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SUMMARY: Multiphase geophysical flows impacting slit-check dams can create jammed and 

mobilized domains, which partially govern the overspreading, energy-breaking, and trapping 

dynamics. This study presents systematic numerical simulations of debris flows, debris 

avalanches, and rock avalanches against single-slit structures with narrow, medium, and broad 

openings, using the coupled computational fluid dynamics and discrete element method (CFD-

DEM). A typical debris flow is treated as a mixture of discrete particles (by DEM) and a 

continuous slurry (by CFD). This model well captures essential physics observed in 

experiments. We show how flow materials, dynamics, and barrier filters alter the impact-

induced jammed and mobilized domains that possibly affect the energy-breaking efficiency. 

Our results reveal that flow materials (wet versus dry) and dynamics (slow versus fast) jointly 

drive the hazardous overspreading dynamics, while slit openings dominate the trapping 

patterns, including clogging with domes, blockage, and self-cleaning. 
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1 Introduction 

 

Slit-check dams are widely used countermeasures against multiphase geophysical flows (Hungr 

et al., 1984). These structures can trap part of the debris and diminish the peaks of downstream 

solid discharge and impact energy. However, the complex impinging flow characteristics (e.g. 

solid-liquid nature, wide ranges of Froude-number and particle size distributions) and 

simultaneous multiple processes (e.g. flow reduction and separation, debris jamming, filtering, 

and overtopping) limit rational studies to simplified models (Piton et al., 2022). Also, owing to 

this complexity, the design of the most suitable structure is, however, problematic.  

 

Existing studies on the impact behavior of geophysical flows against slit-check dams mainly 

rely on theoretical, small-scale physical, and numerical analysis. However, the aforementioned 

complexity also goes beyond the limits of the validity of hydraulic formulas (Armanini & 

Larcher, 2001) or theoretical predictions (Piton et al., 2022). Moreover, the majority of physical 

studies focused on the hydraulic conditions or lack quantitative indices for evaluating the 

trapping, overspreading and energy-breaking efficiencies (Armanini & Larcher, 2001; Rossi & 

Armanini, 2019). Alternatively, numerical studies enable detailed investigations of mechanical 

trapping and energy dissipations, however, mainly based on discrete element modeling with 

monodisperse flows (Leonardi et al., 2019; Marchelli et al., 2020). In practice, slit dams are 

commonly installed in low-gradient channels, whilst most physical and numerical studies 

adopted high-gradient flumes, which may produce different impact behavior from reality. 

 

In this study, we employ a coupled computational fluid dynamics and discrete element method 

(CFD-DEM) to simulate impacts of debris flows, debris avalanches, and rock avalanches (Fig. 
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1c) on single-slit dams with narrow, medium and broad openings (Fig. 1b). We aim at 

quantitatively examining the impact-induced jammed and mobilized domains to advance our 

knowledge of the overspreading, energy-breaking, and trapping mechanisms. 

 

2 Method and Model Setup 

 

The CFD-DEM modeling of multiphase geophysical flows and their impacts on different 

resisting structures are developed and validated in previous works (Zhao & Shan, 2013; Kong 

et al., 2021a, 2022a, 2023). The motions of solid particles are governed by Newton’s equations, 

and the fluid is controlled by the locally-averaged Navier-Stokes equation for each fluid cell. 

Specifically, free surfaces are simulated by the Volume-of-Fluid (VOF) method implemented 

in CFD. Four fluid-solid interaction forces, including drag, buoyancy, viscous, and virtual mass 

forces, are exchanged between CFD and DEM computations. Details of the governing 

equations and two-way coupling schemes can be found in Zhao & Shan (2013). 

 

 

Fig. 1 (a) Model geometry prior to the release of the initial sample. (b) Oblique views of slit-check dams with slit 

width b equal to 0.2 m, 0.6 m, and 1 m. (c) Side views of representative cases of debris flow, debris avalanche, 

and rock avalanche impacting a slit-check barrier at the frontal impact process. 

