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Abstract

Atmospheric rivers (AR) are long, narrow jets of moisture transport responsible for over 90% of moisture transport from the

tropics to higher latitudes, covering only between 2% and 10% of the earth’s surface. ARs have a significant impact on the

hydrological cycle of midlatitudes and polar regions, which has resulted in a large effort to study ARs and their impacts on

these regions. It is not until recently that ARs in tropical latitudes are starting to generate interest within the scientific AR

community.

We use the ERA-20C reanalysis and the Bayesian AR detector TECA-BARD to show the relationship between extreme precip-

itation and atmospheric rivers in central-western Mexico (CWM) during the dry seasons (November-March) in the 1900-2010

period.

We find that more than 25% of extreme precipitation amount and frequency are associated with ARs, with a maximum of

60%-80% during December and January near the coast of Sinaloa (107.5W,25N). Composites of the mean meteorological state

show “ideal” conditions for orographic precipitation due to landfalling ARs: high horizontal vapor transport perpendicular

to the Sierra Madre. We observe a tropospheric wave pattern in vertical velocity, surface pressure, and geopotential height

associated with these events. The nature and evolution of these waves need to be further studied. Our results suggest that

TECA-BARD provides a reasonable estimation for AR presence in CWM. Nevertheless, we recommend using multiple AR

detectors and one tuned explicitly for tropical latitudes. This will allow investigation of the response of CWM landfalling ARs

and the region’s hydroclimatology under future climate scenarios.
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Key Points:7

• Extreme precipitation during the dry season in Central-Western Mexico is asso-8

ciated with atmospheric rivers (ARs)9

• The meteorological state during extreme precipitation events shows ideal condi-10

tions for orographic precipitation over the Sierra Madre11

• A detector designed for tropical latitudes could increase the correlation between12

ARs and dry season precipitation over Central-Western Mexico13
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Abstract14

Atmospheric rivers (AR) are long, narrow jets of moisture transport responsible for over15

90We use the ERA-20C reanalysis and the Bayesian AR detector TECA-BARD to show16

the relationship between extreme precipitation and atmospheric rivers in central-western17

Mexico (CWM) during the dry seasons (November-March) in the 1900-2010 period. We18

find that more than 25% of extreme precipitation amount and frequency are associated19

with ARs, with a maximum of 60%-80% during December and January near the coast20

of Sinaloa (107.5W,25N). Composites of the mean meteorological state show ”ideal” con-21

ditions for orographic precipitation due to landfalling ARs: high horizontal vapor trans-22

port perpendicular to the Sierra Madre. We observe a tropospheric wave pattern in ver-23

tical velocity, surface pressure, and geopotential height associated with these events. The24

nature and evolution of these waves need to be further studied. Our results suggest that25

TECA-BARD provides a reasonable estimation for AR presence in CWM. Nevertheless,26

we recommend using multiple AR detectors and one tuned explicitly for tropical lati-27

tudes. This will allow investigation of the response of CWM landfalling ARs and the re-28

gion’s hydroclimatology under future climate scenarios.29

Plain Language Summary30

Atmospheric rivers (ARs) are a meteorological phenomenon with strong poleward31

water vapor transport. Due to their important role in the hydrological cycle and water32

availability of midlatitudes (like California, Europe, and Chile, among others) and po-33

lar regions, the scientific community has mainly focused AR research on these regions.34

It was not until recently that AR in lower tropical latitudes gathered more attention. This35

work focuses on the relationship between ARs and the dry season (November-March)36

precipitation over Central-Western Mexico (CWM), around 25 degrees north over the37

Pacific Coast of Mexico. We use precipitation data from the ERA-20C reanalysis, ob-38

servational dataset, and a Bayesian AR detector to show that most of the precipitation39

over CWM during the November-March season is due to meteorological features with40

similar characteristics to midlatitude ARs. These events show typical conditions for ARs41

orographic precipitation: high water vapor transport perpendicular to the Sierra Madre42

that condensates into rain when the mountains lift it. We believe that an AR detector43

specifically designed for tropical latitudes could increase the relationship between AR44

and November-March precipitation in CWM and better allow us to study how these events45

might be modified by climate change.46

1 Introduction47

Atmospheric rivers (AR) are long, narrow jets of moisture transport typically as-48

sociated with a low-level jet stream ahead of the cold front of an extratropical cyclone49

(F. M. Ralph et al., 2018). ARs account for over 90% of the water vapor transport from50

the subtropics to midlatitudes (Zhu & Newell, 1998). Over the last 20 years, there has51

been an increasing interest in the study and characterization of ARs. Numerous recent52

studies investigate AR and their relationship with extreme wind, precipitation, their im-53

pact on the regional hydrological cycles, water mass balance, and extreme hydrological54

events like flooding and droughts in midlatitude continental regions like North Amer-55

ica, Europe, and South America (Neiman et al., 2002; F. M. Ralph et al., 2004, 2005,56

2006; Dirmeyer & Brubaker, 2007; Neiman et al., 2008; Leung & Qian, 2009; Guan et57

al., 2010; Viale & Nuñez, 2011; M. Dettinger, 2011; F. M. Ralph & Dettinger, 2011; Warner58

et al., 2012; M. D. Dettinger, 2013; Lavers & Villarini, 2013b, 2013a; Kim et al., 2013;59

Neiman et al., 2013; F. M. Ralph et al., 2013; Rutz et al., 2014; Gimeno et al., 2016; Lavers,60

Waliser, et al., 2016; Lavers, Pappenberger, et al., 2016; Waliser & Guan, 2017; Gershunov61

et al., 2017; Goldenson et al., 2018; Viale et al., 2018; Eldardiry et al., 2019; F. M. Ralph62

et al., 2019; Huang et al., 2021). Some works have even investigated the structure of AR63
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using in situ data and satellite observations (F. M. Ralph et al., 2005; Neiman et al., 2008;64

F. M. Ralph et al., 2010).65

The significant impact of ARs on the climatology and hydrology of midlatitudes66

has generated great interest and community effort in studying ARs and their impacts67

on these regions. (F. Ralph et al., 2019) introduced a scale to categorize AR strength68

based on vapor transport intensity and landfall duration and show that there are ben-69

eficial and hazardous impacts associated with AR events. This scale is helpful for the70

scientific community, and it is a way of communication with the general public. The AR71

category scale can be applied to gridded datasets such as reanalysis, forecast, and cli-72

mate projections. There is also an increasing interest in understanding how ARs and their73

impact will change in future climates. (Payne et al., 2020) concludes that AR response74

to climate change will have noticeable importance to water balance and regional water75

resources.76

Most of the ARs research focuses on midlatitudes and polar regions. ARs in low77

latitudes are starting to generate interest within the scientific AR community. This work78

is motivated by the lack of study of tropical ARs. Moreover, we are also motivated by79

the direct observation of “unusual non-tropical” precipitation in the Winter of 2019-202080

in Nayarit, Mexico ∼21.5N,104.9W, during the dry season (November-March). We re-81

fer to “unusual non-tropical” precipitation as a low magnitude precipitation rate (com-82

pared to convective heavy tropical precipitation). During these days, we observed con-83

stant rainfall throughout one or two days, very similar to typical California winter pre-84

cipitation (Figure 1(b) shows the IVT and horizontal wind speed at 700 hPa from one85

such event). The similarities in the IVT field with the typical characteristics of an AR86

raised the question: is this an AR? Are there more events like this, and how are they as-87

sociated with the extreme precipitation for the dry season in Central-Western Mexico (CWM)?88

(thick black contour in Figure 1(a)).89

Figure 1. (a) Percentage of annual total precipitation from CPC Global Unified Gauge-Based

Analysis of Daily Precipitation. Thick black contour is used to indicate what is considered as

Central-Western Mexico throughout this work. (b) ERA5 reanalysis IVT in color contours. Vec-

tors represent the 750 hPa wind velocity. 2020-01-01 is one of the times when the precipitation in

CWM resembled the winter Californian AR-associated rainfall.

CWM is characterized by a dry season from November to March (Garćıa Amaro de90

Miranda, 2003), with a mean monthly accumulated precipitation of less than 10 mm1
91

and over 75% of the annual precipitation from July-September, during the spring and92

1 https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de

-temperaturas-y-lluvias
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summer months. Rainfall in CWM is mainly associated with the North American Mon-93

soon. Less than 10% of the total annual mean rainfall occurs between November and March94

for most of CWM (Figure 1(a)), according to the CPC Global Unified Gauge-Based Anal-95

ysis of Daily Precipitation2 (Chen et al., 2008).96

From a socio-economic point of view, it is important to study and quantify these97

events of atypical precipitation. CWM is one of the largest agricultural production re-98

gions in Mexico. It is common knowledge among CWM farmers that these rainfall events99

can be exploited to benefit agriculture; however, we could not find scientific quantifica-100

tion of it. There are even popular beliefs that they can be predicted following a set of101

heuristic rules (Cruz López, 2011). There is also some evidence that different crops, like102

beans, coffee, and corn, are sensitive to changes in environmental conditions, like pre-103

cipitation and humidity (Viguera et al., 2017). Therefore, changes in climate conditions104

can affect the productivity and quality of the crops (Porter & Semenov, 2005).105

Moreover, changes in wind speed and direction, moisture transport, and the loca-106

tion of the intertropical convergence zone (ITCZ) can modify the energy exchange be-107

tween the atmosphere and the ocean. These changes could generate a displacement north-108

ward of the oxygen minimum zone (OMZ), which can affect ocean species distribution109

and the productivity of regional aquaculture and fisheries (Breitburg, Denise; Grégoire,110

Marilaure and Isensee, Kirsten, 2018). Furthermore, other studies have observed that111

dry season rainfall events can change the coastal environment. Coastal water chlorophyll112

concentration, turbidity, temperature, and salinity, due to increased river discharge, can113

impact the sustainability of coastal ecosystems and their biological production (Domı́nguez-114

Hernández et al., 2020; Romero-Rodŕıguez et al., 2020).115

Although there are numerous possible effects of anomalous winter precipitation in116

the CWM region, there is still a lack of documentation about these events and their im-117

pacts. Moreover, no existing research links these events with ARs. We investigate the118

relationship between lower latitudes ARs “dry season” (November-March) rainfall in CWM.119

We use data from the European Centre for Medium-Range Weather Forecasts (ECMWF)120

Atmospheric Reanalysis of the Twentieth Century ERA-20C3 (Poli et al., 2016) and the121

