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Abstract

Severe space weather produced by disturbed conditions on the Sun results in harmful effects both for humans in space and in

high-latitude commercial flights, and for technological systems such as spacecraft or communications. Also, geomagnetically

induced currents flowing on long ground-based conductors, such as power networks or pipelines, potentially threaten critical

infrastructures on Earth. The first step in developing an alarm system against geomagnetically induced currents is to forecast

them. This is a challenging task, though, given the highly non-linear dependencies of the response of the magnetosphere to

these perturbations. In the last few years, modern machine-learning models have shown to be very good at predicting magnetic

activity indices as the SYM-H. However, such complex models are on the one hand difficult to tune, and on the other hand they

are known to bring along potentially large prediction uncertainties which are generally difficult to estimate. In this work we aim

at predicting the SYM-H index characterising geomagnetic storms one hour in advance, using public interplanetary magnetic

field data from the Sun–Earth L1 Lagrange point and SYM-H. We implement a type of machine-learning model called long

short-term memory networks. Our scope is to estimate -for the first time to our knowledge- the prediction uncertainties coming

from a deep-learning model in the context of space weather. The resulting uncertainties turn out to be sizeable at the critical

stages of the geomagnetic storms. Our methodology includes as well an efficient optimisation of important hyper-parameters

of the long short-term memory network and robustness tests.

1



manuscript submitted to Space Weather

Forecasting Geomagnetic Storm Disturbances and1

Their Uncertainties using Deep Learning2

D. Conde1, F. L. Castillo2, C. Escobar1, C. Garćıa1, J. E. Garćıa1, V. Sanz1,3,3
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Key Points:10

• An LSTM model is built to forecast the SYM-H index using interplanetary mag-11

netic field measurements and past SYM-H values.12

• The hyper-parameter optimisation and the robustness of the LSTM model is en-13

sured by using dedicated algorithms and methods.14

• Prediction uncertainties from the LSTM model are estimated and turn out to be15

considerable in the critical phases of geomagnetic storms.16
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Abstract17

Severe space weather produced by disturbed conditions on the Sun results in harmful18

effects both for humans in space and in high-latitude commercial flights, and for tech-19

nological systems such as spacecraft or communications. Also, geomagnetically induced20

currents flowing on long ground-based conductors, such as power networks or pipelines,21

potentially threaten critical infrastructures on Earth. The first step in developing an alarm22

system against geomagnetically induced currents is to forecast them. This is a challeng-23

ing task, though, given the highly non-linear dependencies of the response of the mag-24

netosphere to these perturbations. In the last few years, modern machine-learning mod-25

els have shown to be very good at predicting magnetic activity indices as the SYM-H.26

However, such complex models are on the one hand difficult to tune, and on the other27

hand they are known to bring along potentially large prediction uncertainties which are28

generally difficult to estimate. In this work we aim at predicting the SYM-H index char-29

acterising geomagnetic storms one hour in advance, using public interplanetary magnetic30

field data from the Sun–Earth L1 Lagrange point and SYM-H. We implement a type of31

machine-learning model called long short-term memory networks. Our scope is to esti-32

mate -for the first time to our knowledge- the prediction uncertainties coming from a deep-33

learning model in the context of space weather. The resulting uncertainties turn out to34

be sizeable at the critical stages of the geomagnetic storms. Our methodology includes35

as well an efficient optimisation of important hyper-parameters of the long short-term36

memory network and robustness tests.37

Plain Language Summary38

Geomagnetic storms are disturbances of the geomagnetic field caused by interac-39

tions between the solar wind and particle populations mainly in the Earth’s magneto-40

sphere. These time-varying magnetic fields induce electrical currents on long ground-based41

conductors that can damage power transmission grids and other critical infrastructures42

on Earth. As a first step to forecast the ground magnetic perturbations caused by ge-43

omagnetic storms at specific mid-latitude locations, the objective of this work is to pre-44

dict the SYM-H activity index, which is generated from ground observations of the ge-45

omagnetic field at low and mid-latitudes, and which provides a measure of the strength46

and duration of geomagnetic storms. We use the interplanetary magnetic field data mea-47

sured by the ACE spacecraft at the L1 Lagrangian point and past SYM-H values to fore-48

cast the behavior and severity of geomagnetic storms one hour in advance. This fore-49

casting is done using a type of artificial neural network model called long short-term mem-50

ory. We also propose ways to estimate the uncertainties of these predictions, which help51

us to better understand machine-learning models in space weather prediction and could52

lead to more accurate and reliable forecasting of geomagnetic storms and their ground53

effects in the near future.54

1 Introduction55

In the last decades, our society has become more interdependent and complex than56

ever before. Local impacts can cause global issues, as the COVID-19 pandemic clearly57

showed, affecting the health of millions of human beings. Our society is highly depen-58

dent on relevant technological structures, such as communications, transport, or power59

transmission networks, which can be very vulnerable to the effects of space weather (SW).60

The latter has its origin in the solar activity and their associated events, such as coro-61

nal mass ejections and co-rotating interaction regions. Among other effects, these phe-62

nomena have an impact on the electrical current systems surrounding the Earth, enhanc-63

ing them and thus causing large magnetic field fluctuations that propagate down to the64

ground. The electric field associated with these fluctuations, which is influenced by the65

interaction with the conductive earth, induces telluric currents in the uppermost solid66
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layers and geomagnetically induced currents (GICs) in long conductors running on the67

surface. These GICs may cause disturbances, interruptions, and even long-term dam-68

age to critical infrastructures such as railways, oil and gas pipelines and power grids, with69

drastic social, economic and even political consequences. The intensity of the GICs is70

determined by the strength of the geoelectric field, but the latter measurements are rarely71

available. Because GICs are driven by temporal changes in the magnetic field, if we have72

an estimate of the resistivity structure below a specific location, variations in the mag-73

netic field measured by ground magnetometers can in principle be used as the input pa-74

rameter for deriving the GICs built up locally in a power grid (e.g. Torta et al. (2017)).75

However, because of the three-dimensional lithospheric resistivity structure, the behaviour76

of the time derivative of the geomagnetic field to which the ground electric fields are as-77

sociated is complex and, consequently, has proven to be very difficult to predict (Kellinsalmi78

et al., 2022). Predicting geomagnetic indices, which attempt to condense a rich set of79

information about the status of the magnetosphere in a single number, is simpler and80

has always been a very attractive area for machine-learning (ML) applications (Camporeale,81

2019). Although attempts to forecast geomagnetic indices started several decades ago82

(e.g. Burton et al. (1975)), they feature highly non-linear dependencies which are not83

yet well understood, and their forecasting is still an open and intensive area of research.84

Perhaps not surprisingly, recent efforts have been exploiting the large expressiveness of-85

fered by modern ML models, and their ability to characterise complicated multidimen-86

sional datasets. The present work follows such a trend by investigating advanced ML tech-87

niques to predict the behaviour of geomagnetic storms.88

More specifically, our scope is to predict, at a given time in advance, the SYM-H89

index, which describes the geomagnetic disturbances at low and middle latitudes in terms90

of longitudinally symmetric disturbances of the horizontal component of the geomagnetic91

field (Iyemori, 1990). The SYM-H index is known to track very well the evolution in time,92

the topology and intensity of geomagnetic storms and their relation with solar source93

phenomena (Wanliss, 2005; Wanliss & Uritsky, 2010). We use time-series data from the94

Sun–Earth L1 Lagrange point tracking several covariates describing the interplanetary95

magnetic field (IMF) and its different components in addition to the SYM-H index. For96

this purpose, we predict the SYM-H index with a type of artificial neural network model97

called long short-term memory (LSTM) neural network (Hochreiter & Schmidhuber, 1997)98

especially conceived for describing, among others, non-linear time-series data.99

Highly-parameterised neural networks as the ones we use in this work (as well as100

in recent literature) carry an important amount of intrinsic prediction uncertainty, called101

among statisticians “epistemic” uncertainty. This should be taken into account, where102

possible, in any scientific application, even more in those with direct impact on society103

as the present study. Yet another issue with those models is the presence of parameters104

(named “hyper-parameters” in the ML community) which are not directly optimised dur-105

ing the fitting processes, but whose impact on the predictions are potentially very large.106

Consequently, some sort of extra optimisation should be performed, which is typically107

computationally costly.108

Furthermore, robustness in non-linear time-series predictions obtained from ML109

models (including LSTM) can be challenging due to their complex and often unpredictable110

nature. However, several techniques exist and can be used to test and improve the ro-111

bustness of the models.112

While studies on the prediction of geomagnetic indices with ML techniques have113

been conducted recently (see section 2), the novelty of our work is two-fold:114

• For the chosen ML model (LSTM in this case), we report our predictions for the115

SYM-H index with associated uncertainties.116

• We optimise the hyper-parameters of our model, in particular, following an effi-117

cient Bayesian optimisation strategy.118
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• The robustness of our LSTM model is evaluated not only with the standard hold-119

out method but also by reshuffling the list of geomagnetic storms.120

2 Related Work121

Efforts to forecast geomagnetic indices date back to the 1980’s (Mayaud, 1980), which122

started using linear prediction models which were unable to capture well enough the com-123

plexity of the response of the magnetosphere to SW. For this reason, the community started124

to rely on the arbitrarily high expressiveness of neural network models (e.g. Lundstedt125

and Wintoft (1994); Gleisner and Wintoft (1996)).126

Among these works, the one developed by Siciliano et al. (2021) constitutes a valu-127

able reference from which we have started our study. They forecast the SYM-H index,128

for which one can have a priori finer time granularity with respect to other indices, thus129

being advantageous from the point of view of an alert system. Siciliano et al. (2021) com-130

pared the SYM-H predictions using two different neural network models: the LSTM and131

the convolutional neural network (CNN), the latter being typically used for image recog-132

nition tasks (Zhang, 1988; Zhang et al., 1990). While they have obtained good perfor-133

mances with the CNN compared to the LSTM (in some cases even slightly better), in134

our study we concentrate on the LSTM only, which for us delivered similar performances135

as the CNN. However, as commented above, we address the important issue of the un-136

certainty estimation, along with a detailed and explicit hyper-parameter optimisation137

together with an additional robustness test.138

Posterior work by Collado-Villaverde et al. (2021) revolves on the same idea, but139

using a neural network architecture which actually combines CNN and LSTM transfor-140

mations to predict not only the SYM-H index but also the complementary ASY-H in-141

dex. With respect to our work, their architecture is different in that we use a standard142

LSTM model. Bhaskar and Vichare (2019) also predict both indices using a non-linear143

autoregressive exogenous (NARX) model (Leontaritis & Billings, 1985). On the other144

hand, Bailey et al. (2022) aim at forecasting the geoelectric field with LSTMs as well.145

While Pinto et al. (2022) forecast the ground magnetic field time derivative with LSTMs,146

Madsen et al. (2022) forecast both the ground magnetic field and its time derivative with147

LSTM networks and hybrid CNN-LSTMs. None of the works mentioned above, nor oth-148

ers less related to our study but in the same context, estimate the prediction uncertain-149

ties, nor have they thoroughly optimised their hyper-parameters. The only exception we150

were able to find was the very recent work by Iong et al. (2022), which studied the SYM-151

H index by using not neural networks, but another ML model belonging to ensemble meth-152

ods (in particular, using a regularising gradient boosting framework; the eXtreme Gra-153

dient Boosting (XGBoost) library (Chen & Guestrin, 2016)), obtaining very good per-154

formance as well. In their case, while not estimating their prediction uncertainties, the155

hyper-parameter optimisation was actually performed, using a gradient-free “black box”156

optimisation method. The latter is a generic algorithm most convenient for situations157

where little or no information is known about the structure of the function to optimise.158

In our study, on the other hand, we use an optimisation algorithm particularly suitable159

for the type of objective function we have, so it is arguably more efficient.160

3 Dataset Selection and Processing161

The dataset used in this work corresponds to a sample of geomagnetic storms that162

occurred between 1998 and 2018, which were recorded at ground-based geomagnetic ob-163

servatories, and were preceded by changes in the magnetic field and plasma parameters164

of the interplanetary medium, which were measured at the L1 Lagrange point by NASA’s165

Advanced Composition Explorer (ACE) spacecraft. The geomagnetic storms have been166

selected following the same criteria as in Siciliano et al. (2021), in order to make a di-167

rect comparison with this previous work. The sample contains 42 of the most intense ge-168

–4–



manuscript submitted to Space Weather

omagnetic storms, distributed in two solar cycles. The intensity of the storms is defined169

by the SYM-H index. This index can be considered as a proxy of the response of the Earth’s170

magnetosphere (especially the ring current) to solar activity and it is computed from data171

of a network of six magnetic observatories distributed in longitude across the low and172

middle-latitude region, with a time resolution of 1 min and precision of 1 nT. All the ge-173

omagnetic storms selected have a minimum SYM-H index lower than −100 nT, so they174

can be considered as either severe or extreme (Patowary et al., 2013). This ensures a high175

signal-to-noise ratio. Indeed, 55% of all these geomagnetic storms (23 out of 42) have176

a minimum SYM-H value between −200 nT and −100 nT, while the rest (i.e. 19 geo-177

magnetic storms) have a minimum SYM-H value below −200 nT.178

As Siciliano et al. (2021), we follow the commonly used hold-out method for train-179

ing a ML model which is the process of dividing the full dataset into different splits and180

then using one split for training the model and other splits to validate and test it. Ta-181

ble 1 lists the geomagnetic storms classified in three sub-datasets containing data from182

different storms. These three sub-datasets are uniformly populated in terms of geomag-183

netic storm intensity and complexity. The training sub-dataset is used to train the LSTM184

model, the validation sub-dataset stops the network training and prevent over-fitting,185

while the test (also known as hold-out) sub-dataset is used as a proxy to evaluate the186

performance of the model on unseen data.187

The length of the time interval of the considered geomagnetic storms range from188

