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Abstract

The Southern Ocean (SO) is the worlds largest high nutrient low chlorophyll region and has a plentiful supply of underutilised

macronutrients due to light and iron limitation. These macronutrients supply the rest of the neighboring ocean basins, and

are hugely important for global productivity and ocean carbon sequestration. Vertical mixing rates in the SO are known to

vary by an order of magnitude temporally and spatially, however there is great uncertainty in the parameterization of this

mixing, including in the specification of a background mixing value in coarse resolutation Earth System Models. Using a

biogeochemical-ocean model we show that SO biomass is highly sensitive to altering the background diapycnal mixing over

short timescales. Increasing mixing enhances biomass by altering key biogeochemical and physical parameters. An increased

surface supply of iron is responsible for biomass increases in most areas, demonstrating the importance of year round diapycnal

fluxes of iron to SO surface waters. These changes to SO biomass could potentially alter atmospheric CO2 concentration over

longer timescales, demonstrating the importance of accurate representation of diapycnal mixing in climate models.

1



Hypersensitivity of Southern Ocean air-sea carbon1

fluxes to background turbulent diapycnal mixing2

Elizabeth Ellison1, Ali Mashayek2, Matthew Mazloff3
3

1Imperial College London, Department of Civil and Environmental Engineering, London, Uk4
2University of Cambridge, Department of Earth Sciences, Cambridge, Uk5

3Scripps Institute of Oceanography, University of California San Diego, La Jolla, USA6

Key Points:7

• Total air-sea carbon fluxes in the Southern Ocean are altered by up to 66% annually8

by modest background mixing variations.9

• Resolving or skillfully parameterising the spatiotemporal variability of small-scale10

turbulent mixing in the Southern Ocean is essential to model air-sea carbon fluxes.11

• The spatiotemporal coverage of available pCO2 observations is insufficient for con-12

straining the role of diapycnal mixing rates below the mixed layer on air-sea fluxes13
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Abstract14

The Southern Ocean (SO) connects major ocean basins and hosts large air-sea carbon fluxes15

due to the resurfacing of deep nutrient and carbon-rich waters. While surface-intensified16

wind-induced turbulent mixing in the SO surface mixed layer is significant for air-sea fluxes,17

the orders-of-magnitude weaker background mixing below the mixed layer has not been18

considered consequential. Topographically induced upward propagating lee waves in the19

SO, wind-induced downward propagating waves generated at the base of the mixed layer,20

shoaling of southward propagating internal tides generated in the basins north of the SO, and21

turbulence under sea ice are among the processes known to induce upper ocean background22

turbulence but typically are not represented in models. Here, we show that altering the23

background mixing in the SO over a modest range can lead to a∼40% - 60% annual change in24

SO air-sea CO2 fluxes, with bigger changes on a seasonal timescale. This is primarily through25

altering the temperature and the dissolved inorganic carbon and alkalinity distribution in26

the surface water. Given the high spatiotemporal variability of processes that induce small-27

scale background mixing, this work demonstrates the importance of their representation in28

climate models for accurate simulation of global biogeochemical cycles.29

Introduction30

The Southern Ocean (SO), defined here as any region south of 30◦S, is a key region31

for the global carbon cycle due to the upwelling of deep, old, carbon and nutrient-enriched32

waters, connecting the vast reservoir of nutrients and carbon from below the mixed layer33

with the surface (Talley et al., 2016). The deep ocean interacts with the atmosphere through34

less than 4% of the ocean’s surface area (Watson & Naveira Garabato, 2006; Klocker, 2018),35

with 65% of interior waters making first contact with the atmosphere in the SO (DeVries36

& Primeau, 2011). As the deep ocean contains up to 60 times more carbon than the atmo-37

sphere (Arias et al., 2021), small perturbations to air-sea carbon fluxes can be important38

for atmospheric carbon content (Adkins, 2013). Therefore, the SO, and especially the up-39

welling branch of circumpolar deep water (Marshall & Speer, 2012), is key in controlling40

global biogeochemical cycles, the exchange of CO2 between the atmosphere and the deep41

ocean, atmospheric CO2 levels, and the response of the ocean and atmosphere to climate42

change (Sarmiento et al., 2004; Gruber et al., 2019).43

Several expeditions have revealed strong cross-density (diapycnal) mixing due to small-44

scale ocean turbulence in the SO (Garabato et al., 2004; Ledwell et al., 2011; Watson et45

al., 2013; Garabato et al., 2019), though measurements remain sparse and difficult to scale46

up (Tamsitt et al., 2018; Mashayek et al., 2017; Cael & Mashayek, 2021; Mashayek et al.,47

2022). Given the small scales of diapycnal mixing, it is not resolved in operational models,48

and so it is parameterised (Gaspar, Grégoris, & Lefevre, 1990; W. G. Large et al., 1994) in49

two forms:50

1. Surface mixed layer mixing from storms and other surface winds, as well as convective51

instabilities.52

2. Background turbulence induced by bottom generated internal waves due to interaction53

of jets, eddies, and tides with rough topography or due to shoaling and breaking of54

remotely generated internal tides (see de Lavergne et al. (2020); Baker and Mashayek55

(2021, 2022) for reviews of such dynamics).56

The ‘background’ mixing in the ocean interior is typically several orders of magnitude smaller57

than that in the surface mixed layers. Since the seminal work of Munk (1966), bulk mea-58

surements of ocean mixing have found a diapycnal turbulent diffusivity of Kv ∼ O(10−4)59

m2 s−1 required to resurface the abyssal waters and facilitate the closure of the meridional60

overturning circulation (MOC) (Ganachaud & Wunsch, 2000; Talley et al., 2003; Lump-61

kin & Speer, 2007; Talley, 2013), while estimates from profiling instruments often find62

Kv ∼ O(10−5)m2 s−1 in the interior of the ocean and much larger values only very close to63
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the seafloor (Waterhouse et al., 2014; Ferrari, 2014). In the Diapycnal and Isopycnal Mixing64

Experiment in the Southern Ocean (DIMES), estimates of mixing based on microstructure65

profiles reported Kv ∼ O(10−5)m2 s−1 at the mean depth of an anthropogenic tracer re-66

leased upstream of the Drake Passage. Meanwhile, the tracer itself appeared to experience67

Kv ∼ O(10−4)m2 s−1 (Watson et al., 2013; Mashayek et al., 2017). The background values68

used in models typically lie within this range.69

Though diapycnal mixing is highly temporally and spatially variable due to its gener-70

ating mechanisms (e.g. strong surface westerly winds and interaction of the currents and71

eddies with rough topography), it is frequently parameterised as temporally invariable and,72

at times, even spatially constant. Current best estimates of SO diapycnal mixing are based73

on ‘static’ maps, produced with numerous limiting assumptions, approximating the contri-74

butions from topographically generated lee waves (Nikurashin & Ferrari, 2011; Shakespeare,75

2020), wind-induced near-inertial waves (Alford, 2020), and internal tides (de Lavergne et76

al., 2020). These maps have formed the basis of our representation of such processes in77

earth system models (A. Melet et al., 2014; A. V. Melet et al., 2022).78

Diapycnal mixing in the global ocean interior is known to be an important factor in79

variations in atmospheric carbon levels on centennial to millennial timescales via alterations80

in ocean circulation (Sigman et al., 2010; Marinov & Gnanadesikan, 2011). Enhanced81

diapycnal mixing increases deep ocean ventilation via the SO and reduces ocean carbon82

storage through biological and solubility carbon pumps (Marinov et al., 2008; Marinov &83

Gnanadesikan, 2011). Climate models are sensitive to the intensity and distribution of global84

diapycnal mixing, accounting for about 25% of the uncertainty in the estimated range of85

atmospheric CO2 concentrations by 2100 (Schmittner et al., 2009). In this work, we are86

concerned with the response of the air-sea carbon fluxes to mixing below the surface mixed87

layer on time scales much shorter than those explored in the abovementioned works. We also88

solely focus on mixing in the SO which has been assumed to be of secondary importance for89

the global ocean circulation (Nikurashin & Ferrari, 2013) but significant for setting global90

tracer distributions (Ellison et al., 2021).91

Given the strong wind-driven isopycnal upwelling in the Southern Ocean, and the in-92

tense diapycnal mixing within the mixed layer induced by strong winds, one may imagine93

that the modest background mixing below the mixed layer would be inconsequential for94

setting the air-sea fluxes of CO2 on short timescales. In this work, we show the contrary.95

The air-sea flux of CO2 primarily depends on the difference in the partial pressures of CO296

(pCO2) between the atmosphere and the ocean. Physical and biological processes, including97

advective and diffusive transport of tracers, organic matter formations and sinking, and98

the dilution of tracers due to precipitation, runoff and sea ice melt, all alter the pCO2 of99

surface waters (Mahadevan et al., 2011), resulting in high variability in time and space100

of the CO2 fluxes in the SO (Rosso et al., 2017). The influence of altering background101

diapycnal mixing on the surface ocean pCO2 is complex to predict due to spatiotemporal102

variability in biological and physical responses to variations in mixing (Dutreuil et al., 2009),103

and the coupled multivariate dependency of ocean pCO2 to temperature, salinity, alkalinity104

and dissolved inorganic carbon. In this work, we will show that modest perturbation of the105

background mixing strongly alters the SO-integrated air-sea CO2 fluxes on seasonal, annual,106

and interannual timescales.107

Experiment Setup108

We use the Biogeochemical Southern Ocean state estimate (B-SOSE; Verdy and Mazloff109

(2017)). The interaction between diapycnal mixing below the mixed layer, the mixed layer110

dynamics, and the mesoscale processes that advect tracers prove essential for the problem111

under consideration here. Thus, employing an eddy-resolving model such as B-SOSE is112

essential and distinguishes this work from studies mentioned earlier that use low-resolution113
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models in global settings to study the role of mixing on carbon fluxes. In return, the114

timescales of relevance in our study are much shorter than theirs.115

The model’s optimization procedure solves for adjustments to the prescribed atmo-116

spheric state and initial conditions to bring the solution into better consistency with obser-117

vations. The resulting product is a closed-budget model simulation representing the present118

SO state. Because it represents the constantly evolving SO state it is not in a steady state,119

in contrast to what one may expect from analysis of an earth system model undergoing a120

long spin-up process. The B-SOSE simulation provides an estimate of SO biogeochemistry,121

including air-sea fluxes of heat and carbon and the cycling of nutrients from a biogeochemical122

and carbon model.123

The model domain extends from the equator to 78◦S with 52 vertical layers of varying124

thickness. The zonal grid spacing is always 1/6◦, but the meridional grid spacing changes125

with the cosine of the latitude. Ocean physics is represented using the MITgcm. The ocean126

is forced through an atmospheric boundary layer scheme where bulk formulae determine127

heat fluxes, freshwater (salt), and momentum (W. Large & Yeager, 2009). The hourly128

atmospheric conditions of ERA5 (Dee et al., 2011) are applied, with adjustments added129

that were determined by optimization (Verdy & Mazloff, 2017) using the adjoint method.130

Sea ice is modelled using 0-layer thermodynamics (Fenty & Heimbach, 2013) and an implicit131

Line Successive Over Relaxation (LSOR) dynamical solver (Losch et al., 2010). A horizontal132

biharmonic diffusivity is used with a value of 10−8 m4s−1. Implicit vertical diffusivity for133

convection is set to 10 m2s−1, and no mesoscale eddy parameterisation was implemented.134