Bayesian AR Detector TECA-BARD v1.0.1. We aim to quantify how much of the CWM122

winter precipitation is associated with ARs and the meteorological state of the atmo-123

sphere during these events.124

2 Data and Methods125

ERA-20C output is 3-hourly with a of ∼125 km on 37 pressure levels. We use data126

at pressure level: geopotential z, wind velocity u, v, and w, specific humidity q, temper-127

ature t, and surface level: mean sea level pressure mslp, surface pressure ps, total pre-128

cipitation tp, vertical integral of northward water vapor flux vinwvf, vertical integral129

of eastward water vapor flux viewvf, and total column water vapor tcwv. According to130

the ERA-20C documentation, the vertically integrated vapor fluxes are calculated in the131

model coordinates following:132

VIEWVF = −1

g

∫ 1

0

qu
∂p

∂η
dη ≈ −1

g

N∑
k=1

uk qk∆pk, (1)

VINWVF = −1

g

∫ 1

0

qv
∂p

∂η
dη ≈ −1

g

N∑
k=1

vk qk∆pk, (2)

2 https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
3 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
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where u and v are the components of the horizontal wind vector, q is the specific humid-133

ity, p is pressure, η is the hybrid coordinate (Simmons & Burridge, 1981), index k cor-134

responds to model levels going from the surface (k = 1) to the top of the model atmo-135

sphere (k = N), and ∆pk is the difference in level pressures, estimated at level k. ERA-136

20C daily forecasted precipitation accumulation has been converted to a 3-hourly pre-137

cipitation rate (with units of mm/d); IWV is used directly from ERA-20C total column138

water vapor tcwv. IVT is calculated as the magnitude of the vertically integrated moisture-139

weighted wind (horizontal vapor flux vector) u⃗q, directly from ERA-20C eastward and140

northward water vapor fluxes:141

u⃗q = (VIEWVF,VINWVF), (3)

IVT = |u⃗q| =
√
VIEWVF2 +VINWVF2. (4)

Additionally, we compare the ERA-20C reanalysis data with observational precip-142

itation, using precipitation data from the Livneh gridded precipitation for the continen-143

tal US, Mexico, and Southern Canada (Livneh, Ben & National Center for Atmospheric144

Research Staff (Eds), Last modified 12 Dec 2019). The (Livneh et al., 2015) dataset is145

a long-term gridded daily dataset at fine 1/16◦ (∼6 km) horizontal resolution for the pe-146

riod 1950-2013. We use bilinear interpolation to regrid the AR detection from TECA-147

BARD in ERA-20C data to the Livneh dataset grid.148

2.1 AR probability from ERA-20C and TECA-BARD149

To calculate the probability of the presence of an atmospheric river (AR probabil-150

ity) we use the Bayesian AR Detector TECA-BARD v1.0.1, a probabilistic AR detector151

implemented in the Toolkit for Extreme Climate Analysis TECA. TECA-BARD uses a152

Bayesian framework to sample from the set of AR detector parameters that yield AR153

counts similar to the expert database of AR counts; this yields a set of “plausible” AR154

detectors from which we can assess quantitative uncertainty (O’Brien et al., 2020). We155

apply TECA-BARD to the ERA-20C data, and asses the plausible presence of an AR156

at a grid point where where AR probability> 0.05. While 0.05 is a low probability thresh-157

old, this indicates a non-zero probability of the existence of an AR in a given grid cell.158

Since TECA-BARD is inherently designed to detect ARs in mid-latitudes, it filters the159

IVT field near the tropics, resulting in AR probability that would have lower values in160

the presence of an AR in tropical latitudes than one in higher latitudes. We hypothe-161

size that AR probability> 0.05 represents a reasonable indication of the presence of an162

AR in lower latitudes. We test and show this in Sections 5 and 6.163

2.2 Extreme Precipitation164

We calculate the monthly 98th percentile precipitation rate value for ERA-20C and165

Livneh datasets at each grid cell. We define an extreme precipitation event for a given166

grid cell as the time when the precipitation is above the 98th percentile. We calculate167

the AR-associated extreme precipitation for each grid cell as the precipitation above the168

98th percentile when AR probability> 0.05. Since the data record is sufficiently long169

(1900-2010 for ERA-20C and 1950-2013 for Livneh), we calculate all means and extreme170

precipitation quantiles monthly. The same holds for the atmospheric state composites171

described in Section 2.3.172

2.3 Atmospheric State Composites173

Following the methodology of (Neiman et al., 2008), we create composites of me-174

teorological variables to study the state of the atmosphere at the time of extreme pre-175

cipitation and AR events at two locations: Loc1 = 107.5W,25N, and Loc2 = 105.0W,21N176

(Figure 2, Loc1 denoted circle marker, Loc2 by the triangle). Loc1 is located close to the177
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maximum area of AR-associated precipitation and close to Culiacán Sinaloa, one of the178

most productive agricultural states of México. Loc2 is around the most southern region179

with AR-associated precipitation fraction ∼0.5, and in the state of Jalisco, another im-180

portant agricultural producer in CWM. Both locations are close to the Sierra Madre Oc-181

cidental, a mountain range that extends through Northwestern and Central-Western Mex-182

ico, as a part of the North American Cordillera, parallel to the coast. We hypothesize183

that if there is IVT normal to the Sierra Madre during the dry season, it could produce184

precipitation due to orographic lifting. The methodology to select the time steps to com-185

posite is as follows: we find the times when the AR probability is > 0.05 (ar), then we186

find all the times when the precipitation is above the 98th percentile (pr). We define then187

AR + extreme precipitation conditions as the times where both conditions ar and pr are188

met (ar pr), times when there is ar but no pr (ar nopr), and times when there is pr but189

no ar (pr noar). Finally, the long-term mean is the monthly climatology for 1900-2010190

(ltm). We average in time for all the time in each composite and create monthly com-191

posites. Anomalies are calculated as the specific composite minus the long-term mean.192

Table 1 summarizes the different composite sampling.193

Table 1. Atmospheric state composites. Composites are created monthly. The number of

events at each location is the total number of events for all November-March months.

Atmospheric state composites

Conditions Name Anomaly Events at Loc1 Events at Loc2

Climatology (long term mean) ltm 134304 134304
AR ar ar - ltm 8886 4650
Extreme precipitation pr pr - ltm 2690 2688
AR/extreme precipitation ar pr ar pr - ltm 1549 1003
AR/no extreme precipitation ar nopr ar nopr - ltm 7337 3647
Extreme precipitation/no AR pr noar pr noar - ltm 1141 1685
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Figure 2. Orography of CWM. Loc1 and Loc2 are show in circle and triangle markers, respec-

tively. The Sierra Madre Occidental is the mountain range that runs through Northwestern and

Central-Western Mexico.

3 Results194

In Section 3.1 we present the results of the AR-associated precipitation in CWM195

during the dry season (November-March) in the 1900-2010 period. We present the frac-196
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tional contribution of ARs to the precipitation, using ERA-20C data and the Livneh et197

al. gridded dataset. Sections 5 through 6 focus on the meteorological state of the atmo-198

sphere during extreme precipitation and AR events and the difference between differ-199

ent composites. In the supplemental information, we include additional plots related to200

the meteorological state of the atmosphere and differences between composites.201

3.1 AR-associated extreme precipitation202

Figure 3 shows how much of the CWM dry season precipitation is associated with203

ARs. Figure 3(a) shows the fraction of ERA-20C total extreme precipitation amount as-204

sociated with ARs, and (b) shows the same for Livneh precipitation. Figure 3(c) shows205

the fraction of ERA-20C extreme precipitation frequency associated with ARs, and Fig-206

ure 3(d) shows the same for Livneh precipitation. The results are highly condensed in207

these figures, but they are clear and relevant: The influence of ARs in the dry season ex-208

treme precipitation in CWM extends as far as ∼17N. December has the highest AR-associated209

precipitation, with ∼75% of the frequency and amount 0.75 near Loc1, and between 50%210

and 60% near Loc2. In general, we can say that in the Nov-March, more than half of the211

extreme rainfall at Loc1 (more than 30% at Loc2) is associated with ARs, both in to-212

tal amount and frequency.213

We have shown the results based on two facts: the total amount of precipitation214

(and frequency) higher than the monthly 98th percentile for November-March; and the215

“plausible” presence of an AR in CWM given the ar_probability≥0.05. We hypoth-216

esize that this precipitation is associated with low latitudes ARs and that TECA_bard217

provides a good insight into the presence of ARs in CWM. This becomes clearer in Sec-218

tion 5, where we present composites of the state of the atmosphere during ar_probability≥0.05219

events at Loc1 and Loc2. For simplicity, in Section 4 and 5, we show the results for Jan-220

uary. The supplemental information contains the results for the long-term mean and ar pr221

composites.222

4 Long-term Mean223

We briefly show the climatological state of the atmosphere (ltm) for January. The224

long-term mean is calculated based using ERA-20C data. Figure 4(a) shows IWV be-225

tween 10 and 15 kg m−2 in CWM, with a maximum of 45 kg m−2 near the ITCZ (be-226

tween 5S and 5N). IVT is shown in Figure 4(b), with values between 0 and 100 kg m−1s−1
227

in CWM (IVT direction shown with vectors). We note a high IVT plume over the Pa-228

cific storm track and higher IVT values between 5S and 5N associated with the ITCZ.229

Mean sea level pressure depicts the North Pacific High with its maximum at 130W,30N,230

shown in Figure 4(c). Geopotential height at 650 hPa, shown in Figure 4(d), has a large231

gradient between 30N and 60N, associated with the jet stream over midlatitudes, with232

very little or no spatial patterns over CWM and the central Pacific Ocean. The long-233

term means for Nov-March are shown in the supplemental information (Figures S1 through234

Figure S5). The general structure of the atmosphere is similar to 4(Low IVT and IWV235

over CWM with the North Pacific High west of the coast of California and Baja Cali-236

fornia), with slight differences in the locations of the ITCZ, storm track, North Pacific237

High, etc.238

5 Extreme Precipitation and AR Events Composite239

In this section, we focus on the state of the atmosphere for the ar pr composite (events240

with extreme precipitation + AR probability ±0.05).241
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Figure 3. (a-b) Fraction of the total precipitation extreme precipitation (>98th percentile)

associated with ARs. (a) ERA-20C 1900-2010. (b) Livneh 1950-2010. (c-d) Fraction of AR-

associated to the total extreme (>98th) precipitation frequency. (c) ERA-20C 1900-2010. (d)

Livneh 1950-2010

5.1 ar pr composite at Loc1: Sinaloa, (107.5W,25N)242

Figure 5(a) shows IVT in colored contours and IWV in dashed white contours. We243

observe an elongated region of high IWV extending from the ITCZ into CWM, with val-244

ues up to 30 kg m−2 at Loc1; as well as a ridge-like structure of high IVT (between 200245

and 400 kg m−1s−1 centered at Loc1, similar to mid-latitude landfalling ARs (Neiman246

et al., 2008). Figure 5(b) shows IVT anomalies higher than 200 kg m−1s−1, and IWV247

anomalies up to 15 kg m−2 nearLoc1. Mean sea level pressure (gray-filled contours in248

Figure 5(c)) shows the presence of the North Pacific High. Moreover, in 5(d), we observe249

a low in sea level pressure and geopotential height at 850 hPa anomalies centered near250

–8–
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Figure 4. Long-term mean for 1900-2010 in December. (a) Integrated water vapor (IWV), (b)

integrated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at

650 hPa. The vectors in panel (b) represent the direction of IVT.

