service (2023). We used the ObsPy (Krischer et
al., 2015), NumPy (Harris et al., 2020) and scipy (Virtanen et al., 2020) packages for data
processing. We benefited from the tslearn package of Tavenard et al. (2020) for similar-
ity analysis.
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Figure 3. Similarity analysis for S1097a, an LF QB event without an assigned distance in the

V14 catalog, against 4 template events. The final similarity distances in ∥L1∥ norm are indicated

in the warping path panels, where smaller values indicate higher level of similarity (Figure S3).

The event is most similar to S0899d (a), another LF QB event without a pick-based distance

in the catalog. Therefore, S1097a clusters within the same class. Note that the envelope shape

is also significantly similar to S-wave coda of S0235b (b). The degree of similarity decreases for

other templates in (c) and (d).
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Figure 4. Validation of envelope-based grid search approach for backazimuth estimation using

S1000aI . The impact crater (Posiolova et al., 2022) is detected 126.09◦ away from InSight and

at a backazimuth of 34◦ (Posiolova et al., 2022). The vertical dotted lines at zero time on each

panel indicate the PP phase arrival time. (a) and (b) show the rotated horizontal envelopes, com-

puted for frequencies between 0.25 and 0.9 Hz. The envelope amplitudes are normalized using

the maximum of the vertical component for visualization purposes. (c) and (d) denote combined

vertical (Z) and radial (R) to transverse (T) and T/R ratio, respectively. The orange circles and

error bars show the preferred backazimuth pick with the ambiguity, computed using envelope

amplitudes prior to normalization. For reference, the Z-component envelopes are plotted at the

top of (c) and (d). The horizontal dotted lines in (c) and (d) show the true backazimuth. The

color scale in (c) is saturated to make the amplitudes after the PP more visible.
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Figure 5. Overview of event classes. Each class is indicated by the label on the right. Tem-

plate events are indicated by bold lines and font. Timeseries show the envelopes computed from

vertical component acceleration data for frequencies 0.25–0.9 Hz. The light-gray parts of the

envelopes show the unglitched data, note the glitches are masked for similarity processing. The

2 envelopes in a tan color are the known impacts. The distances from V14 are indicated on the

right side for all templates events outside of the Cerberus Fossae cluster. The zero time is the

first arriving theoretical S-wave (S or SS depending on the distance) from a reference model

(Stähler et al., 2021; Ceylan et al., 2022). Theoretical arrival times for P, S, PP and SS phases

are marked and labelled. S0899d, S1097a and S1197a belong to the same class with S0183a, but

clearly lie closer to InSight at around 32◦. Envelopes are in log-scale to emphasize similarities at

small amplitudes. The envelopes for events >50◦ are processed with a window length of 60 s, and

30 s for the rest, all with a 50% overlap.
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Figure 6. Proposed regions of seismic activity. (a) Current state from the V14 catalog

(InSight Marsquake Service, 2023), including the interpretations from the visual alignments

adopted since Giardini et al. (2020). The orange-colored ring around InSight denotes the distance

range (32-46◦) for the events with weak or no S-wave. The red curve at 90◦ represents the dis-

tant events class. The dotted curve indicates the distances for S1153a (84.8±10◦) and S1415a

(88.2±9.6◦) as reported by MQS. (b) Our interpretation of the seismicity. The light red shaded

circles indicate regions where there are clusters of multiple events. Symbols sizes indicate the

extent of the region, not location uncertainties. Zoomed views around the Cerberus Fossae and

Valles Marineris are in (c) and (d), also marked with white rectangles in (a) and (b). Fault loca-

tions in (c) around Cerberus Fossae do not reflect large uncertainties in backazimuth, allowing us

to interpret that all events are associated with the fault system. The fault lines in (c) are from

Knapmeyer et al. (2006) and Perrin et al. (2022), where the faults in yellow show the Cerberus

Fossae system. The background map and the equatorial dichotomy boundary are from Smith et

al. (2001) and Andrews-Hanna et al. (2008), respectively.
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Zenhäusern, G., Stähler, S. C., Clinton, J. F., Giardini, D., Ceylan, S., & Garcia,
R. F. (2022). Low-Frequency Marsquakes and Where to Find Them: Back Az-
imuth Determination Using a Polarization Analysis Approach. Bull. Seismol.
Soc. Am., 112 (4), 1787-1805. doi: 10.1785/0120220019

Zweifel, P., Mance, D., ten Pierick, J., Giardini, D., Schmelzbach, C., Haag, T., . . .
Banerdt, W. B. (2021, 10). Seismic High-Resolution Acquisition Electron-
ics for the NASA InSight Mission on Mars. Bull. Seismol. Soc. Am., 111 (6),
2909-2923. doi: 10.1785/0120210071

–22–



manuscript submitted to JGR: Planets

Mapping the seismicity of Mars with InSight

S. Ceylan1, D. Giardini1, J. F. Clinton2, D. Kim1, A. Khan1,3, S. C. Stähler1,4,
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Abstract
InSight’s seismometers recorded more than 1300 events. Ninety-eight of these, named
the low-frequency family, show energy predominantly below 1 Hz down to ∼0.125 Hz.
The Marsquake Service identified seismic phases and computed distances for 42 of these
marsquakes, 26 of which have backazimuths. Hence, the locations of the majority of low-
frequency family events remain undetermined. Here, we use an envelope shape similar-
ity approach to determine event classes and distances, and introduce an alternative method
to estimate the backazimuth. In our similarity approach, we use the highest quality marsquakes
with well-constrained distance estimates as templates, including the largest event S1222a,
and assign distances to marsquakes with relatively high signal-to-noise ratio based on
their similarities to the template events. The resulting enhanced catalog allows us to re-
evaluate the seismicity of Mars. We find the Valles Marineris region to be more active
than initially perceived, where only a single marsquake (S0976a) had previously been lo-
cated. We relocated two marsquakes using new backazimuth estimates, which had re-
ported distances of ∼90◦, in the SW of the Tharsis region, possibly at Olympus Mons.
In addition, two marsquakes with little or no S-wave energy have been located in the NE
of the Elysium Bulge. Event epicenters in Cerberus Fossae follow a North-South trend
due to uncertainties in location, while the fault system is in the NW-SE direction; there-
fore, these events are re-projected along the observed fault system.