6 to 25 days, with an average of 10 days. This choice allows us to consider not only the189

main phase periods but also the initial and recovery phases, as well as previous and later190

quiet periods. The three sub-sets are uniformly populated in terms of geomagnetic storm191

intensity and complexity, the latter measured by the presence of multiple depressions of192

the magnetic field.193

As already mentioned by Siciliano et al. (2021), a larger number of geomagnetic194

storms can be considered, as done for instance by Cai et al. (2010) and Bhaskar and Vichare195

(2019), though the additional ones are just either weak or moderate geomagnetic storms,196

adding no further predictive power to our LSTM model. This is due to the fact that all197

storm phases including quiet periods are already considered in all three sub-datasets.198

The independent variables (commonly named “features” in ML) used for training199

the LSTM model are the squared value of the IMF magnitude B, the squared value of200

the IMF By component, the IMF Bz component (all these in GSM coordinates recorded201

at L1 Lagrange point by the ACE satellite) and the SYM-H index. The forecasting vari-202

able is the SYM-H index as mentioned above. All these variables are shown in table 2.203

All data are extracted from the NASA’s OMNIWeb page (https://omniweb.gsfc.nasa.gov)204

with time resolution of 5 min (Papitashvili & King, 2023b). Although the data are avail-205

able with a resolution of 1 min (Papitashvili & King, 2023a), the election of a lower res-206

olution allows to reduce the computation time without reducing predictive power, allow-207

ing also a direct comparison with the results of Siciliano et al. (2021). The 5 min sam-208

ple is computed by averaging the 1 min samples, so that the data at minute 0 corresponds209

to the average from minutes 0 to 4.210

The IMF variables are propagated to the nominal magnetospheric bow shock fol-211

lowing the method described in the OMNIWeb site (King & Papitashvili, 2005). It is im-212

portant to note in this context that in this study (and also in that of Siciliano et al. (2021))213

the information available on SYM-H at the Earth’s surface is assumed to be simultane-214

ous with that of the IMF projected at the bow shock. However, the spacecraft measur-215

ing the IMF is located upstream of the solar wind at the L1 Lagrange point, which al-216

lows these data to be known some time in advance (typically between 15 and 60 min).217

This advantageous position, which is therefore not exploited here, is expected to have218

a significant role in the efficiency of the SYM-H predictions.219
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The IMF data overflows are removed from the full sample of geomagnetic storms220

and the remaining empty gaps are filled using a linear interpolation method. Geomag-221

netic storms generally have short periods with IMF data overflows but in few cases (e.g.222

training storm TR13 and validation storm V3) the overflows are large and occur near223

the peak of the storm activity. While linear interpolation is one possible way to address224

the problem of gaps, it is clearly not optimal when these are located in periods of high225

activity. We are aware that more sophisticated approaches could be exploited (e.g. the226

interpolation schemes proposed by Qin et al. (2007) or Marsal and Curto (2009) or even227

a ML-based method we are currently developing), but we used the same approach as Siciliano228

et al. (2021) to perform a direct comparison between their results and ours. Figure 1 il-229

lustrates the removal of overflows in the IMF variables (B2, B2
y , Bz) followed by a lin-230

ear interpolation to fill the resulting gaps for a particular storm, TR13, of the training231

sub-dataset. It was decided to keep the storms with overflows near maximum of activ-232

ity in the study, both to train and to stop training the network, since they represent a233

real possibility when part of the data is lost due to measurement errors or overflows or234

even detector failures.235

Figure 1. Training variables (B2, B2
y , Bz, SYM-H) for storm TR13 of the training sub-dataset,

after overflow removal (left) and after linear interpolation to fill the gaps (right). The SYM-H

index is also shown for completeness as it is the fourth variable used in the training.

Each geomagnetic storm time series is standardised using the associated mean and236

standard deviation, similar to Siciliano et al. (2021). However, in our case, the mean and237

standard deviation are just estimated from the training sub-dataset, given that this is238

the only data previously known for the study. With the standardisation the values are239

centred around the mean and given a unit standard deviation using the equation:240
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XS =
X − µTR

σTR
, (1)

where XS is the standardised time-series data, X is the original time-series data,241

µTR is the mean of the training series and σTR its standard deviation. Making each time242

series similar to a normal distribution, it is less sensitive to the scale of features and more243

consistent with each other, thus allowing the model to predict outputs more accurately.244

In addition, this scaling method is more resilient to outliers than the more common nor-245

malisation between [−1, 1] or [0, 1], which only considers the minimum and maximum246

values instead of the overall statistics of the data.247

4 Deep-Learning Model248

Humans, as intelligent beings, do not have to learn how to speak, walk or cook from249

scratch every time. Our previous experiences on these tasks endure, and the ability to250

do it improves after several repetitions. Traditional neural networks do not have this fea-251

ture, and it is a major deficiency for some specific tasks such as time-series forecasting252

or natural language processing. Recurrent neural networks (RNNs) (Rumelhart & Mc-253

Clelland, 1987) address this problem. RNNs integrate cyclic connections, allowing in-254

formation to persist, making them a more powerful tool to model sequential data than255

the traditional feed-forward neural networks. LSTM networks are a variety of RNNs, ca-256

pable of learning long-term dependencies and also forgetting irrelevant information, es-257

pecially in sequence prediction problems. RNNs read the data sequentially, and attribute258

higher weights to the recent information. The back-propagation training of RNNs suf-259

fers from the so-called “vanishing gradient” problem, which limits the learning capabil-260

ities of the network. LSTMs address this problem by recognising between long-term and261

short-term memory through a gating mechanism that regulates the flow of information.262

This allows the model to selectively retain or forget information based on its relevance,263

making it more robust and able to handle complex sequential patterns. In this work we264

use one such type of neural network with a typical architecture shown in Figure 2, which265

we briefly describe below.266

X +

σ

forget 
gate 

cell state 

input gate 

X

σ t σ
X

t

output gate 

X

+
σ

t

Point-wise 
multiplication 

Point-wise 
addition 

 Sigmoid 

Tanh 

ht−1

xt

Ct−1

ht

Ct

Figure 2. LSTM “cell” based on four interacting layers (cell state, input gate, forget gate and

output gate). An LSTM network consists of repetitions of such a cell for every step t of the time

series.

An LSTM network consists of a series of non-linear transformations for each time267

step with shared parameters (weights). The transformation for a generic input xt at time268

step t is schematically represented in Figure 2. For each t, there are two outputs: the269

cell state ct and the hidden output ht, which are computed from four quantities. The270
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first quantity is the result of the “forget gate” ft, consisting typically of a sigmoid func-271

tion applied to the linear function Wfxt+Ufht−1+bf . Here xt is the input, ht−1 the272

hidden output of the previous time step, while Wf and Uf are the weight matrices and273

bf is the bias vector. The motivation for the forget layer -whose value is a number in the274

range [0, 1]- is to decide how much to “forget” about the previous time step’s cell state275

ct−1 (i.e. ”0” forgets the previous data and ”1” uses the previous data). The second quan-276

tity is the “cell input” c̃t, similar in structure to the forget gate, but with its own set of277

weights Wc, Uc and bc, and using a tanh function instead of a sigmoid. It represents the278

new information that would potentially be included in the new cell state ct. How much279

of such information to be retained is determined by the third quantity: the result of the280

“input gate” it, defined as another sigmoid transformation, but with its corresponding281

weights Wi, Ui and bi. With the above three quantities and their interpretations, the new282

cell state is defined in an intuitive way as: ct = ft×ct−1+it× c̃t, with c0 = 0 by defi-283

nition. Finally, the fourth quantity is the result of the “output gate” ot, being yet an-284

other sigmoid with weights Wo, Uo and bo. It has the role of a weight factor for the hid-285

den output, computed as ht = ot × tanh(ct), with h0 = 0.286

The above series of transformations are consecutively applied to a finite number287

of time steps, from t−lb to t, with lb being an optimisable hyper-parameter called the288

“look-back”. The final aim is to predict an observable yt+lf at a future time t+lf , with289

lf being the “look-ahead”, representing how much time in advance we want to make a290

prediction, which is fixed by the domain needs. In order to make such a prediction, right291

after the last LSTM cell applied on t and resulting in the hidden output ht, a number292

of dense network layers are applied to transform the vector ht into the predicted value293

of yt+lf , while potentially adding more expressiveness to the model. The number of dense294

layers is also another hyper-parameter to be optimised.295

4.1 Hyper-Parameter Optimisation296

Hyper-parameter optimisation is an essential ingredient when training state-of-the-297

art ML models, due to their high complexity. Traditional random- or grid-search strate-298

gies have shown to be very inefficient when the number of hyper-parameters is larger than299

a few. Modern libraries exist which implement efficient algorithms for optimising costly300

functions. One of the most popular ones, which we adopted here, is the hyper-parameter301

optimisation framework “Optuna” (Akiba et al., 2019). In particular, we run Optuna302

to optimise the following hyper-parameters: the number of dense layers, the number of303

units of these layers, the learning rate, and the look-back parameter of the LSTM layer.304

We use Optuna’s implementation of a Bayesian optimisation flavour called “tree-structured305

parzen estimator”, the details of which are found in Bergstra et al. (2011).306

Finding multiple local minima can be a problem in hyper-parameter search. In par-307

ticular, because of the stochastic nature of gradient descent during training, there can308

be times when two identical trials result in a value of the loss function that varies more309

greatly than trials with different hyper-parameters would. For this reason, each trial is310

repeated five times. The mean and standard deviation of the loss function results for each311

trial with a set of hyper-parameters are calculated. Having done this, all trials with root-312

mean-square error (RMSE) standard deviations that overlap with the best (i.e. lowest)313

RMSE mean of all trials are labeled as best trials. This procedure allows us to explore314

flat directions in the hyper-parameter space, as discussed later in section 5.315

4.2 Robustness of the LSTM model316

Ensuring the robustness of state-of-the-art ML models, used to analyse and pre-317

dict non-linear time-series data, is of critical importance for reliable and effective decision-318

making, especially on those with direct impact on society. This requires careful design319

as well as rigorous testing and validation, but the benefits in terms of reliability and ef-320
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fectiveness are significant. Non-linear time-series data can exhibit complex and dynamic321

behaviour, making it challenging to model and predict accurately.322

As in many other works, we ensure the robustness of our LSTM model by using323

the hold-out validation technique and therefore splitting the full dataset into three dif-324

ferent sub-datasets (training, validation and test) containing uniformly populated times-325

series data from different geomagnetic storms. This technique helps to identify weaknesses326

and guarantee the model to perform and generalise well on new and unseen data, even327

in the presence of various perturbations, such as data noise or changes in the distribu-328

tion of the times-series data.329

However, the performance estimate of the ML model may be highly dependent on330

the particular dataset split used. If the split is not representative of the overall dataset331

distribution, then the performance estimate may be biased. In our case the three sub-332

datasets are uniformly populated in terms of geomagnetic storms intensity and complex-333

ity and therefore no bias is expected. However, to evaluate this issue we reshuffled the334

original list of geomagnetic storms in the three sub-datasets shown in Table 1. Thus, we335

populated the new training sub-dataset with the 17 storms from the original test sub-336

dataset plus three storms from the original validation sub-dataset. To populate the new337

test sub-dataset, we used 17 storms from the original training sub-dataset. Finally, the338

new validation sub-dataset was filled with the remaining three storms from the original339

training sub-dataset plus two validation storms from the original validation set. A vi-340

sual representation of the baseline and reshuffled lists of geomagnetic storms used for train-341

ing, validation and test is shown in Figure 3. With the new reshuffled list of the geomag-342

netic storms, we trained an alternative LSTM model (with its own optimised hyper-parameters)343

and obtained compatible performance without observing over-fitting, under-fitting or bi-344

ases.345

Figure 3. Visual representation of the two lists of geomagnetic storms used for training, vali-

dation and test for the baseline and the alternative LSTM models. The upper diagram represents

the baseline list, as shown in Table 1 (i.e. same criteria as Siciliano et al. (2021)), while the lower

diagram represents an alternative ordering where the list of storms is reshuffled. Each rectangle

represents a different storm. Colours are assigned based on the baseline list of the geomagnetic

storms, where red, blue and green represent the original storms in the training, validation and

test sub-datasets, respectively.