115W,30N. This wave pattern is more noticeable in Figures 5(e) and (f) (geopotential251

height at 500 hPa). It is worth noticing that the low-pressure system at the surface is252

approximately aligned with the mid-troposphere low. This could imply that the wave253

producing this AR-pattern and anomalous dry season precipitation is barotropic. How-254

ever, more analysis is needed to determine the nature and characteristics of these waves.255

Figures 5(g) and (h) show a mean negative vertical velocity (ascending) over the high256

IVT plume, ahead of the mid-tropospheric low (with anomalies ∼6 hPa s−1). Vectors257

show the direction of IVT and its anomalies in Figures 5(g) and (h). IVT is normal to258

the mountain range and Loc1, with a weakening of the westward moisture transport near259

the Equator.260

5.2 ar pr composite at Loc2: Jalisco and Nayarit (105.0W,21N)261

The ar pr at Loc2 has a similar general structure to the Loc1, with slightly weaker262

IVT and higher IWV than the Loc1 composite. Figure 6(a) shows a high IVT ridge near263

Loc2 with a maximum value of ∼350 kg m−1s−1 and IWV ∼35 kg m−2 near Loc2. The264

mean sea level pressure and geopotential show negative anomalies centered near 26N,110W,265

with lower magnitude than the Loc1 composite anomalies (Figures 6(c-f)). An upward266

650 hPa wind velocity (and its anomaly) ahead of the tropospheric through, with high267

IVT normal to the Sierra Madre at Loc2 (Figures 6(g) and (h)). The genesis and na-268

ture of the waves responsible for this weather pattern need to be further explored.269

6 Difference between composites270

This work focuses on the relationship between ARs and extreme precipitation dur-271

ing the dry season in CWM. In Section 5, we show the results for the ar pr composite,272

i.e. when extreme precipitation and AR are present. This naturally raises the questions:273

what about the other composites?, what is the difference between composites?. For exam-274

ple, what is the difference between the climatology of events with extreme precipitation275

but no ARs detected (pr noar)? What drives this anomalous rainfall? For simplicity, we276

focus the results in this section on composites over Loc1.277
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Figure 5. State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in

January. Contours variables are specified on the top-right of each plot. Left column: IWV, IVT,

mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ω at

650 hPa. Right column: anomalies with respect to the long-term mean for the same variables.

The IWV and IVT for January during extreme precipitation without detection of278

ARs (pr noar) is shown in Figure 7(a,b). We observe that the general structure of IVT279

and IWV are similar to the ar pr composite (surface pressure, geopotential height, and280

vertical velocity plots are shown in Figure S17). So, how different are they? In Figure281

7(c,d), we observe little variation between the two composites for the pressure and 850282

hPa geopotential height near CWM. The main differences in the pressure/geopotential283

fields are in the north part of the domain, where the wave pattern, present in both ar pr284

and pr noar is stronger for ar pr (positive differences in Figure 7 (d)). Nevertheless, the285

spatial patterns are similar between the two composites. Figure 7(c) shows moisture fields286

similar to ar pr, although with weaker magnitudes in IVT and IWV for the pr noar com-287

posite (Figure 7(c)), probably due to the weakening of the mid-troposphere wave pat-288

tern (Figure 7(d)).289
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Figure 6. State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in

January. Contours variables are specified on the top-right of each plot. Left column: IWV, IVT,

mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ω at

650 hPa. Right column: anomalies with respect to the long-term mean for the same variables.

Figure 8(a,b) show the IWV and IVT for the ar nopr composite in January, i.e.290

during AR detection without extreme precipitation present. We note a moisture trans-291

port into Loc1 (surface pressure, geopotential height, and vertical velocity plots are shown292

in Figure S16). In Figure 8, we notice differences between the ar nopr and the ar pr com-293

posites in surface pressure. The ar nopr has a stronger pressure high in the northwest294

part of the domain but a weaker low high near CWM (Figure 8(d)). Moreover, a tilt-295

ing in the geopotential height wave pattern (show in the supplemental information, Fig-296

ure S16), and differences in its magnitude create a much weaker IVT magnitude and a297

difference in IVT direction at Loc1 (8(c)). This could be due to a stronger mid-troposphere298

wave associated with the jet stream meandering or the superposition of two or more waves.299

Again, the nature of the wave producing these weather patterns still needs to be explored300

and would make an exciting work by itself. Ultimately, the main consequence of these301
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Figure 7. (a) IVT and IWV pr noar composites for January and and their anomalies (Loc1).

(c and d) Differences in the atmospheric mean state between ar pr and pr noar. (c) IVT magni-

tude in filled contours, vectors represent IVT direction IVT, and white dashed contours denote

changes in IWV. (d) Filled contours show mean sea level pressure differences, thick yellow con-

tours show geopotential height at 850 hPa, and black contours geopotential height at 500 hPa.

wave differences is that they result in a much weaker IVT magnitude with a different di-302

rection, both directly related to orographic precipitation.303

Figure 8. (a) IVT and IWV pr noar composites for January and and their anomalies (Loc1).

(c and d) Differences in the atmospheric mean state between ar pr and ar nopr. (c) IVT magni-

tude in filled contours, vectors represent IVT direction IVT, and white dashed contours denote

changes in IWV. (d) Filled contours show mean sea level pressure differences, thick yellow con-

tours show geopotential height at 850 hPa, and black contours geopotential height at 500 hPa.

–12–



manuscript submitted to JGR: Atmospheres

Figures 7(c,d) and 8(c,d) suggest that the different composites might be related to304

the same or similar weather events or different phases in the same weather event or wave.305

To explore this, we plot the occurrence time of the events for each composite, shown in306

the supplemental information’s Figures S18-S25 (full 1900-2010 event composites time307

of occurrence at Loc1). There is, in fact, an overlap between composites; in some cases,308

precipitation events occur before or after ARs but around the same dates in general. This309

suggests that while we have acceptably identified AR events, an ARDT tuned for trop-310

ical latitudes could improve the AR detection in CWM, which could result in a greater311

correlation between ARs and dry season precipitation in CWM.312

7 Discussion and Conclusions313

There is a large amount of literature regarding the impacts of ARs in mid-latitudes314

and polar regions ((Gimeno et al., 2014; F. M. Ralph et al., 2017; Paltan et al., 2017;315

Rutz et al., 2019; Lora et al., 2020), and references therein) and AR changes with cli-316

mate change ((Lavers et al., 2015; Payne et al., 2020; O’Brien et al., 2021), and refer-317

ences therein). Nonetheless, there is less research about ARs and their effects in lower318

latitudes (M. De Luna et al., 2020; M. I. De Luna, 2021). It is not until recently that319

tropical ARs have started to gather scientific interest. Moreover, since the summer pre-320

cipitation (June-October) dominates the total precipitation of CWM, a significant part321

of the research has focused on the role of tropical storms, and tropical cyclones (Farfán322

& Fogel, 2007; Dı́az et al., 2008; Agust́ın Breña-Naranjo et al., 2015; Dominguez, Chris-323

tian and Magaña, Victor, 2018; Dominguez et al., 2020), and the role of the North Amer-324

ican Monsoon (Adams & Comrie, 1997; Douglas & Englehart, 2007; Cavazos, Tereza and325

Arriaga-Ramı́rez, Sarah́ı, 2012). Furthermore, some studies associate the fluctuations326

and trends in precipitation in CWM with large-scale climate features like El Niño South-327

ern Oscillation, Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation328

( Magaña, Vı́ctor and Pérez, Joel and Vázquez, Jorge and Pérez, José, 2003; Mat́ıas Méndez329

and Vı́ctor Magaña, 2010; Curtis, 2007; Arriaga-Ramı́rez, Sarah́ı and Cavazos, Tereza,330

2010). In particular, CWM appears to be a transition region between the Mediterranean331

rainfall regime in California and northern Baja California and the summer-dominated332

tropical rainfall regime and the North American Monsoon. This, together with the rel-333

atively developed AR research, has resulted in an overlook of the dry season (winter) pre-334

cipitation and its association with tropical ARs.335

Here, we present clear evidence of the relationship between CWM dry season pre-336

cipitation and ARs. Our composites reflect a high degree of similarity with other com-337

positing studios in higher latitudes (Neiman et al., 2008). Nevertheless, many aspects338

of these tropical ARs still need to be studied. Investigating the characteristics of the waves339

that create these anomalous IVT filaments and rainfall is key to understanding these weather340

patterns and their implications in the CWM dry season hydrological cycle. Moreover,341

ARs have been typically associated with mid-latitude baroclinic waves and extratrop-342

ical cyclones (ETC). However, recently (Zhang et al., 2019) showed that nearly 20% of343

ARs are not nearby an ETC. Here we have presented evidence that aligned surface and344

mid-troposphere weaves are associated with tropical ARs in CWM, and could possibly345

denote a barotropic nature of these waves. There is no doubt that we still have a lot to346

learn and explore about ARs, particularly lower latitudes ARs. We still need to deter-347

mine the genesis of these events. Are they more related to extratropical weather patterns348

like an amplification of mid-latitude waves? or maybe to tropical dynamics, energy bal-349

ance, and responses to shifts in the ITCZ (Haffke & Magnusdottir, 2013; Choi et al., 2015;350

Lintner & Boos, 2019). In other words, are these events, in fact, atmospheric rivers, or351

are they another weather phenomenon?. We show clear evidence that there is a reason-352

able degree of similarity between winter ARs in CWM and typical mid-latitude ARs, so353

a more reasonable question may be how similar or how different are tropical and mid-354

latitude ARs?.355
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Although ARs in CWM do not dominate the total annual precipitation like on the356

US West Coast, they regulate extreme precipitation during the dry season. The water357

vapor in ARs frequently leads to heavy precipitation where they are forced upward by358

mountains (F. M. Ralph et al., 2018; Smith et al., 2009; F. Ralph et al., 2019). The pres-359

ence of the Sierra Madre Occidental in CWM provides creates an ideal mechanism for360

orographic rainfall during high IVT events in CWM. Therefore, it is relevant to quan-361

tify and understand these tropical ARs and their influence on the regional hydrological362

cycle of CWM. We recognize that this study (and future studies) could benefit from an363