For further details, see Verdy and Mazloff (2017) and Swierczek et al. (2021).135

The parameterisation of diapycnal mixing is composed of two parts. The GGL90 mixed136

layer parameterisation of Gaspar, Grégoris, and Lefevre (1990) is used to represent param-137

eterised turbulence and is highly surface-enhanced (Fig.1 D), inducing strong turbulence138

under the seasonal atmospheric storm tracks, mixing the DIC gradients in the upper few139

hundreds of meters. In other places, such as under the ice or when there is no strong140

wind-induced turbulence, the models rely on a prescribed background value for turbulent141

diffusivity. The background value is behind the sensitivity of fluxes discussed in this work.142

As discussed in subsequent paragraphs, the background vertical diffusivity is altered in each143

experimental run. The background mixing value is added to the GGL90 mixing to achieve144

a total vertical diapycnal mixing value.145

The Biogeochemistry with LIght, Nutrients and Gases (NBLING) model, described146

fully in Verdy and Mazloff (2017), forms the biochemical framework within B-SOSE. The147

original BLING model described in Galbraith et al. (2010) was modified (for B-SOSE) with148

the addition of nitrogen cycling and improvements in the representation of phytoplankton149

population dynamics and particle export (Galbraith et al., 2015; Bianchi et al., 2013). Bi-150

ological activity influences the concentrations of carbon and oxygen. At the core of the151

BLING model is primary production with limitations by light, nitrate, phosphate, iron, and152

temperature, and subsequent remineralization of organic matter back to inorganic nutri-153

ents. Nine prognostic tracers are simulated in NBLING: dissolved inorganic carbon (DIC),154

alkalinity (ALK), oxygen (O2), nitrate (NO3), phosphate (PO4), iron (Fe), disssolved or-155

ganic nitrogen (DON), dissolved organic phosphate (DOP) and phytoplankton biomass. The156

biomass partitioning into species is determined using stored ratios updated every timestep157

based on growth and decay rates. We include three types of phytoplankton: large, small,158

and diazotrophs. Small cells represent calcifying organisms; they use calcium carbonate159

to form shells. Diazotrophs can fix nitrogen, so nitrate availability does not limit them.160

Phytoplankton loss is expressed as a power law with a size-dependent exponent based on161

(Dunne et al., 2005).162

The B-SOSE carbon system is adapted from the MITgcm simple biogeochemical model163

of Dutkiewicz et al. (2006). DIC and ALK are prognostic variables, and pH and pCO2164

are diagnosed based on Follows et al. (2006), making oceanic pCO2 a function of DIC,165
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ALK, temperature (T), salinity (S) and silica, where silica is prescribed from the 2013166

World Ocean Atlas climatology (Garcia et al., 2013). CO2 and oxygen air-sea fluxes are167

calculated following Wanninkhof (1992). Atmospheric pCO2 is prescribed using values from168

the CarbonTracker product (Peters et al., 2007).169

The state estimate is produced by solving for the model initial and boundary con-170

ditions, the so-called model ‘controls’, which minimize a weighted least squares sum of171

model-observation misfits. This is achieved using an adjoint model that provides the gradi-172

ents of the misfit function with respect to the model controls, allowing those controls to be173

efficiently and systematically determined. The model is run for seven years (2012 - 2018)174

using the adjoint method-based assimilation product. This includes physical and biogeo-175

chemical constraints obtained from Argo floats, including biogeochemical parameters from176

the SOCCOM float array, satellite altimetry, satellite SST, and ship transect data. The full177

set of model parameters used in this 1/6◦ setup is given in Swierczek et al. (2021); see Verdy178

and Mazloff (2017) for initial conditions.179

The B-SOSE’s original conditions and atmospheric adjustments were obtained using180

10−4 m2s−1 as the value for background diapycnal diffusivity (added to the GGL90 mixing).181

We refer to that base simulation as Ex1e-4 hereafter. Using the same initial conditions and182

atmospheric state adjustments, two additional model simulations were carried out for 2013-183

2018. The first perturbation experiment, Ex1e-5, uses a constant background diffusivity184

value of 10−5m2s−1. The range 10−5 m2s−1 to 10−4 m2s−1 is conservative, sandwiched185

between the two canonical paradigms of mixing often considered in Physical Oceanography.186

The third experiment, ExVar, uses a spatially variable (but temporally constant) vertical187

diapycnal mixing map (Fig 1A-C). The map is constructed as the sum of contributions from188

tides (de Lavergne et al., 2020) and topographically-generated lee waves (Nikurashin &189

Ferrari, 2013). ExVar features horizontal and vertical variations over a range much broader190

than 10−5 m2s−1 to 10−4 m2s−1. Although background mixing values dominate over the191

GGL90 parameterisation in mid-depths, GGL90 is orders of magnitude larger than the192

background mixing value in the upper ocean (Fig.1D). The three cases together allow for193

evaluating the impact of the magnitude of mixing and its spatial variations on the carbon194

flux independently.195

Results196

Carbon fluxes197

The SO is a net sink of atmospheric CO2, with most of the uptake occurring between198

50◦S and 30◦S, with a peak at 40◦S, where around 7 Tg C/yr is taken up (Fig.2A). 40◦S199

is the average latitude of the subtropical front, separating the subtropical waters from the200

subantarctic mode waters, thus hosting rich mesoscale and submesoscale frontal dynamics201

and enhanced air-sea exchange of tracers. To the south of the polar front (panel E), on the202

other hand, the upwelling of deep carbon-rich waters causes carbon outgassing (shown in203

red panel E). Additional uptake occurs further south around Antarctica due to downwelling204

(induced by a change in the wind direction from westerly to easterly) and deep water forma-205

tion. Thus, SO fronts, which mark sharp gradients in temperature and carbon chemistry,206

separate regions of net uptake from regions of outgassing. Higher latitudes show very low207

mean annual carbon fluxes, partly due to seasonal ice cover.208

Carbon uptake varies year-on-year during the six years of the state estimate run by209

almost 2 Tg C/yr at some latitudes, with especially high inter-annual variability at 60◦S210

and 40◦S (Fig.2A). The inter-annual range of carbon fluxes for Ex1e-5 are highly non-211

monotonic. The inter-annual variations are due to varying oceanic conditions each year,212

some of which are associated with the Southern Annular Mode (SAM).213

Alterations to background diapycnal mixing alter SO carbon fluxes, with ExVar showing214

smaller differences from Ex1e-5 than Ex1e-4 (Fig.2B dashed vs solid lines). The sensitivity215
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to altered diapycnal mixing is variable throughout the six years (Fig.2 B). This inter-annual216

range in sensitivity of around 0.1 Tg C/yr is well within the range of the inter-annual217

variability of zonally integrated carbon fluxes in Ex1e-5 (Fig.2A,B). A higher difference218

between Ex1e-5 and Ex1e-4, and to a lesser extent between Ex1e-5 and ExVar occurs in the219

first three years (2013 to 2015) than in the last three years (2016 to 2018) (Fig.2B). As upper220

ocean mixing is never in an equilibrium state due to constantly changing winds, eddies and221

buoyancy fluxes, the response to the mixing perturbation over the first few months of this222

experiment do not seem unrealistically exaggerated .223

Increasing the background mixing from Ex1e-5 to Ex1e-4 leads to a reduction in annual224

mean zonally integrated carbon uptake at all latitudes (Fig.2C,F). The most significant225

reduction is around 55◦S (Fig.2C,F). Minor changes occur south of 65◦S due to the ice cover.226

In ExVar, the most significant changes from Ex1e-5 occur further north, at around 45◦S.227

South of 60◦S, the difference between ExVar and Ex1e-5 is insignificant (Fig.2C,G). Large228

areas of ExVar have carbon fluxes unchanged from those in Ex1e-5 (Fig.2G), suggesting229

that 10−4m2 is likely too large of a background mixing value. In Ex1e-5, the mean annual230

cumulative net flux of carbon into the ocean, integrated from 75◦S northward to 30◦S, is231

1 Pg C/yr (Fig.2D). In Ex1e-4 only 0.6 Pg C/yr is taken up, a reduction of 0.4 Pg C232

yr−1. The annual uptake of ExVar falls between the other two experiments at around 0.8233

Pg C/yr. These numbers are for the six-year mean, and as panel B shows, the reductions234

from Ex1e-5 are much higher over the first three years (almost double).235

The cumulative carbon fluxes are compared to other estimates of the integrated SO236

carbon flux from 75◦S northward to up to 45◦S and 35◦S for the period 2015-2017 (Fig.2D;237

Bushinsky et al. (2019); Landschützer et al. (2016); Rödenbeck et al. (2013)). At 45◦S,238

the Ex1e-5 cumulative flux lies between the three observationally inferred estimates, while239

the ExVar flux is slightly lower, with Ex1e-4 being the lowest of all three, well below the240

estimates of the other studies. At 35◦S, there is a larger range in carbon uptake between241

the three model runs. Ex1e-5 is the only experiment that lies within the bounds of the three242

observational estimates, though it appears towards the lower end, whilst ExVar and Ex1e-4243

are below. This further suggests that the lower mixing in Ex1e-5 could be a more suitable244

background mixing value.245

Changes to surface ocean pCO2246

Given that ExVar estimates of carbon fluxes fall between those of Ex1e-4 and Ex1e-5,247

hereafter, we only focus on the differences between Ex1e-4 and Ex1e-5. Air-sea carbon fluxes248

exist due to the difference in pCO2 between the atmosphere and the surface ocean. The249

high (low) surface ocean pCO2 values result in regions of low (high) oceanic uptake or even250

outgassing of CO2 from the atmosphere (Fig.3A). A region of exception is under sea ice,251

where the diffusive flux of gases is prevented. The changes in carbon fluxes due to altered252

mixing, as in figure 2, are due to changes in surface ocean pCO2, as atmospheric conditions253

are constant across experiments.254

The annual mean pCO2 of the surface ocean is higher in Ex1e-4 than in Ex1e-5 in255

almost all regions, reducing the pCO2 gradient and carbon uptake (Fig.3B). The areas of256

greatest increase in pCO2 include south of South Africa and the waters east of the West257

Antarctic Peninsula. Small regions where the annual mean pCO2 is reduced in Ex1e-4258

include latitudes of around 30◦S, especially to the east of Australia, the Argentine basin,259

and a few small bands just off the coast of Antarctica in the south.260

Using the methodology set out by Takahashi et al. (2014), we break down the pCO2261

change to contributions from changes in the upper ocean content of salinity, temperature,262

DIC and alkalinity (equation 1). The change in pCO2 as a contribution from each of the263

four tracers is calculated using equations 2-5, where p̄CO2 is the mean pCO2, Ālk is the264

mean alkalinity, γCO2
is the Revelle factor for CO2 (value used = 11), and γALK is the265

Revelle factor for alkalinity (value used = -10).266
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∆pCO2 = (
δpCO2

δT
)∆T + (

δpCO2

δDIC
)∆DIC + (

δpCO2

δAlk
)∆Alk + (

δpCO2

δS
)∆S (1)

δpCO2

δT
∆T = 2(pCO2)[Exp(0.0423(±0.0002)∆T/2)− 1] (2)

(
δpCO2

δDIC
) = γCO2(p̄CO2/T̄CO2) (3)

δpCO2

δAlk
= γALK(

p̄CO2

Ālk
) (4)

(
δpCO2

δS
) = 0.026(±0.002) · p̄CO2 (5)