Other techniques could also be used to enhance the robustness of LSTM models346

such as different flavours of cross-validation, data augmentation, model ensembling, ad-347

versarial training or regularisation, though we will deeply explore this in future works.348
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In any case, we want to point out that the regularisation technique is indeed used in this349

work for the estimation of uncertainties (see section 4.3 and Appendix A).350

4.3 Estimation of Prediction Uncertainties351

To estimate the uncertainties associated with our predictions, two main approaches352

can be followed: a frequentist approach, in particular adopting the “bootstrapping” method,353

or a Bayesian approach, where several state-of-the-art methods can be adopted depend-354

ing on the needs and scope. In this work we have followed the two methods, and com-355

pared the results between them.356

Bootstrapping is a series of techniques by which we obtain synthetic datasets out357

of the “real” (observed or simulated) dataset we have at our disposal. In doing this, both358

aleatoric and epistemic uncertainties are taken into account when making predictions,359

making bootstrapping equivalent to the principled Bayesian approach. In the physics com-360

munity, the typical methodology is to: 1) propose a likelihood distribution of the data,361

and optimise its parameters by maximum likelihood estimate (MLE) method, 2) with362

these optimum parameters, use the proposed likelihood to sample a large number of syn-363

thetic datasets, identical in length to the original one, 3) find for each synthetic dataset364

the MLE parameters analogously as in step 1, and 4) each of the MLE parameters will365

lead to a different prediction, thus obtaining a distribution of predictions. While this tech-366

nique works very well for many situations, it may be misleading when the assumed like-367

lihood is very different from the true -unknown- underlying distribution of the data. For368

this reason, in the ML community there is another popular bootstrapping strategy, which369

consists in re-sampling a large number of times the real dataset directly, either with or370

without replacement1. This is equivalent to sampling from the empirical distribution,371

instead of assuming a particular parametric shape of the likelihood.372

The traditional bootstrapping fails with time series because the sampling proce-373

dure breaks off the time dependence that concatenates adjacent samples in the sets. For374

this reason, a special consideration has to be made for our case. If we can divide the set375

in chunks of samples, and perform the bootstrap sampling procedure on these blocks in-376

stead of on the individual samples, we can conserve the time dependence up to the di-377

vision of the blocks; for the present dataset, a natural way to divide the training set is378

by geomagnetic storms, in particular because we gain the advantage of explicitly break-379

ing adjacent samples of different storms that are not expected to have a time dependency.380

On the other hand, we have also followed a Bayesian approach for estimating the381

prediction uncertainties. In the case of deep neural networks one of the most popular382

strategies is the so-called “dropout” method (Gal & Ghahramani, 2016). More details383

on this can be found in Appendix A, where we also show the corresponding results as384

well as the comparison with respect to the bootstrap method. In summary, for this par-385

ticular dataset we find that the bootstrap results perform better, especially around the386

peak of the storms, which is the most critical region. We thus retain the bootstrap pre-387

dictions and corresponding uncertainties as our main results.388

A note of caution is in order at this point. When reporting our prediction uncer-389

tainties, we are more specifically reporting the systematic (or epistemic) uncertainties390

of the expected (mean) values of the SYM-H index, which we calculate as the output of391

our LSTM network. Note that this is not the same as the total prediction uncertainties,392

which include the data noise (also known as aleatoric, or statistical uncertainties), and393

which we do not have available. Since the reported epistemic uncertainties decrease as394

the number of data points increase, it is perfectly consistent to have a very precise de-395

1 “With replacement” means that a particular instance of the real dataset can appear more than once

in the synthetic dataset.
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termination of the mean predictions of the SYM-H index, describing data whose noise396

is appreciably larger (and consequently having values beyond the corresponding inter-397

val of epistemic uncertainties). On the other hand, we are also not considering in this398

work the uncertainties related to the other input variables (related to the IMF B and399

its components). While we plan to include them in a future work, we nonetheless expect400

their impact on our results to be small, after checking that the uncertainties in B2 are401

of few percent.402

5 Results403

After discussing the data and analysis setup in previous sections, we turn now to404

present the results of our analysis.405

In the first subsection we present the optimisation of hyper-parameters needed to406

learn the evolution of the SYM-H index, the relative importance of each parameter in407

the final result and explore the possible correlation between hyper-parameters. We then408

present the overall performance of the trained algorithm when predicting the evolution409

of the SYM-H index.410

5.1 Hyper-Parameter Tuning411

Once we have chosen an LSTM as the basic architecture for the time-evolution anal-412

ysis, the next step is to optimise the hyper-parameters of the learning structure. The re-413

sults of this analysis are shown in Figures 4 and 5.414

0.0 0.2 0.4 0.6 0.8 1.0
Importance for objective value

lb

units

layers
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Figure 4. Hyper-parameter importance bars for learning rate (lr), number of dense hidden

layers (layers), number of units in all hidden layers (units) and look-back (lb).

In particular, we vary the number of fully-connected layers which are placed after415

the LSTM architecture (layers), the number of neurons of these dense hidden layers416

(units) and the learning rate parameter (lr). We also explore different values of the look-417

back parameter (lb), the amount of previous data we allow the network to explore in418

order to predict the future evolution; this value is reported in terms of number of 5 min419

steps, unless otherwise indicated.420
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Figure 5. Pair-wise scatter-plots for the hyper-parameters optimised via Optuna for the

LSTM architecture. Out of the total of 25 cases, the blue points correspond to hyper-parameter

values which cover the minimum value of the MSE that results from using the global optimum

values. Red stars indicate the reported optimum values. The histograms along the diagonal,

for each hyper-parameter, are the result of marginalising all the points from the rest of hyper-

parameters.

The ranges in which each hyper-parameter was optimised are summarised in Ta-421

ble 3. Variations of each of these parameters are not equally important, as shown in Fig-422

ure 4.423

Indeed, we found that the learning rate is key to the learning, whereas variations424

of the depth and width of the fully-connected layer (n layers, n unit) are much less425

important. This indicates that, once the LSTM is learning the time series, the partic-426

ular characteristics of the additional dense layer are not that relevant. We also found that,427

in the range we explored, the look-back parameter was not an important handle. This428

would indicate that we have already chosen an optimal look-back range. Note, however,429

that if we were interested in describing other, less global, parameters than the SYM-H430

–12–



manuscript submitted to Space Weather

index, the look-back parameter may change. This optimisation is only valid for the out-431

put prediction we have chosen to describe.432

The best hyper-parameter values (in terms of mean-square error (MSE)) accord-433

ing to Optuna are: ( n layers, n unit, lr, lb) = (4, 386, 3.12×10−5, 75 steps), which434

are shown in Table 3. However, while these specific values are indicated as optimal, one435

should keep in mind that slightly different values could lead to the same performance;436

there could be “flat directions”, i.e. combinations of hyper-parameter values away from437

the reported optimum which produce equally low MSE. Most importantly the optimi-438

sation made using Optuna assumes that the hyper-parameters are uncorrelated; indeed,439

the hyper-parameters may be correlated to some extent, while the procedure assumes440

complete independence.441

We have explored the impact of these caveats by performing a multidimensional442

scan of the hyper-parameters instead of assuming total uncorrelation. The results are443

summarised in Figure 5, where we show the pair-plots between the different hyper-parameters.444

The points shown in the scatter plots correspond to hyper-parameter values for which,445

upon repeating the trials five times, within their standard deviation, cover the minimum446

value of the MSE that results from using the global optimum values specified above. The447

optimum values are also shown. The histograms along the diagonal, for each hyper-parameter,448

are the result of marginalising all the points from the rest of hyper-parameters. For these449

scatter plots we observe no evident correlation between pairs of hyper-parameters, which450

validates the use of the Optuna procedure.451

However, the flat directions are explicitly present in almost all axes. For example452

if using six hidden layers instead of one, while fixing the rest of hyper-parameters to val-453

ues different from their “optimum”, we get equally good results, statistically speaking.454

Analogously, this happens with the number of units per hidden layer, which can be as455

high as 800 (with respect to the reported optimum at 386), or the look-back parameter456

at 300 (with respect to the optimum at 75). In all cases we observe that each hyper-parameter457

can admit large excursions in combination of specific values of other hyper-parameters458

without sacrificing the figure of merit. This is nothing but the consequence of a highly459

complex parametric dependence of the loss function with respect to the hyper-parameters460

of the model, as is often the case with the large models used by the community nowa-461

days.462

5.2 Prediction of the SYM-H Index463

To reproduce the results in Siciliano et al. (2021) where the SYM-H index is pre-464

dicted from the IMF observations at L1 Lagrange point and from past SYM-H values,465

as shown in Table 2, the same storms and time intervals as in that work were used, as466

well as the same training-validation-test split of the storms (see Table 1).467

In our case, the neural network architecture consists of an LSTM layer using the468

hyper-parameters configuration reported in Table 3.469

Block bootstrap was performed and 200 bootstrap models were used to obtain es-470

timations of the uncertainties of prediction values, RMSE and the coefficient of deter-471

mination (R2).472

Table 4 shows the values of RMSE in nT for the target variable SYM-H, and the473

values of R2 for the fits of the model to each of the storms in the test sub-dataset. The474

lower the RMSE, the better a model fits the test sub-dataset. The higher the R2 value,475

the better a model fits the test sub-dataset. These values, which are directly compara-476

ble with those of Siciliano et al. (2021), are shown in Figure 6. With blue dots, we show477

the average of our predictions and the blue symmetric segment corresponds to the 95%478

confidence level (CL) of these predictions. The reported results from Siciliano et al. (2021),479
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Collado-Villaverde et al. (2021) and Iong et al. (2022) are shown with orange dots, red480

crosses and green stars, respectively, which correspond to their best RMSE results. The481

same applies to the right panel in Figure 6, this time reporting R2 values (the values for482

Iong et al. (2022) are not shown as they are not reported by these authors). Note that483

uncertainty bars are not shown in the results of other authors since they did not report484

them.485
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Figure 6. RMSE and R2 values for the predicted SYM-H index for each one of the 17 test

storms. The results of this work are shown in blue with 2σ uncertainty bars (i.e. 95% CL), while

those from Siciliano et al. (2021), Collado-Villaverde et al. (2021) and Iong et al. (2022) are

shown in orange circles, red crosses and green stars, respectively, which correspond to their best

RMSE and R2 results.

One should then compare the orange dots (which are the best predictions from a486

bunch of 20 predictions from Siciliano et al. (2021)) with either the lower RMSE or higher487

R2 value of the blue range of our predictions. In most cases, our architecture leads to488

better performance, which we believe is mainly a manifestation of the achieved optimi-489

sation of hyper-parameters.490

On the other hand, we also include in Figure 6 the comparison with two other more491

recent studies (see Collado-Villaverde et al. (2021); Iong et al. (2022) commented in sec-492

tion 2), which check the performance of their methods on the same storms as Siciliano493

et al. (2021). We can observe that those other studies in general improve over Siciliano494

et al. (2021), while for most of the test storms they still lie inside our RMSE intervals2.495

However, as we commented in section 2, note that contrary to the case of Siciliano et496

al. (2021), the models considered in Collado-Villaverde et al. (2021); Iong et al. (2022)497

are different from ours, either by using neural networks with different architectures or498

a completely different model. It is worth stressing again at this point that our aim in499

this work was not to build and optimise a robust model to be considered in terms of pre-500

diction performance, but to study the prediction uncertainties, while using a popular model501

which nonetheless, as we see, still gives very competitive results.502

2 For only four out of 12 storms their predictions are marginally better than our predictions, except

storm T8, for which they are up to 25% better.
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The results in Figure 6 are rather global measures of performance, as they eval-503

uate the goodness of predictions during the whole storm. On the other hand, we may504

be interested to know how well the algorithm is performing during shorter periods of time,505

e.g. during the peaks of activity. To illustrate this point, in Figure 7 we show the pre-506

diction of the bootstrap models of the target variable SYM-H (in nT) for two of the 17507

test storms3. In this figure, the orange band represents the 95% CL of the predictions508

coming from the bootstrap procedure, while the mean prediction is shown by the red dashed509

lines, and the actual test values are shown as a solid blue line. For each storm we also510

plot (bottom panels) the residuals, which are computed just subtracting the prediction511

mean from the observed values and orange bands. We observe in general a very good agree-512

ment between the predictions and the observations, where the regions around the peaks513

show, as expected, the largest deviations. Note how the prediction uncertainties are also514

larger around the peaks, as one would expect. These larger deviations around the peaks515

are mainly due to a difference in timing of the predictions with respect to the observa-516

tions. This is indeed a common behaviour for LSTM models (and other models handling517

sequential data) using a limited training sub-dataset for predicting time-series data with518

a significant auto-correlation, which can make sometimes difficult for the model to ac-519

curately identify the underlying patterns and trends. In our case, for many storms (see520

Appendix A) we predict the drop in the SYM-H index to happen a bit before it actu-521

ally happens, which then causes large positive residuals for instants of time before the522

observations start to drop as well. This is indeed the case at least for storms T1, T6, T7,523

T8, T11 and T16 featuring residuals around the peak in the range 50–100 nT. On the524

other hand, for storms T9, T12 and T14, having residuals around the latter (absolute)525

values, the timing oscillates between predicting in advance or with a small delay.526
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Figure 7. Time-series distributions of two of the 17 storms in the test sub-dataset, in par-

ticular, storms T2 and T12, showing in an orange band the 95% CL (corresponding to 2σ), in

red dash line the mean for the one hour ahead predictions of the SYM-H index from the LSTM

model, and the test data as a solid blue line. The lower panels represent the residuals with re-

spect to the model prediction mean.