ARDT tuned for tropical latitude, which brings back the question of how similar these364

ARs are to “traditional” mid-latitude ARs. The uncertainty in AR detection is key to365

answering this question. It has been discussed the possibility that there is more than one366

type of dynamical phenomenon that produces AR-like objects and that different defi-367

nitions for these processes could help in future studies (Inda-Dı́az et al., 2021; O’Brien368

et al., 2021). This gains particular relevance for the study of future ARs in CWM, be-369

cause, in general, different “types” of AR-like phenomena (including CWM landfalling370

tropical ARs) could have different responses to climate change. There is some evidence371

of future AR frequency increases in lower latitudes (M. De Luna et al., 2020). Although372

the frequency increase magnitude is lower than for higher latitudes, there is no assur-373

ance on how the local hydrology will be impacted by changes in other AR quantities (in-374

tensity, size, orientation, geometry, among others).375

In summary, we use data from the Atmospheric Reanalysis of the Twentieth Cen-376

tury ERA-20C and the TECA-BARD AR detector to demonstrate the relationship be-377

tween extreme precipitation and atmospheric rivers in central-western Mexico during the378

dry season (November-March) of 1900-2010. We find that more than 25% of extreme pre-379

cipitation amount and frequency are associated with ARs, with a maximum of 60%-80%380

during December and January near the coast of Sinaloa (∼107.5W,∼25N).381

We calculate composites of the mean state of the atmosphere during AR and ex-382

treme precipitation events. We find that for the AR and precipitation composite (ar pr),383

there is a positive anomaly in IWV and IVT. Horizontal vapor transport is normal to384

the coast and the mountain range of the Sierra Madre. Vertical velocity has upward anoma-385

lies alongside the high IVT envelope. Besides, changes in horizontal moisture transport,386

sea level pressure, and geopotential height anomaly fields show a wave pattern associ-387

ated with the ar pr composite. A weakening of the surface pressure high and the pres-388

ence of geopotential lows (above 850 hPa) suggest that the moisture transport occurs389

at a higher level than typical mid-latitude ARs.390

Additionally, we examine the differences between composites. Our results suggest391

that the AR events without precipitation have a lower IVT magnitude. Furthermore,392

they show a tilted wave pattern in the geopotential height field with respect to the AR393

with precipitation composite. Taken together, this translates into lower horizontal va-394

por transport values with different orientations with respect to the mountain range, re-395

sulting in lower precipitation rates. Furthermore, we show that the main difference be-396

tween the precipitation events with/and without ARs composite is IVT magnitude. Both397

composites have similar pressure and geopotential wave patterns near the coast of CWM.398

The pressure and low atmosphere geopotential main differences are located north of 30N.399

These results suggest that the precipitation without AR events, in fact, is related to the400

AR events. Both composites could be part of the same weather pattern that our ARDT401

failed to detect due to the lower IVT magnitude and its inherent design to filter out the402

tropics.403

The nature and genesis of these anomalous IVT events and dry season precipita-404

tion –or apparent tropical ARs– still need to be determined, and we plan to explore them405

in future work. We recommend using more than one ARDT or one tuned explicitly for406

tropical latitudes, which could sharpen the correlation between ARs and CWM winter407

precipitation. This will allow investigating the response of CWM landfalling ARs to cli-408
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mate change, which could be critical for studying the region’s hydroclimatology under409

future climate scenarios.410
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Advances in Space Research. (Aceptado el 3 de agosto de 2020)739

Rutz, J. J., James Steenburgh, W., & Martin Ralph, F. (2014, feb). Climato-740

logical characteristics of atmospheric rivers and their inland penetration741

over the western united states. Monthly Weather Review , 142 (2), 905–742

921. Retrieved from https://journals.ametsoc.org/mwr/article/142/743

2/905/71947/Climatological-Characteristics-of-Atmospheric doi:744

10.1175/MWR-D-13-00168.1745

Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., . . .746

Viale, M. (2019, dec). The Atmospheric River Tracking Method Inter-747

comparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric748

River Climatology. Journal of Geophysical Research: Atmospheres, 124 (24),749

13777–13802. Retrieved from https://onlinelibrary.wiley.com/doi/abs/750

10.1029/2019JD030936 doi: 10.1029/2019JD030936751

Simmons, A. J., & Burridge, D. M. (1981). An energy and angular-momentum752

conserving vertical finite-difference scheme and hybrid vertical coordi-753

nates. Monthly Weather Review , 109 (4), 758 - 766. Retrieved from754

https://journals.ametsoc.org/view/journals/mwre/109/4/1520-0493755

1981 109 0758 aeaamc 2 0 co 2.xml doi: 10.1175/1520-0493(1981)109⟨0758:756

AEAAMC⟩2.0.CO;2757

Smith, B. L., Yuter, S. E., Neiman, P. J., & Kingsmill, D. E. (2009). Water Vapor758

Fluxes and Orographic Precipitation over Northern California Associated with759

a Landfalling Atmospheric River. Monthly Weather Review , 138 (1), 74–100.760

doi: 10.1175/2009mwr2939.1761
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Relationship Between Atmospheric Rivers and the Dry1

Season Extreme Precipitation in Central-Western2
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Key Points:7

• Extreme precipitation during the dry season in Central-Western Mexico is asso-8

ciated with atmospheric rivers (ARs)9

• The meteorological state during extreme precipitation events shows ideal condi-10

tions for orographic precipitation over the Sierra Madre11

• A detector designed for tropical latitudes could increase the correlation between12

ARs and dry season precipitation over Central-Western Mexico13
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Abstract14

Atmospheric rivers (AR) are long, narrow jets of moisture transport responsible for over15

90We use the ERA-20C reanalysis and the Bayesian AR detector TECA-BARD to show16

the relationship between extreme precipitation and atmospheric rivers in central-western17

Mexico (CWM) during the dry seasons (November-March) in the 1900-2010 period. We18

find that more than 25% of extreme precipitation amount and frequency are associated19

with ARs, with a maximum of 60%-80% during December and January near the coast20

of Sinaloa (107.5W,25N). Composites of the mean meteorological state show ”ideal” con-21

ditions for orographic precipitation due to landfalling ARs: high horizontal vapor trans-22

port perpendicular to the Sierra Madre. We observe a tropospheric wave pattern in ver-23

tical velocity, surface pressure, and geopotential height associated with these events. The24

nature and evolution of these waves need to be further studied. Our results suggest that25

TECA-BARD provides a reasonable estimation for AR presence in CWM. Nevertheless,26

we recommend using multiple AR detectors and one tuned explicitly for tropical lati-27

tudes. This will allow investigation of the response of CWM landfalling ARs and the re-28

gion’s hydroclimatology under future climate scenarios.29

Plain Language Summary30

Atmospheric rivers (ARs) are a meteorological phenomenon with strong poleward31

water vapor transport. Due to their important role in the hydrological cycle and water32

availability of midlatitudes (like California, Europe, and Chile, among others) and po-33

lar regions, the scientific community has mainly focused AR research on these regions.34

It was not until recently that AR in lower tropical latitudes gathered more attention. This35

work focuses on the relationship between ARs and the dry season (November-March)36

precipitation over Central-Western Mexico (CWM), around 25 degrees north over the37

Pacific Coast of Mexico. We use precipitation data from the ERA-20C reanalysis, ob-38

servational dataset, and a Bayesian AR detector to show that most of the precipitation39

over CWM during the November-March season is due to meteorological features with40

similar characteristics to midlatitude ARs. These events show typical conditions for ARs41

orographic precipitation: high water vapor transport perpendicular to the Sierra Madre42

that condensates into rain when the mountains lift it. We believe that an AR detector43

specifically designed for tropical latitudes could increase the relationship between AR44

and November-March precipitation in CWM and better allow us to study how these events45

might be modified by climate change.46

1 Introduction47

Atmospheric rivers (AR) are long, narrow jets of moisture transport typically as-48

sociated with a low-level jet stream ahead of the cold front of an extratropical cyclone49

(F. M. Ralph et al., 2018). ARs account for over 90% of the water vapor transport from50

the subtropics to midlatitudes (Zhu & Newell, 1998). Over the last 20 years, there has51

been an increasing interest in the study and characterization of ARs. Numerous recent52

studies investigate AR and their relationship with extreme wind, precipitation, their im-53

pact on the regional hydrological cycles, water mass balance, and extreme hydrological54

events like flooding and droughts in midlatitude continental regions like North Amer-55

ica, Europe, and South America (Neiman et al., 2002; F. M. Ralph et al., 2004, 2005,56

2006; Dirmeyer & Brubaker, 2007; Neiman et al., 2008; Leung & Qian, 2009; Guan et57

al., 2010; Viale & Nuñez, 2011; M. Dettinger, 2011; F. M. Ralph & Dettinger, 2011; Warner58

et al., 2012; M. D. Dettinger, 2013; Lavers & Villarini, 2013b, 2013a; Kim et al., 2013;59

Neiman et al., 2013; F. M. Ralph et al., 2013; Rutz et al., 2014; Gimeno et al., 2016; Lavers,60

Waliser, et al., 2016; Lavers, Pappenberger, et al., 2016; Waliser & Guan, 2017; Gershunov61

et al., 2017; Goldenson et al., 2018; Viale et al., 2018; Eldardiry et al., 2019; F. M. Ralph62

et al., 2019; Huang et al., 2021). Some works have even investigated the structure of AR63
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using in situ data and satellite observations (F. M. Ralph et al., 2005; Neiman et al., 2008;64

F. M. Ralph et al., 2010).65

The significant impact of ARs on the climatology and hydrology of midlatitudes66

has generated great interest and community effort in studying ARs and their impacts67

on these regions. (F. Ralph et al., 2019) introduced a scale to categorize AR strength68

based on vapor transport intensity and landfall duration and show that there are ben-69

eficial and hazardous impacts associated with AR events. This scale is helpful for the70

scientific community, and it is a way of communication with the general public. The AR71

category scale can be applied to gridded datasets such as reanalysis, forecast, and cli-72

mate projections. There is also an increasing interest in understanding how ARs and their73

impact will change in future climates. (Payne et al., 2020) concludes that AR response74

to climate change will have noticeable importance to water balance and regional water75

resources.76

Most of the ARs research focuses on midlatitudes and polar regions. ARs in low77

latitudes are starting to generate interest within the scientific AR community. This work78

is motivated by the lack of study of tropical ARs. Moreover, we are also motivated by79

the direct observation of “unusual non-tropical” precipitation in the Winter of 2019-202080

in Nayarit, Mexico ∼21.5N,104.9W, during the dry season (November-March). We re-81

fer to “unusual non-tropical” precipitation as a low magnitude precipitation rate (com-82

pared to convective heavy tropical precipitation). During these days, we observed con-83

stant rainfall throughout one or two days, very similar to typical California winter pre-84

cipitation (Figure 1(b) shows the IVT and horizontal wind speed at 700 hPa from one85

such event). The similarities in the IVT field with the typical characteristics of an AR86

raised the question: is this an AR? Are there more events like this, and how are they as-87

sociated with the extreme precipitation for the dry season in Central-Western Mexico (CWM)?88

(thick black contour in Figure 1(a)).89

Figure 1. (a) Percentage of annual total precipitation from CPC Global Unified Gauge-Based

Analysis of Daily Precipitation. Thick black contour is used to indicate what is considered as

Central-Western Mexico throughout this work. (b) ERA5 reanalysis IVT in color contours. Vec-

tors represent the 750 hPa wind velocity. 2020-01-01 is one of the times when the precipitation in

CWM resembled the winter Californian AR-associated rainfall.