The four individual contributions, shown in Fig.3D-G, can be summed together to give267

the annual mean approximated change in pCO2 (Fig.3C). This calculated change agrees268

satisfactorily with the changes in pCO2 between the two experiments (Fig.3B). This verifies269

the assumptions made in equations 2-5, and confirms that changes to the distribution of270

these tracers are key in causing changes to carbon fluxes (Fig.3B,C). The only region where271

the Takahashi et al. method does not capture the changes is in the north of the SO, west272

of New Zealand and east of South America in the Argentine basin. This is likely due to273

enhanced water mass mixing occurring in these regions, making changes in this area complex274

to approximate with simple assumptions. While the calculations shown in Fig. 3 use the275

upper 2.6 m of the water column, they are not sensitive to depth and similar results are276

found down to ∼55 m.277

On an annual basis, contributions from changes in DIC and alkalinity concentrations are278

the main drivers of changes in pCO2, with the contributions from salinity and temperature279

being secondary (Fig.3E,F). An increase in the alkalinity content decreases pCO2, whilst280

an increase in salinity or DIC increases pCO2. Where the temperature increases, pCO2281

increases due to modulation of the equilibrium DIC. The increase in the DIC content of282

the surface waters of the southern SO in Ex1e-4 increases pCO2, whilst in the north the283

decrease in DIC concentration decreases pCO2. On the contrary, the increase in alkalinity284

concentration in the south decreases pCO2, while the decrease in alkalinity in the north285

increases pCO2. Changes in salinity concentrations act to slightly increase the pCO2 in286

Ex1e-4. Temperature changes with enhanced mixing cause a slight decrease in pCO2 in the287

north and an increase in pCO2 in the south in Ex1e-4.288

Changes in the upper ocean temperature, salinity, DIC and alkalinity are due to alter-289

ations to the diapycnal flux of these tracers. The diapycnal flux for a tracer with concentra-290

tion C may be approximated by −Kv × ∂C
∂z . Therefore, if vertical diapycnal mixing Kv is291

increased, more tracer, e.g. DIC, is mixed downgradient (upward into the surface waters).292

This increase in upward flux is the strongest where the vertical gradients are the strongest.293

Therefore, strong correlations develop between locations with sharp vertical gradients and294

locations with significantly altered tracer content with enhanced mixing (Fig.4A-D). This295

correlation is especially clear when examining changes to tracer distributions in the first296

month of the perturbation experiments, as shown in figure 4.297

Regions that experience high changes in DIC concentration with enhanced mixing are298

around the coast of Antarctica, south of 60◦S and above depths of 40 m. In these areas,299

surface waters are fed by wind-induced upwelling of deep waters rich in DIC due to the300

respiration of organic material. Further to the north, the upper 120 m of the water column301

has weak vertical gradients of DIC concentration (Fig.4E,F). The dipole pattern shown302

when looking in a zonal average sense implies the erosion of the sharp gradient by enhanced303

mixing. The DIC concentration increases with increased mixing in the upper surface waters304

(shown in red), while concentrations decrease between 40m and 20m depth (shown in blue)305

due to a flux divergence, as more of this carbon has been mixed upwards into the surface306

waters (Fig.4G). There is a clear divide at around 20 m; this depth corresponds to the307

depth of the maximum vertical gradient. Changes in alkalinity and salinity roughly follow308
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a pattern similar to DIC (hence not shown). The greatest changes in temperature occur in309

different regions, mainly in the northern SO, especially at around 90◦E, in the Argentine310

basin, and in the waters surrounding New Zealand.311

Temporal and seasonal variability of changes in pCO2312

Carbon fluxes show strong seasonal and spatial variations (Fig.5), as for example, dis-313

cussed in Rosso et al. (2017). In the austral summer (December to February), the SO from314

60◦S to 30◦S is a net source of CO2 outgassing (Fig.5A,B Dashed lines). Some outgassing315

also occurs at the upwelling zone of the polar front, especially in the Atlantic basin (Fig.5C).316

South of ∼60◦S, the SO acts as a slight carbon sink even in summer. Austral winter (June317

to August) has much higher carbon uptake than summer, with the net uptake occurring in318

almost all regions of the SO, except beneath sea ice (Fig.5A,B,D). Small outgassing regions319

exist around the polar front and at the upwelling region off the west coast of South America320

in the Argentine basin (Fig.5D).321

While figures 2 and 3 show the changes to carbon fluxes between model runs in an322

annual mean sense, there are also significant temporal patterns in how mixing perturbation323

alters carbon fluxes (as will be discussed in Fig.8). Figures 5 and 6 examine the dominant324

mechanisms for seasonal differences observed in the changes to pCO2 between Ex1e-4, ExVar325

and Ex1e-5. The changes in carbon fluxes between experiments are greater in winter than326

in summer (Fig.5A,E,F). An exception is in the very south, where ice cover during winter327

reduces gas exchange in all experiments. In winter, Ex1e-4 has a reduced carbon uptake328

compared to Ex1e-5, while ExVar has a similar carbon uptake to Ex1e-5 (Fig.5A). Cumu-329

latively integrated winter carbon fluxes are reduced from almost 2 Pg C/yr in Ex1e-5 to330

1.2 Pg C/yr in Ex1e-4. The greatest decreases in uptake occur around 40◦S. The Argentine331

basin is also a region of pronounced diminished carbon uptake (Fig.5F). Three small areas332

on the edge of the winter ice extent experience increased carbon uptake in the winter due to333

reduced ice cover, the reason for which is explained subsequently (Blue areas, Fig.5F). Sum-334

mer changes to carbon fluxes are of a smaller magnitude and show more spatial variability335

than the winter months (Fig.5A,E). In summer, the cumulative intergrated outgassing of336

Ex1e-5 is higher than Ex1e-4, and ExVar is higher than both Ex1e-4 and Ex1e-5, though337

the difference between all three runs is less than 0.2 Pg C/yr . At lower latitudes where the338

SO is a net source of carbon to the atmosphere, outgassing is decreased in Ex1e-4. Further339

south, where the SO is a carbon sink, CO2 uptake is reduced in Ex1e-4 (Fig.5E). Changes340

in flux occur as far south as the Antarctic continent due to diminished summer sea ice.341

Using Eqs.1-5 and Fig. 3, we next use the Takahashi et al. methodology to examine342

seasonal changes to tracer contributions and their implications for the pCO2 and carbon343

fluxes. The outcome is shown in Fig. 6. Salinity contributions to changes to pCO2 are not344

shown as they are negligible compared to DIC, alkalinity, and temperature contributions.345

The temperature contribution varies greatly between seasons, being stronger in January346

than in July (Fig.6B,E). Closer to Antarctica, changes in temperature increase the pCO2347

of Ex1e-4 surface waters throughout the year. In July, this positive contribution extends348

further north. In January, the change in temperature causes very strong reductions in349

pCO2, especially in the subtropical gyres. Because the change in surface temperature and350

associated change to pCO2 vary with season, the annual mean change in temperature and351

its contribution to change in pCO2 appear much smaller (Fig.3D). They are nevertheless352

key to driving the seasonal response of changing SO carbon fluxes in response to altered353

diapycnal mixing.354

The vertical structure of the thermocline and the associated change in surface temper-355

ature with enhanced mixing have seasonal trends (Fig.7B,F). In January, surface waters are356

warm, and the temperature declines rapidly with depth down to 100 m, especially north of357

60◦S (Fig.7A). South of 60◦S and below 100 m, water temperature increases with depth due358

to the upwelling of deep warm waters of North-Atlantic origin through Ekman transport.359
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In Ex1e-4, subsurface cooler waters are mixed more strongly towards the surface, cooling360

the surface waters and warming the subsurface waters relative to Ex1e-5 (Fig.7B). This361

surface cooling reduces the pCO2 (Fig.6A). In July the surface waters are well mixed and362

there is no temperature gradient in the upper 100 m (Fig.7E). Below the winter mixed363

layer, temperature rises with depth. Enhanced mixing warms surface waters, increasing the364

pCO2 (Fig.6E,F). This increase in surface temperature also increases the rate of sea ice melt,365

reducing the sea ice cover toward the end of winter/ spring in Ex1e-4. This results in small366

regions of increased carbon uptake around the sea ice edge in winter (Fig.5F). North of 60◦S367

and below the mixed layer, waters still decrease in temperature with depth, so increased368

mixing cools the surface waters (Fig.7E,F). The vertical gradients of DIC and alkalinity are369

relatively constant regardless of season (Fig.7C,G). Changes in DIC and alkalinity concen-370

trations have opposing effects on pCO2(Fig.3E,F), but together act to increase pCO2 at all371

latitudes in summer and winter in Ex1e-4 (Fig.6C,F). The increase to pCO2 in Ex1e-4 from372

combined carbonate chemistry changes is stronger in the winter than in summer, especially373

north of 40◦S (Fig.6C,F).374

Though all six years of the model run exhibit a similar seasonal cycle of changes to375

carbon fluxes with enhanced mixing in Ex1e-4, important inter-annual differences exist376

(Fig.8) which would not be appreciated in annual and seasonal means. Some differences in377

carbon fluxes between the two experiments become more pronounced over time, while other378

changes become less. North of 40◦S, Ex1e-4 has an increase in carbon uptake (or reduced379

outgassing) during the summer. This becomes more pronounced and extends further south380

down to 50◦S in subsequent summers as the model run progresses. While the winter time381

reductions in uptake in Ex1e-4 compared to Ex1e-5 around 45◦S become stronger through382

the six years, the reductions in carbon uptake south of 60◦S become weaker. The SO yearly383

mean change in C flux (red stars, Fig.8B) show a smaller mean change in the carbon flux384

between Ex1e-4 and Ex1e-5 in the later years of the run compared to earlier years. This is385

due to opposing signs of change to carbon fluxes over the seasons becoming more pronounced386

and therefore causing an antagonistic net effect to changes in an annual mean sense.387

40◦S approximately corresponds to the mean latitude of the subtropical front (STF)388

and marks a regime in terms of the leading mechanisms responsible for changes in pCO2 and389

carbon fluxes. This marks the boundary between the nutrient deplete sub-tropical waters390

to the north and the nutrient and DIC rich waters to the south (Chapman et al., 2020).391

Regions to the north of this divide are responsible for the summer increases in carbon uptake392

in Ex1e-4 in later years of the run. In contrast, regions to the south are responsible for the393

strong response of reduced carbon uptake in Ex1e-4.394

The contributions to the total change in pCO2 are drastically different across the STF395

(Fig.8C-E). To its South, opposite changes in pCO2 due to alkalinity and DIC nearly bal-396

ance, with the latter being slightly larger (Fig.8D). As before, salinity contributions remain397

negligible at all times. Over the first two years of the perturbation, the total change in pCO2398

is positive, meaning pCO2 is higher in Ex1e-4 than in Ex1e-5. The magnitude of the reduc-399

tion in pCO2 due to Alkalinity increases over time. The magnitude of total pCO2 change400

decreases over time and becomes negative in the summer months, allowing for increased401

carbon uptake.402

North of the STF, DIC and alkalinity do not balance each other out (Fig.8E) and403

changes in temperature between the two model runs are more dominant. Alkalinity increases404

pCO2 north of the STF, while changes in DIC initially also increase the pCO2 in Ex1e-4. By405

the summer of the third year of the run, changes in DIC begin to reduce the pCO2, causing406

the net total change in pCO2 to be negative in summer. This causes an increase in carbon407

uptake in the summer north of the STF in Ex1e-4.408

Almost all changes in DIC between Ex1e-4 and Ex1e-5 are due to altered diapycnal409

fluxes of DIC. However, north of the STF, DIC contribution to decreased pCO2 in the410

summer is due to increased productivity in the nutrient depleted waters of the sub tropical411
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gyre. This increase in productivity does not occur instantaneously, but instead takes around412