Plain Language Summary

InSight’s seismometer recorded more than 1300 events since landing on the surface
of Mars in November 2018 until it retired in December 2022. Most of the events InSight
recorded are at high frequencies ≥ 2.4Hz. The rest of the events, named the low-frequency
family, produce signals that travel through the planet’s interior, allowing us to under-
stand the interior structure when event locations can be determined using seismic ar-
rivals. However, marsquakes are often weak and do not always exhibit clear seismic phases;
therefore, they cannot be assigned distances using traditional techniques. Here, we use
the well-understood, highest-quality events as templates to investigate and assign a source
region to the weaker seismic signals. Seismicity on Mars occurs mostly along or north
of the boundary between the southern highlands and northern lowlands. Valles Marineris
is seismically more active than previous catalogs of located events imply. Further, we show
evidence that two events likely originate from the Olympus Mons region.

1 Introduction

The Mars InSight mission (Banerdt et al., 2020) retired on December 21, 2022, af-
ter more than four years (1446 sols or Martian days) of successful operations. The mis-
sion deployed the first seismic station (SEIS) on the surface of the planet, comprising
both a very broadband (VBB) and a short-period (SP) seismometer (Lognonné et al.,
2019; Lognonné et al., 2020). The InSight payload also contained wind and pressure sen-
sors for observing the Martian atmosphere (Banfield et al., 2020), which provided cru-
cial information for discriminating seismic events from environmental noise sources; the
HP3 temperature probe (Spohn et al., 2022); and the robotic arm and cameras used for
deploying SEIS and HP3 on the ground(Banerdt et al., 2020).

Throughout the mission, the Marsquake Service (MQS; Clinton et al., 2018) cat-
aloged more than 1300 signals of seismic origin (Table S1; InSight Marsquake Service,
2023) in the exceptionally high-quality and complete waveform dataset (Clinton et al.,
2021; Ceylan et al., 2022). Ninety-eight of these events are part of the low-frequency (LF)
event family showing energy predominantly below 1 Hz. The rest of the events contain
energy mostly above 2.4 Hz and are classified as the high-frequency (HF) family.
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For events in the LF family, when seismic phases can be identified (typically di-
rect P and S, or their surface reflections PP and SS for distant events ≳100◦), MQS de-
termines event distances using the theoretical travel times from the model set of Stähler
et al. (2021) following the single station location algorithm described in Khan et al. (2016)
and Böse et al. (2017). The location of an event is obtained when a backazimuth can also
be reliably determined (Böse et al., 2017), in current MQS practice, this follows the method
described in Zenhäusern et al. (2022) since V12 catalog (InSight Marsquake Service, 2022).

In the V14 catalog, MQS computed distances for 42 of the 98 LF family events (Fig-
ure 1a). Twenty-four of these events are fully located with a backazimuth (hence assigned
quality A), while the remaining events only have a distance estimate and are quality B
or C (Table S1). The vast majority of the fully-located events cluster at distances be-
tween 25◦ and 35◦ with a backazimuth towards the East, pointing to the Cerberus Fos-
sae region (Figure 1a).

The most distant marsquake (S0976a; Figure 1) was observed on August 25, 2021,
at a distance of 146±7◦ from InSight and a backazimuth of 101±25◦, locating the event
in the Valles Marineris region (Horleston et al., 2022). Two events (S1000a and S1094b;
hereinafter, referred to as S1000I and S1094bI for brevity) showed the first clear indi-
cation of seismic surface wave arrivals (Kim et al., 2022). Both of these events were later
confirmed as distant impacts (Posiolova et al., 2022) with Mars-calibrated moment mag-
nitudes (Böse et al., 2018) of MMa

W 4.0±0.2 and 4.1±0.2 (Figure S1) and crater diame-
ters of 130 and 150 m, respectively. Furthermore, six HF family events within 300 km
of InSight have also been confirmed as impacts (Garcia et al., 2022; Daubar et al., 2023),
which show dispersive acoustic signals propagating along a waveguide in the form of chirps
in their coda, with strong linear polarization pointing toward the source. Finally, the largest
marsquake (MMa

W 4.6±0.3) recorded by InSight is S1222a (Kawamura et al., 2023), which
occurred on May 4, 2022 (Figure S1).

Giardini et al. (2020) and Lognonné et al. (2020) give the first interpretations of
the global seismicity on Mars and interior structure using limited number of both HF
and LF family events recorded during the first year of the mission. Subsequently, body
waves have been successfully utilized for studying the crust beneath the lander (Knapmeyer-
Endrun et al., 2021; Kim, Lekic, et al., 2021; Li et al., 2022; Durán, Khan, Ceylan, Zenhäusern,
et al., 2022), Martian mantle (Khan et al., 2021; Durán, Khan, Ceylan, Zenhäusern, et
al., 2022; Durán, Khan, Ceylan, Charalambous, et al., 2022; Khan et al., 2022) and core
(Stähler et al., 2021; Durán, Khan, Ceylan, Zenhäusern, et al., 2022; Khan et al., 2022;
Irving et al., 2022). Kim et al. (2022) obtained the average crustal velocity structure along
the minor-arc paths using Rayleigh waves observed in S1000aI and S1094bI (Posiolova
et al., 2022). Most recently, surface wave studies of S1222a enabled us to further under-
stand crustal anisotropy by using fundamental-mode Rayleigh and Love waves (Beghein
et al., 2022) and together with their overtones (Kim et al., 2023). In the same record,
Rayleigh waves that orbit around Mars have been also detected and used for estimat-
ing the planet’s average crustal thickness (Kim & et al., 2023).