CWM is characterized by a dry season from November to March (Garćıa Amaro de90

Miranda, 2003), with a mean monthly accumulated precipitation of less than 10 mm1
91

and over 75% of the annual precipitation from July-September, during the spring and92

1 https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de

-temperaturas-y-lluvias
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summer months. Rainfall in CWM is mainly associated with the North American Mon-93

soon. Less than 10% of the total annual mean rainfall occurs between November and March94

for most of CWM (Figure 1(a)), according to the CPC Global Unified Gauge-Based Anal-95

ysis of Daily Precipitation2 (Chen et al., 2008).96

From a socio-economic point of view, it is important to study and quantify these97

events of atypical precipitation. CWM is one of the largest agricultural production re-98

gions in Mexico. It is common knowledge among CWM farmers that these rainfall events99

can be exploited to benefit agriculture; however, we could not find scientific quantifica-100

tion of it. There are even popular beliefs that they can be predicted following a set of101

heuristic rules (Cruz López, 2011). There is also some evidence that different crops, like102

beans, coffee, and corn, are sensitive to changes in environmental conditions, like pre-103

cipitation and humidity (Viguera et al., 2017). Therefore, changes in climate conditions104

can affect the productivity and quality of the crops (Porter & Semenov, 2005).105

Moreover, changes in wind speed and direction, moisture transport, and the loca-106

tion of the intertropical convergence zone (ITCZ) can modify the energy exchange be-107

tween the atmosphere and the ocean. These changes could generate a displacement north-108

ward of the oxygen minimum zone (OMZ), which can affect ocean species distribution109

and the productivity of regional aquaculture and fisheries (Breitburg, Denise; Grégoire,110

Marilaure and Isensee, Kirsten, 2018). Furthermore, other studies have observed that111

dry season rainfall events can change the coastal environment. Coastal water chlorophyll112

concentration, turbidity, temperature, and salinity, due to increased river discharge, can113

impact the sustainability of coastal ecosystems and their biological production (Domı́nguez-114

Hernández et al., 2020; Romero-Rodŕıguez et al., 2020).115

Although there are numerous possible effects of anomalous winter precipitation in116

the CWM region, there is still a lack of documentation about these events and their im-117

pacts. Moreover, no existing research links these events with ARs. We investigate the118

relationship between lower latitudes ARs “dry season” (November-March) rainfall in CWM.119

We use data from the European Centre for Medium-Range Weather Forecasts (ECMWF)120

Atmospheric Reanalysis of the Twentieth Century ERA-20C3 (Poli et al., 2016) and the121

Bayesian AR Detector TECA-BARD v1.0.1. We aim to quantify how much of the CWM122

winter precipitation is associated with ARs and the meteorological state of the atmo-123

sphere during these events.124

2 Data and Methods125

ERA-20C output is 3-hourly with a of ∼125 km on 37 pressure levels. We use data126

at pressure level: geopotential z, wind velocity u, v, and w, specific humidity q, temper-127

ature t, and surface level: mean sea level pressure mslp, surface pressure ps, total pre-128

cipitation tp, vertical integral of northward water vapor flux vinwvf, vertical integral129

of eastward water vapor flux viewvf, and total column water vapor tcwv. According to130

the ERA-20C documentation, the vertically integrated vapor fluxes are calculated in the131

model coordinates following:132

VIEWVF = −1

g

∫ 1

0

qu
∂p

∂η
dη ≈ −1

g

N∑
k=1

uk qk∆pk, (1)

VINWVF = −1

g

∫ 1

0

qv
∂p

∂η
dη ≈ −1

g

N∑
k=1

vk qk∆pk, (2)

2 https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
3 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
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where u and v are the components of the horizontal wind vector, q is the specific humid-133

ity, p is pressure, η is the hybrid coordinate (Simmons & Burridge, 1981), index k cor-134

responds to model levels going from the surface (k = 1) to the top of the model atmo-135

sphere (k = N), and ∆pk is the difference in level pressures, estimated at level k. ERA-136

20C daily forecasted precipitation accumulation has been converted to a 3-hourly pre-137

cipitation rate (with units of mm/d); IWV is used directly from ERA-20C total column138

water vapor tcwv. IVT is calculated as the magnitude of the vertically integrated moisture-139

weighted wind (horizontal vapor flux vector) u⃗q, directly from ERA-20C eastward and140

northward water vapor fluxes:141

u⃗q = (VIEWVF,VINWVF), (3)

IVT = |u⃗q| =
√
VIEWVF2 +VINWVF2. (4)

Additionally, we compare the ERA-20C reanalysis data with observational precip-142

itation, using precipitation data from the Livneh gridded precipitation for the continen-143

tal US, Mexico, and Southern Canada (Livneh, Ben & National Center for Atmospheric144

Research Staff (Eds), Last modified 12 Dec 2019). The (Livneh et al., 2015) dataset is145

a long-term gridded daily dataset at fine 1/16◦ (∼6 km) horizontal resolution for the pe-146

riod 1950-2013. We use bilinear interpolation to regrid the AR detection from TECA-147

BARD in ERA-20C data to the Livneh dataset grid.148

2.1 AR probability from ERA-20C and TECA-BARD149

To calculate the probability of the presence of an atmospheric river (AR probabil-150

ity) we use the Bayesian AR Detector TECA-BARD v1.0.1, a probabilistic AR detector151

implemented in the Toolkit for Extreme Climate Analysis TECA. TECA-BARD uses a152

Bayesian framework to sample from the set of AR detector parameters that yield AR153

counts similar to the expert database of AR counts; this yields a set of “plausible” AR154

detectors from which we can assess quantitative uncertainty (O’Brien et al., 2020). We155

apply TECA-BARD to the ERA-20C data, and asses the plausible presence of an AR156

at a grid point where where AR probability> 0.05. While 0.05 is a low probability thresh-157

old, this indicates a non-zero probability of the existence of an AR in a given grid cell.158

Since TECA-BARD is inherently designed to detect ARs in mid-latitudes, it filters the159

IVT field near the tropics, resulting in AR probability that would have lower values in160

the presence of an AR in tropical latitudes than one in higher latitudes. We hypothe-161

size that AR probability> 0.05 represents a reasonable indication of the presence of an162

AR in lower latitudes. We test and show this in Sections 5 and 6.163

2.2 Extreme Precipitation164

We calculate the monthly 98th percentile precipitation rate value for ERA-20C and165

Livneh datasets at each grid cell. We define an extreme precipitation event for a given166

grid cell as the time when the precipitation is above the 98th percentile. We calculate167

the AR-associated extreme precipitation for each grid cell as the precipitation above the168

98th percentile when AR probability> 0.05. Since the data record is sufficiently long169

(1900-2010 for ERA-20C and 1950-2013 for Livneh), we calculate all means and extreme170

precipitation quantiles monthly. The same holds for the atmospheric state composites171

described in Section 2.3.172

2.3 Atmospheric State Composites173

Following the methodology of (Neiman et al., 2008), we create composites of me-174

teorological variables to study the state of the atmosphere at the time of extreme pre-175

cipitation and AR events at two locations: Loc1 = 107.5W,25N, and Loc2 = 105.0W,21N176

(Figure 2, Loc1 denoted circle marker, Loc2 by the triangle). Loc1 is located close to the177
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maximum area of AR-associated precipitation and close to Culiacán Sinaloa, one of the178

most productive agricultural states of México. Loc2 is around the most southern region179

with AR-associated precipitation fraction ∼0.5, and in the state of Jalisco, another im-180

portant agricultural producer in CWM. Both locations are close to the Sierra Madre Oc-181

cidental, a mountain range that extends through Northwestern and Central-Western Mex-182

ico, as a part of the North American Cordillera, parallel to the coast. We hypothesize183

that if there is IVT normal to the Sierra Madre during the dry season, it could produce184

precipitation due to orographic lifting. The methodology to select the time steps to com-185

posite is as follows: we find the times when the AR probability is > 0.05 (ar), then we186

find all the times when the precipitation is above the 98th percentile (pr). We define then187

AR + extreme precipitation conditions as the times where both conditions ar and pr are188

met (ar pr), times when there is ar but no pr (ar nopr), and times when there is pr but189

no ar (pr noar). Finally, the long-term mean is the monthly climatology for 1900-2010190

(ltm). We average in time for all the time in each composite and create monthly com-191

posites. Anomalies are calculated as the specific composite minus the long-term mean.192

Table 1 summarizes the different composite sampling.193

Table 1. Atmospheric state composites. Composites are created monthly. The number of

events at each location is the total number of events for all November-March months.

Atmospheric state composites

Conditions Name Anomaly Events at Loc1 Events at Loc2

Climatology (long term mean) ltm 134304 134304
AR ar ar - ltm 8886 4650
Extreme precipitation pr pr - ltm 2690 2688
AR/extreme precipitation ar pr ar pr - ltm 1549 1003
AR/no extreme precipitation ar nopr ar nopr - ltm 7337 3647
Extreme precipitation/no AR pr noar pr noar - ltm 1141 1685
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Figure 2. Orography of CWM. Loc1 and Loc2 are show in circle and triangle markers, respec-

tively. The Sierra Madre Occidental is the mountain range that runs through Northwestern and

Central-Western Mexico.