6 months to begin decreasing the DIC contribution (red line, Fig.8E and Fig.9C). While an413

increase in productivity occurs with higher mixing across the whole SO region, it is only in414

the north, roughly north of the sub tropical front where increased phytoplankton production415

and DIC uptake becomes the dominant mechanism in altering DIC concentrations. Thus,416

in the context of this paper, we consider the STF as the upper boundary of the SO and417

postpone further discussion on the biologically-dominated change in pCO2 north of the SO418

to future work.419

Comparison to pCO2 observational data420

The pCO2 values for Ex1e-4, Ex1e-5 and ExVar can be compared to 2013-2018 observed421

levels from the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) (Fig.10). Neither422

clearly matches SOCAT observations better than the other (Fig.10A). Regional trends are423

also unclear, although from the limited data available, Ex1e-5 appears to better represent the424

pCO2 of the northern Pacific Ocean, as well as off the coast of South Africa and Tasmania.425

Meanwhile estimates from Ex1e-4 are better matched to observations in the western Atlantic426

and the northern Indian Oceans.427

The probability density function for the difference between SOCAT and B-SOSE for the428

three experiments is broken down over seasons (Fig.10B). In summer the standard deviation429

of differences between ExVar and data is much larger than those for Ex1e-4 and Ex1e-5. The430

mean difference of 15.5 µatm for Ex1e-5 is lower than 17.46 µatm for Ex1e-4, whilst ExVar431

has the lowest mean difference from observations. The high-end tails of the distributions432

are more skewed than the lower ends, implying a systematic over-estimate of pCO2 by433

B-SOSE. B-SOSE overestimates the flux of carbon from the ocean to the atmosphere or434

underestimates the SO carbon uptake from the atmosphere, particularly in the summer.435

SOCAT data is heavily biased towards summer data due to limitations on data col-436

lection in the winter. The mean difference between SOCAT and B-SOSE is lower for the437

winter mean than for the summer in all experiments. In the winter, ExVar has the largest438

mean difference from observations but also the largest standard deviation. In an annual439

mean sense, ExVar does a better job in matching SOCAT observations, though with a much440

higher standard deviation. It is interesting to note that, while in the annual mean sense,441

ExVar better matches SOCAT observations of pCO2, Ex1e-5 was better able to replicate442

previous observational estimates of cumulative SO C fluxes (Fig.2D).443

Conclusion444

We have demonstrated that the air-sea carbon fluxes in the SO are highly sensitive445

to modest background mixing variations well within the range of our best estimates. This446

is despite background mixing rates being orders of magnitude smaller than mixed layer447

model generated mixing. We find that the overall changes to carbon fluxes depend on the448

interactive effects of changes to DIC, temperature, and alkalinity, which can compensate or449

reinforce each other, and the predominant driver varies regionally, seasonally and temporally450

as additive and opposing feedbacks kick in at varying time scales.451

The relevance of diapycnal mixing in setting global carbon fluxes has previously been452

considered to be through changes to the underlying stratification and of regional and global453

overturning circulation and ventilation patterns. Although that may be true on centennial454

or longer timescales, here we show that on much faster timescales mixing directly acts upon455

tracers such as DIC, alkalinity, temperature, and salinity leading to a significant change in456

surface ocean carbon fluxes.457

The high correlation found between vertical gradients and strong changes in tracer dis-458

tributions with altered mixing shows that on a timescale of days to months, direct changes459
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in diapycnal mixing fluxes are the predominant drivers of the pCO2 response in the SO. On460

longer timescales, from months to years, further feedbacks involving changes to biological461

productivity and mixed layer depth will also begin to cause further changes to the surface462

ocean pCO2. A latitudinal divide exists at around 40◦S, roughly the location of the sub-463

tropical front. High vertical tracer gradients cause the direct impact of altered tracer fluxes464

to dominate trends to the south, whilst changes in biological productivity play a key role in465

the observed changes to carbon fluxes to the north.466

Two major issues stand in the way of better constraining of the data-assimilating ocean467

estimates insofar as the role of vertical mixing in the upper ocean is concerned. First, despite468

the significant investments in observations such as SOCAT, Fig. 10A clearly shows the469

sparsity of the available observational data. From a statistical perspective, this coverage470

is insufficient to discern which background mixing value better represents the real ocean471

despite the strong impact of these choices on pCO2. This issue can be resolved only through472

sustained observations. Knowledge of the seasonal cycle of pCO2 is worse in the SO than in473

most other regions of the ocean. The strong seasonality of the sensitivity of carbon fluxes474

to altered mixing demonstrates the importance of year-round observations. Second, SO475

diapycnal mixing can vary by orders of magnitude over timescales ranging from hourly to476

seasonally, as well as varying spatially. To achieve a close agreement with observations, a477

model should have a representation of such variability. ExVar employed our best estimate478

of a time-mean spatially variable mixing map, resulting in carbon fluxes similar to that479

obtained with a constant diffusivity of 10−5m2/s. Direct observations of diapycnal mixing480

in the SO have suggested that such maps (a) lack the representation of many key processes481

that result in higher turbulence in upper surface waters (e.g. bottom-generated lee waves,482

shoaling of remotely generated internal tides) and (b) do not allow for co-variance of mixing483

and tracer gradients, key to biological processes. This work highlights the absolute necessity484

for climate models to resolve the spatio-temporal variability of small-scale turbulent mixing,485

or to skillfully parameterise the processes responsible for generating them.486

1 Data and material availability487

The data sets generated during and/or analysed during the current study are available488

from the corresponding author on reasonable request and from http://sose.ucsd.edu.489

The data used to construct the spatially variable mixing map used for ExVar is availible490

at https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002065.491
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Figure 1: Diapycnal mixing in the Southern Ocean State Estimate (SOSE). The distribution
of diapycnal mixing in the Southern ocean, constructed as the sum of contributions from
tides and topographically-generated lee waves. This mixing is shown averaged in depth
over the top/bottom 2km in panel A/B, and zonally over the Southern Ocean in C. These
maps are used in the spatially variable mixing map experiment (ExVar). For reference,
a zonally-averaged map of the storm-induced mixing, as parameterised through GGL90
parameterisation in B-SOSE,is also shown in panel D.
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Figure 2: (A) Zonally integrated flux of Carbon for each year of Ex1e-5 (negative =
Carbon flux from atmosphere to ocean). (B) Difference in the zonally integrated flux of
Carbon between Ex1e-4 and Ex1e-5 (solid lines) and ExVar and Ex1e-5 (dashed lines) for
each year of the experiment. (C) zonally integrated annual mean (2013-2018) Carbon flux
for Ex1e-4, Ex1e-5 and ExVar. (D) Annual mean (averaged over 2013 to 2018) cumulative
integral of carbon fluxes from 70◦S northward to 30◦S (legend same as the previous panel).
Observational markers are included for comparison (Landschützer et al., 2016; Bushinsky
et al., 2019; Rödenbeck et al., 2013). (E) Average annual carbon flux for Ex1e-5, the blue
line shows the Polar Front, the magenta line shows Sub-tropical Front as defined by Orsi et
al. (1995). (F) Annual mean change in Carbon flux (Ex1e-4 – Ex1e-5). (G) Annual mean
change in Carbon flux (ExVar – Ex1e-5). Positive values imply reduced carbon uptake or
increased outgassing.
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Figure 3: Changes to surface ocean partial pressure and carbon fluxes. (A) Annual mean
surface ocean pCO2 in Ex1e-5. (B) Change in pCO2 between Ex1e-4 and Ex1e-5. (C)
Same as panel B, but this time changes to pCO2 approximated based on the methodology
of Takahashi et al. (2014) that breaks down the change into various contributions as per
equations (1-5). The various contributions are shown in panels D-G. (H-K) Changes in
annual mean DIC, alkalinity, potential temperature and salinity.
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Figure 4: (A) Maximum vertical DIC gradient in the water column for Ex1e-5, normalised
by maximum contour value. (B) Maximum change in DIC between Ex1e-4 and Ex1e-5,
normalised by the maximum contour value. (C,D) Same as A and B but for temperature.
The maximum change in DIC (temperature) is defined as the greatest difference in DIC
(temperature) concentration between the two experiments at any depth above 200 m at
each latitude and longitude in the domain. (E) Zonal average DIC concentration in Ex1e-5.
(F) Zonal average DIC vertical gradient in Ex1e-5; blue indicates a decrease in concentration
towards the surface. (G) Zonally averaged change in DIC concentration (Ex1e-4 - Ex1e-5).
All shown for December 2012, the first month of all experiments.
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Figure 5: (A) zonally integrated Carbon flux for Ex1e-4, Ex1e-5 and ExVar for summer
(dashed), winter (Dotted), and annual mean (solid line). (B) Cumulative sum of carbon
fluxes from 70◦S northward to 30◦S (legend same as the previous panel). (C) Average
summer carbon flux for Ex1e-5; magenta lines show the minimum summer ice extent. (D)
Average winter carbon flux for Ex1e-5; magenta lines show the maximum winter ice extent.
(E) Mean change in summer Carbon flux (Ex1e-4 –Ex1e-5). (F) Mean change in winter
Carbon flux (Ex1e-4 –Ex1e-5). Positive values imply reduced carbon uptake or increased
outgassing.
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Figure 6: (A) January (summer) 2013-2018 mean change in pCO2 (Ex1e-4 - Ex1e-5) ap-
proximated by the method of Takahashi et al. (2014). (B) Contribution due to changes in
temperature. (C) Contribution due to changes in carbon chemistry (DIC and Alkalinity).
(D-F) Same as A-C but for July (winter) mean.

Figure 7: (A) January zonally averaged temperature vertical gradient (red implies increase
in temperature towards the surface). (B) January change in temperature (Ex1e-4 - Ex1e-
5). Mixed layer depth (MLD) for Ex1e-5 (pink) and Ex1e-4 (green) overlain. (C) January
zonally averaged DIC vertical gradient. (D) Change in DIC concentration (Ex1e-4 - Ex1e-5).
(E-H) As in A-D but for July mean.
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Figure 8: (A) Change in zonally integrated Carbon flux between Ex1e-4 and Ex1e-5 over
the six-year time period of Jan 2013 to Dec 2018 (Red shows reduced uptake or increased
outgassing in Ex1e-4). (B) Change in the mean carbon flux across the whole SO (blue), the
SO North of 40◦S (purple) and South of 40◦S (yellow) for the same time period. The annual
mean change for the whole SO for each year is shown (red star). Using the methodology of
Takahashi et al. (2014) as discussed previously, the differences in Carbon flux between the
two model runs over time can be attributed to changes in surface ocean pCO2 (green lines)
from alterations to temperature (blue lines), DIC (red liens), alkalinity (yellow lines) and
salinity (purple lines). These contributions are shown for the whole SO (C), the SO south
of 40◦S (D), and the SO north of 40◦S (E).
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Figure 9: The percentage change of surface water DIC concentration due to changes in
biological net community productivity (NCP). Surface water is defined here as waters down
to a depth of 55m. Shown as a vertically integrated mean for (A) January (summer) and
(B) July (winter). The mean location of the subtropical front, as defined by Orsi et al.
(1995), is also shown in pink. (C) The zonal mean of the vertically integrated percentage
change due to altered NCP is shown over time.