The large number of noisy events is not surprising, since marsquakes are low-amplitude
and the background seismic noise at InSight is highly variable. Interpreting these nois-
ier events without any distance estimate is challenging. In order to overcome this lim-
itation, Giardini et al. (2020) introduced an alignment-based methodology where the weak
marsquakes are assigned a distance depending on their similarities with the highest-quality
events whose distances were assumed fixed or anchored. In their approach, the events
are visually aligned based on the predicted travel times of seismic phases using an in-
terior reference model. Since V3 catalog (InSight Marsquake Service, 2020), MQS adopted
this visual alignment approach in their locations as an alternative to interpret the events
using a recent reference model from Stähler et al. (2021).
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While the structural studies thus far have used the events with the highest signal-
to-noise (SNR) ratio, the vast majority of the seismic events and their waveform char-
acteristics (e.g., secondary arrivals in the signal coda and high-frequency content of some
LF family events) remain to be understood. Here, we extend the visual alignment ap-
proach by introducing the Dynamic Time Warping algorithm (Sakoe & Chiba, 1978),
and apply it to a larger set of LF family events now available. We first classify the rel-
atively weaker signals using the events with the highest SNR ratio as templates. Then,
we re-evaluate the seismicity on Mars in light of similarities and known tectonic regions.

Figure 1. Distance and backazimuth distribution of the LF-family events in (a) the V14 cat-

alog (InSight Marsquake Service, 2023), and (b) this study. The confirmed impacts, S1000aI

and S1094bI , are denoted by stars. The 6 events labelled in bold-face have locations that are

newly introduced or are modified in this study. Note a number of events without back azimuths

also have their distances revised. Diamonds indicate events in V14 where the distance is only

provided by visual alignments. The colors and marker sizes show the event qualities as indicated

in Table S1. The histograms indicate the number of events for distance (top) and backazimuth

(right). A majority of the catalog includes events at distances around 30◦ and a backazimuth

towards East (80–100◦), pointing to the Cerberus Fossae region. The hatched regions show events

without backazimuth or distance estimates. The errors bars show the uncertainties in distance

and backazimuth. See Figure S1 for the distance and MMa
W distributions, and Table S2 for a sum-

mary of re-evaluated events and our modifications. CF: Cerberus Fossae, VM: Valles Marineris.

2 Data and methods

For our analysis, we use spectral envelopes derived from the 20 samples-per-second
(sps) VBB waveform data from the LF family events cataloged during the entire mis-
sion. All the events and waveforms (InSight Mars SEIS Data Service, 2019b, 2019a) are
publicly available with the release of the V14 catalog (InSight Marsquake Service, 2023).
A breakdown of the catalog, including the HF events, is provided in Table S1.

Our method builds on the visual alignment approach of Giardini et al. (2020). In
the visual alignments, event envelopes of both low SNR events and high quality are com-
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pared, and weaker events are assigned a relative distance using the envelope similarities,
theoretical travel time curves and the events with pick-based distances as anchors. How-
ever, the low SNR events are often found to be similar to multiple template events, i.e.,
in the shape and length of their S-wave coda. Consequently, interpretation of events is
often challenging and ambiguous.

In order to address these particular cases, we introduce the dynamic time warp-
ing (DTW; Sakoe & Chiba, 1978) algorithm to measure event similarity using the shape
of their spectral envelopes (Figures 2 and 3). Additionally, we use an alternative approach
to determine new backazimuths for a subset of evets using a grid search for the wave-
form envelopes, as illustrated in Figure 4. Finally, we provide distances for the events
with lower SNR by finding the best matches to the collection of high-quality template
events, with addition insights from backazimuths in some cases, and separate the seis-
micity into classes (Figure 5). Our analysis assumes the source and structural effects along
the propagation path, such as attenuation and scattering, are negligible.

2.1 Similarity analysis

0 500 1000
Time after event start [s]

Vertical component
S1222a
S0173a

Similarity distance: 0.83

0.0 0.5 1.0

a) b)

Distance

Figure 2. Example of the DTW method (Sakoe & Chiba, 1978) to determine the shape simi-

larity between the spectral envelopes of two of the high-quality marsquakes, S1222a and S0173a.

(a) The final optimal point-wise pairings between the event envelopes. The light-brown lines

indicate matching data points with minimum distance in ∥L1∥ norm. (b) The warping path and

cross-similarity matrix. The color bar shows the normalized distance measure for similarity, with

larger values indicating less similarity. The warping path would be perfectly diagonal (dashed

line) if the envelopes were identical. The deviation from the ideal path for these two events is

reasonably close to the diagonal.

The data processing workflow we use to generate envelopes is summarized in Fig-
ure S2. First, we remove the instrument response to obtain acceleration time series and
rotate the VBB data into the ZNE (vertical-North-East) coordinate frame. Then, we com-
pute spectrograms for all three components using a window length of 30 s and an over-
lap of 60%. Finally, we obtain the envelopes by summing the spectral amplitudes in power
for each component in linear scale along the frequency axis between 0.25 and 0.9 Hz, which
is a frequency window that is rich in energy for the majority of LF family events (Ceylan
et al., 2022). The upper bound is intentionally below 1 Hz to avoid an artifact caused
by the electronics (Zweifel et al., 2021). The envelopes have a sample point every 12 sec-
onds. Although different parameters in terms of physical units, window lengths and over-
laps can be used, the selected parameters are preferred through experience gathered through-
out the mission so as to allow for comparison of events from different distances. We use
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the vertical component for measuring envelope similarities since it is the least-contaminated
by atmospheric disturbances.

For data regularization in advance of the DTW (Figures 2 and 3), a short time-
window around significant glitches in the time series are masked in the spectral envelopes.
Glitches are ubiquitous artifacts observed in the data (Scholz et al., 2020; Ceylan et al.,
2021) and may lead to inaccurate interpretations (Kim, Davis, et al., 2021). For mask-
ing, we replace the original envelope values with the mean of adjacent data points. The
glitch windows have been manually identified by the MQS. The spectral envelopes start
90 s prior to the energy onset as marked in the V14 catalog. The end times are man-
ually assigned for the few events that have a very long duration (>1h); otherwise, we use
the signal end from the catalog (InSight Marsquake Service, 2023). For similarity met-
rics, the point-wise distances in Figure 2a are computed using the ∥L1∥ norm because
of its stability and relative insensitivity to noisy time series. The final similarity values
(Figure S3) are normalized with the warping path length to account for differences in
the duration of the time series.