3 Results194

In Section 3.1 we present the results of the AR-associated precipitation in CWM195

during the dry season (November-March) in the 1900-2010 period. We present the frac-196
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tional contribution of ARs to the precipitation, using ERA-20C data and the Livneh et197

al. gridded dataset. Sections 5 through 6 focus on the meteorological state of the atmo-198

sphere during extreme precipitation and AR events and the difference between differ-199

ent composites. In the supplemental information, we include additional plots related to200

the meteorological state of the atmosphere and differences between composites.201

3.1 AR-associated extreme precipitation202

Figure 3 shows how much of the CWM dry season precipitation is associated with203

ARs. Figure 3(a) shows the fraction of ERA-20C total extreme precipitation amount as-204

sociated with ARs, and (b) shows the same for Livneh precipitation. Figure 3(c) shows205

the fraction of ERA-20C extreme precipitation frequency associated with ARs, and Fig-206

ure 3(d) shows the same for Livneh precipitation. The results are highly condensed in207

these figures, but they are clear and relevant: The influence of ARs in the dry season ex-208

treme precipitation in CWM extends as far as ∼17N. December has the highest AR-associated209

precipitation, with ∼75% of the frequency and amount 0.75 near Loc1, and between 50%210

and 60% near Loc2. In general, we can say that in the Nov-March, more than half of the211

extreme rainfall at Loc1 (more than 30% at Loc2) is associated with ARs, both in to-212

tal amount and frequency.213

We have shown the results based on two facts: the total amount of precipitation214

(and frequency) higher than the monthly 98th percentile for November-March; and the215

“plausible” presence of an AR in CWM given the ar_probability≥0.05. We hypoth-216

esize that this precipitation is associated with low latitudes ARs and that TECA_bard217

provides a good insight into the presence of ARs in CWM. This becomes clearer in Sec-218

tion 5, where we present composites of the state of the atmosphere during ar_probability≥0.05219

events at Loc1 and Loc2. For simplicity, in Section 4 and 5, we show the results for Jan-220

uary. The supplemental information contains the results for the long-term mean and ar pr221

composites.222

4 Long-term Mean223

We briefly show the climatological state of the atmosphere (ltm) for January. The224

long-term mean is calculated based using ERA-20C data. Figure 4(a) shows IWV be-225

tween 10 and 15 kg m−2 in CWM, with a maximum of 45 kg m−2 near the ITCZ (be-226

tween 5S and 5N). IVT is shown in Figure 4(b), with values between 0 and 100 kg m−1s−1
227

in CWM (IVT direction shown with vectors). We note a high IVT plume over the Pa-228

cific storm track and higher IVT values between 5S and 5N associated with the ITCZ.229

Mean sea level pressure depicts the North Pacific High with its maximum at 130W,30N,230

shown in Figure 4(c). Geopotential height at 650 hPa, shown in Figure 4(d), has a large231

gradient between 30N and 60N, associated with the jet stream over midlatitudes, with232

very little or no spatial patterns over CWM and the central Pacific Ocean. The long-233

term means for Nov-March are shown in the supplemental information (Figures S1 through234

Figure S5). The general structure of the atmosphere is similar to 4(Low IVT and IWV235

over CWM with the North Pacific High west of the coast of California and Baja Cali-236

fornia), with slight differences in the locations of the ITCZ, storm track, North Pacific237

High, etc.238

5 Extreme Precipitation and AR Events Composite239

In this section, we focus on the state of the atmosphere for the ar pr composite (events240

with extreme precipitation + AR probability ±0.05).241
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Figure 3. (a-b) Fraction of the total precipitation extreme precipitation (>98th percentile)

associated with ARs. (a) ERA-20C 1900-2010. (b) Livneh 1950-2010. (c-d) Fraction of AR-

associated to the total extreme (>98th) precipitation frequency. (c) ERA-20C 1900-2010. (d)

Livneh 1950-2010

5.1 ar pr composite at Loc1: Sinaloa, (107.5W,25N)242

Figure 5(a) shows IVT in colored contours and IWV in dashed white contours. We243

observe an elongated region of high IWV extending from the ITCZ into CWM, with val-244

ues up to 30 kg m−2 at Loc1; as well as a ridge-like structure of high IVT (between 200245

and 400 kg m−1s−1 centered at Loc1, similar to mid-latitude landfalling ARs (Neiman246

et al., 2008). Figure 5(b) shows IVT anomalies higher than 200 kg m−1s−1, and IWV247

anomalies up to 15 kg m−2 nearLoc1. Mean sea level pressure (gray-filled contours in248

Figure 5(c)) shows the presence of the North Pacific High. Moreover, in 5(d), we observe249

a low in sea level pressure and geopotential height at 850 hPa anomalies centered near250
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Figure 4. Long-term mean for 1900-2010 in December. (a) Integrated water vapor (IWV), (b)

integrated vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at

650 hPa. The vectors in panel (b) represent the direction of IVT.

115W,30N. This wave pattern is more noticeable in Figures 5(e) and (f) (geopotential251

height at 500 hPa). It is worth noticing that the low-pressure system at the surface is252

approximately aligned with the mid-troposphere low. This could imply that the wave253

producing this AR-pattern and anomalous dry season precipitation is barotropic. How-254

ever, more analysis is needed to determine the nature and characteristics of these waves.255

Figures 5(g) and (h) show a mean negative vertical velocity (ascending) over the high256

IVT plume, ahead of the mid-tropospheric low (with anomalies ∼6 hPa s−1). Vectors257

show the direction of IVT and its anomalies in Figures 5(g) and (h). IVT is normal to258

the mountain range and Loc1, with a weakening of the westward moisture transport near259

the Equator.260

5.2 ar pr composite at Loc2: Jalisco and Nayarit (105.0W,21N)261

The ar pr at Loc2 has a similar general structure to the Loc1, with slightly weaker262

IVT and higher IWV than the Loc1 composite. Figure 6(a) shows a high IVT ridge near263

Loc2 with a maximum value of ∼350 kg m−1s−1 and IWV ∼35 kg m−2 near Loc2. The264

mean sea level pressure and geopotential show negative anomalies centered near 26N,110W,265

with lower magnitude than the Loc1 composite anomalies (Figures 6(c-f)). An upward266

650 hPa wind velocity (and its anomaly) ahead of the tropospheric through, with high267

IVT normal to the Sierra Madre at Loc2 (Figures 6(g) and (h)). The genesis and na-268

ture of the waves responsible for this weather pattern need to be further explored.269

6 Difference between composites270

This work focuses on the relationship between ARs and extreme precipitation dur-271

ing the dry season in CWM. In Section 5, we show the results for the ar pr composite,272

i.e. when extreme precipitation and AR are present. This naturally raises the questions:273

what about the other composites?, what is the difference between composites?. For exam-274

ple, what is the difference between the climatology of events with extreme precipitation275

but no ARs detected (pr noar)? What drives this anomalous rainfall? For simplicity, we276

focus the results in this section on composites over Loc1.277
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Figure 5. State of the atmosphere during AR landfalling and extreme precipitation at Loc1 in

January. Contours variables are specified on the top-right of each plot. Left column: IWV, IVT,

mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ω at

650 hPa. Right column: anomalies with respect to the long-term mean for the same variables.

The IWV and IVT for January during extreme precipitation without detection of278

ARs (pr noar) is shown in Figure 7(a,b). We observe that the general structure of IVT279

and IWV are similar to the ar pr composite (surface pressure, geopotential height, and280

vertical velocity plots are shown in Figure S17). So, how different are they? In Figure281

7(c,d), we observe little variation between the two composites for the pressure and 850282

hPa geopotential height near CWM. The main differences in the pressure/geopotential283

fields are in the north part of the domain, where the wave pattern, present in both ar pr284

and pr noar is stronger for ar pr (positive differences in Figure 7 (d)). Nevertheless, the285

spatial patterns are similar between the two composites. Figure 7(c) shows moisture fields286

similar to ar pr, although with weaker magnitudes in IVT and IWV for the pr noar com-287

posite (Figure 7(c)), probably due to the weakening of the mid-troposphere wave pat-288

tern (Figure 7(d)).289
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Figure 6. State of the atmosphere during AR landfalling and extreme precipitation at Loc2 in

January. Contours variables are specified on the top-right of each plot. Left column: IWV, IVT,

mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq), and ω at

650 hPa. Right column: anomalies with respect to the long-term mean for the same variables.

Figure 8(a,b) show the IWV and IVT for the ar nopr composite in January, i.e.290

during AR detection without extreme precipitation present. We note a moisture trans-291

port into Loc1 (surface pressure, geopotential height, and vertical velocity plots are shown292

in Figure S16). In Figure 8, we notice differences between the ar nopr and the ar pr com-293

posites in surface pressure. The ar nopr has a stronger pressure high in the northwest294

part of the domain but a weaker low high near CWM (Figure 8(d)). Moreover, a tilt-295

ing in the geopotential height wave pattern (show in the supplemental information, Fig-296

ure S16), and differences in its magnitude create a much weaker IVT magnitude and a297

difference in IVT direction at Loc1 (8(c)). This could be due to a stronger mid-troposphere298

wave associated with the jet stream meandering or the superposition of two or more waves.299

Again, the nature of the wave producing these weather patterns still needs to be explored300

and would make an exciting work by itself. Ultimately, the main consequence of these301
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Figure 7. (a) IVT and IWV pr noar composites for January and and their anomalies (Loc1).

(c and d) Differences in the atmospheric mean state between ar pr and pr noar. (c) IVT magni-

tude in filled contours, vectors represent IVT direction IVT, and white dashed contours denote

changes in IWV. (d) Filled contours show mean sea level pressure differences, thick yellow con-

tours show geopotential height at 850 hPa, and black contours geopotential height at 500 hPa.

wave differences is that they result in a much weaker IVT magnitude with a different di-302

rection, both directly related to orographic precipitation.303

Figure 8. (a) IVT and IWV pr noar composites for January and and their anomalies (Loc1).