3 See Figure A1 in Appendix A for all the storms.
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Finally, it is important to note that, as commented in section 4.3, the orange bands527

only represent the epistemic uncertainties (the uncertainties on the expected mean), rea-528

son for which there may be observed values lying outside the bands, which may be in529

part related to the intrinsic data noise, not represented in this figure (because we do not530

have access to it; see also Appendix A).531

5.3 Feature Importance532

Neural networks are often considered black-box algorithms though some external533

inference techniques can be used to extract useful information that can help to under-534

stand deep-learning models. Computing feature importance in LSTM models is indeed535

an important aspect of model interpretation and understanding. Feature importance is536

a measure of how much a particular input variable (or feature) contributes to the out-537

put of the model. Indeed, understanding feature importance can help to identify and se-538

lect the input features that are most relevant for a given prediction model. It can also539

provide valuable insights into the underlying patterns, dynamics and relationships present540

in the considered time-series data. There are several techniques that are commonly used541

to compute feature importance in LSTM models. Some of these techniques are the “in-542

put permutation” (Breiman, 2001; Fisher et al., 2019), “SHapley Additive exPlanations” (Lundberg543

& Lee, 2017), “Leave-One-Feature-Out”, “gradient-based method”, “layer-wise relevance544

propagation” and “activation-based methods” among others.545

In this work, the approach used to compute the feature importance in our LSTM546

model is based on the “input permutation” technique. We repeated the training proce-547

dure, using the same optimised hyper-parameters already discussed in section 5.1, but548

adding disturbances in the input data (i.e. IMF data and past SYM-H values). Thus,549

for each of the four input features, the values of all of the other features were shuffled,550

new predictions were calculated using the original test data, and RMSE was calculated.551

This procedure was performed 15 times for each variable; this is a total of 60 training552

sessions. The average value of the RMSE for each case is compared to a baseline value553

calculated with no shuffling (i.e. with the average RMSE value of the RMSE values shown554

in Table 4). The output of the feature importance results are shown in Figure 8. In the555

followed method, the most important features are the ones that, when all other variables556

are shuffled, result in an RMSE closer to the baseline average RMSE value. Thus, from557

the obtained results, we conclude that past SYM-H values represent the most important558

feature for our LSTM model, similarly to Siciliano et al. (2021).559

It is important to point out that the interpretation of feature importance in LSTM560

models can be challenging, as these models are inherently complex and exhibit dynamic561

and non-linear behaviour. Additionally, the results can be influenced by the data pre-562

processing (e.g. interpolation approach for data gap filling), the choice of input scaling563

and normalisation as discussed in section 3, as well as the choice of model architecture564

and the optimisation of the training hyper-parameters as discussed in section 4.1.565

6 Discussion and Outlook566

In this paper we have explored the use of a deep-learning model to predict the evo-567

lution of an activity index during geomagnetic storms, and proposed ways to estimate568

the uncertainties of these predictions. In particular, we focused on the SYM-H index,569

a quantity whose variation during a storm is a good summary of its strength. As input570

parameters, we used IMF data from the ACE spacecraft located at the L1 Lagrange point571

together with historic SYM-H values.572

We chose the SYM-H index to be able to compare with an existing study using deep573

learning and LSTM architectures in Siciliano et al. (2021). With this comparison, we can574
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Figure 8. Ranking of the feature importance using an approach based on the “input permuta-

tion” technique (the smaller the value, the more important the variable is). Each bar represents

the mean value of the RMSE evaluated over all test storms after having shuffled all except the in-

dicated feature variable. The uncertainty bars represent the standard deviation, and the vertical

orange line represents the baseline value calculated with no shuffling along with its own standard

deviation (that can be computed by averaging values from Table 4).

illustrate the impact of the improvements we propose in both learning optimisation and575

uncertainty estimation.576

We found an overall improvement of the best predictions for the SYM-H index due577

to hyper-parameter optimisation, as shown in Figure 6, where our lower limit of the RMSE578

range is lower than the reported best RMSE value in Siciliano et al. (2021), with the ex-579

ception of test storm T8.580

Moreover, we proposed a robust statistical procedure to compute uncertainties in581

the predictions based on block-bootstrapping. With those uncertainties we produce a582

prediction with an uncertainty band corresponding to a chosen confidence interval and583

examine the goodness of our predictions at different times during the storm. See Fig-584

ure 7 for an illustration of how this uncertainty band evolves with time, and the com-585

parison with the observed values of the SYM-H index.586

The strategy described in this work could be applied to other architectures and tar-587

get parameters, such as the evolution of the geomagnetic or geoelectric fields in the ground.588

Reproducing the prediction of the SYM-H global geomagnetic activity index of Siciliano589

et al. (2021) has served to match the needs of a group of scientists working in SW with590

the experience of a group working on ML techniques applied to problems related to par-591

ticle physics. The improvement in prediction performance obtained with this test au-592

gurs well for our ultimate goal, which is to be able to predict the variations of the ge-593

omagnetic or geoelectric field on the ground at a specific location (Spain). The challenge594

is important because it involves adding the effect of the field induced by the three-dimensional595

structure of the electrical resistivity of the lithosphere to the complexity of the sources596

of these variations. Since we have models for this three-dimensional structure of the re-597

sistivity (Torta et al., 2021), we should also be able to predict the variations of the geo-598

electric field and, by combining them with the models of electrical admittances of our599

national power grid also described in Torta et al. (2021), derive the expected GICs.600

Future work will include ground-level magnetic field forecasting using data from601

Ebre Observatory, or better, also with those of the other geomagnetic observatories on602

the Iberian Peninsula. We are also interested in forecasting the time derivative of the603
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geomagnetic field, since this variable is usually the most directly responsible for driving604

the geoelectric field and, therefore, the GICs. The ultimate goal will be to reformulate605

the problem in terms of an advanced deep-learning model that provides an alarm sys-606

tem against GICs in Spain. Moreover, our ML architecture can be made more robust607

and elaborated by including other developments such as a more sophisticated interpo-608

lation method to fill data gaps, a cross-validation technique for further improving the609

model robustness, and adding an attention layer in combination with LSTM.610

Data Availability Statement611

Raw data are obtained from the NASA’s OMNIWeb page (https://omniweb.gsfc.nasa.gov).612

Processed data, high-resolution plots, and prediction models (for both bootstrap and dropout)613

in h5 format can be downloaded at https://zenodo.org/record/7695656 (SpaceWeather-614

IFIC, 2023).615
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Table 1. List of the sub-datasets with the most relevant information of the geomagnetic

storms: label assigned to the storm, starting date, duration in days and minimum value of the

SYM-H index during the geomagnetic storm period. The distribution of the storms among the

different sub-datasets follows the same criteria as Siciliano et al. (2021).

Training sub-dataset

Label Start date Duration (days) SYM-H (nT)

TR1 14/02/1998 8 −119∗

TR2 02/08/1998 6 −168∗

TR3 19/09/1998 10 −213
TR4 16/02/1999 8 −127∗

TR5 15/10/1999 10 −218
TR6 09/07/2000 10 −347
TR7 06/08/2000 10 −235∗

TR8 15/09/2000 10 −196∗

TR9 01/11/2000 14 −174∗

TR10 14/03/2001 10 −165∗

TR11 06/04/2001 10 −275
TR12 17/10/2001 10 −210
TR13 31/10/2001 10 −320
TR14 17/05/2002 10 −116∗

TR15 15/11/2003 10 −490
TR16 20/07/2004 10 −208
TR17 10/05/2005 10 −302∗

TR18 09/04/2006 10 −110∗

TR19 09/12/2006 10 −211∗

TR20 01/03/2012 10 −149

Validation sub−dataset

Label Start Date Duration (day) SYM-H (nT)

V1 28/04/1998 10 −268
V2 19/09/1999 7 −160
V3 25/10/2003 9 −432∗

V4 18/06/2015 10 −207∗

V5 01/09/2017 10 −146∗

Test sub-dataset

Label Start Date Duration (day) SYM-H (nT)

T1 22/06/1998 8 −120
T2 02/11/1998 10 −179∗

T3 09/01/1999 9 −111
T4 13/04/1999 6 −122
T5 16/01/2000 10 −101∗

T6 02/04/2000 10 −315
T7 19/05/2000 9 −159∗

T8 26/03/2001 9 −437
T9 26/05/2003 11 −162∗

T10 08/07/2003 10 −125∗

T11 18/01/2004 9 −137∗

T12 04/11/2004 10 −394∗

T13 10/09/2012 25 −138
T14 28/05/2013 7 −134
T15 26/06/2013 8 −110
T16 11/03/2015 10 −234
T17 22/08/2018 12 −205

∗ Geomagnetic storms with multiple depressions.–19–



manuscript submitted to Space Weather

Table 2. Variables used in the analysis.

Training variables B2 B2
y Bz SYM-H

Forecasted variable SYM-H

Table 3. Range in which each hyper-parameter was optimised, and chosen value.

Hyper-parameter Search range Chosen value

Number of layers [0, 10] 4
Number of units [0, 1000] 386
Learning rate [10−6, 10−1] 3.12× 10−5

Look-back (steps)
[40, 75, 90

75
120, 180, 360]

Table 4. RMSE and R2 values for the predicted SYM-H index with their respective standard

deviations for each of the storms in the test sub-dataset for our neural network architecture using

an LSTM model, and the IMF variables and past SYM-H values as input features for the train-

ing.

Set RMSE (nT) R2

T1 6.3 ± 0.4 0.87 ± 0.02
T2 10 ± 2 0.92 ± 0.03
T3 4.2 ± 0.2 0.969± 0.004
T4 8.0 ± 2.0 0.91 ± 0.04
T5 5.3 ± 0.4 0.951± 0.007
T6 8.4 ± 0.9 0.969± 0.090
T7 7.7 ± 0.6 0.944± 0.010
T8 22 ± 3 0.91 ± 0.03
T9 9.7 ± 0.3 0.810± 0.013
T10 6.9 ± 0.2 0.925± 0.004
T11 8.9 ± 0.3 0.887± 0.007
T12 19 ± 2 0.946± 0.016
T13 4.11± 0.19 0.941± 0.006
T14 5.1 ± 0.3 0.959± 0.004
T15 4.9 ± 0.3 0.964± 0.003
T16 9.4 ± 0.7 0.954± 0.006
T17 5.8 ± 0.3 0.966± 0.004

Total dataset 8.6 ± 0.4 0.929± 0.013

–20–
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Appendix A Dropout method for estimating the prediction uncertain-616

ties617

In this appendix we discuss in more detail the dropout method as an alternative618

approach for estimating the prediction uncertainties. We also compare the correspond-619

ing results with those obtained from the bootstrap method (see section 4.3).620

Roughly speaking, the idea consists in randomly turning off units of the different621

neural network layers. This has an immediate utility as a regulariser procedure; this is622

the reason for which dropout is commonly used at the training phase in order to con-623

trol over-fitting. However, as pointed out in (Gal & Ghahramani, 2016), such a proce-624

dure is mathematically equivalent to a variational inference algorithm, with a specific625

choice of the variational distribution. In particular, if dropout is also used at the test626

phase, the probability distribution of the predictions would be equivalent to the ones that627

would be obtained by computing the standard predictive distribution of the Bayesian628

approach, under the chosen variational approximation.629

An essential parameter in the dropout implementation is the dropout probability630

p. Formally, p is the probability for a Bernoulli (binary) random variable to take value631

equal to 1; so by sampling from the Bernoulli distribution, once for every unit in a hid-632

den layer, such a unit is turned off with a probability of 1−p. Traditionally, p is con-633

sidered as an important hyper-parameter to be optimised, e.g. by grid-search, which can634

be computationally expensive in largely parameterised models. This is the motivation635

behind “concrete dropout” cited from (Gal et al., 2017), which modifies the traditional636

dropout algorithm in such a way that p becomes an optimisable parameter during the637

normal training period. This is done by modifying the loss function so that it has an ex-638

plicit -and differentiable- dependence on p, which is the result of approximating the Bernoulli639

distribution by its continuous relaxation using the concrete distribution. In our neural640

network architecture, we have implemented the concrete dropout method for the dense641

layers following the LSTM layer, and consequently the associated dropout probability642

p is automatically optimised during the training process. However, for the LSTM layer643

itself we stick to the traditional implementation of dropout, where the parameter p is644

in this case included as an hyper-parameter optimisable with the Optuna procedure. The645

resulting optimal value for the LSTM dropout probability is p = 0.0128.646

The dropout results are shown in Figure A1 (right panels) for all the 17 different647

storms of our test sub-dataset, in terms of the prediction with its associated uncertainty648

of the SYM-H index as a function of time. We compare side by side with the bootstrap649

results4 (left panel in the figure).650

The first thing we note from these results is that both methods give similarly good651

results, on average, for the mean predictions (red dashed lines in the figures). This can652

be checked by the bottom panels of each storm, where we represent the residuals “Data653

- Model”. Some exceptions occur, mainly around the peaks of the storms, where one method654

is noticeably better than the other (see e.g. storms T6 and T11, where dropout is bet-655

ter). On the other hand, concerning the prediction uncertainties, we see more differences,656

and it is worth noting that, as commented in section 4.3, what we report here are un-657

certainties on the expected values (means) of the SYM-H, and not on the variable itself.658

In other words, these uncertainties are not the total ones resulting from adding the data659

noise, which we do not have. Coming back to Figure A1, typically the uncertainties on660

regions away from the peaks are larger (or at most similar) for dropout than for boot-661

strap. However, the opposite is true when focusing on the regions around the peaks, and662

in general it is bootstrap the method giving larger (or at most similar) uncertainties than663

dropout. In Figure A2 we simply zoom-in around the peaks of maximum activity for two664

4 Test storms T2 and T12 are the ones included in Figure 7.
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particular storms, T7 and T8, where this feature is more evident. Taking into account665

that the critical period of time of a storm is precisely when the peaks occur, the best pro-666

cedure is chosen to be the one giving better results in that region of the storms. Here667

better means not only good predictions, but also conservative prediction uncertainties.668

For that reason, we have selected bootstrap to be the main procedure for obtaining the669

predictions in this work.670
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Figure A1. Time-series distributions for all 17 storms in the test sub-dataset, showing the

results using the bootstrap method (left) and the dropout method (right). In all distributions,

we show in an orange band the 95% CL (corresponding to 2σ), in red dashed line the mean for

the one-hour ahead predictions of the SYM-H index from the LSTM model, and the test data as

a solid blue line. The lower panels represent the residuals with respect to the model prediction

mean.
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Figure A2. Zoom-in of the time-series distributions around the peaks of maximum activity

for storms T7 and T8 in the test sub-dataset, showing the results using the bootstrap method

(left) and the dropout method (right). In these distributions, we show in an orange band the

95% CL (corresponding to 2σ), in red dashed line the mean for the one-hour ahead predictions of

the SYM-H index from the LSTM model, and the test data as a solid blue line. The lower panels

represent the residuals with respect to the model prediction mean.
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Key Points:10