The DTW method is not suitable to use in an automated style for our purposes.
For instance, an event with no apparent S-wave energy may show a relatively higher de-
gree of similarity to another event with strong S-wave (e.g., S1097a and S0235b in Fig-
ure 3a and b). Therefore, an a-priori knowledge of events for their available phase picks,
polarization attributes and P- and S-wave coda lengths are required for interpretation.

2.2 Backazimuth estimation

Backazimuth is defined as the angle between the seismic station and epicenter with
respect to North in a station-centric coordinate frame. MQS initally determined back-
azimuth from the 3-component particle motions in the time domain (Böse et al., 2017),
though recently migrated to a more rigorous approach using polarization measured us-
ing both P and S-wave arrivals in the frequency-time domain (Zenhäusern et al., 2022).
MQS does not assign backazimuths when the results from either method are interpreted
to be unstable.

In an attempt to increase the number of events with assigned backazimuths, we adopt
a grid search method using the envelope timeseries. A variation of this approach has been
successfully applied to determine the backazimuth of the HF events in Stähler et al. (2022).
Here, using well documented events, we demonstrate that our approch can recover sim-
ilar backazimuths to other methods. Figures 4 and S4–S6 show how this approach per-
forms for the 2 distant impacts as well as the large events S0235b and S1222a.

In order to find the most plausible rotation angle range, we rotate the spectral en-
velopes for 360◦ with an increment of 2◦. Ideally, in the presence of P-waves, the energy
ratio of vertical (Z) and radial (R) components compared to the transverse (T) must be
maximized when the rotation is in the same direction as the true backazimuth. As a re-
liability check, the transverse-to-radial ratio should have maxima at 90◦ perpendicular
to the vertical-to-transverse component ratio. In our test cases, the cross-power of Z and
R components (Z.R/T ) better accentuates the results (Figure 4c, S4-S6), which makes
picking backazimuths easier. We choose the backazimuth values using the first concen-
trated amplitude ratios in the time window directly after the initial phase arrivals and
assign the uncertainties visually. Since we only use envelope amplitudes, we cannot elim-
inate the 180◦ ambiguity (Figure 4).

3 Results and discussion

The InSight seismicity catalog (Clinton et al., 2021; Ceylan et al., 2022) is a col-
lective inventory of work from the InSight science team that includes not only the lo-
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cations provided by MQS, but also locations of known impacts (Posiolova et al., 2022;
Garcia et al., 2022), alternative source interpretations (Kedar et al., 2021), seismic phase
picks (e.g. Khan et al., 2021; Stähler et al., 2021; Durán, Khan, Ceylan, Zenhäusern, et
al., 2022), and distance and seismic phase assignments from the visual alignments (Giardini
et al., 2020). Our analysis below provides new, updated alignments that allows us to as-
sign distances to substantially more of the LF family of events, coral events into classes
or group, enabling us to re-evaluate our understanding of Martian seismicity. A sum-
mary of the work is shown in Figure 5, where the various event groups are present in terms
of their distance from the InSight lander. These results can be expected to included in
final, post-mission catalog releases from MQS.

The map of the seismicity of Mars as contained in the MQS V14 catalog (InSight
Marsquake Service, 2023) is summarized in Figure 6a, while our interpretation result-
ing from this analysis is in Figure 6b (also see Figures S10–S12 for each class discussed
below). The seismicity on Mars appears to occur along or to the North of the dichotomy
boundary. Furthermore, it is notable that 2 of the 3 template events from distances >90◦

are the S1000aI and S1094bI impacts.

3.1 Distant events cluster

The so-called distant events (Figure 7) are a class of seismic signals that are bound
between the 2 most distant template events, S1000I and S0976a. The low SNR signals
that match this group lack any indication of P-energy and exhibit relatively long energy
packages, which we interpret as S-wave coda. The visual alignments placed these events
at distances >90◦ using the length of the S-wave coda as a proxy for distance (Figures 6a
and S11). The two distant template events, the only ones to lie beyond the core shadow,
did not occur until late in the mission over 2.5 years after landing. Therefore, although
the weak events now assigned at this distance occurred early on the mission, there was
no possibility to constrain their event distances until recently.

MQS locates S0976a in the Valles Marineris region (Horleston et al., 2022), 146±7◦

away from InSight. S1000aI occurred in Tempe Terra at a distance of 126◦ (Figure 6a)
(Posiolova et al., 2022). In this context, we note that an independent joint seismic event-
location and structure-inversion scheme predicts a location for S1000aI in excellent agree-
ment with the imaged location (Durán, Khan, Ceylan, Zenhäusern, et al., 2022). The
length of the S-wave coda for distant events is more comparable to S1000aI as it is shorter
than S0976a (Figures 5 and 7), suggesting that these events occurred at a distance range
of ∼130–140◦, possibly closer to S1000aI .

Considering the lack of any energy that we interpret to be P-wave, as well as the
emergent nature of the S-energy, the envelope-based back azimuth approach was not used
to try further constrain locations for these events. The only evidence of tectonic-related
seismic activity at these distances is from Valles Marineris. Valles Marineris is one of the
largest canyons in the whole Solar system (Coles et al., 2019) and has been proposed as
one of the most plausible candidates to produce marsquakes, using both surface fault-
ing observations (Golombek et al., 1992) and joint inversion of gravity and topography
data (Gudkova et al., 2017). It is reasonable to assume that the region is more active
than might be suggested on account of the observation of a single event. Therefore, we
assign these events a distance of 130–140◦, and suggest that the source region could be
in the western part of Valles Marineris (Figure 6b and d).

3.2 Assigning locations to S1153a and S1415a

In V14 catalog, MQS provides only distance estimates for S1153a and S1415a at
84.8±10◦ and 88.2±9.6◦, respectively. In addition to being the only events in the cat-
alog with phase-based distances at this distance, the frequency content of the events are

–7–



manuscript submitted to JGR: Planets

also remarkably similar (Figure S8). Furthermore, they show a high degree of similar-
ity in all three components (Figures 8a and S7), suggesting that most likely both events
originated from the same region.