(c and d) Differences in the atmospheric mean state between ar pr and ar nopr. (c) IVT magni-

tude in filled contours, vectors represent IVT direction IVT, and white dashed contours denote

changes in IWV. (d) Filled contours show mean sea level pressure differences, thick yellow con-

tours show geopotential height at 850 hPa, and black contours geopotential height at 500 hPa.
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Figures 7(c,d) and 8(c,d) suggest that the different composites might be related to304

the same or similar weather events or different phases in the same weather event or wave.305

To explore this, we plot the occurrence time of the events for each composite, shown in306

the supplemental information’s Figures S18-S25 (full 1900-2010 event composites time307

of occurrence at Loc1). There is, in fact, an overlap between composites; in some cases,308

precipitation events occur before or after ARs but around the same dates in general. This309

suggests that while we have acceptably identified AR events, an ARDT tuned for trop-310

ical latitudes could improve the AR detection in CWM, which could result in a greater311

correlation between ARs and dry season precipitation in CWM.312

7 Discussion and Conclusions313

There is a large amount of literature regarding the impacts of ARs in mid-latitudes314

and polar regions ((Gimeno et al., 2014; F. M. Ralph et al., 2017; Paltan et al., 2017;315

Rutz et al., 2019; Lora et al., 2020), and references therein) and AR changes with cli-316

mate change ((Lavers et al., 2015; Payne et al., 2020; O’Brien et al., 2021), and refer-317

ences therein). Nonetheless, there is less research about ARs and their effects in lower318

latitudes (M. De Luna et al., 2020; M. I. De Luna, 2021). It is not until recently that319

tropical ARs have started to gather scientific interest. Moreover, since the summer pre-320

cipitation (June-October) dominates the total precipitation of CWM, a significant part321

of the research has focused on the role of tropical storms, and tropical cyclones (Farfán322

& Fogel, 2007; Dı́az et al., 2008; Agust́ın Breña-Naranjo et al., 2015; Dominguez, Chris-323

tian and Magaña, Victor, 2018; Dominguez et al., 2020), and the role of the North Amer-324

ican Monsoon (Adams & Comrie, 1997; Douglas & Englehart, 2007; Cavazos, Tereza and325

Arriaga-Ramı́rez, Sarah́ı, 2012). Furthermore, some studies associate the fluctuations326

and trends in precipitation in CWM with large-scale climate features like El Niño South-327

ern Oscillation, Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation328

( Magaña, Vı́ctor and Pérez, Joel and Vázquez, Jorge and Pérez, José, 2003; Mat́ıas Méndez329

and Vı́ctor Magaña, 2010; Curtis, 2007; Arriaga-Ramı́rez, Sarah́ı and Cavazos, Tereza,330

2010). In particular, CWM appears to be a transition region between the Mediterranean331

rainfall regime in California and northern Baja California and the summer-dominated332

tropical rainfall regime and the North American Monsoon. This, together with the rel-333

atively developed AR research, has resulted in an overlook of the dry season (winter) pre-334

cipitation and its association with tropical ARs.335

Here, we present clear evidence of the relationship between CWM dry season pre-336

cipitation and ARs. Our composites reflect a high degree of similarity with other com-337

positing studios in higher latitudes (Neiman et al., 2008). Nevertheless, many aspects338

of these tropical ARs still need to be studied. Investigating the characteristics of the waves339

that create these anomalous IVT filaments and rainfall is key to understanding these weather340

patterns and their implications in the CWM dry season hydrological cycle. Moreover,341

ARs have been typically associated with mid-latitude baroclinic waves and extratrop-342

ical cyclones (ETC). However, recently (Zhang et al., 2019) showed that nearly 20% of343

ARs are not nearby an ETC. Here we have presented evidence that aligned surface and344

mid-troposphere weaves are associated with tropical ARs in CWM, and could possibly345

denote a barotropic nature of these waves. There is no doubt that we still have a lot to346

learn and explore about ARs, particularly lower latitudes ARs. We still need to deter-347

mine the genesis of these events. Are they more related to extratropical weather patterns348

like an amplification of mid-latitude waves? or maybe to tropical dynamics, energy bal-349

ance, and responses to shifts in the ITCZ (Haffke & Magnusdottir, 2013; Choi et al., 2015;350

Lintner & Boos, 2019). In other words, are these events, in fact, atmospheric rivers, or351

are they another weather phenomenon?. We show clear evidence that there is a reason-352

able degree of similarity between winter ARs in CWM and typical mid-latitude ARs, so353

a more reasonable question may be how similar or how different are tropical and mid-354

latitude ARs?.355
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Although ARs in CWM do not dominate the total annual precipitation like on the356

US West Coast, they regulate extreme precipitation during the dry season. The water357

vapor in ARs frequently leads to heavy precipitation where they are forced upward by358

mountains (F. M. Ralph et al., 2018; Smith et al., 2009; F. Ralph et al., 2019). The pres-359

ence of the Sierra Madre Occidental in CWM provides creates an ideal mechanism for360

orographic rainfall during high IVT events in CWM. Therefore, it is relevant to quan-361

tify and understand these tropical ARs and their influence on the regional hydrological362

cycle of CWM. We recognize that this study (and future studies) could benefit from an363

ARDT tuned for tropical latitude, which brings back the question of how similar these364

ARs are to “traditional” mid-latitude ARs. The uncertainty in AR detection is key to365

answering this question. It has been discussed the possibility that there is more than one366

type of dynamical phenomenon that produces AR-like objects and that different defi-367

nitions for these processes could help in future studies (Inda-Dı́az et al., 2021; O’Brien368

et al., 2021). This gains particular relevance for the study of future ARs in CWM, be-369

cause, in general, different “types” of AR-like phenomena (including CWM landfalling370

tropical ARs) could have different responses to climate change. There is some evidence371

of future AR frequency increases in lower latitudes (M. De Luna et al., 2020). Although372

the frequency increase magnitude is lower than for higher latitudes, there is no assur-373

ance on how the local hydrology will be impacted by changes in other AR quantities (in-374

tensity, size, orientation, geometry, among others).375

In summary, we use data from the Atmospheric Reanalysis of the Twentieth Cen-376

tury ERA-20C and the TECA-BARD AR detector to demonstrate the relationship be-377

tween extreme precipitation and atmospheric rivers in central-western Mexico during the378

dry season (November-March) of 1900-2010. We find that more than 25% of extreme pre-379

cipitation amount and frequency are associated with ARs, with a maximum of 60%-80%380

during December and January near the coast of Sinaloa (∼107.5W,∼25N).381

We calculate composites of the mean state of the atmosphere during AR and ex-382

treme precipitation events. We find that for the AR and precipitation composite (ar pr),383

there is a positive anomaly in IWV and IVT. Horizontal vapor transport is normal to384

the coast and the mountain range of the Sierra Madre. Vertical velocity has upward anoma-385

lies alongside the high IVT envelope. Besides, changes in horizontal moisture transport,386

sea level pressure, and geopotential height anomaly fields show a wave pattern associ-387

ated with the ar pr composite. A weakening of the surface pressure high and the pres-388

ence of geopotential lows (above 850 hPa) suggest that the moisture transport occurs389

at a higher level than typical mid-latitude ARs.390

Additionally, we examine the differences between composites. Our results suggest391

that the AR events without precipitation have a lower IVT magnitude. Furthermore,392

they show a tilted wave pattern in the geopotential height field with respect to the AR393

with precipitation composite. Taken together, this translates into lower horizontal va-394

por transport values with different orientations with respect to the mountain range, re-395

sulting in lower precipitation rates. Furthermore, we show that the main difference be-396

tween the precipitation events with/and without ARs composite is IVT magnitude. Both397

composites have similar pressure and geopotential wave patterns near the coast of CWM.398

The pressure and low atmosphere geopotential main differences are located north of 30N.399

These results suggest that the precipitation without AR events, in fact, is related to the400

AR events. Both composites could be part of the same weather pattern that our ARDT401

failed to detect due to the lower IVT magnitude and its inherent design to filter out the402

tropics.403

The nature and genesis of these anomalous IVT events and dry season precipita-404

tion –or apparent tropical ARs– still need to be determined, and we plan to explore them405

in future work. We recommend using more than one ARDT or one tuned explicitly for406

tropical latitudes, which could sharpen the correlation between ARs and CWM winter407

precipitation. This will allow investigating the response of CWM landfalling ARs to cli-408
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mate change, which could be critical for studying the region’s hydroclimatology under409

future climate scenarios.410
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J. P., Romero-Rodŕıguez, D. A., Inda-Dı́az, E. A., . . . Romero-Bañuelos, C.520
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Text S1. Long-term means

In Figures S1 through S5, we present the times where each of the ERA-20C climatological

means in the 1900-2010 for sea level ressure (SLP), geopotential height (Z), integrated

water vapor (IWV), and integrated vapor transport (IVT).

Text S2. Additional plots for composites and their anomalies

In Figures S6 through S17, we present additional plots for the AR + Extreme preciption,

AR + No Extreme Precipitation, and Extreme Precipitation + No AR composites. Left

columns show IVT, IWV, SLP, Z at 850 and 500 hPa, vertical velocity (ω), and the di-

rection of IVT. The right column shows the anomalies of each composite with respect to

the climatological means.

Text S3. Time Correlation between AR and Extreme Precipitation Events

In Figures S18 through S25, we present the times where each of the composites is present

at Loc1 for the entire 1900-2010 period. We notice that AR detection (blue circle markers)

are in general around the same dates that the extreme precipitation events (purple cross

markers), in some cases before or after, but around each other. It is possible that an

ARDTs tuned for tropical ARs would better detect ARs near CWM. Moreover, in future

works, we could explore different reanalysis or precipitation data that, together with a

tropical ARDT, could mean an even more significant correlation between extreme dry-

season precipitation and ARs in CWM. The captions from S18 apply for Figures S19-S25.
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Long-term Means
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Nov  :  LTM @ 650 hPa
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Figure S1. Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated

vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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Dec  :  LTM @ 650 hPa
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Figure S2. Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated

vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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Figure S3. Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated

vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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Feb  :  LTM @ 650 hPa
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Figure S4. Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated

vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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Mar  :  LTM @ 650 hPa
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Figure S5. Long-term mean for 1900-2010. (a) Integrated water vapor (IWV), (b) integrated

vapor transport (IVT), (c) mean sea level pressure (MSLP), (d) geopotential height at 650 hPa
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AR + Extreme Precipitation Composite at Loc1
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Figure S6. State of the atmosphere during AR landfalling and extreme precipitation at Loc1

in November. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same
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Figure S7. State of the atmosphere during AR landfalling and extreme precipitation at Loc1

in December. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same
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Figure S8. State of the atmosphere during AR landfalling and extreme precipitation at Loc1

in January. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same
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Figure S9. State of the atmosphere during AR landfalling and extreme precipitation at Loc1

in February. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same
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Figure S10. State of the atmosphere during AR landfalling and extreme precipitation at

Loc1 in March. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same

variables.
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Figure S11. State of the atmosphere during AR landfalling and extreme precipitation at Loc2

in November. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same

variables.
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Figure S12. State of the atmosphere during AR landfalling and extreme precipitation at Loc2

in December. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same

variables.
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Figure S13. State of the atmosphere during AR landfalling and extreme precipitation at Loc2

in January. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same

variables.
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Figure S14. State of the atmosphere during AR landfalling and extreme precipitation at Loc2

in February. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same

variables.
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Figure S15. State of the atmosphere during AR landfalling and extreme precipitation at

Loc2 in March. Black contours variables are specified on the top-right of each plot. Left column:

IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT direction (uq),

and ω at 650 hPa. Right column: anomalies with respect to the long-term mean for the same

variables.
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Figure S16. State of the atmosphere during AR landfalling and without extreme precipitation

at Loc1 in January. Black contours variables are specified on the top-right of each plot. Left

column: IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA, IVT

direction (uq), and ω at 650 hPa. Right column: anomalies with respect to the long-term mean

for the same variables.
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Figure S17. State of the atmosphere during extreme precipitation without AR landfalling

conditions at Loc1 in January. Black contours variables are specified on the top-right of each

plot. Left column: IWV, IVT, mean sea level pressure, geopotential height at 850 and 500 hPA,

IVT direction (uq), and ω at 650 hPa. Right column: anomalies with respect to the long-term

mean for the same variables.
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Time Correlation between AR and Extreme Precipitation Events
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Figure S18. Time of event for each composite (ar, ar pr, ar nopr, pr noar, and pr). Each

subfigure shows a year in the 1900-2010 period to be able to clearly look at the overlap of events

across composites. Blue circle markers represent ar, orange squares ar pr, green triangles ar nopr,

red stars pr noar, and purple crosses pr.