Figure 10: Comparison of modelled pCO2 to observations from Surface Ocean CO2 Atlas
(SOCAT) between 2012 and 2018 (Bakker et al., 2016). (A) Comparison of the root mean
squared error between Ex1e-4 and Ex1e-5. Red/blue shows regions where Ex1e-5/Ex1e-4
is closer to the observations. (B) Probability density function showing the misfit between
observed carbon fluxes from SOCAT and the model outputs for pCO2 in Ex1e-5 (black),
Ex1e-4 (red), and ExVar (green).
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Key Points:7

• Total air-sea carbon fluxes in the Southern Ocean are altered by up to 66% annually8

by modest background mixing variations.9

• Resolving or skillfully parameterising the spatiotemporal variability of small-scale10

turbulent mixing in the Southern Ocean is essential to model air-sea carbon fluxes.11

• The spatiotemporal coverage of available pCO2 observations is insufficient for con-12

straining the role of diapycnal mixing rates below the mixed layer on air-sea fluxes13
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Abstract14

The Southern Ocean (SO) connects major ocean basins and hosts large air-sea carbon fluxes15

due to the resurfacing of deep nutrient and carbon-rich waters. While surface-intensified16

wind-induced turbulent mixing in the SO surface mixed layer is significant for air-sea fluxes,17

the orders-of-magnitude weaker background mixing below the mixed layer has not been18

considered consequential. Topographically induced upward propagating lee waves in the19

SO, wind-induced downward propagating waves generated at the base of the mixed layer,20

shoaling of southward propagating internal tides generated in the basins north of the SO, and21

turbulence under sea ice are among the processes known to induce upper ocean background22

turbulence but typically are not represented in models. Here, we show that altering the23

background mixing in the SO over a modest range can lead to a∼40% - 60% annual change in24

SO air-sea CO2 fluxes, with bigger changes on a seasonal timescale. This is primarily through25

altering the temperature and the dissolved inorganic carbon and alkalinity distribution in26

the surface water. Given the high spatiotemporal variability of processes that induce small-27

scale background mixing, this work demonstrates the importance of their representation in28

climate models for accurate simulation of global biogeochemical cycles.29

Introduction30

The Southern Ocean (SO), defined here as any region south of 30◦S, is a key region31

for the global carbon cycle due to the upwelling of deep, old, carbon and nutrient-enriched32

waters, connecting the vast reservoir of nutrients and carbon from below the mixed layer33

with the surface (Talley et al., 2016). The deep ocean interacts with the atmosphere through34

less than 4% of the ocean’s surface area (Watson & Naveira Garabato, 2006; Klocker, 2018),35

with 65% of interior waters making first contact with the atmosphere in the SO (DeVries36

& Primeau, 2011). As the deep ocean contains up to 60 times more carbon than the atmo-37

sphere (Arias et al., 2021), small perturbations to air-sea carbon fluxes can be important38

for atmospheric carbon content (Adkins, 2013). Therefore, the SO, and especially the up-39

welling branch of circumpolar deep water (Marshall & Speer, 2012), is key in controlling40

global biogeochemical cycles, the exchange of CO2 between the atmosphere and the deep41

ocean, atmospheric CO2 levels, and the response of the ocean and atmosphere to climate42

change (Sarmiento et al., 2004; Gruber et al., 2019).43

Several expeditions have revealed strong cross-density (diapycnal) mixing due to small-44

scale ocean turbulence in the SO (Garabato et al., 2004; Ledwell et al., 2011; Watson et45

al., 2013; Garabato et al., 2019), though measurements remain sparse and difficult to scale46

up (Tamsitt et al., 2018; Mashayek et al., 2017; Cael & Mashayek, 2021; Mashayek et al.,47

2022). Given the small scales of diapycnal mixing, it is not resolved in operational models,48

and so it is parameterised (Gaspar, Grégoris, & Lefevre, 1990; W. G. Large et al., 1994) in49

two forms:50

1. Surface mixed layer mixing from storms and other surface winds, as well as convective51

instabilities.52

2. Background turbulence induced by bottom generated internal waves due to interaction53

of jets, eddies, and tides with rough topography or due to shoaling and breaking of54

remotely generated internal tides (see de Lavergne et al. (2020); Baker and Mashayek55

(2021, 2022) for reviews of such dynamics).56

The ‘background’ mixing in the ocean interior is typically several orders of magnitude smaller57

than that in the surface mixed layers. Since the seminal work of Munk (1966), bulk mea-58

surements of ocean mixing have found a diapycnal turbulent diffusivity of Kv ∼ O(10−4)59

m2 s−1 required to resurface the abyssal waters and facilitate the closure of the meridional60

overturning circulation (MOC) (Ganachaud & Wunsch, 2000; Talley et al., 2003; Lump-61

kin & Speer, 2007; Talley, 2013), while estimates from profiling instruments often find62

Kv ∼ O(10−5)m2 s−1 in the interior of the ocean and much larger values only very close to63
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the seafloor (Waterhouse et al., 2014; Ferrari, 2014). In the Diapycnal and Isopycnal Mixing64

Experiment in the Southern Ocean (DIMES), estimates of mixing based on microstructure65

profiles reported Kv ∼ O(10−5)m2 s−1 at the mean depth of an anthropogenic tracer re-66

leased upstream of the Drake Passage. Meanwhile, the tracer itself appeared to experience67

Kv ∼ O(10−4)m2 s−1 (Watson et al., 2013; Mashayek et al., 2017). The background values68

used in models typically lie within this range.69

Though diapycnal mixing is highly temporally and spatially variable due to its gener-70

ating mechanisms (e.g. strong surface westerly winds and interaction of the currents and71

eddies with rough topography), it is frequently parameterised as temporally invariable and,72

at times, even spatially constant. Current best estimates of SO diapycnal mixing are based73

on ‘static’ maps, produced with numerous limiting assumptions, approximating the contri-74

butions from topographically generated lee waves (Nikurashin & Ferrari, 2011; Shakespeare,75

2020), wind-induced near-inertial waves (Alford, 2020), and internal tides (de Lavergne et76

al., 2020). These maps have formed the basis of our representation of such processes in77

earth system models (A. Melet et al., 2014; A. V. Melet et al., 2022).78

Diapycnal mixing in the global ocean interior is known to be an important factor in79

variations in atmospheric carbon levels on centennial to millennial timescales via alterations80

in ocean circulation (Sigman et al., 2010; Marinov & Gnanadesikan, 2011). Enhanced81

diapycnal mixing increases deep ocean ventilation via the SO and reduces ocean carbon82

storage through biological and solubility carbon pumps (Marinov et al., 2008; Marinov &83

Gnanadesikan, 2011). Climate models are sensitive to the intensity and distribution of global84

diapycnal mixing, accounting for about 25% of the uncertainty in the estimated range of85

atmospheric CO2 concentrations by 2100 (Schmittner et al., 2009). In this work, we are86

concerned with the response of the air-sea carbon fluxes to mixing below the surface mixed87

layer on time scales much shorter than those explored in the abovementioned works. We also88

solely focus on mixing in the SO which has been assumed to be of secondary importance for89

the global ocean circulation (Nikurashin & Ferrari, 2013) but significant for setting global90

tracer distributions (Ellison et al., 2021).91

Given the strong wind-driven isopycnal upwelling in the Southern Ocean, and the in-92

tense diapycnal mixing within the mixed layer induced by strong winds, one may imagine93

that the modest background mixing below the mixed layer would be inconsequential for94

setting the air-sea fluxes of CO2 on short timescales. In this work, we show the contrary.95

The air-sea flux of CO2 primarily depends on the difference in the partial pressures of CO296

(pCO2) between the atmosphere and the ocean. Physical and biological processes, including97

advective and diffusive transport of tracers, organic matter formations and sinking, and98

the dilution of tracers due to precipitation, runoff and sea ice melt, all alter the pCO2 of99

surface waters (Mahadevan et al., 2011), resulting in high variability in time and space100

of the CO2 fluxes in the SO (Rosso et al., 2017). The influence of altering background101

diapycnal mixing on the surface ocean pCO2 is complex to predict due to spatiotemporal102

variability in biological and physical responses to variations in mixing (Dutreuil et al., 2009),103

and the coupled multivariate dependency of ocean pCO2 to temperature, salinity, alkalinity104

and dissolved inorganic carbon. In this work, we will show that modest perturbation of the105

background mixing strongly alters the SO-integrated air-sea CO2 fluxes on seasonal, annual,106

and interannual timescales.107

Experiment Setup108

We use the Biogeochemical Southern Ocean state estimate (B-SOSE; Verdy and Mazloff109

(2017)). The interaction between diapycnal mixing below the mixed layer, the mixed layer110

dynamics, and the mesoscale processes that advect tracers prove essential for the problem111

under consideration here. Thus, employing an eddy-resolving model such as B-SOSE is112

essential and distinguishes this work from studies mentioned earlier that use low-resolution113
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models in global settings to study the role of mixing on carbon fluxes. In return, the114

timescales of relevance in our study are much shorter than theirs.115

The model’s optimization procedure solves for adjustments to the prescribed atmo-116

spheric state and initial conditions to bring the solution into better consistency with obser-117

vations. The resulting product is a closed-budget model simulation representing the present118

SO state. Because it represents the constantly evolving SO state it is not in a steady state,119

in contrast to what one may expect from analysis of an earth system model undergoing a120

long spin-up process. The B-SOSE simulation provides an estimate of SO biogeochemistry,121

including air-sea fluxes of heat and carbon and the cycling of nutrients from a biogeochemical122

and carbon model.123

The model domain extends from the equator to 78◦S with 52 vertical layers of varying124

thickness. The zonal grid spacing is always 1/6◦, but the meridional grid spacing changes125

with the cosine of the latitude. Ocean physics is represented using the MITgcm. The ocean126

is forced through an atmospheric boundary layer scheme where bulk formulae determine127

heat fluxes, freshwater (salt), and momentum (W. Large & Yeager, 2009). The hourly128

atmospheric conditions of ERA5 (Dee et al., 2011) are applied, with adjustments added129

that were determined by optimization (Verdy & Mazloff, 2017) using the adjoint method.130

Sea ice is modelled using 0-layer thermodynamics (Fenty & Heimbach, 2013) and an implicit131

Line Successive Over Relaxation (LSOR) dynamical solver (Losch et al., 2010). A horizontal132

biharmonic diffusivity is used with a value of 10−8 m4s−1. Implicit vertical diffusivity for133

convection is set to 10 m2s−1, and no mesoscale eddy parameterisation was implemented.134

For further details, see Verdy and Mazloff (2017) and Swierczek et al. (2021).135

The parameterisation of diapycnal mixing is composed of two parts. The GGL90 mixed136

layer parameterisation of Gaspar, Grégoris, and Lefevre (1990) is used to represent param-137

eterised turbulence and is highly surface-enhanced (Fig.1 D), inducing strong turbulence138

under the seasonal atmospheric storm tracks, mixing the DIC gradients in the upper few139

hundreds of meters. In other places, such as under the ice or when there is no strong140

wind-induced turbulence, the models rely on a prescribed background value for turbulent141

diffusivity. The background value is behind the sensitivity of fluxes discussed in this work.142