MQS does not assign a backazimuth to either of these events due to their emer-
gent P-arrivals and contaminated waveform characteristics (Figure S8). Applying the
envelope-based grid search approach for S1153a, we obtain a backazimuth estimate of
85±30◦ with the 180◦ ambiguity (Figure 8a), which places the event in a region SW of
Olympus Mons. A reliable backazimuth pick was not possible for S1415a, although the
P-wave energy partitioning between the horizontal components imply a value similar to
S1153a in a more NE-SW direction (Figure 8b). Considering the large uncertainties for
S1153a, we assume both events occurred roughly in the same region and locate them SW
of Olympus Mons (Figure 6b and S10).

It is noted that in the V14 catalog and seen in Figure 1a, there is a cluster of aligned
events assigned also to this distance. As described in the previous subsection, all these
aligned events have been moved further away from InSight to Valles Marineris.

3.3 Events near to S1094bI : S0185a and S0234c

The S1094bI impact crater was detected in Amazonis Planitia at a distance of 58.5◦

with a backazimuth of 51.4◦. Two relatively weak events S0185a and S0234c are shown
to have strong similarity, as demonstrated in Figures 9 and S7b. The distance for S0185a
is calculated by MQS as 60±20◦. S0234c is assigned a distance of around 70◦ through
visual alignment. Neither of the events have MQS assigned backazimuths. Our similar-
ity metrics confirm that S1094bI is very similar to S0185a, and similar to S0234c (Fig-
ure S7). Therefore, we do not modify the previously reported distances.

No reliable backazimuth for either S0185a and S0234c can be obtained from our
envelope-based grid search approach. The closest seismic event with a location is S1102a
(73.3±5◦), located in Syrtis Major Planum (Figure 6), though this event is 20◦ further
out. The MQS distances for S0185a and S0234c coincide well with the eastern portion
of Syrtis Major Planum; however, it is difficult to assign a specific source region with-
out any indication of backazimuth for either of the events.

3.4 Events similar to S0899d: marsquakes with weak or no S-waves

S0899d has a strong arrival that can clearly be associated to a P-wave via its ver-
tical polarization which indicates that the event comes from a direction to the North of
InSight with a backazimuth of 22±30◦ (Table 1, Figure 6). A subset of weak marsquakes,
like S0899d, also show little-to-no S-wave energy (Figure 10) in the vertical component
or have an S–to–P ratio ∼1. The template for this class of events is S0899d, which does
not have a pick-based location, although visual alignments suggest a distance of ∼46◦

due to its similarity to S0183a.

Here, using the envelopes, we identify for the first time S-wave arrivals for S0899d
and S1097a on the horizontal components Figure 10), and modify their aligned distances
from 46◦ to 32◦ by aligning the event against the theoretical travel times from the ref-
erence model (Figures 5 and 6). S0183a remains an outlier: although the event clusters
with S0899d in terms of envelope characteristics, its epicenter in the V14 catalog is at
a distance of 46◦ (Figure 6). Khan et al. (2021) provides an alternative distance range
and locates S0183a at 54–59◦ using differential arrival times of seismic phases from mul-
tiple events and the current knowledge of mineralogy.

S1012d and S1197a were not assigned a backazimuth in V14. Using the envelope
grid search method, we propose that the events have backazimuths of 60±35◦ and 65±40◦,
respectively (Figure 11). This means the events locate close to S0325a, so there is now
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a cluster of three events in this class (Figures 6 and S11). Due to the 180◦ ambiguity,
it is possible that these events are on the opposite side of the azimuth semicircle. How-
ever, the observed seismicity on Mars appears to occur along or North of the equatorial
dichotomy (Figure 6); therefore, we find our preferred backazimuth more plausible.

The tectonic source behind this event class has yet to be discovered. Giardini et
al. (2020) and Khan et al. (2021) explain the lack of S-waves with distance and suggest
that S-waves are attenuated between ∼40-60◦ where seismic waves propagate through
a low-velocity layer in the mantle. With more data available, the epicenters determined
by MQS and our re-locations imply a scattered and closer distribution of these events;
hence, distance alone cannot explain the lack of S-waves. We cannot assign a single re-
gion for these events; therefore, we attribute the decrease in S-wave energy to geomet-
rical spreading due to strong 3D mantle structure or an S-wave low velocity layer in the
lithosphere (Giardini et al., 2020; Khan et al., 2021), or source mechanism.

Table 1. Location parameters of S0899d class. The V14 distances with asterisks are assigned

using the visual alignment rather than phase picks. We modified the previously assigned dis-

tances for S0899d and S1097a using new S-picks on Figure 7, and calculated new backazimuths

for S1197a and S1012d (Figure 11). BAZ: backazimuth.

Event name V14 V14 This study This study
Distance (◦) BAZ (◦) Distance (◦) BAZ (◦)

S0183a 46.0±17.0 85±17 – –
S0899d 46.7±10∗ 22±30 32±10 –
S1197a 32.0±1.5 – – 65±40
S1097a 46.2±10∗ 318±20 32±10 –
S1012d 38.2±3.3 – – 60±35
S0325a 39.7±6.1 57±20 – –

3.5 S1222a and the Cerberus Fossae class

S1222a, which occurred on May 4, 2022, is the largest event (MMa
W 4.6±0.2) recorded

since landing. The event is 37◦±1.6 away from InSight, and unlike most of the LF fam-
ily, shows clear Rayleigh and Love waves including their overtones. The MQS backaz-
imuth estimate for S1222a is 101±8◦ (Kawamura et al., 2023), while using the envelope-
based approach we obtain 125◦±15 which is also consistent with the direction of prop-
agation from the minor-arc surface waves (Kim et al., 2023). This suggests that the event
perhaps originated closer to the Martian dichotomy boundary (Andrews-Hanna et al.,
2008) than the location reported in V14 catalog. Interestingly, although the event did
not originate in the Cerberus Fossae, we observe that the S1222a envelopes are largely
similar to those of the LF events with excess energy in the S-wave coda from Cerberus
Fossae (Figure 2 and 12).

InSight did not record any tectonic events closer than 25◦ from the station (Fig-
ure 1a). A large number of the LF-family events, which show relatively clear P- and S-
wave arrivals, are located in the Cerberus Fossae region, 25–35◦ away from the station
due East (Durán, Khan, Ceylan, Zenhäusern, et al., 2022; Stähler et al., 2022). Within
this cluster of events, the decay of P- and S-wave coda is similar, although some events
show excess energy in their coda (e.g. S0173a vs S0235b; Figure S9). No new events were
added to this cluster class though our study.