• An LSTM model is built to forecast the SYM-H index using interplanetary mag-11

netic field measurements and past SYM-H values.12

• The hyper-parameter optimisation and the robustness of the LSTM model is en-13

sured by using dedicated algorithms and methods.14

• Prediction uncertainties from the LSTM model are estimated and turn out to be15

considerable in the critical phases of geomagnetic storms.16
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Abstract17

Severe space weather produced by disturbed conditions on the Sun results in harmful18

effects both for humans in space and in high-latitude commercial flights, and for tech-19

nological systems such as spacecraft or communications. Also, geomagnetically induced20

currents flowing on long ground-based conductors, such as power networks or pipelines,21

potentially threaten critical infrastructures on Earth. The first step in developing an alarm22

system against geomagnetically induced currents is to forecast them. This is a challeng-23

ing task, though, given the highly non-linear dependencies of the response of the mag-24

netosphere to these perturbations. In the last few years, modern machine-learning mod-25

els have shown to be very good at predicting magnetic activity indices as the SYM-H.26

However, such complex models are on the one hand difficult to tune, and on the other27

hand they are known to bring along potentially large prediction uncertainties which are28

generally difficult to estimate. In this work we aim at predicting the SYM-H index char-29

acterising geomagnetic storms one hour in advance, using public interplanetary magnetic30

field data from the Sun–Earth L1 Lagrange point and SYM-H. We implement a type of31

machine-learning model called long short-term memory networks. Our scope is to esti-32

mate -for the first time to our knowledge- the prediction uncertainties coming from a deep-33

learning model in the context of space weather. The resulting uncertainties turn out to34

be sizeable at the critical stages of the geomagnetic storms. Our methodology includes35

as well an efficient optimisation of important hyper-parameters of the long short-term36

memory network and robustness tests.37

Plain Language Summary38

Geomagnetic storms are disturbances of the geomagnetic field caused by interac-39

tions between the solar wind and particle populations mainly in the Earth’s magneto-40

sphere. These time-varying magnetic fields induce electrical currents on long ground-based41

conductors that can damage power transmission grids and other critical infrastructures42

on Earth. As a first step to forecast the ground magnetic perturbations caused by ge-43

omagnetic storms at specific mid-latitude locations, the objective of this work is to pre-44

dict the SYM-H activity index, which is generated from ground observations of the ge-45

omagnetic field at low and mid-latitudes, and which provides a measure of the strength46

and duration of geomagnetic storms. We use the interplanetary magnetic field data mea-47

sured by the ACE spacecraft at the L1 Lagrangian point and past SYM-H values to fore-48

cast the behavior and severity of geomagnetic storms one hour in advance. This fore-49

casting is done using a type of artificial neural network model called long short-term mem-50

ory. We also propose ways to estimate the uncertainties of these predictions, which help51

us to better understand machine-learning models in space weather prediction and could52

lead to more accurate and reliable forecasting of geomagnetic storms and their ground53

effects in the near future.54

1 Introduction55

In the last decades, our society has become more interdependent and complex than56

ever before. Local impacts can cause global issues, as the COVID-19 pandemic clearly57

showed, affecting the health of millions of human beings. Our society is highly depen-58

dent on relevant technological structures, such as communications, transport, or power59

transmission networks, which can be very vulnerable to the effects of space weather (SW).60

The latter has its origin in the solar activity and their associated events, such as coro-61

nal mass ejections and co-rotating interaction regions. Among other effects, these phe-62

nomena have an impact on the electrical current systems surrounding the Earth, enhanc-63

ing them and thus causing large magnetic field fluctuations that propagate down to the64

ground. The electric field associated with these fluctuations, which is influenced by the65

interaction with the conductive earth, induces telluric currents in the uppermost solid66
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layers and geomagnetically induced currents (GICs) in long conductors running on the67

surface. These GICs may cause disturbances, interruptions, and even long-term dam-68

age to critical infrastructures such as railways, oil and gas pipelines and power grids, with69

drastic social, economic and even political consequences. The intensity of the GICs is70

determined by the strength of the geoelectric field, but the latter measurements are rarely71

available. Because GICs are driven by temporal changes in the magnetic field, if we have72

an estimate of the resistivity structure below a specific location, variations in the mag-73

netic field measured by ground magnetometers can in principle be used as the input pa-74

rameter for deriving the GICs built up locally in a power grid (e.g. Torta et al. (2017)).75

However, because of the three-dimensional lithospheric resistivity structure, the behaviour76

of the time derivative of the geomagnetic field to which the ground electric fields are as-77

sociated is complex and, consequently, has proven to be very difficult to predict (Kellinsalmi78

et al., 2022). Predicting geomagnetic indices, which attempt to condense a rich set of79

information about the status of the magnetosphere in a single number, is simpler and80

has always been a very attractive area for machine-learning (ML) applications (Camporeale,81

2019). Although attempts to forecast geomagnetic indices started several decades ago82

(e.g. Burton et al. (1975)), they feature highly non-linear dependencies which are not83

yet well understood, and their forecasting is still an open and intensive area of research.84

Perhaps not surprisingly, recent efforts have been exploiting the large expressiveness of-85

fered by modern ML models, and their ability to characterise complicated multidimen-86

sional datasets. The present work follows such a trend by investigating advanced ML tech-87

niques to predict the behaviour of geomagnetic storms.88

More specifically, our scope is to predict, at a given time in advance, the SYM-H89

index, which describes the geomagnetic disturbances at low and middle latitudes in terms90

of longitudinally symmetric disturbances of the horizontal component of the geomagnetic91

field (Iyemori, 1990). The SYM-H index is known to track very well the evolution in time,92

the topology and intensity of geomagnetic storms and their relation with solar source93

phenomena (Wanliss, 2005; Wanliss & Uritsky, 2010). We use time-series data from the94

Sun–Earth L1 Lagrange point tracking several covariates describing the interplanetary95

magnetic field (IMF) and its different components in addition to the SYM-H index. For96

this purpose, we predict the SYM-H index with a type of artificial neural network model97

called long short-term memory (LSTM) neural network (Hochreiter & Schmidhuber, 1997)98

especially conceived for describing, among others, non-linear time-series data.99

Highly-parameterised neural networks as the ones we use in this work (as well as100

in recent literature) carry an important amount of intrinsic prediction uncertainty, called101

among statisticians “epistemic” uncertainty. This should be taken into account, where102

possible, in any scientific application, even more in those with direct impact on society103

as the present study. Yet another issue with those models is the presence of parameters104

(named “hyper-parameters” in the ML community) which are not directly optimised dur-105

ing the fitting processes, but whose impact on the predictions are potentially very large.106

Consequently, some sort of extra optimisation should be performed, which is typically107

computationally costly.108

Furthermore, robustness in non-linear time-series predictions obtained from ML109

models (including LSTM) can be challenging due to their complex and often unpredictable110

nature. However, several techniques exist and can be used to test and improve the ro-111

bustness of the models.112

While studies on the prediction of geomagnetic indices with ML techniques have113

been conducted recently (see section 2), the novelty of our work is two-fold:114

• For the chosen ML model (LSTM in this case), we report our predictions for the115

SYM-H index with associated uncertainties.116

• We optimise the hyper-parameters of our model, in particular, following an effi-117

cient Bayesian optimisation strategy.118
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• The robustness of our LSTM model is evaluated not only with the standard hold-119

out method but also by reshuffling the list of geomagnetic storms.120

2 Related Work121

Efforts to forecast geomagnetic indices date back to the 1980’s (Mayaud, 1980), which122

started using linear prediction models which were unable to capture well enough the com-123

plexity of the response of the magnetosphere to SW. For this reason, the community started124

to rely on the arbitrarily high expressiveness of neural network models (e.g. Lundstedt125

and Wintoft (1994); Gleisner and Wintoft (1996)).126

Among these works, the one developed by Siciliano et al. (2021) constitutes a valu-127

able reference from which we have started our study. They forecast the SYM-H index,128

for which one can have a priori finer time granularity with respect to other indices, thus129

being advantageous from the point of view of an alert system. Siciliano et al. (2021) com-130

pared the SYM-H predictions using two different neural network models: the LSTM and131

the convolutional neural network (CNN), the latter being typically used for image recog-132

nition tasks (Zhang, 1988; Zhang et al., 1990). While they have obtained good perfor-133

mances with the CNN compared to the LSTM (in some cases even slightly better), in134

our study we concentrate on the LSTM only, which for us delivered similar performances135

as the CNN. However, as commented above, we address the important issue of the un-136

certainty estimation, along with a detailed and explicit hyper-parameter optimisation137

together with an additional robustness test.138

Posterior work by Collado-Villaverde et al. (2021) revolves on the same idea, but139

using a neural network architecture which actually combines CNN and LSTM transfor-140

mations to predict not only the SYM-H index but also the complementary ASY-H in-141

dex. With respect to our work, their architecture is different in that we use a standard142

LSTM model. Bhaskar and Vichare (2019) also predict both indices using a non-linear143

autoregressive exogenous (NARX) model (Leontaritis & Billings, 1985). On the other144

hand, Bailey et al. (2022) aim at forecasting the geoelectric field with LSTMs as well.145

While Pinto et al. (2022) forecast the ground magnetic field time derivative with LSTMs,146

Madsen et al. (2022) forecast both the ground magnetic field and its time derivative with147

LSTM networks and hybrid CNN-LSTMs. None of the works mentioned above, nor oth-148

ers less related to our study but in the same context, estimate the prediction uncertain-149

ties, nor have they thoroughly optimised their hyper-parameters. The only exception we150

were able to find was the very recent work by Iong et al. (2022), which studied the SYM-151

H index by using not neural networks, but another ML model belonging to ensemble meth-152

ods (in particular, using a regularising gradient boosting framework; the eXtreme Gra-153

dient Boosting (XGBoost) library (Chen & Guestrin, 2016)), obtaining very good per-154

formance as well. In their case, while not estimating their prediction uncertainties, the155

hyper-parameter optimisation was actually performed, using a gradient-free “black box”156

optimisation method. The latter is a generic algorithm most convenient for situations157

where little or no information is known about the structure of the function to optimise.158

In our study, on the other hand, we use an optimisation algorithm particularly suitable159

for the type of objective function we have, so it is arguably more efficient.160

3 Dataset Selection and Processing161

The dataset used in this work corresponds to a sample of geomagnetic storms that162

occurred between 1998 and 2018, which were recorded at ground-based geomagnetic ob-163

servatories, and were preceded by changes in the magnetic field and plasma parameters164

of the interplanetary medium, which were measured at the L1 Lagrange point by NASA’s165

Advanced Composition Explorer (ACE) spacecraft. The geomagnetic storms have been166

selected following the same criteria as in Siciliano et al. (2021), in order to make a di-167

rect comparison with this previous work. The sample contains 42 of the most intense ge-168
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omagnetic storms, distributed in two solar cycles. The intensity of the storms is defined169

by the SYM-H index. This index can be considered as a proxy of the response of the Earth’s170

magnetosphere (especially the ring current) to solar activity and it is computed from data171

of a network of six magnetic observatories distributed in longitude across the low and172

middle-latitude region, with a time resolution of 1 min and precision of 1 nT. All the ge-173

omagnetic storms selected have a minimum SYM-H index lower than −100 nT, so they174

can be considered as either severe or extreme (Patowary et al., 2013). This ensures a high175

signal-to-noise ratio. Indeed, 55% of all these geomagnetic storms (23 out of 42) have176

a minimum SYM-H value between −200 nT and −100 nT, while the rest (i.e. 19 geo-177

magnetic storms) have a minimum SYM-H value below −200 nT.178

As Siciliano et al. (2021), we follow the commonly used hold-out method for train-179

ing a ML model which is the process of dividing the full dataset into different splits and180

then using one split for training the model and other splits to validate and test it. Ta-181

ble 1 lists the geomagnetic storms classified in three sub-datasets containing data from182

different storms. These three sub-datasets are uniformly populated in terms of geomag-183

netic storm intensity and complexity. The training sub-dataset is used to train the LSTM184

model, the validation sub-dataset stops the network training and prevent over-fitting,185

while the test (also known as hold-out) sub-dataset is used as a proxy to evaluate the186

performance of the model on unseen data.187

The length of the time interval of the considered geomagnetic storms range from188

6 to 25 days, with an average of 10 days. This choice allows us to consider not only the189

main phase periods but also the initial and recovery phases, as well as previous and later190

quiet periods. The three sub-sets are uniformly populated in terms of geomagnetic storm191

intensity and complexity, the latter measured by the presence of multiple depressions of192

the magnetic field.193

As already mentioned by Siciliano et al. (2021), a larger number of geomagnetic194

storms can be considered, as done for instance by Cai et al. (2010) and Bhaskar and Vichare195

(2019), though the additional ones are just either weak or moderate geomagnetic storms,196

adding no further predictive power to our LSTM model. This is due to the fact that all197

storm phases including quiet periods are already considered in all three sub-datasets.198

The independent variables (commonly named “features” in ML) used for training199

the LSTM model are the squared value of the IMF magnitude B, the squared value of200

the IMF By component, the IMF Bz component (all these in GSM coordinates recorded201

at L1 Lagrange point by the ACE satellite) and the SYM-H index. The forecasting vari-202

able is the SYM-H index as mentioned above. All these variables are shown in table 2.203