As discussed in subsequent paragraphs, the background vertical diffusivity is altered in each143

experimental run. The background mixing value is added to the GGL90 mixing to achieve144

a total vertical diapycnal mixing value.145

The Biogeochemistry with LIght, Nutrients and Gases (NBLING) model, described146

fully in Verdy and Mazloff (2017), forms the biochemical framework within B-SOSE. The147

original BLING model described in Galbraith et al. (2010) was modified (for B-SOSE) with148

the addition of nitrogen cycling and improvements in the representation of phytoplankton149

population dynamics and particle export (Galbraith et al., 2015; Bianchi et al., 2013). Bi-150

ological activity influences the concentrations of carbon and oxygen. At the core of the151

BLING model is primary production with limitations by light, nitrate, phosphate, iron, and152

temperature, and subsequent remineralization of organic matter back to inorganic nutri-153

ents. Nine prognostic tracers are simulated in NBLING: dissolved inorganic carbon (DIC),154

alkalinity (ALK), oxygen (O2), nitrate (NO3), phosphate (PO4), iron (Fe), disssolved or-155

ganic nitrogen (DON), dissolved organic phosphate (DOP) and phytoplankton biomass. The156

biomass partitioning into species is determined using stored ratios updated every timestep157

based on growth and decay rates. We include three types of phytoplankton: large, small,158

and diazotrophs. Small cells represent calcifying organisms; they use calcium carbonate159

to form shells. Diazotrophs can fix nitrogen, so nitrate availability does not limit them.160

Phytoplankton loss is expressed as a power law with a size-dependent exponent based on161

(Dunne et al., 2005).162

The B-SOSE carbon system is adapted from the MITgcm simple biogeochemical model163

of Dutkiewicz et al. (2006). DIC and ALK are prognostic variables, and pH and pCO2164

are diagnosed based on Follows et al. (2006), making oceanic pCO2 a function of DIC,165
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ALK, temperature (T), salinity (S) and silica, where silica is prescribed from the 2013166

World Ocean Atlas climatology (Garcia et al., 2013). CO2 and oxygen air-sea fluxes are167

calculated following Wanninkhof (1992). Atmospheric pCO2 is prescribed using values from168

the CarbonTracker product (Peters et al., 2007).169

The state estimate is produced by solving for the model initial and boundary con-170

ditions, the so-called model ‘controls’, which minimize a weighted least squares sum of171

model-observation misfits. This is achieved using an adjoint model that provides the gradi-172

ents of the misfit function with respect to the model controls, allowing those controls to be173

efficiently and systematically determined. The model is run for seven years (2012 - 2018)174

using the adjoint method-based assimilation product. This includes physical and biogeo-175

chemical constraints obtained from Argo floats, including biogeochemical parameters from176

the SOCCOM float array, satellite altimetry, satellite SST, and ship transect data. The full177

set of model parameters used in this 1/6◦ setup is given in Swierczek et al. (2021); see Verdy178

and Mazloff (2017) for initial conditions.179

The B-SOSE’s original conditions and atmospheric adjustments were obtained using180

10−4 m2s−1 as the value for background diapycnal diffusivity (added to the GGL90 mixing).181

We refer to that base simulation as Ex1e-4 hereafter. Using the same initial conditions and182

atmospheric state adjustments, two additional model simulations were carried out for 2013-183

2018. The first perturbation experiment, Ex1e-5, uses a constant background diffusivity184

value of 10−5m2s−1. The range 10−5 m2s−1 to 10−4 m2s−1 is conservative, sandwiched185

between the two canonical paradigms of mixing often considered in Physical Oceanography.186

The third experiment, ExVar, uses a spatially variable (but temporally constant) vertical187

diapycnal mixing map (Fig 1A-C). The map is constructed as the sum of contributions from188

tides (de Lavergne et al., 2020) and topographically-generated lee waves (Nikurashin &189

Ferrari, 2013). ExVar features horizontal and vertical variations over a range much broader190

than 10−5 m2s−1 to 10−4 m2s−1. Although background mixing values dominate over the191

GGL90 parameterisation in mid-depths, GGL90 is orders of magnitude larger than the192

background mixing value in the upper ocean (Fig.1D). The three cases together allow for193

evaluating the impact of the magnitude of mixing and its spatial variations on the carbon194

flux independently.195

Results196

Carbon fluxes197

The SO is a net sink of atmospheric CO2, with most of the uptake occurring between198

50◦S and 30◦S, with a peak at 40◦S, where around 7 Tg C/yr is taken up (Fig.2A). 40◦S199

is the average latitude of the subtropical front, separating the subtropical waters from the200

subantarctic mode waters, thus hosting rich mesoscale and submesoscale frontal dynamics201

and enhanced air-sea exchange of tracers. To the south of the polar front (panel E), on the202

other hand, the upwelling of deep carbon-rich waters causes carbon outgassing (shown in203

red panel E). Additional uptake occurs further south around Antarctica due to downwelling204

(induced by a change in the wind direction from westerly to easterly) and deep water forma-205

tion. Thus, SO fronts, which mark sharp gradients in temperature and carbon chemistry,206

separate regions of net uptake from regions of outgassing. Higher latitudes show very low207

mean annual carbon fluxes, partly due to seasonal ice cover.208

Carbon uptake varies year-on-year during the six years of the state estimate run by209

almost 2 Tg C/yr at some latitudes, with especially high inter-annual variability at 60◦S210

and 40◦S (Fig.2A). The inter-annual range of carbon fluxes for Ex1e-5 are highly non-211

monotonic. The inter-annual variations are due to varying oceanic conditions each year,212

some of which are associated with the Southern Annular Mode (SAM).213

Alterations to background diapycnal mixing alter SO carbon fluxes, with ExVar showing214

smaller differences from Ex1e-5 than Ex1e-4 (Fig.2B dashed vs solid lines). The sensitivity215
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to altered diapycnal mixing is variable throughout the six years (Fig.2 B). This inter-annual216

range in sensitivity of around 0.1 Tg C/yr is well within the range of the inter-annual217

variability of zonally integrated carbon fluxes in Ex1e-5 (Fig.2A,B). A higher difference218

between Ex1e-5 and Ex1e-4, and to a lesser extent between Ex1e-5 and ExVar occurs in the219

first three years (2013 to 2015) than in the last three years (2016 to 2018) (Fig.2B). As upper220

ocean mixing is never in an equilibrium state due to constantly changing winds, eddies and221

buoyancy fluxes, the response to the mixing perturbation over the first few months of this222

experiment do not seem unrealistically exaggerated .223

Increasing the background mixing from Ex1e-5 to Ex1e-4 leads to a reduction in annual224

mean zonally integrated carbon uptake at all latitudes (Fig.2C,F). The most significant225

reduction is around 55◦S (Fig.2C,F). Minor changes occur south of 65◦S due to the ice cover.226

In ExVar, the most significant changes from Ex1e-5 occur further north, at around 45◦S.227

South of 60◦S, the difference between ExVar and Ex1e-5 is insignificant (Fig.2C,G). Large228

areas of ExVar have carbon fluxes unchanged from those in Ex1e-5 (Fig.2G), suggesting229

that 10−4m2 is likely too large of a background mixing value. In Ex1e-5, the mean annual230

cumulative net flux of carbon into the ocean, integrated from 75◦S northward to 30◦S, is231

1 Pg C/yr (Fig.2D). In Ex1e-4 only 0.6 Pg C/yr is taken up, a reduction of 0.4 Pg C232

yr−1. The annual uptake of ExVar falls between the other two experiments at around 0.8233

Pg C/yr. These numbers are for the six-year mean, and as panel B shows, the reductions234

from Ex1e-5 are much higher over the first three years (almost double).235

The cumulative carbon fluxes are compared to other estimates of the integrated SO236

carbon flux from 75◦S northward to up to 45◦S and 35◦S for the period 2015-2017 (Fig.2D;237

Bushinsky et al. (2019); Landschützer et al. (2016); Rödenbeck et al. (2013)). At 45◦S,238

the Ex1e-5 cumulative flux lies between the three observationally inferred estimates, while239

the ExVar flux is slightly lower, with Ex1e-4 being the lowest of all three, well below the240

estimates of the other studies. At 35◦S, there is a larger range in carbon uptake between241

the three model runs. Ex1e-5 is the only experiment that lies within the bounds of the three242

observational estimates, though it appears towards the lower end, whilst ExVar and Ex1e-4243

are below. This further suggests that the lower mixing in Ex1e-5 could be a more suitable244

background mixing value.245

Changes to surface ocean pCO2246

Given that ExVar estimates of carbon fluxes fall between those of Ex1e-4 and Ex1e-5,247

hereafter, we only focus on the differences between Ex1e-4 and Ex1e-5. Air-sea carbon fluxes248

exist due to the difference in pCO2 between the atmosphere and the surface ocean. The249

high (low) surface ocean pCO2 values result in regions of low (high) oceanic uptake or even250

outgassing of CO2 from the atmosphere (Fig.3A). A region of exception is under sea ice,251

where the diffusive flux of gases is prevented. The changes in carbon fluxes due to altered252

mixing, as in figure 2, are due to changes in surface ocean pCO2, as atmospheric conditions253

are constant across experiments.254

The annual mean pCO2 of the surface ocean is higher in Ex1e-4 than in Ex1e-5 in255

almost all regions, reducing the pCO2 gradient and carbon uptake (Fig.3B). The areas of256

greatest increase in pCO2 include south of South Africa and the waters east of the West257

Antarctic Peninsula. Small regions where the annual mean pCO2 is reduced in Ex1e-4258

include latitudes of around 30◦S, especially to the east of Australia, the Argentine basin,259

and a few small bands just off the coast of Antarctica in the south.260

Using the methodology set out by Takahashi et al. (2014), we break down the pCO2261

change to contributions from changes in the upper ocean content of salinity, temperature,262

DIC and alkalinity (equation 1). The change in pCO2 as a contribution from each of the263

four tracers is calculated using equations 2-5, where p̄CO2 is the mean pCO2, Ālk is the264

mean alkalinity, γCO2
is the Revelle factor for CO2 (value used = 11), and γALK is the265

Revelle factor for alkalinity (value used = -10).266
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∆pCO2 = (
δpCO2

δT
)∆T + (

δpCO2

δDIC
)∆DIC + (

δpCO2

δAlk
)∆Alk + (

δpCO2

δS
)∆S (1)

δpCO2

δT
∆T = 2(pCO2)[Exp(0.0423(±0.0002)∆T/2)− 1] (2)

(
δpCO2

δDIC
) = γCO2(p̄CO2/T̄CO2) (3)

δpCO2

δAlk
= γALK(

p̄CO2

Ālk
) (4)

(
δpCO2

δS
) = 0.026(±0.002) · p̄CO2 (5)