Stähler et al. (2022) attributes the seismicity in the Cerberus region to the active
deformation caused by recent volcanism. The authors also show that the HF events come
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from a similar direction as the LF family events located in the region and propose that
all HF events originate from the central part of Cerberus Fossae in the form of very shal-
low events associated with large active volcanic dykes.

The strike of the Cerberus Fossae fault system is directed NW-SE (yellow lines in
Figures 6c and S13), while the epicenters of Cerberus events follow an N-S trend. In or-
der to be consistent with the surface observations (Knapmeyer et al., 2006; Perrin et al.,
2022), we project all Cerberus events to the center of the fault system while maintain-
ing their reported distances.

4 Conclusions

Contrary to pre-mission expectation (Knapmeyer et al., 2006), we find that over
the lifetime of the mission, InSight did not observe a wide distribution of seismicity across
the planet. Except for S1222a, seismicity was not observed on wrinkle ridges. Instead,
the seismicity appears to focus on isolated tectonic features in a few distance ranges and
locations along or North of the Martian dichotomy (Figure 6), implying that contrac-
tion due to cooling is not the dominant driver of present-day Martian tectonics, as pro-
posed for other smaller terrestrial planets, Mercury and the Moon (Byrne et al., 2014):

(i) A number of low SNR events that due to their very long duration are likely dis-
tant events and were originally located by visual alignments at distances >90◦,
are found to be highly similar to the impact event S1000aI at 126◦ away from In-
Sight. In light of the only evidence of a tectonic region at these distances from S0976a,
these events are likely to occur in southern Tharsis region, plausibly in western
Valles Marineris (Figure 6b and d). The absence of observed seismicity from the
heavily faulted Tharsis region had been puzzling beforehand, but can now be ex-
plained by the fact that SS and PP waves from these distances are generally highly
scattered and can only be identified as such by comparison to template events such
as the S1000aI .

(ii) Two events (S1153a and S1415a) have similar envelope shape (Figure 8b) and spec-
tral content (Figure S2). These events have distances around 90◦ as computed by
MQS. We find a backazimuth of 85◦ for S1153a (Figure 8a), and locate both of
these events in the approximate area of Olympus Mons (Figure 6), which is sur-
rounded by a basal scarp of 2–10 km height and thrust faults as young as <40Ma
(Weller, 2015).

(iii) S0185a and S0234c can be paired with the impact S1094bI . The event distances
are compatible with a source region at a distance of ∼60◦ (Figure 5 and 9); how-
ever, since S0185a and S0234c have no convincing indication of backazimuth, we
are not able to identify a single source region.

(iv) A subset of events (S0899d class) show little or no S-wave energy, specifically on
the vertical component (Figure 5). We computed backazimuths for two of the events
in this class (S1012d, S1197a; Figure 11). This class of events shows no spatial clus-
tering; therefore, the source region is unknown. The lack of stronger S-waves re-
mains puzzling. Possible reasons are source mechanism, geometrical spreading due
to strong 3D mantle structure or a relatively thin S-wave low velocity zone due
to a velocity inversion in the lithosphere(Khan et al., 2021).

(v) The main seismogenic region on InSight’s hemisphere of Mars (Figure 1) remains
to be the central part of Cerberus Fossae (InSight Marsquake Service, 2023; Stähler
et al., 2022), with original MQS epicenters aligned in a N-S trend (Figure 6a and
c). Since the faults in the region have a strike along NW-SE direction (Perrin et
al., 2022), we re-assign those events to the center of the Cerberus Fault system.

Our re-locations have no effect on the recent interior models (e.g. Khan et al., 2021;
Stähler et al., 2021; Kim et al., 2022) since we do not adjust the locations or seismic phase
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picks for the high-quality events. However, our re-evaluations of e.g., the distant event
class, are potentially important for future studies aiming at the deep interior of Mars (e.g.
Irving et al., 2022), as well as regional seismicity and global stress field estimates of the
planet (e.g. Knapmeyer et al., 2023).

5 Open Research

The waveform data and seismicity catalog are avaliable from InSight Mars SEIS
Data Service (2019a) and InSight Mars SEIS Data Service (2019b). The InSight seismic-
ity catalog is from InSight Marsquake Service (2023). We used the ObsPy (Krischer et
al., 2015), NumPy (Harris et al., 2020) and scipy (Virtanen et al., 2020) packages for data
processing. We benefited from the tslearn package of Tavenard et al. (2020) for similar-
ity analysis.
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Figure 3. Similarity analysis for S1097a, an LF QB event without an assigned distance in the

V14 catalog, against 4 template events. The final similarity distances in ∥L1∥ norm are indicated

in the warping path panels, where smaller values indicate higher level of similarity (Figure S3).

The event is most similar to S0899d (a), another LF QB event without a pick-based distance

in the catalog. Therefore, S1097a clusters within the same class. Note that the envelope shape

is also significantly similar to S-wave coda of S0235b (b). The degree of similarity decreases for

other templates in (c) and (d).
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Figure 4. Validation of envelope-based grid search approach for backazimuth estimation using

S1000aI . The impact crater (Posiolova et al., 2022) is detected 126.09◦ away from InSight and

at a backazimuth of 34◦ (Posiolova et al., 2022). The vertical dotted lines at zero time on each

panel indicate the PP phase arrival time. (a) and (b) show the rotated horizontal envelopes, com-

puted for frequencies between 0.25 and 0.9 Hz. The envelope amplitudes are normalized using

the maximum of the vertical component for visualization purposes. (c) and (d) denote combined

vertical (Z) and radial (R) to transverse (T) and T/R ratio, respectively. The orange circles and

error bars show the preferred backazimuth pick with the ambiguity, computed using envelope

amplitudes prior to normalization. For reference, the Z-component envelopes are plotted at the

top of (c) and (d). The horizontal dotted lines in (c) and (d) show the true backazimuth. The

color scale in (c) is saturated to make the amplitudes after the PP more visible.
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vertical component acceleration data for frequencies 0.25–0.9 Hz. The light-gray parts of the

envelopes show the unglitched data, note the glitches are masked for similarity processing. The