All data are extracted from the NASA’s OMNIWeb page (https://omniweb.gsfc.nasa.gov)204

with time resolution of 5 min (Papitashvili & King, 2023b). Although the data are avail-205

able with a resolution of 1 min (Papitashvili & King, 2023a), the election of a lower res-206

olution allows to reduce the computation time without reducing predictive power, allow-207

ing also a direct comparison with the results of Siciliano et al. (2021). The 5 min sam-208

ple is computed by averaging the 1 min samples, so that the data at minute 0 corresponds209

to the average from minutes 0 to 4.210

The IMF variables are propagated to the nominal magnetospheric bow shock fol-211

lowing the method described in the OMNIWeb site (King & Papitashvili, 2005). It is im-212

portant to note in this context that in this study (and also in that of Siciliano et al. (2021))213

the information available on SYM-H at the Earth’s surface is assumed to be simultane-214

ous with that of the IMF projected at the bow shock. However, the spacecraft measur-215

ing the IMF is located upstream of the solar wind at the L1 Lagrange point, which al-216

lows these data to be known some time in advance (typically between 15 and 60 min).217

This advantageous position, which is therefore not exploited here, is expected to have218

a significant role in the efficiency of the SYM-H predictions.219
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The IMF data overflows are removed from the full sample of geomagnetic storms220

and the remaining empty gaps are filled using a linear interpolation method. Geomag-221

netic storms generally have short periods with IMF data overflows but in few cases (e.g.222

training storm TR13 and validation storm V3) the overflows are large and occur near223

the peak of the storm activity. While linear interpolation is one possible way to address224

the problem of gaps, it is clearly not optimal when these are located in periods of high225

activity. We are aware that more sophisticated approaches could be exploited (e.g. the226

interpolation schemes proposed by Qin et al. (2007) or Marsal and Curto (2009) or even227

a ML-based method we are currently developing), but we used the same approach as Siciliano228

et al. (2021) to perform a direct comparison between their results and ours. Figure 1 il-229

lustrates the removal of overflows in the IMF variables (B2, B2
y , Bz) followed by a lin-230

ear interpolation to fill the resulting gaps for a particular storm, TR13, of the training231

sub-dataset. It was decided to keep the storms with overflows near maximum of activ-232

ity in the study, both to train and to stop training the network, since they represent a233

real possibility when part of the data is lost due to measurement errors or overflows or234

even detector failures.235

Figure 1. Training variables (B2, B2
y , Bz, SYM-H) for storm TR13 of the training sub-dataset,

after overflow removal (left) and after linear interpolation to fill the gaps (right). The SYM-H

index is also shown for completeness as it is the fourth variable used in the training.

Each geomagnetic storm time series is standardised using the associated mean and236

standard deviation, similar to Siciliano et al. (2021). However, in our case, the mean and237

standard deviation are just estimated from the training sub-dataset, given that this is238

the only data previously known for the study. With the standardisation the values are239

centred around the mean and given a unit standard deviation using the equation:240
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XS =
X − µTR

σTR
, (1)

where XS is the standardised time-series data, X is the original time-series data,241

µTR is the mean of the training series and σTR its standard deviation. Making each time242

series similar to a normal distribution, it is less sensitive to the scale of features and more243

consistent with each other, thus allowing the model to predict outputs more accurately.244

In addition, this scaling method is more resilient to outliers than the more common nor-245

malisation between [−1, 1] or [0, 1], which only considers the minimum and maximum246

values instead of the overall statistics of the data.247

4 Deep-Learning Model248

Humans, as intelligent beings, do not have to learn how to speak, walk or cook from249

scratch every time. Our previous experiences on these tasks endure, and the ability to250

do it improves after several repetitions. Traditional neural networks do not have this fea-251

ture, and it is a major deficiency for some specific tasks such as time-series forecasting252

or natural language processing. Recurrent neural networks (RNNs) (Rumelhart & Mc-253

Clelland, 1987) address this problem. RNNs integrate cyclic connections, allowing in-254

formation to persist, making them a more powerful tool to model sequential data than255

the traditional feed-forward neural networks. LSTM networks are a variety of RNNs, ca-256

pable of learning long-term dependencies and also forgetting irrelevant information, es-257

pecially in sequence prediction problems. RNNs read the data sequentially, and attribute258

higher weights to the recent information. The back-propagation training of RNNs suf-259

fers from the so-called “vanishing gradient” problem, which limits the learning capabil-260

ities of the network. LSTMs address this problem by recognising between long-term and261

short-term memory through a gating mechanism that regulates the flow of information.262

This allows the model to selectively retain or forget information based on its relevance,263

making it more robust and able to handle complex sequential patterns. In this work we264

use one such type of neural network with a typical architecture shown in Figure 2, which265

we briefly describe below.266
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Figure 2. LSTM “cell” based on four interacting layers (cell state, input gate, forget gate and

output gate). An LSTM network consists of repetitions of such a cell for every step t of the time

series.

An LSTM network consists of a series of non-linear transformations for each time267

step with shared parameters (weights). The transformation for a generic input xt at time268

step t is schematically represented in Figure 2. For each t, there are two outputs: the269

cell state ct and the hidden output ht, which are computed from four quantities. The270
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first quantity is the result of the “forget gate” ft, consisting typically of a sigmoid func-271

tion applied to the linear function Wfxt+Ufht−1+bf . Here xt is the input, ht−1 the272

hidden output of the previous time step, while Wf and Uf are the weight matrices and273

bf is the bias vector. The motivation for the forget layer -whose value is a number in the274

range [0, 1]- is to decide how much to “forget” about the previous time step’s cell state275

ct−1 (i.e. ”0” forgets the previous data and ”1” uses the previous data). The second quan-276

tity is the “cell input” c̃t, similar in structure to the forget gate, but with its own set of277

weights Wc, Uc and bc, and using a tanh function instead of a sigmoid. It represents the278

new information that would potentially be included in the new cell state ct. How much279

of such information to be retained is determined by the third quantity: the result of the280

“input gate” it, defined as another sigmoid transformation, but with its corresponding281

weights Wi, Ui and bi. With the above three quantities and their interpretations, the new282

cell state is defined in an intuitive way as: ct = ft×ct−1+it× c̃t, with c0 = 0 by defi-283

nition. Finally, the fourth quantity is the result of the “output gate” ot, being yet an-284

other sigmoid with weights Wo, Uo and bo. It has the role of a weight factor for the hid-285

den output, computed as ht = ot × tanh(ct), with h0 = 0.286

The above series of transformations are consecutively applied to a finite number287

of time steps, from t−lb to t, with lb being an optimisable hyper-parameter called the288

“look-back”. The final aim is to predict an observable yt+lf at a future time t+lf , with289

lf being the “look-ahead”, representing how much time in advance we want to make a290

prediction, which is fixed by the domain needs. In order to make such a prediction, right291

after the last LSTM cell applied on t and resulting in the hidden output ht, a number292

of dense network layers are applied to transform the vector ht into the predicted value293

of yt+lf , while potentially adding more expressiveness to the model. The number of dense294

layers is also another hyper-parameter to be optimised.295

4.1 Hyper-Parameter Optimisation296

Hyper-parameter optimisation is an essential ingredient when training state-of-the-297

art ML models, due to their high complexity. Traditional random- or grid-search strate-298

gies have shown to be very inefficient when the number of hyper-parameters is larger than299

a few. Modern libraries exist which implement efficient algorithms for optimising costly300

functions. One of the most popular ones, which we adopted here, is the hyper-parameter301

optimisation framework “Optuna” (Akiba et al., 2019). In particular, we run Optuna302

to optimise the following hyper-parameters: the number of dense layers, the number of303

units of these layers, the learning rate, and the look-back parameter of the LSTM layer.304

We use Optuna’s implementation of a Bayesian optimisation flavour called “tree-structured305

parzen estimator”, the details of which are found in Bergstra et al. (2011).306

Finding multiple local minima can be a problem in hyper-parameter search. In par-307

ticular, because of the stochastic nature of gradient descent during training, there can308

be times when two identical trials result in a value of the loss function that varies more309

greatly than trials with different hyper-parameters would. For this reason, each trial is310

repeated five times. The mean and standard deviation of the loss function results for each311

trial with a set of hyper-parameters are calculated. Having done this, all trials with root-312

mean-square error (RMSE) standard deviations that overlap with the best (i.e. lowest)313

RMSE mean of all trials are labeled as best trials. This procedure allows us to explore314

flat directions in the hyper-parameter space, as discussed later in section 5.315

4.2 Robustness of the LSTM model316

Ensuring the robustness of state-of-the-art ML models, used to analyse and pre-317

dict non-linear time-series data, is of critical importance for reliable and effective decision-318

making, especially on those with direct impact on society. This requires careful design319

as well as rigorous testing and validation, but the benefits in terms of reliability and ef-320

–8–



manuscript submitted to Space Weather

fectiveness are significant. Non-linear time-series data can exhibit complex and dynamic321

behaviour, making it challenging to model and predict accurately.322

As in many other works, we ensure the robustness of our LSTM model by using323

the hold-out validation technique and therefore splitting the full dataset into three dif-324

ferent sub-datasets (training, validation and test) containing uniformly populated times-325

series data from different geomagnetic storms. This technique helps to identify weaknesses326

and guarantee the model to perform and generalise well on new and unseen data, even327

in the presence of various perturbations, such as data noise or changes in the distribu-328

tion of the times-series data.329

However, the performance estimate of the ML model may be highly dependent on330

the particular dataset split used. If the split is not representative of the overall dataset331

distribution, then the performance estimate may be biased. In our case the three sub-332

datasets are uniformly populated in terms of geomagnetic storms intensity and complex-333

ity and therefore no bias is expected. However, to evaluate this issue we reshuffled the334

original list of geomagnetic storms in the three sub-datasets shown in Table 1. Thus, we335

populated the new training sub-dataset with the 17 storms from the original test sub-336

dataset plus three storms from the original validation sub-dataset. To populate the new337

test sub-dataset, we used 17 storms from the original training sub-dataset. Finally, the338

new validation sub-dataset was filled with the remaining three storms from the original339

training sub-dataset plus two validation storms from the original validation set. A vi-340

sual representation of the baseline and reshuffled lists of geomagnetic storms used for train-341

ing, validation and test is shown in Figure 3. With the new reshuffled list of the geomag-342

netic storms, we trained an alternative LSTM model (with its own optimised hyper-parameters)343

and obtained compatible performance without observing over-fitting, under-fitting or bi-344

ases.345

Figure 3. Visual representation of the two lists of geomagnetic storms used for training, vali-

dation and test for the baseline and the alternative LSTM models. The upper diagram represents

the baseline list, as shown in Table 1 (i.e. same criteria as Siciliano et al. (2021)), while the lower

diagram represents an alternative ordering where the list of storms is reshuffled. Each rectangle

represents a different storm. Colours are assigned based on the baseline list of the geomagnetic

storms, where red, blue and green represent the original storms in the training, validation and

test sub-datasets, respectively.

Other techniques could also be used to enhance the robustness of LSTM models346

such as different flavours of cross-validation, data augmentation, model ensembling, ad-347

versarial training or regularisation, though we will deeply explore this in future works.348
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In any case, we want to point out that the regularisation technique is indeed used in this349

work for the estimation of uncertainties (see section 4.3 and Appendix A).350

4.3 Estimation of Prediction Uncertainties351

To estimate the uncertainties associated with our predictions, two main approaches352

can be followed: a frequentist approach, in particular adopting the “bootstrapping” method,353

or a Bayesian approach, where several state-of-the-art methods can be adopted depend-354

ing on the needs and scope. In this work we have followed the two methods, and com-355

pared the results between them.356

Bootstrapping is a series of techniques by which we obtain synthetic datasets out357

of the “real” (observed or simulated) dataset we have at our disposal. In doing this, both358

aleatoric and epistemic uncertainties are taken into account when making predictions,359

making bootstrapping equivalent to the principled Bayesian approach. In the physics com-360

munity, the typical methodology is to: 1) propose a likelihood distribution of the data,361

and optimise its parameters by maximum likelihood estimate (MLE) method, 2) with362

these optimum parameters, use the proposed likelihood to sample a large number of syn-363

thetic datasets, identical in length to the original one, 3) find for each synthetic dataset364

the MLE parameters analogously as in step 1, and 4) each of the MLE parameters will365

lead to a different prediction, thus obtaining a distribution of predictions. While this tech-366

nique works very well for many situations, it may be misleading when the assumed like-367

lihood is very different from the true -unknown- underlying distribution of the data. For368

this reason, in the ML community there is another popular bootstrapping strategy, which369

consists in re-sampling a large number of times the real dataset directly, either with or370

without replacement1. This is equivalent to sampling from the empirical distribution,371

instead of assuming a particular parametric shape of the likelihood.372

The traditional bootstrapping fails with time series because the sampling proce-373

dure breaks off the time dependence that concatenates adjacent samples in the sets. For374

this reason, a special consideration has to be made for our case. If we can divide the set375

in chunks of samples, and perform the bootstrap sampling procedure on these blocks in-376

stead of on the individual samples, we can conserve the time dependence up to the di-377

vision of the blocks; for the present dataset, a natural way to divide the training set is378

by geomagnetic storms, in particular because we gain the advantage of explicitly break-379

ing adjacent samples of different storms that are not expected to have a time dependency.380

On the other hand, we have also followed a Bayesian approach for estimating the381

prediction uncertainties. In the case of deep neural networks one of the most popular382

strategies is the so-called “dropout” method (Gal & Ghahramani, 2016). More details383

on this can be found in Appendix A, where we also show the corresponding results as384

well as the comparison with respect to the bootstrap method. In summary, for this par-385

ticular dataset we find that the bootstrap results perform better, especially around the386

peak of the storms, which is the most critical region. We thus retain the bootstrap pre-387

dictions and corresponding uncertainties as our main results.388

A note of caution is in order at this point. When reporting our prediction uncer-389

tainties, we are more specifically reporting the systematic (or epistemic) uncertainties390

of the expected (mean) values of the SYM-H index, which we calculate as the output of391

our LSTM network. Note that this is not the same as the total prediction uncertainties,392

which include the data noise (also known as aleatoric, or statistical uncertainties), and393

which we do not have available. Since the reported epistemic uncertainties decrease as394

the number of data points increase, it is perfectly consistent to have a very precise de-395

1 “With replacement” means that a particular instance of the real dataset can appear more than once

in the synthetic dataset.
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termination of the mean predictions of the SYM-H index, describing data whose noise396

is appreciably larger (and consequently having values beyond the corresponding inter-397

val of epistemic uncertainties). On the other hand, we are also not considering in this398

work the uncertainties related to the other input variables (related to the IMF B and399

its components). While we plan to include them in a future work, we nonetheless expect400

their impact on our results to be small, after checking that the uncertainties in B2 are401

of few percent.402

5 Results403

After discussing the data and analysis setup in previous sections, we turn now to404

present the results of our analysis.405

In the first subsection we present the optimisation of hyper-parameters needed to406

learn the evolution of the SYM-H index, the relative importance of each parameter in407

the final result and explore the possible correlation between hyper-parameters. We then408

present the overall performance of the trained algorithm when predicting the evolution409

of the SYM-H index.410

5.1 Hyper-Parameter Tuning411

Once we have chosen an LSTM as the basic architecture for the time-evolution anal-412

ysis, the next step is to optimise the hyper-parameters of the learning structure. The re-413

sults of this analysis are shown in Figures 4 and 5.414

0.0 0.2 0.4 0.6 0.8 1.0
Importance for objective value
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Figure 4. Hyper-parameter importance bars for learning rate (lr), number of dense hidden

layers (layers), number of units in all hidden layers (units) and look-back (lb).