The four individual contributions, shown in Fig.3D-G, can be summed together to give267

the annual mean approximated change in pCO2 (Fig.3C). This calculated change agrees268

satisfactorily with the changes in pCO2 between the two experiments (Fig.3B). This verifies269

the assumptions made in equations 2-5, and confirms that changes to the distribution of270

these tracers are key in causing changes to carbon fluxes (Fig.3B,C). The only region where271

the Takahashi et al. method does not capture the changes is in the north of the SO, west272

of New Zealand and east of South America in the Argentine basin. This is likely due to273

enhanced water mass mixing occurring in these regions, making changes in this area complex274

to approximate with simple assumptions. While the calculations shown in Fig. 3 use the275

upper 2.6 m of the water column, they are not sensitive to depth and similar results are276

found down to ∼55 m.277

On an annual basis, contributions from changes in DIC and alkalinity concentrations are278

the main drivers of changes in pCO2, with the contributions from salinity and temperature279

being secondary (Fig.3E,F). An increase in the alkalinity content decreases pCO2, whilst280

an increase in salinity or DIC increases pCO2. Where the temperature increases, pCO2281

increases due to modulation of the equilibrium DIC. The increase in the DIC content of282

the surface waters of the southern SO in Ex1e-4 increases pCO2, whilst in the north the283

decrease in DIC concentration decreases pCO2. On the contrary, the increase in alkalinity284

concentration in the south decreases pCO2, while the decrease in alkalinity in the north285

increases pCO2. Changes in salinity concentrations act to slightly increase the pCO2 in286

Ex1e-4. Temperature changes with enhanced mixing cause a slight decrease in pCO2 in the287

north and an increase in pCO2 in the south in Ex1e-4.288

Changes in the upper ocean temperature, salinity, DIC and alkalinity are due to alter-289

ations to the diapycnal flux of these tracers. The diapycnal flux for a tracer with concentra-290

tion C may be approximated by −Kv × ∂C
∂z . Therefore, if vertical diapycnal mixing Kv is291

increased, more tracer, e.g. DIC, is mixed downgradient (upward into the surface waters).292

This increase in upward flux is the strongest where the vertical gradients are the strongest.293

Therefore, strong correlations develop between locations with sharp vertical gradients and294

locations with significantly altered tracer content with enhanced mixing (Fig.4A-D). This295

correlation is especially clear when examining changes to tracer distributions in the first296

month of the perturbation experiments, as shown in figure 4.297

Regions that experience high changes in DIC concentration with enhanced mixing are298

around the coast of Antarctica, south of 60◦S and above depths of 40 m. In these areas,299

surface waters are fed by wind-induced upwelling of deep waters rich in DIC due to the300

respiration of organic material. Further to the north, the upper 120 m of the water column301

has weak vertical gradients of DIC concentration (Fig.4E,F). The dipole pattern shown302

when looking in a zonal average sense implies the erosion of the sharp gradient by enhanced303

mixing. The DIC concentration increases with increased mixing in the upper surface waters304

(shown in red), while concentrations decrease between 40m and 20m depth (shown in blue)305

due to a flux divergence, as more of this carbon has been mixed upwards into the surface306

waters (Fig.4G). There is a clear divide at around 20 m; this depth corresponds to the307

depth of the maximum vertical gradient. Changes in alkalinity and salinity roughly follow308
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a pattern similar to DIC (hence not shown). The greatest changes in temperature occur in309

different regions, mainly in the northern SO, especially at around 90◦E, in the Argentine310

basin, and in the waters surrounding New Zealand.311

Temporal and seasonal variability of changes in pCO2312

Carbon fluxes show strong seasonal and spatial variations (Fig.5), as for example, dis-313

cussed in Rosso et al. (2017). In the austral summer (December to February), the SO from314

60◦S to 30◦S is a net source of CO2 outgassing (Fig.5A,B Dashed lines). Some outgassing315

also occurs at the upwelling zone of the polar front, especially in the Atlantic basin (Fig.5C).316

South of ∼60◦S, the SO acts as a slight carbon sink even in summer. Austral winter (June317

to August) has much higher carbon uptake than summer, with the net uptake occurring in318

almost all regions of the SO, except beneath sea ice (Fig.5A,B,D). Small outgassing regions319

exist around the polar front and at the upwelling region off the west coast of South America320

in the Argentine basin (Fig.5D).321

While figures 2 and 3 show the changes to carbon fluxes between model runs in an322

annual mean sense, there are also significant temporal patterns in how mixing perturbation323

alters carbon fluxes (as will be discussed in Fig.8). Figures 5 and 6 examine the dominant324

mechanisms for seasonal differences observed in the changes to pCO2 between Ex1e-4, ExVar325

and Ex1e-5. The changes in carbon fluxes between experiments are greater in winter than326

in summer (Fig.5A,E,F). An exception is in the very south, where ice cover during winter327

reduces gas exchange in all experiments. In winter, Ex1e-4 has a reduced carbon uptake328

compared to Ex1e-5, while ExVar has a similar carbon uptake to Ex1e-5 (Fig.5A). Cumu-329

latively integrated winter carbon fluxes are reduced from almost 2 Pg C/yr in Ex1e-5 to330

1.2 Pg C/yr in Ex1e-4. The greatest decreases in uptake occur around 40◦S. The Argentine331

basin is also a region of pronounced diminished carbon uptake (Fig.5F). Three small areas332

on the edge of the winter ice extent experience increased carbon uptake in the winter due to333

reduced ice cover, the reason for which is explained subsequently (Blue areas, Fig.5F). Sum-334

mer changes to carbon fluxes are of a smaller magnitude and show more spatial variability335

than the winter months (Fig.5A,E). In summer, the cumulative intergrated outgassing of336

Ex1e-5 is higher than Ex1e-4, and ExVar is higher than both Ex1e-4 and Ex1e-5, though337

the difference between all three runs is less than 0.2 Pg C/yr . At lower latitudes where the338

SO is a net source of carbon to the atmosphere, outgassing is decreased in Ex1e-4. Further339

south, where the SO is a carbon sink, CO2 uptake is reduced in Ex1e-4 (Fig.5E). Changes340

in flux occur as far south as the Antarctic continent due to diminished summer sea ice.341

Using Eqs.1-5 and Fig. 3, we next use the Takahashi et al. methodology to examine342

seasonal changes to tracer contributions and their implications for the pCO2 and carbon343

fluxes. The outcome is shown in Fig. 6. Salinity contributions to changes to pCO2 are not344

shown as they are negligible compared to DIC, alkalinity, and temperature contributions.345

The temperature contribution varies greatly between seasons, being stronger in January346

than in July (Fig.6B,E). Closer to Antarctica, changes in temperature increase the pCO2347

of Ex1e-4 surface waters throughout the year. In July, this positive contribution extends348

further north. In January, the change in temperature causes very strong reductions in349

pCO2, especially in the subtropical gyres. Because the change in surface temperature and350

associated change to pCO2 vary with season, the annual mean change in temperature and351

its contribution to change in pCO2 appear much smaller (Fig.3D). They are nevertheless352

key to driving the seasonal response of changing SO carbon fluxes in response to altered353

diapycnal mixing.354

The vertical structure of the thermocline and the associated change in surface temper-355

ature with enhanced mixing have seasonal trends (Fig.7B,F). In January, surface waters are356

warm, and the temperature declines rapidly with depth down to 100 m, especially north of357

60◦S (Fig.7A). South of 60◦S and below 100 m, water temperature increases with depth due358

to the upwelling of deep warm waters of North-Atlantic origin through Ekman transport.359
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In Ex1e-4, subsurface cooler waters are mixed more strongly towards the surface, cooling360

the surface waters and warming the subsurface waters relative to Ex1e-5 (Fig.7B). This361

surface cooling reduces the pCO2 (Fig.6A). In July the surface waters are well mixed and362

there is no temperature gradient in the upper 100 m (Fig.7E). Below the winter mixed363

layer, temperature rises with depth. Enhanced mixing warms surface waters, increasing the364

pCO2 (Fig.6E,F). This increase in surface temperature also increases the rate of sea ice melt,365

reducing the sea ice cover toward the end of winter/ spring in Ex1e-4. This results in small366

regions of increased carbon uptake around the sea ice edge in winter (Fig.5F). North of 60◦S367

and below the mixed layer, waters still decrease in temperature with depth, so increased368

mixing cools the surface waters (Fig.7E,F). The vertical gradients of DIC and alkalinity are369

relatively constant regardless of season (Fig.7C,G). Changes in DIC and alkalinity concen-370

trations have opposing effects on pCO2(Fig.3E,F), but together act to increase pCO2 at all371

latitudes in summer and winter in Ex1e-4 (Fig.6C,F). The increase to pCO2 in Ex1e-4 from372

combined carbonate chemistry changes is stronger in the winter than in summer, especially373

north of 40◦S (Fig.6C,F).374

Though all six years of the model run exhibit a similar seasonal cycle of changes to375

carbon fluxes with enhanced mixing in Ex1e-4, important inter-annual differences exist376

(Fig.8) which would not be appreciated in annual and seasonal means. Some differences in377

carbon fluxes between the two experiments become more pronounced over time, while other378

changes become less. North of 40◦S, Ex1e-4 has an increase in carbon uptake (or reduced379

outgassing) during the summer. This becomes more pronounced and extends further south380

down to 50◦S in subsequent summers as the model run progresses. While the winter time381

reductions in uptake in Ex1e-4 compared to Ex1e-5 around 45◦S become stronger through382

the six years, the reductions in carbon uptake south of 60◦S become weaker. The SO yearly383

mean change in C flux (red stars, Fig.8B) show a smaller mean change in the carbon flux384

between Ex1e-4 and Ex1e-5 in the later years of the run compared to earlier years. This is385

due to opposing signs of change to carbon fluxes over the seasons becoming more pronounced386

and therefore causing an antagonistic net effect to changes in an annual mean sense.387

40◦S approximately corresponds to the mean latitude of the subtropical front (STF)388

and marks a regime in terms of the leading mechanisms responsible for changes in pCO2 and389

carbon fluxes. This marks the boundary between the nutrient deplete sub-tropical waters390

to the north and the nutrient and DIC rich waters to the south (Chapman et al., 2020).391

Regions to the north of this divide are responsible for the summer increases in carbon uptake392

in Ex1e-4 in later years of the run. In contrast, regions to the south are responsible for the393

strong response of reduced carbon uptake in Ex1e-4.394

The contributions to the total change in pCO2 are drastically different across the STF395

(Fig.8C-E). To its South, opposite changes in pCO2 due to alkalinity and DIC nearly bal-396

ance, with the latter being slightly larger (Fig.8D). As before, salinity contributions remain397

negligible at all times. Over the first two years of the perturbation, the total change in pCO2398

is positive, meaning pCO2 is higher in Ex1e-4 than in Ex1e-5. The magnitude of the reduc-399

tion in pCO2 due to Alkalinity increases over time. The magnitude of total pCO2 change400

decreases over time and becomes negative in the summer months, allowing for increased401

carbon uptake.402

North of the STF, DIC and alkalinity do not balance each other out (Fig.8E) and403

changes in temperature between the two model runs are more dominant. Alkalinity increases404

pCO2 north of the STF, while changes in DIC initially also increase the pCO2 in Ex1e-4. By405

the summer of the third year of the run, changes in DIC begin to reduce the pCO2, causing406

the net total change in pCO2 to be negative in summer. This causes an increase in carbon407

uptake in the summer north of the STF in Ex1e-4.408

Almost all changes in DIC between Ex1e-4 and Ex1e-5 are due to altered diapycnal409

fluxes of DIC. However, north of the STF, DIC contribution to decreased pCO2 in the410

summer is due to increased productivity in the nutrient depleted waters of the sub tropical411
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gyre. This increase in productivity does not occur instantaneously, but instead takes around412