2 envelopes in a tan color are the known impacts. The distances from V14 are indicated on the

right side for all templates events outside of the Cerberus Fossae cluster. The zero time is the

first arriving theoretical S-wave (S or SS depending on the distance) from a reference model

(Stähler et al., 2021; Ceylan et al., 2022). Theoretical arrival times for P, S, PP and SS phases

are marked and labelled. S0899d, S1097a and S1197a belong to the same class with S0183a, but

clearly lie closer to InSight at around 32◦. Envelopes are in log-scale to emphasize similarities at

small amplitudes. The envelopes for events >50◦ are processed with a window length of 60 s, and

30 s for the rest, all with a 50% overlap.
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Figure 6. Proposed regions of seismic activity. (a) Current state from the V14 catalog

(InSight Marsquake Service, 2023), including the interpretations from the visual alignments

adopted since Giardini et al. (2020). The orange-colored ring around InSight denotes the distance

range (32-46◦) for the events with weak or no S-wave. The red curve at 90◦ represents the dis-

tant events class. The dotted curve indicates the distances for S1153a (84.8±10◦) and S1415a

(88.2±9.6◦) as reported by MQS. (b) Our interpretation of the seismicity. The light red shaded

circles indicate regions where there are clusters of multiple events. Symbols sizes indicate the

extent of the region, not location uncertainties. Zoomed views around the Cerberus Fossae and

Valles Marineris are in (c) and (d), also marked with white rectangles in (a) and (b). Fault loca-

tions in (c) around Cerberus Fossae do not reflect large uncertainties in backazimuth, allowing us

to interpret that all events are associated with the fault system. The fault lines in (c) are from

Knapmeyer et al. (2006) and Perrin et al. (2022), where the faults in yellow show the Cerberus

Fossae system. The background map and the equatorial dichotomy boundary are from Smith et

al. (2001) and Andrews-Hanna et al. (2008), respectively.
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Byrne, P. K., Klimczak, C., Celâl Şengör, A. M., Solomon, S. C., Watters, T. R.,
& Hauck, S. A., II. (2014, Apr 01). Mercury’s global contraction much
greater than earlier estimates. Nature Geoscience, 7 (4), 301-307. doi:
10.1038/ngeo2097

Ceylan, S., Clinton, J. F., Giardini, D., Böse, M., Charalambous, C., van Driel, M.,
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Introduction

In Table S1, we provide a breakdown of the V14 seismicity catalog from InSight (InSight Marsquake Service,

2023). Table S2 contains a list of re-evaluated events with a summary of modification proposed here. Figure

S1 compares magnitude and distance distribution in V14 catalog and this study. The envelope computation

steps and resulting cost matrix from similarity analysis are shown in Figure S2 and Figure S3, respectively.

Figures S4–S6 demonstrate test cases for the backazimuth determination using grid search approach. Figure

S7 show similarity analysis for 3 event classes. Figure S8 provides a summary of S1153a and S1415a. An

additional comparison for S0235b and S0173a is provided in Figure S9. Interpretation and relocation of

event classes are in Figures S10–S12.
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Table S1: Breakdown of the MQS catalog V14 (InSight Marsquake Service, 2023). Events are classified
into low-frequency (LF) and high-frequency (HF) families. The LF family is further classified into two types
as LF and broadband (BB) events. The HF family consists of the 2.4 Hz, HF, very high-frequency (VF)
sub-classes. Each event is cataloged with a quality identifier (QA being the highest quality and QD the most
speculative) depending on the signal-to-noise ratio and reliability of phase picks. More information on the
event classification is available in Clinton et al. (2021) and Ceylan et al. (2022). This study focuses on the
LF family events only.

Event type Total QA QB QC QD
Low-frequency family
LF 59 6 12 20 21
BB 39 8 10 15 6
High-frequency family
2.4Hz 989 – 50 353 586
HF 162 – 74 79 9
VF 74 – 29 34 11
Total 1319 14 175 500 630
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Table S2: Breakdown of re-evaluated events and summary of the analysis done in this study.

Event name Distance (◦) Backazimuth (◦) Distance (◦) Backazimuth (◦)
in V14 in V14 this study this study

Cerberus Fossae events: 18 events. Re-located at the center of the Cerberus Fossae
system, using the original distances as reported in V14.

S0105a 32.5±8.2 112±19 – 85±5
S0173a 30±1.4 88±11 – 85±5
S0235b 28.5±1.5 77±11 – 85±5
S0407a 29.3±2 90±62 – 85±5
S0474a 29.1±18 97±13 – 85±5
S0484b 31.8±5.9 100±20 – 85±5
S0784a 34.4±3.5 115±22 – 85±5
S0802a 30±3.5 82±15 – 85±5
S0809a 29.8±2 91±9 – 85±5
S0820a 30.2±2.4 106±17 – 85±5
S0864a 28.7±3.5 90±22 – 85±5
S0916d 29.3±5.9 97±36.5 – 85±5
S1015f 27.5±2 89±25 – 85±5
S1022a 30.7±2 63±5 – 85±5
S1048d 30.2±1.3 97±17 – 85±5
S1133c 30.2±1.3 91±14 – 85±5

Events with weak or no S-wave: 4 events. New distances assigned to S0899d and S1097a.
New backazimuth assigned to S1012d and S1197a, and combined with the previously
reported distances, the events are now located.

S0899d 46.7±10∗ 22±30 32±10 –
S1197a 32.0±1.5 – – 65±40
S1097a 46.2±10∗ 318±20 32±10 –
S1012d 38.2±3.3 – – 60±35

Events similar to S1094bI : 2 events. No modifications made.
S0185a 59.8±20 – – –
S0234c – – 60±20 –

S1153a and S1415a: 2 events
Backazimuth determined for S1153a. Both events are located SW of Olympus Mons.