In particular, we vary the number of fully-connected layers which are placed after415

the LSTM architecture (layers), the number of neurons of these dense hidden layers416

(units) and the learning rate parameter (lr). We also explore different values of the look-417

back parameter (lb), the amount of previous data we allow the network to explore in418

order to predict the future evolution; this value is reported in terms of number of 5 min419

steps, unless otherwise indicated.420
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Figure 5. Pair-wise scatter-plots for the hyper-parameters optimised via Optuna for the

LSTM architecture. Out of the total of 25 cases, the blue points correspond to hyper-parameter

values which cover the minimum value of the MSE that results from using the global optimum

values. Red stars indicate the reported optimum values. The histograms along the diagonal,

for each hyper-parameter, are the result of marginalising all the points from the rest of hyper-

parameters.

The ranges in which each hyper-parameter was optimised are summarised in Ta-421

ble 3. Variations of each of these parameters are not equally important, as shown in Fig-422

ure 4.423

Indeed, we found that the learning rate is key to the learning, whereas variations424

of the depth and width of the fully-connected layer (n layers, n unit) are much less425

important. This indicates that, once the LSTM is learning the time series, the partic-426

ular characteristics of the additional dense layer are not that relevant. We also found that,427

in the range we explored, the look-back parameter was not an important handle. This428

would indicate that we have already chosen an optimal look-back range. Note, however,429

that if we were interested in describing other, less global, parameters than the SYM-H430
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index, the look-back parameter may change. This optimisation is only valid for the out-431

put prediction we have chosen to describe.432

The best hyper-parameter values (in terms of mean-square error (MSE)) accord-433

ing to Optuna are: ( n layers, n unit, lr, lb) = (4, 386, 3.12×10−5, 75 steps), which434

are shown in Table 3. However, while these specific values are indicated as optimal, one435

should keep in mind that slightly different values could lead to the same performance;436

there could be “flat directions”, i.e. combinations of hyper-parameter values away from437

the reported optimum which produce equally low MSE. Most importantly the optimi-438

sation made using Optuna assumes that the hyper-parameters are uncorrelated; indeed,439

the hyper-parameters may be correlated to some extent, while the procedure assumes440

complete independence.441

We have explored the impact of these caveats by performing a multidimensional442

scan of the hyper-parameters instead of assuming total uncorrelation. The results are443

summarised in Figure 5, where we show the pair-plots between the different hyper-parameters.444

The points shown in the scatter plots correspond to hyper-parameter values for which,445

upon repeating the trials five times, within their standard deviation, cover the minimum446

value of the MSE that results from using the global optimum values specified above. The447

optimum values are also shown. The histograms along the diagonal, for each hyper-parameter,448

are the result of marginalising all the points from the rest of hyper-parameters. For these449

scatter plots we observe no evident correlation between pairs of hyper-parameters, which450

validates the use of the Optuna procedure.451

However, the flat directions are explicitly present in almost all axes. For example452

if using six hidden layers instead of one, while fixing the rest of hyper-parameters to val-453

ues different from their “optimum”, we get equally good results, statistically speaking.454

Analogously, this happens with the number of units per hidden layer, which can be as455

high as 800 (with respect to the reported optimum at 386), or the look-back parameter456

at 300 (with respect to the optimum at 75). In all cases we observe that each hyper-parameter457

can admit large excursions in combination of specific values of other hyper-parameters458

without sacrificing the figure of merit. This is nothing but the consequence of a highly459

complex parametric dependence of the loss function with respect to the hyper-parameters460

of the model, as is often the case with the large models used by the community nowa-461

days.462

5.2 Prediction of the SYM-H Index463

To reproduce the results in Siciliano et al. (2021) where the SYM-H index is pre-464

dicted from the IMF observations at L1 Lagrange point and from past SYM-H values,465

as shown in Table 2, the same storms and time intervals as in that work were used, as466

well as the same training-validation-test split of the storms (see Table 1).467

In our case, the neural network architecture consists of an LSTM layer using the468

hyper-parameters configuration reported in Table 3.469

Block bootstrap was performed and 200 bootstrap models were used to obtain es-470

timations of the uncertainties of prediction values, RMSE and the coefficient of deter-471

mination (R2).472

Table 4 shows the values of RMSE in nT for the target variable SYM-H, and the473

values of R2 for the fits of the model to each of the storms in the test sub-dataset. The474

lower the RMSE, the better a model fits the test sub-dataset. The higher the R2 value,475

the better a model fits the test sub-dataset. These values, which are directly compara-476

ble with those of Siciliano et al. (2021), are shown in Figure 6. With blue dots, we show477

the average of our predictions and the blue symmetric segment corresponds to the 95%478

confidence level (CL) of these predictions. The reported results from Siciliano et al. (2021),479
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Collado-Villaverde et al. (2021) and Iong et al. (2022) are shown with orange dots, red480

crosses and green stars, respectively, which correspond to their best RMSE results. The481

same applies to the right panel in Figure 6, this time reporting R2 values (the values for482

Iong et al. (2022) are not shown as they are not reported by these authors). Note that483

uncertainty bars are not shown in the results of other authors since they did not report484

them.485
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Figure 6. RMSE and R2 values for the predicted SYM-H index for each one of the 17 test

storms. The results of this work are shown in blue with 2σ uncertainty bars (i.e. 95% CL), while

those from Siciliano et al. (2021), Collado-Villaverde et al. (2021) and Iong et al. (2022) are

shown in orange circles, red crosses and green stars, respectively, which correspond to their best

RMSE and R2 results.

One should then compare the orange dots (which are the best predictions from a486

bunch of 20 predictions from Siciliano et al. (2021)) with either the lower RMSE or higher487

R2 value of the blue range of our predictions. In most cases, our architecture leads to488

better performance, which we believe is mainly a manifestation of the achieved optimi-489

sation of hyper-parameters.490

On the other hand, we also include in Figure 6 the comparison with two other more491

recent studies (see Collado-Villaverde et al. (2021); Iong et al. (2022) commented in sec-492

tion 2), which check the performance of their methods on the same storms as Siciliano493

et al. (2021). We can observe that those other studies in general improve over Siciliano494

et al. (2021), while for most of the test storms they still lie inside our RMSE intervals2.495

However, as we commented in section 2, note that contrary to the case of Siciliano et496

al. (2021), the models considered in Collado-Villaverde et al. (2021); Iong et al. (2022)497

are different from ours, either by using neural networks with different architectures or498

a completely different model. It is worth stressing again at this point that our aim in499

this work was not to build and optimise a robust model to be considered in terms of pre-500

diction performance, but to study the prediction uncertainties, while using a popular model501

which nonetheless, as we see, still gives very competitive results.502

2 For only four out of 12 storms their predictions are marginally better than our predictions, except

storm T8, for which they are up to 25% better.
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The results in Figure 6 are rather global measures of performance, as they eval-503

uate the goodness of predictions during the whole storm. On the other hand, we may504

be interested to know how well the algorithm is performing during shorter periods of time,505

e.g. during the peaks of activity. To illustrate this point, in Figure 7 we show the pre-506

diction of the bootstrap models of the target variable SYM-H (in nT) for two of the 17507

test storms3. In this figure, the orange band represents the 95% CL of the predictions508

coming from the bootstrap procedure, while the mean prediction is shown by the red dashed509

lines, and the actual test values are shown as a solid blue line. For each storm we also510

plot (bottom panels) the residuals, which are computed just subtracting the prediction511

mean from the observed values and orange bands. We observe in general a very good agree-512

ment between the predictions and the observations, where the regions around the peaks513

show, as expected, the largest deviations. Note how the prediction uncertainties are also514

larger around the peaks, as one would expect. These larger deviations around the peaks515

are mainly due to a difference in timing of the predictions with respect to the observa-516

tions. This is indeed a common behaviour for LSTM models (and other models handling517

sequential data) using a limited training sub-dataset for predicting time-series data with518

a significant auto-correlation, which can make sometimes difficult for the model to ac-519

curately identify the underlying patterns and trends. In our case, for many storms (see520

Appendix A) we predict the drop in the SYM-H index to happen a bit before it actu-521

ally happens, which then causes large positive residuals for instants of time before the522

observations start to drop as well. This is indeed the case at least for storms T1, T6, T7,523

T8, T11 and T16 featuring residuals around the peak in the range 50–100 nT. On the524

other hand, for storms T9, T12 and T14, having residuals around the latter (absolute)525

values, the timing oscillates between predicting in advance or with a small delay.526

200

150

100

50

0

SY
M

-H
 (n

T)

Storm T2

Prediction (95% CL)
Prediction mean
Test values

500

400

300

200

100

0

100

SY
M

-H
 (n

T)

Storm T12

Prediction (95% CL)
Prediction mean
Test values

0 2500 5000 7500 10000 12500
time (min)

100

50

0

50

100

Da
ta

-M
od

el
 (n

T)

0 2500 5000 7500 10000 12500
time (min)

100

0

100

Da
ta

-M
od

el
 (n

T)

Figure 7. Time-series distributions of two of the 17 storms in the test sub-dataset, in par-

ticular, storms T2 and T12, showing in an orange band the 95% CL (corresponding to 2σ), in

red dash line the mean for the one hour ahead predictions of the SYM-H index from the LSTM

model, and the test data as a solid blue line. The lower panels represent the residuals with re-

spect to the model prediction mean.

3 See Figure A1 in Appendix A for all the storms.
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Finally, it is important to note that, as commented in section 4.3, the orange bands527

only represent the epistemic uncertainties (the uncertainties on the expected mean), rea-528

son for which there may be observed values lying outside the bands, which may be in529

part related to the intrinsic data noise, not represented in this figure (because we do not530

have access to it; see also Appendix A).531

5.3 Feature Importance532

Neural networks are often considered black-box algorithms though some external533

inference techniques can be used to extract useful information that can help to under-534

stand deep-learning models. Computing feature importance in LSTM models is indeed535

an important aspect of model interpretation and understanding. Feature importance is536

a measure of how much a particular input variable (or feature) contributes to the out-537

put of the model. Indeed, understanding feature importance can help to identify and se-538

lect the input features that are most relevant for a given prediction model. It can also539

provide valuable insights into the underlying patterns, dynamics and relationships present540

in the considered time-series data. There are several techniques that are commonly used541

to compute feature importance in LSTM models. Some of these techniques are the “in-542

put permutation” (Breiman, 2001; Fisher et al., 2019), “SHapley Additive exPlanations” (Lundberg543

& Lee, 2017), “Leave-One-Feature-Out”, “gradient-based method”, “layer-wise relevance544

propagation” and “activation-based methods” among others.545

In this work, the approach used to compute the feature importance in our LSTM546

model is based on the “input permutation” technique. We repeated the training proce-547

dure, using the same optimised hyper-parameters already discussed in section 5.1, but548

adding disturbances in the input data (i.e. IMF data and past SYM-H values). Thus,549

for each of the four input features, the values of all of the other features were shuffled,550

new predictions were calculated using the original test data, and RMSE was calculated.551

This procedure was performed 15 times for each variable; this is a total of 60 training552

sessions. The average value of the RMSE for each case is compared to a baseline value553

calculated with no shuffling (i.e. with the average RMSE value of the RMSE values shown554

in Table 4). The output of the feature importance results are shown in Figure 8. In the555

followed method, the most important features are the ones that, when all other variables556

are shuffled, result in an RMSE closer to the baseline average RMSE value. Thus, from557

the obtained results, we conclude that past SYM-H values represent the most important558

feature for our LSTM model, similarly to Siciliano et al. (2021).559

It is important to point out that the interpretation of feature importance in LSTM560

models can be challenging, as these models are inherently complex and exhibit dynamic561

and non-linear behaviour. Additionally, the results can be influenced by the data pre-562

processing (e.g. interpolation approach for data gap filling), the choice of input scaling563

and normalisation as discussed in section 3, as well as the choice of model architecture564

and the optimisation of the training hyper-parameters as discussed in section 4.1.565