The same caption applies for Figures S19 through S25
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Figure S19. Same caption as Figure S18
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Figure S20. Same caption as Figure S18
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Figure S21. Same caption as Figure S18
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ar

ar_pr
ar_nopr
pr_noar

pr

1958-11-01 1958-11-15 1958-12-01 1958-12-15 1959-01-01 1959-01-15 1959-02-01 1959-02-15 1959-03-01 1959-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1959-11-01 1959-11-15 1959-12-01 1959-12-15 1960-01-01 1960-01-15 1960-02-01 1960-02-15 1960-03-01 1960-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1960-11-01 1960-11-15 1960-12-01 1960-12-15 1961-01-01 1961-01-15 1961-02-01 1961-02-15 1961-03-01 1961-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1961-11-01 1961-11-15 1961-12-01 1961-12-15 1962-01-01 1962-01-15 1962-02-01 1962-02-15 1962-03-01 1962-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1962-11-01 1962-11-15 1962-12-01 1962-12-15 1963-01-01 1963-01-15 1963-02-01 1963-02-15 1963-03-01 1963-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1963-11-01 1963-11-15 1963-12-01 1963-12-15 1964-01-01 1964-01-15 1964-02-01 1964-02-15 1964-03-01 1964-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1964-11-01 1964-11-15 1964-12-01 1964-12-15 1965-01-01 1965-01-15 1965-02-01 1965-02-15 1965-03-01 1965-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1965-11-01 1965-11-15 1965-12-01 1965-12-15 1966-01-01 1966-01-15 1966-02-01 1966-02-15 1966-03-01 1966-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

Figure S22. Same caption as Figure S18

February 7, 2023, 10:59pm



INDA-DIAZ ET AL.: ARS AND THE DRY SEASON PRECIP IN CENTRAL-WESTERN MEXICO X - 23

1966-11-01 1966-11-15 1966-12-01 1966-12-15 1967-01-01 1967-01-15 1967-02-01 1967-02-15 1967-03-01 1967-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1967-11-01 1967-11-15 1967-12-01 1967-12-15 1968-01-01 1968-01-15 1968-02-01 1968-02-15 1968-03-01 1968-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1968-11-01 1968-11-15 1968-12-01 1968-12-15 1969-01-01 1969-01-15 1969-02-01 1969-02-15 1969-03-01 1969-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1969-11-01 1969-11-15 1969-12-01 1969-12-15 1970-01-01 1970-01-15 1970-02-01 1970-02-15 1970-03-01 1970-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1970-11-01 1970-11-15 1970-12-01 1970-12-15 1971-01-01 1971-01-15 1971-02-01 1971-02-15 1971-03-01 1971-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1971-11-01 1971-11-15 1971-12-01 1971-12-15 1972-01-01 1972-01-15 1972-02-01 1972-02-15 1972-03-01 1972-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1972-11-01 1972-11-15 1972-12-01 1972-12-15 1973-01-01 1973-01-15 1973-02-01 1973-02-15 1973-03-01 1973-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1973-11-01 1973-11-15 1973-12-01 1973-12-15 1974-01-01 1974-01-15 1974-02-01 1974-02-15 1974-03-01 1974-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1974-11-01 1974-11-15 1974-12-01 1974-12-15 1975-01-01 1975-01-15 1975-02-01 1975-02-15 1975-03-01 1975-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1975-11-01 1975-11-15 1975-12-01 1975-12-15 1976-01-01 1976-01-15 1976-02-01 1976-02-15 1976-03-01 1976-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1976-11-01 1976-11-15 1976-12-01 1976-12-15 1977-01-01 1977-01-15 1977-02-01 1977-02-15 1977-03-01 1977-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1977-11-01 1977-11-15 1977-12-01 1977-12-15 1978-01-01 1978-01-15 1978-02-01 1978-02-15 1978-03-01 1978-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1978-11-01 1978-11-15 1978-12-01 1978-12-15 1979-01-01 1979-01-15 1979-02-01 1979-02-15 1979-03-01 1979-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1979-11-01 1979-11-15 1979-12-01 1979-12-15 1980-01-01 1980-01-15 1980-02-01 1980-02-15 1980-03-01 1980-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1980-11-01 1980-11-15 1980-12-01 1980-12-15 1981-01-01 1981-01-15 1981-02-01 1981-02-15 1981-03-01 1981-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

Figure S23. Same caption as Figure S18
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1981-11-01 1981-11-15 1981-12-01 1981-12-15 1982-01-01 1982-01-15 1982-02-01 1982-02-15 1982-03-01 1982-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1982-11-01 1982-11-15 1982-12-01 1982-12-15 1983-01-01 1983-01-15 1983-02-01 1983-02-15 1983-03-01 1983-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1983-11-01 1983-11-15 1983-12-01 1983-12-15 1984-01-01 1984-01-15 1984-02-01 1984-02-15 1984-03-01 1984-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1984-11-01 1984-11-15 1984-12-01 1984-12-15 1985-01-01 1985-01-15 1985-02-01 1985-02-15 1985-03-01 1985-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1985-11-01 1985-11-15 1985-12-01 1985-12-15 1986-01-01 1986-01-15 1986-02-01 1986-02-15 1986-03-01 1986-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1986-11-01 1986-11-15 1986-12-01 1986-12-15 1987-01-01 1987-01-15 1987-02-01 1987-02-15 1987-03-01 1987-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1987-11-01 1987-11-15 1987-12-01 1987-12-15 1988-01-01 1988-01-15 1988-02-01 1988-02-15 1988-03-01 1988-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1988-11-01 1988-11-15 1988-12-01 1988-12-15 1989-01-01 1989-01-15 1989-02-01 1989-02-15 1989-03-01 1989-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1989-11-01 1989-11-15 1989-12-01 1989-12-15 1990-01-01 1990-01-15 1990-02-01 1990-02-15 1990-03-01 1990-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1990-11-01 1990-11-15 1990-12-01 1990-12-15 1991-01-01 1991-01-15 1991-02-01 1991-02-15 1991-03-01 1991-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1991-11-01 1991-11-15 1991-12-01 1991-12-15 1992-01-01 1992-01-15 1992-02-01 1992-02-15 1992-03-01 1992-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1992-11-01 1992-11-15 1992-12-01 1992-12-15 1993-01-01 1993-01-15 1993-02-01 1993-02-15 1993-03-01 1993-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1993-11-01 1993-11-15 1993-12-01 1993-12-15 1994-01-01 1994-01-15 1994-02-01 1994-02-15 1994-03-01 1994-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1994-11-01 1994-11-15 1994-12-01 1994-12-15 1995-01-01 1995-01-15 1995-02-01 1995-02-15 1995-03-01 1995-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1995-11-01 1995-11-15 1995-12-01 1995-12-15 1996-01-01 1996-01-15 1996-02-01 1996-02-15 1996-03-01 1996-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

Figure S24. Same caption as Figure S18
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1996-11-01 1996-11-15 1996-12-01 1996-12-15 1997-01-01 1997-01-15 1997-02-01 1997-02-15 1997-03-01 1997-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1997-11-01 1997-11-15 1997-12-01 1997-12-15 1998-01-01 1998-01-15 1998-02-01 1998-02-15 1998-03-01 1998-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1998-11-01 1998-11-15 1998-12-01 1998-12-15 1999-01-01 1999-01-15 1999-02-01 1999-02-15 1999-03-01 1999-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

1999-11-01 1999-11-15 1999-12-01 1999-12-15 2000-01-01 2000-01-15 2000-02-01 2000-02-15 2000-03-01 2000-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2000-11-01 2000-11-15 2000-12-01 2000-12-15 2001-01-01 2001-01-15 2001-02-01 2001-02-15 2001-03-01 2001-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2001-11-01 2001-11-15 2001-12-01 2001-12-15 2002-01-01 2002-01-15 2002-02-01 2002-02-15 2002-03-01 2002-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2002-11-01 2002-11-15 2002-12-01 2002-12-15 2003-01-01 2003-01-15 2003-02-01 2003-02-15 2003-03-01 2003-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2003-11-01 2003-11-15 2003-12-01 2003-12-15 2004-01-01 2004-01-15 2004-02-01 2004-02-15 2004-03-01 2004-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2004-11-01 2004-11-15 2004-12-01 2004-12-15 2005-01-01 2005-01-15 2005-02-01 2005-02-15 2005-03-01 2005-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2005-11-01 2005-11-15 2005-12-01 2005-12-15 2006-01-01 2006-01-15 2006-02-01 2006-02-15 2006-03-01 2006-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2006-11-01 2006-11-15 2006-12-01 2006-12-15 2007-01-01 2007-01-15 2007-02-01 2007-02-15 2007-03-01 2007-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2007-11-01 2007-11-15 2007-12-01 2007-12-15 2008-01-01 2008-01-15 2008-02-01 2008-02-15 2008-03-01 2008-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2008-11-01 2008-11-15 2008-12-01 2008-12-15 2009-01-01 2009-01-15 2009-02-01 2009-02-15 2009-03-01 2009-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2009-11-01 2009-11-15 2009-12-01 2009-12-15 2010-01-01 2010-01-15 2010-02-01 2010-02-15 2010-03-01 2010-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

2010-11-01 2010-11-15 2010-12-01 2010-12-15 2011-01-01 2011-01-15 2011-02-01 2011-02-15 2011-03-01 2011-03-15
ar

ar_pr
ar_nopr
pr_noar

pr

Figure S25. Same caption as Figure S18
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