S1153a 84.8±10 – – 85±30
S1415a 88.2±9.6 – – 85±30

Distant cluster: 5 events. Distance assigned between 130–140◦

Located in the western Valles Marineris region using the S0976a backazimuth (101±25).
S0154a – – 130–140 101±25
S0395a – – 130–140 101±25
S0345a – – 130–140 101±25
S0226b – – 130–140 101±25
S0133a – – 130–140 101±25
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Figure S1: Distance vs Mars-calibrated moment magnitude (MMa
W ; Böse et al., 2018) distribution of the

events (a) in the V14 MQS catalog and (b) after our interpretations in this study. The stars show the
impacts. The distance values for the events with thicker symbol edges come from visual alignments.
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Figure S2: A sketch summarizing the envelope computation process using an example from S0173a (LF,
quality A). The white rectangle in the middle panel represents the part of the spectrogram is used to create
the envelope. Envelopes are computed by summing the spectral amplitudes along the frequency axis, then
MQS-picked glitches are masked (bottom panel). These masked envelopes are used as input for the Dynamic
Time Warping (DTW) (Sakoe and Chiba, 1978).

S0
15

4a

S0
13

3a

S0
39

5a

S0
34

5a

S0
22

6b

S1
41

5a

S1
15

3a

S0
18

5a

S0
23

4c

S0
18

3a

S1
09

7a

S1
19

7a

S0
32

5a

S1
01

2d

S0
82

0a

S0
80

9a

S0
86

4a

S1
04

8d

S1
13

3c
Test events

S0976a

S1000a

S1094b

S0899d

S1222a

S0235b

S0173a

Te
m

p
la

te
 e

v
e
n
ts

1.47 1.25 1.29 1.15 1.37 2.30 2.16 2.21 2.25 2.65 2.96 3.21 2.63 2.28 2.32 2.67 2.96 2.44 2.98

2.07 1.97 1.70 1.42 2.13 2.92 3.22 3.29 2.90 3.14 3.70 3.78 3.12 2.65 1.91 2.58 2.61 2.23 2.74

1.61 1.59 1.64 1.62 1.66 1.55 1.39 0.68 0.78 1.90 1.73 1.76 1.92 1.65 0.88 1.49 0.77 1.41 1.56

1.29 1.08 1.45 1.28 1.10 1.33 0.92 1.02 1.28 0.55 0.41 0.55 0.78 1.01 0.89 0.75 0.80 0.49 0.59

0.97 0.92 1.02 1.01 0.85 0.73 0.88 0.75 1.13 0.88 0.95 0.93 1.09 0.95 0.93 0.76 0.89 0.88 0.76

1.18 1.19 1.42 1.25 1.04 1.06 0.74 0.76 1.16 0.86 0.51 0.79 1.45 1.17 0.91 0.76 0.81 0.52 0.45

1.09 0.88 1.31 1.03 1.07 0.95 0.91 0.91 1.16 0.89 0.89 0.97 1.16 1.10 0.78 0.91 0.90 0.82 0.54

Relative re-scaled similarity per templateLess similar More similar
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Figure S4: Test case for backazimuth estimation using our grid search approach for S0235b. The en-
velopes are computed for frequencies between 0.25 and 0.9 Hz. (a) and (b) show the rotated envelopes after
normalization. (c) and (d) denote combined vertical (Z) and radial (R) to transverse (T) and T/R ratio,
respectively. The estimated values from the grid search method and MQS are indicated. The orange dots
with error bars show our preferred backzimuth pick, computed using envelope amplitudes before normaliza-
tion. The envelopes for the vertical component are plotted at the top of (c) and (d) for reference.
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Figure S5: Backazimuth estimation for S1094bI . The true location is 58.5◦ away from InSight with a
backazimuth of 51.4◦ (Posiolova et al., 2022). Other details follow Figure S4 caption.
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Figure S7: Warping path examples for 3 event classes. (a) S0899d and S1197a for weak-or-no S class, (b)
S1094bI and S0185a for events similar to the impact, and (c) S1153a and S1415a event pair.
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Figure S8: Event summary for S1415a (a) and S1153a (b), both broadband, quality B. Noise and signal
windows in the displacement spectra are hand-picked by MQS. The seismic phases from MQS are shown
with vertical lines with their picking uncertainties. The y1 and y2 phases (dashed lines) were picked on the
high-frequency energy around 2.4 Hz.

9



0 250 500 750 1000
Time after event start [s]

Vertical component

S0235b

S0173a

W
ar

pi
ng

 p
at

h 
fo

r i
de

nt
ic
al

 e
nv

el
op

es

Warping path

a) b)

0 250 500 750 1000
Time after event start [s]

Figure S9: Comparison of S0235b and S0173a. (a) Point-wise warping match. (b) The warping path and
envelopes in (a) overlapped. Note that the excess energy in the P- and S-coda makes similarity analysis
harder although these two events originate from Cerberus Fossae and belong to the same class.

Figure S10: Interpretation of the events >60◦. In (a), we show the most recent understanding from MQS.
The panel (b) shows our interpretation for these events, zooming around the Valles Marineris region. The
locations of the two known impacts are marked as cyan stars. The distant events (red curve in (a)) are
located at the western Valles Marineris region (labelled as distant events in (b)). MQS computed distances
of S1153a and S1415a, but no backazimuth was provided. We propose a backazimuth of 85±35◦ for S1153a
(dotted black line in (a)), and due to their similarity, locate the events in western Tharsis region at Olympus
Mons.
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Figure S11: Interpretation of the events with no or weak S-wave energy. The template event is S0899d. (a)
The current state in the MQS catalog (InSight Marsquake Service, 2023). The wheat-colored ring denotes
the distance range (∼32-46◦) which this class of events span. The S1094bI is shown with cyan star at 58.5◦

as a reference to distance ranges. (b) Our interpretation of event locations. We refrain the locations provided
by MQS; in addition, we locate two more events (S1012d and S1197a) after our backazimuth analysis. We
identify S-phases for S0899d and S1097a, and locate the events at 31–32◦ range.

Figure S12: Interpretation of the events located in the Cerberus Fossae region. (a) Current MQS locations
(red circles), and (b) our explanation of the seismicity. The faults in (b) are from Knapmeyer et al. (2006)
and Perrin et al. (2022). The MQS event locations follow a North-South trend; however, the Cerberus fault
system (yellow lines is (b) in NW-SE direction. Therefore, we project all events to the center. S1222a and
S0918a are excluded due to their outlier locations.
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