Tab. 1 Test program 

Test groups 
Initial velocity, vint [m/s] 

Pre-impact Fr 
Narrow (N) Medium (M) Broad (B) 

Debris Flow (DF) 1,2,4,6,8,10,12 1,2,4,6,8,12 1,2,4,6,8,12 0.8 ~ 6.4 

Debris Avalanche (DA) 1,2,4,6,8,12 1,2,4,6,8,12 1,2,4,6,8,12 0.6 ~ 6.3 

Rock Avalanche (RA) 2,4,6,8,12 2,4,6,8,12 2,4,6,8,12 0.9 ~ 6.1 

 

Fig. 1a illustrates the model setup for Rock Avalanches (RA), Debris Avalanches (DA), and 

Debris Flows (DF) against single-slit check dams with different openings, constructed on a low-

gradient slope with 𝜃 = 15°. The initial heights of viscous slurries in RA, DA, and DF cases 

(Fig. 1c) are set to 0 m, 0.2 m and 0.4 m, respectively. The sample will be uniformly assigned 

with prescribed initial velocities ( 𝑣int = 1 ~ 12 m/s) and released to impact the dam. 

Consequently, a broad range of Fr (0.6 ~ 6.4) is produced with a constant pre-impact flow depth 

of ~ 0.4 m. At the initial state, only fluid cells in the mixture sample are filled with liquid, 

leaving the rest of the CFD domain filled with air. The interstitial liquid in a typical debris 

flow/avalanche is described by a Herschel-Bulkley model with shear-thinning rheology 

(Iverson, 1997; Kong et al., 2022b). In DEM, the sides and bottom of the flow channel as well 
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as the slit-check dam are modeled as fixed, rigid, and frictional walls. In particular, the single-

slit dams have narrow, medium, and broad spacings with different lengths, i.e., 𝑏 = 0.2 m, 0.6 

m, and 1 m (Fig. 1b), producing various transverse blockages 𝑏/𝑤 and relative spacings 𝑏/𝛿, 

where 𝛿 is the maximum particle diameter. The test scenarios are summarized in Table 1. 

 

3 Results and Discussion 

 

Fig. 2 compares the jammed and mobilized domains of representative wet and dry cases against 

slit dams with different openings, showing distinct features in flow redirection, separation, 

filtering, and overtopping. The dead zone coexists with a flowing layer (see side view in Fig. 

2c-middle). Moreover, wet flows produce much smaller jammed regions and larger mobilized 

domains than dry flows under Froude similarity. It is mainly due to dry flows undergoing a 

higher energy-sinking efficiency during the interactions than wet flows. Specifically, grain 

shear stress is considered more effective in energy dissipation than fluid viscous shearing, 

meanwhile, the fluid can dampen particle collisions and decrease interparticle friction. 

 

 

Fig. 2 Comparison of the jammed and mobilized domains of (a & c) debris flows and (b & d) rock avalanches 

impacting slit-check dams with narrow, medium, and broad slits with vint = 4 m/s and 8 m/s at t = 1 s. 

 

Fig. 3 Diagrams of (a) overspreading and (b) trapping dynamics for geophysical flows against slit-check dams. 

Fig. 3a shows the normalized overspreading heights hmax/hb (color of symbols) and impact 

regimes (pile-up and runup, Kong et al., 2021b). DF cases produce the largest hmax/hb under 
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Froude similarity while RA cases undergo the smallest one under Froude similarity. This 

implies that flow materials and dynamics drive the hazardous overspreading. Fig. 3b presents 

the trapping efficiency Mretained/Mtotal (color of symbols) and trapping patterns (i.e. clogging, 

blockage, and self-cleaning). Clogging is featured with domes (3D) or arches (2D), whilst no 

domes or arches are observed in blockage. The ‘self-cleaning’ denotes no retained particles in 

dam filters (Goodwin & Choi, 2020). These trapping patterns are controlled by the sizes of dam 

filters or openings. 

 

4 Conclusion 

 

We present systematic solid-liquid simulations of geophysical flows of variable natures against 

slit-check dams. Our results and findings help to advance the understanding of impact-induced 

jammed and mobilized domains, energy-breaking efficiency, overspreading dynamics, and 

trapping mechanisms, which are key concerns of slit structures. 
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