6 Discussion and Outlook566

In this paper we have explored the use of a deep-learning model to predict the evo-567

lution of an activity index during geomagnetic storms, and proposed ways to estimate568

the uncertainties of these predictions. In particular, we focused on the SYM-H index,569

a quantity whose variation during a storm is a good summary of its strength. As input570

parameters, we used IMF data from the ACE spacecraft located at the L1 Lagrange point571

together with historic SYM-H values.572

We chose the SYM-H index to be able to compare with an existing study using deep573

learning and LSTM architectures in Siciliano et al. (2021). With this comparison, we can574

–16–



manuscript submitted to Space Weather

0 5 10 15 20 25 30 35
RMSE (nT)

B2
y

B²

Bz

SYM-H

Fe
at

ur
e

Baseline RMSE = 8.6 nT
Baseline uncertainty RMSE = 0.4 nT
RMSE after shuffle of other features

Figure 8. Ranking of the feature importance using an approach based on the “input permuta-

tion” technique (the smaller the value, the more important the variable is). Each bar represents

the mean value of the RMSE evaluated over all test storms after having shuffled all except the in-

dicated feature variable. The uncertainty bars represent the standard deviation, and the vertical

orange line represents the baseline value calculated with no shuffling along with its own standard

deviation (that can be computed by averaging values from Table 4).

illustrate the impact of the improvements we propose in both learning optimisation and575

uncertainty estimation.576

We found an overall improvement of the best predictions for the SYM-H index due577

to hyper-parameter optimisation, as shown in Figure 6, where our lower limit of the RMSE578

range is lower than the reported best RMSE value in Siciliano et al. (2021), with the ex-579

ception of test storm T8.580

Moreover, we proposed a robust statistical procedure to compute uncertainties in581

the predictions based on block-bootstrapping. With those uncertainties we produce a582

prediction with an uncertainty band corresponding to a chosen confidence interval and583

examine the goodness of our predictions at different times during the storm. See Fig-584

ure 7 for an illustration of how this uncertainty band evolves with time, and the com-585

parison with the observed values of the SYM-H index.586

The strategy described in this work could be applied to other architectures and tar-587

get parameters, such as the evolution of the geomagnetic or geoelectric fields in the ground.588

Reproducing the prediction of the SYM-H global geomagnetic activity index of Siciliano589

et al. (2021) has served to match the needs of a group of scientists working in SW with590

the experience of a group working on ML techniques applied to problems related to par-591

ticle physics. The improvement in prediction performance obtained with this test au-592

gurs well for our ultimate goal, which is to be able to predict the variations of the ge-593

omagnetic or geoelectric field on the ground at a specific location (Spain). The challenge594

is important because it involves adding the effect of the field induced by the three-dimensional595

structure of the electrical resistivity of the lithosphere to the complexity of the sources596

of these variations. Since we have models for this three-dimensional structure of the re-597

sistivity (Torta et al., 2021), we should also be able to predict the variations of the geo-598

electric field and, by combining them with the models of electrical admittances of our599

national power grid also described in Torta et al. (2021), derive the expected GICs.600

Future work will include ground-level magnetic field forecasting using data from601

Ebre Observatory, or better, also with those of the other geomagnetic observatories on602

the Iberian Peninsula. We are also interested in forecasting the time derivative of the603

–17–



manuscript submitted to Space Weather

geomagnetic field, since this variable is usually the most directly responsible for driving604

the geoelectric field and, therefore, the GICs. The ultimate goal will be to reformulate605

the problem in terms of an advanced deep-learning model that provides an alarm sys-606

tem against GICs in Spain. Moreover, our ML architecture can be made more robust607

and elaborated by including other developments such as a more sophisticated interpo-608

lation method to fill data gaps, a cross-validation technique for further improving the609

model robustness, and adding an attention layer in combination with LSTM.610

Data Availability Statement611

Raw data are obtained from the NASA’s OMNIWeb page (https://omniweb.gsfc.nasa.gov).612

Processed data, high-resolution plots, and prediction models (for both bootstrap and dropout)613

in h5 format can be downloaded at https://zenodo.org/record/7695656 (SpaceWeather-614

IFIC, 2023).615
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Table 1. List of the sub-datasets with the most relevant information of the geomagnetic

storms: label assigned to the storm, starting date, duration in days and minimum value of the

SYM-H index during the geomagnetic storm period. The distribution of the storms among the

different sub-datasets follows the same criteria as Siciliano et al. (2021).

Training sub-dataset

Label Start date Duration (days) SYM-H (nT)

TR1 14/02/1998 8 −119∗

TR2 02/08/1998 6 −168∗

TR3 19/09/1998 10 −213
TR4 16/02/1999 8 −127∗

TR5 15/10/1999 10 −218
TR6 09/07/2000 10 −347
TR7 06/08/2000 10 −235∗

TR8 15/09/2000 10 −196∗

TR9 01/11/2000 14 −174∗

TR10 14/03/2001 10 −165∗

TR11 06/04/2001 10 −275
TR12 17/10/2001 10 −210
TR13 31/10/2001 10 −320
TR14 17/05/2002 10 −116∗

TR15 15/11/2003 10 −490
TR16 20/07/2004 10 −208
TR17 10/05/2005 10 −302∗

TR18 09/04/2006 10 −110∗

TR19 09/12/2006 10 −211∗

TR20 01/03/2012 10 −149

Validation sub−dataset

Label Start Date Duration (day) SYM-H (nT)

V1 28/04/1998 10 −268
V2 19/09/1999 7 −160
V3 25/10/2003 9 −432∗

V4 18/06/2015 10 −207∗

V5 01/09/2017 10 −146∗

Test sub-dataset

Label Start Date Duration (day) SYM-H (nT)

T1 22/06/1998 8 −120
T2 02/11/1998 10 −179∗

T3 09/01/1999 9 −111
T4 13/04/1999 6 −122
T5 16/01/2000 10 −101∗

T6 02/04/2000 10 −315
T7 19/05/2000 9 −159∗

T8 26/03/2001 9 −437
T9 26/05/2003 11 −162∗

T10 08/07/2003 10 −125∗

T11 18/01/2004 9 −137∗

T12 04/11/2004 10 −394∗

T13 10/09/2012 25 −138
T14 28/05/2013 7 −134
T15 26/06/2013 8 −110
T16 11/03/2015 10 −234
T17 22/08/2018 12 −205

∗ Geomagnetic storms with multiple depressions.–19–
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Table 2. Variables used in the analysis.

Training variables B2 B2
y Bz SYM-H

Forecasted variable SYM-H

Table 3. Range in which each hyper-parameter was optimised, and chosen value.

Hyper-parameter Search range Chosen value

Number of layers [0, 10] 4
Number of units [0, 1000] 386
Learning rate [10−6, 10−1] 3.12× 10−5

Look-back (steps)
[40, 75, 90

75
120, 180, 360]

Table 4. RMSE and R2 values for the predicted SYM-H index with their respective standard

deviations for each of the storms in the test sub-dataset for our neural network architecture using

an LSTM model, and the IMF variables and past SYM-H values as input features for the train-

ing.

Set RMSE (nT) R2

T1 6.3 ± 0.4 0.87 ± 0.02
T2 10 ± 2 0.92 ± 0.03
T3 4.2 ± 0.2 0.969± 0.004
T4 8.0 ± 2.0 0.91 ± 0.04
T5 5.3 ± 0.4 0.951± 0.007
T6 8.4 ± 0.9 0.969± 0.090
T7 7.7 ± 0.6 0.944± 0.010
T8 22 ± 3 0.91 ± 0.03
T9 9.7 ± 0.3 0.810± 0.013
T10 6.9 ± 0.2 0.925± 0.004
T11 8.9 ± 0.3 0.887± 0.007
T12 19 ± 2 0.946± 0.016
T13 4.11± 0.19 0.941± 0.006
T14 5.1 ± 0.3 0.959± 0.004
T15 4.9 ± 0.3 0.964± 0.003
T16 9.4 ± 0.7 0.954± 0.006
T17 5.8 ± 0.3 0.966± 0.004

Total dataset 8.6 ± 0.4 0.929± 0.013
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Appendix A Dropout method for estimating the prediction uncertain-616

ties617

In this appendix we discuss in more detail the dropout method as an alternative618

approach for estimating the prediction uncertainties. We also compare the correspond-619

ing results with those obtained from the bootstrap method (see section 4.3).620

Roughly speaking, the idea consists in randomly turning off units of the different621

neural network layers. This has an immediate utility as a regulariser procedure; this is622

the reason for which dropout is commonly used at the training phase in order to con-623

trol over-fitting. However, as pointed out in (Gal & Ghahramani, 2016), such a proce-624

dure is mathematically equivalent to a variational inference algorithm, with a specific625

choice of the variational distribution. In particular, if dropout is also used at the test626

phase, the probability distribution of the predictions would be equivalent to the ones that627

would be obtained by computing the standard predictive distribution of the Bayesian628

approach, under the chosen variational approximation.629

An essential parameter in the dropout implementation is the dropout probability630

p. Formally, p is the probability for a Bernoulli (binary) random variable to take value631

equal to 1; so by sampling from the Bernoulli distribution, once for every unit in a hid-632

den layer, such a unit is turned off with a probability of 1−p. Traditionally, p is con-633

sidered as an important hyper-parameter to be optimised, e.g. by grid-search, which can634

be computationally expensive in largely parameterised models. This is the motivation635

behind “concrete dropout” cited from (Gal et al., 2017), which modifies the traditional636

dropout algorithm in such a way that p becomes an optimisable parameter during the637

normal training period. This is done by modifying the loss function so that it has an ex-638

plicit -and differentiable- dependence on p, which is the result of approximating the Bernoulli639

distribution by its continuous relaxation using the concrete distribution. In our neural640

network architecture, we have implemented the concrete dropout method for the dense641

layers following the LSTM layer, and consequently the associated dropout probability642

p is automatically optimised during the training process. However, for the LSTM layer643

itself we stick to the traditional implementation of dropout, where the parameter p is644

in this case included as an hyper-parameter optimisable with the Optuna procedure. The645

resulting optimal value for the LSTM dropout probability is p = 0.0128.646

The dropout results are shown in Figure A1 (right panels) for all the 17 different647

storms of our test sub-dataset, in terms of the prediction with its associated uncertainty648

of the SYM-H index as a function of time. We compare side by side with the bootstrap649

results4 (left panel in the figure).650

The first thing we note from these results is that both methods give similarly good651

results, on average, for the mean predictions (red dashed lines in the figures). This can652

be checked by the bottom panels of each storm, where we represent the residuals “Data653

- Model”. Some exceptions occur, mainly around the peaks of the storms, where one method654

is noticeably better than the other (see e.g. storms T6 and T11, where dropout is bet-655

ter). On the other hand, concerning the prediction uncertainties, we see more differences,656

and it is worth noting that, as commented in section 4.3, what we report here are un-657

certainties on the expected values (means) of the SYM-H, and not on the variable itself.658

In other words, these uncertainties are not the total ones resulting from adding the data659

noise, which we do not have. Coming back to Figure A1, typically the uncertainties on660

regions away from the peaks are larger (or at most similar) for dropout than for boot-661

strap. However, the opposite is true when focusing on the regions around the peaks, and662

in general it is bootstrap the method giving larger (or at most similar) uncertainties than663

dropout. In Figure A2 we simply zoom-in around the peaks of maximum activity for two664

4 Test storms T2 and T12 are the ones included in Figure 7.
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particular storms, T7 and T8, where this feature is more evident. Taking into account665

that the critical period of time of a storm is precisely when the peaks occur, the best pro-666

cedure is chosen to be the one giving better results in that region of the storms. Here667

better means not only good predictions, but also conservative prediction uncertainties.668

For that reason, we have selected bootstrap to be the main procedure for obtaining the669

predictions in this work.670
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Figure A1. Time-series distributions for all 17 storms in the test sub-dataset, showing the

results using the bootstrap method (left) and the dropout method (right). In all distributions,

we show in an orange band the 95% CL (corresponding to 2σ), in red dashed line the mean for

the one-hour ahead predictions of the SYM-H index from the LSTM model, and the test data as

a solid blue line. The lower panels represent the residuals with respect to the model prediction

mean.

–30–



manuscript submitted to Space Weather

Acknowledgments671

We acknowledge use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb (or CDAWeb672

or ftp) service, and OMNI data. We also gratefully acknowledge the computer resources673

at Artemisa, funded by the European Union ERDF and Comunitat Valenciana (Spain)674

as well as the technical support provided by the Instituto de F́ısica Corpuscular (CSIC-675

UV). We thank our colleagues at the Institut de Recerca Geomodels from the Univer-676

sitat de Barcelona for their expertise in SW, GIC and geoelectrical modelling, for their677

guidance in the use of the data and for their constructive comments and advice. Fur-678

thermore, the authors are grateful to the Spanish research grants PID2020-113135RB-679

C32 and PID2020-113135RB-C33 funded by MCIN/AEI/10.13039/501100011033 that680

supports this work. We also acknowledge the support from Generalitat Valenciana of the681

PROMETEO (ref. PROMETEO/2021/083) and GenT (ref. CIDEGENT/2020/055) re-682

search excellence programmes as well as support from MCIN/AEI of the ”Ramon y Ca-683

jal” programme (ref. RYC2020-030254-I).684

References685

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-686

generation hyperparameter optimization framework.687

doi: https://doi.org/10.48550/arXiv.1907.10902688
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Figure A2. Zoom-in of the time-series distributions around the peaks of maximum activity

for storms T7 and T8 in the test sub-dataset, showing the results using the bootstrap method

(left) and the dropout method (right). In these distributions, we show in an orange band the

95% CL (corresponding to 2σ), in red dashed line the mean for the one-hour ahead predictions of

the SYM-H index from the LSTM model, and the test data as a solid blue line. The lower panels

represent the residuals with respect to the model prediction mean.
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