6 months to begin decreasing the DIC contribution (red line, Fig.8E and Fig.9C). While an413

increase in productivity occurs with higher mixing across the whole SO region, it is only in414

the north, roughly north of the sub tropical front where increased phytoplankton production415

and DIC uptake becomes the dominant mechanism in altering DIC concentrations. Thus,416

in the context of this paper, we consider the STF as the upper boundary of the SO and417

postpone further discussion on the biologically-dominated change in pCO2 north of the SO418

to future work.419

Comparison to pCO2 observational data420

The pCO2 values for Ex1e-4, Ex1e-5 and ExVar can be compared to 2013-2018 observed421

levels from the Surface Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016) (Fig.10). Neither422

clearly matches SOCAT observations better than the other (Fig.10A). Regional trends are423

also unclear, although from the limited data available, Ex1e-5 appears to better represent the424

pCO2 of the northern Pacific Ocean, as well as off the coast of South Africa and Tasmania.425

Meanwhile estimates from Ex1e-4 are better matched to observations in the western Atlantic426

and the northern Indian Oceans.427

The probability density function for the difference between SOCAT and B-SOSE for the428

three experiments is broken down over seasons (Fig.10B). In summer the standard deviation429

of differences between ExVar and data is much larger than those for Ex1e-4 and Ex1e-5. The430

mean difference of 15.5 µatm for Ex1e-5 is lower than 17.46 µatm for Ex1e-4, whilst ExVar431

has the lowest mean difference from observations. The high-end tails of the distributions432

are more skewed than the lower ends, implying a systematic over-estimate of pCO2 by433

B-SOSE. B-SOSE overestimates the flux of carbon from the ocean to the atmosphere or434

underestimates the SO carbon uptake from the atmosphere, particularly in the summer.435

SOCAT data is heavily biased towards summer data due to limitations on data col-436

lection in the winter. The mean difference between SOCAT and B-SOSE is lower for the437

winter mean than for the summer in all experiments. In the winter, ExVar has the largest438

mean difference from observations but also the largest standard deviation. In an annual439

mean sense, ExVar does a better job in matching SOCAT observations, though with a much440

higher standard deviation. It is interesting to note that, while in the annual mean sense,441

ExVar better matches SOCAT observations of pCO2, Ex1e-5 was better able to replicate442

previous observational estimates of cumulative SO C fluxes (Fig.2D).443

Conclusion444

We have demonstrated that the air-sea carbon fluxes in the SO are highly sensitive445

to modest background mixing variations well within the range of our best estimates. This446

is despite background mixing rates being orders of magnitude smaller than mixed layer447

model generated mixing. We find that the overall changes to carbon fluxes depend on the448

interactive effects of changes to DIC, temperature, and alkalinity, which can compensate or449

reinforce each other, and the predominant driver varies regionally, seasonally and temporally450

as additive and opposing feedbacks kick in at varying time scales.451

The relevance of diapycnal mixing in setting global carbon fluxes has previously been452

considered to be through changes to the underlying stratification and of regional and global453

overturning circulation and ventilation patterns. Although that may be true on centennial454

or longer timescales, here we show that on much faster timescales mixing directly acts upon455

tracers such as DIC, alkalinity, temperature, and salinity leading to a significant change in456

surface ocean carbon fluxes.457

The high correlation found between vertical gradients and strong changes in tracer dis-458

tributions with altered mixing shows that on a timescale of days to months, direct changes459
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in diapycnal mixing fluxes are the predominant drivers of the pCO2 response in the SO. On460

longer timescales, from months to years, further feedbacks involving changes to biological461

productivity and mixed layer depth will also begin to cause further changes to the surface462

ocean pCO2. A latitudinal divide exists at around 40◦S, roughly the location of the sub-463

tropical front. High vertical tracer gradients cause the direct impact of altered tracer fluxes464

to dominate trends to the south, whilst changes in biological productivity play a key role in465

the observed changes to carbon fluxes to the north.466

Two major issues stand in the way of better constraining of the data-assimilating ocean467

estimates insofar as the role of vertical mixing in the upper ocean is concerned. First, despite468

the significant investments in observations such as SOCAT, Fig. 10A clearly shows the469

sparsity of the available observational data. From a statistical perspective, this coverage470

is insufficient to discern which background mixing value better represents the real ocean471

despite the strong impact of these choices on pCO2. This issue can be resolved only through472

sustained observations. Knowledge of the seasonal cycle of pCO2 is worse in the SO than in473

most other regions of the ocean. The strong seasonality of the sensitivity of carbon fluxes474

to altered mixing demonstrates the importance of year-round observations. Second, SO475

diapycnal mixing can vary by orders of magnitude over timescales ranging from hourly to476

seasonally, as well as varying spatially. To achieve a close agreement with observations, a477

model should have a representation of such variability. ExVar employed our best estimate478

of a time-mean spatially variable mixing map, resulting in carbon fluxes similar to that479

obtained with a constant diffusivity of 10−5m2/s. Direct observations of diapycnal mixing480

in the SO have suggested that such maps (a) lack the representation of many key processes481

that result in higher turbulence in upper surface waters (e.g. bottom-generated lee waves,482

shoaling of remotely generated internal tides) and (b) do not allow for co-variance of mixing483

and tracer gradients, key to biological processes. This work highlights the absolute necessity484

for climate models to resolve the spatio-temporal variability of small-scale turbulent mixing,485

or to skillfully parameterise the processes responsible for generating them.486

1 Data and material availability487

The data sets generated during and/or analysed during the current study are available488

from the corresponding author on reasonable request and from http://sose.ucsd.edu.489

The data used to construct the spatially variable mixing map used for ExVar is availible490

at https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002065.491
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Figure 1: Diapycnal mixing in the Southern Ocean State Estimate (SOSE). The distribution
of diapycnal mixing in the Southern ocean, constructed as the sum of contributions from
tides and topographically-generated lee waves. This mixing is shown averaged in depth
over the top/bottom 2km in panel A/B, and zonally over the Southern Ocean in C. These
maps are used in the spatially variable mixing map experiment (ExVar). For reference,
a zonally-averaged map of the storm-induced mixing, as parameterised through GGL90
parameterisation in B-SOSE,is also shown in panel D.
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Figure 2: (A) Zonally integrated flux of Carbon for each year of Ex1e-5 (negative =
Carbon flux from atmosphere to ocean). (B) Difference in the zonally integrated flux of
Carbon between Ex1e-4 and Ex1e-5 (solid lines) and ExVar and Ex1e-5 (dashed lines) for
each year of the experiment. (C) zonally integrated annual mean (2013-2018) Carbon flux
for Ex1e-4, Ex1e-5 and ExVar. (D) Annual mean (averaged over 2013 to 2018) cumulative
integral of carbon fluxes from 70◦S northward to 30◦S (legend same as the previous panel).
Observational markers are included for comparison (Landschützer et al., 2016; Bushinsky
et al., 2019; Rödenbeck et al., 2013). (E) Average annual carbon flux for Ex1e-5, the blue
line shows the Polar Front, the magenta line shows Sub-tropical Front as defined by Orsi et
al. (1995). (F) Annual mean change in Carbon flux (Ex1e-4 – Ex1e-5). (G) Annual mean
change in Carbon flux (ExVar – Ex1e-5). Positive values imply reduced carbon uptake or
increased outgassing.
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Figure 3: Changes to surface ocean partial pressure and carbon fluxes. (A) Annual mean
surface ocean pCO2 in Ex1e-5. (B) Change in pCO2 between Ex1e-4 and Ex1e-5. (C)
Same as panel B, but this time changes to pCO2 approximated based on the methodology
of Takahashi et al. (2014) that breaks down the change into various contributions as per
equations (1-5). The various contributions are shown in panels D-G. (H-K) Changes in
annual mean DIC, alkalinity, potential temperature and salinity.
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Figure 4: (A) Maximum vertical DIC gradient in the water column for Ex1e-5, normalised
by maximum contour value. (B) Maximum change in DIC between Ex1e-4 and Ex1e-5,
normalised by the maximum contour value. (C,D) Same as A and B but for temperature.
The maximum change in DIC (temperature) is defined as the greatest difference in DIC
(temperature) concentration between the two experiments at any depth above 200 m at
each latitude and longitude in the domain. (E) Zonal average DIC concentration in Ex1e-5.
(F) Zonal average DIC vertical gradient in Ex1e-5; blue indicates a decrease in concentration
towards the surface. (G) Zonally averaged change in DIC concentration (Ex1e-4 - Ex1e-5).
All shown for December 2012, the first month of all experiments.
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Figure 5: (A) zonally integrated Carbon flux for Ex1e-4, Ex1e-5 and ExVar for summer
(dashed), winter (Dotted), and annual mean (solid line). (B) Cumulative sum of carbon
fluxes from 70◦S northward to 30◦S (legend same as the previous panel). (C) Average
summer carbon flux for Ex1e-5; magenta lines show the minimum summer ice extent. (D)
Average winter carbon flux for Ex1e-5; magenta lines show the maximum winter ice extent.
(E) Mean change in summer Carbon flux (Ex1e-4 –Ex1e-5). (F) Mean change in winter
Carbon flux (Ex1e-4 –Ex1e-5). Positive values imply reduced carbon uptake or increased
outgassing.
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Figure 6: (A) January (summer) 2013-2018 mean change in pCO2 (Ex1e-4 - Ex1e-5) ap-
proximated by the method of Takahashi et al. (2014). (B) Contribution due to changes in
temperature. (C) Contribution due to changes in carbon chemistry (DIC and Alkalinity).
(D-F) Same as A-C but for July (winter) mean.

Figure 7: (A) January zonally averaged temperature vertical gradient (red implies increase
in temperature towards the surface). (B) January change in temperature (Ex1e-4 - Ex1e-
5). Mixed layer depth (MLD) for Ex1e-5 (pink) and Ex1e-4 (green) overlain. (C) January
zonally averaged DIC vertical gradient. (D) Change in DIC concentration (Ex1e-4 - Ex1e-5).
(E-H) As in A-D but for July mean.
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Figure 8: (A) Change in zonally integrated Carbon flux between Ex1e-4 and Ex1e-5 over
the six-year time period of Jan 2013 to Dec 2018 (Red shows reduced uptake or increased
outgassing in Ex1e-4). (B) Change in the mean carbon flux across the whole SO (blue), the
SO North of 40◦S (purple) and South of 40◦S (yellow) for the same time period. The annual
mean change for the whole SO for each year is shown (red star). Using the methodology of
Takahashi et al. (2014) as discussed previously, the differences in Carbon flux between the
two model runs over time can be attributed to changes in surface ocean pCO2 (green lines)
from alterations to temperature (blue lines), DIC (red liens), alkalinity (yellow lines) and
salinity (purple lines). These contributions are shown for the whole SO (C), the SO south
of 40◦S (D), and the SO north of 40◦S (E).
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Figure 9: The percentage change of surface water DIC concentration due to changes in
biological net community productivity (NCP). Surface water is defined here as waters down
to a depth of 55m. Shown as a vertically integrated mean for (A) January (summer) and
(B) July (winter). The mean location of the subtropical front, as defined by Orsi et al.
(1995), is also shown in pink. (C) The zonal mean of the vertically integrated percentage
change due to altered NCP is shown over time.

Figure 10: Comparison of modelled pCO2 to observations from Surface Ocean CO2 Atlas
(SOCAT) between 2012 and 2018 (Bakker et al., 2016). (A) Comparison of the root mean
squared error between Ex1e-4 and Ex1e-5. Red/blue shows regions where Ex1e-5/Ex1e-4
is closer to the observations. (B) Probability density function showing the misfit between
observed carbon fluxes from SOCAT and the model outputs for pCO2 in Ex1e-5 (black),
Ex1e-4 (red), and ExVar (green).

–23–


