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Abstract

Tsunamis in the last two decades have resulted in the loss of life of over 200,000 people and have caused
billions of dollars in damage. There is therefore great motivation for the development and improvement
of current tsunami warning systems. The work presented here represents advancements made towards
the creation of a neural network-based tsunami warning system which can produce fast inundation
forecasts with high accuracy. This was done by first improving the waveform resolution and accuracy of
Tsunami Squares, an efficient cellular automata approach to wave simulation. It was then used to create
a database of precomputed tsunamis in the event of a magnitude 9+ rupture of the Cascadia Subduction
Zone, located only ∼100 km off the coast of Oregon, US. Our approach utilized a convolutional neural
network which took wave height data from buoys as input and proved successful as maps of maximum
inundation could be predicted for the town of Seaside, OR with a median error of ∼0.5 m.

1 Keywords

• Tsunami Simulation

• Machine Learning

• Tsunami Early Warning

• Cascadia Subduction Zone

• Tsunami Squares

2 Introduction

The Cascadia Subduction Zone stretches from Southern Canada down to Northern California and has
a history of large, submarine earthquakes. According to records, the average recurrence rate is about 500
years with the last event occurring 300 years ago in which the entire 1000 km length of the subduction zone
ruptured and produced a tsunami causing destruction reaching as far as Japan (Clague, 1997; Heaton &
Hartzell, 1987; Atwater et al., 1995). It is proposed that either a large magnitude 9+ earthquake or several
smaller magnitude 8+ earthquakes are estimated to occur some time in the future (Heaton & Hartzell,
1987). Because the Cascadia Subduction Zone is located only ∼100 km from the coast, tsunamis generated
here are particularly hazardous because of how little time it takes to reach the coast. For this reason, the

1



rapid forecasting of these tsunamis is crucial for the dissemination of warnings which can drastically reduce
casualties.

In recent history, similar subduction zones have triggered large tsunamis, causing massive loss of life. The
most recent example is the 2011 Tohoku tsunami, where Japan suffered a loss of life exceeding 19,500 citizens
(Imamura & Anawat, 2011). In this case, the initial tsunami warning was based on an initial underestimate
of the earthquake magnitude (M7.9), where the actual magnitude was much larger (M9.0) (Satake, 2014).
This lead to a tsunami wave height estimate which was much lower, causing residents to stay in dangerous
areas due to a misunderstanding of the risks (Ando et al., 2011). Several studies have been carried out
since, aiming to produce faster and more reliable tsunami forecasts. These include the development of a
system to produce real time high resolution tsunami inundation simulations using supercomputers (Musa et
al., 2018), near-field tsunami forecasting based on rapid estimations of tsunami source functions (Tsushima
et al., 2012, 2014), and an algorithm which finds the best matching precomputed waveforms from virtual
observation points in order to directly obtain the corresponding inundation map (Gusman et al., 2014).
However, the earthquake source inversions these methods rely on potentially take tens of minutes (Tsushima
et al., 2011, 2012), are prone to varying results due to slightly incorrect input parameters (Mai et al., 2016),
and are subject to error due to ground sensor rotation or tilt (Kubota et al., 2018). In addition, forward-
modeling approaches such as the one developed by Oishi et al. (2015) was able to produce an inundation
forecast in under 1.5 min, but required nearly 10,000 cores to do so and is therefore inaccessible to areas
with more limited resources. From this, several challenges need to be met in order to increase the speed and
accuracy of near-field tsunami inundation forecasts in the event of a Cascadia Subduction Zone rupture.

To respond to these challenges, several studies have since expanded on work done by Gusman et al. (2014)
by using increasingly efficient selection techniques on precomputed tsunami databases. Mulia et al. (2018)
improves on their method of finding the best fitting scenario based on waveforms from virtual observation
points, and instead uses an interpolation algorithm on a map of low resolution maximum tsunami heights to
produce a unique inundation map. Following this study, Mulia et al. (2020) replaces the interpolation algo-
rithm with a two-stage deep neural network in order to gain additional efficiency. Similar to this approach,
Fauzi & Mizutani (2020) uses a comparable database of low and high resolution simulations to train a con-
volutional neural network (CNN) and a multilayer perceptron (MLP) find the best match in the database or
to produce a unique solution. In a different approach, Makinoshima et al. (2021) utilizes a CNN to forecast
inundation waveforms at specific locations along the Japan coast, using wave height time series data from
many buoys as input to the network.

In this study, we employ a CNN to forecast inundation resulting from a given rupture of the Cascadia
Subduction Zone based on currently existing and hypothetical configurations of wave height measurement
buoys. This method avoids the inherent inaccuracies and delays associated with earthquake source inversion
techniques by directly using wave height time series buoy data similar to Makinoshima et al. (2021). In
addition, we forecast the entire maximum inundation map as was done by Mulia et al. (2020); Fauzi & Mizu-
tani (2020). Dissimilar to the studies mentioned, the earthquake database here is created using techniques
similar to Goda et al. (2018), where correlations are introduced between slip values on the fault, creating
localized asperities which heavily influence the location of affected coastal areas (Mueller et al., 2015). For
this study, Seaside, Oregon is chosen as the site of interest because of its low elevation, proximity to the
coast, and overall susceptibility to a future tsunami disaster (González et al., 2009; Dominey-Howes et al.,
2010; Park & Cox, 2016; Park et al., 2019).

2.1 Study Site

The city chosen for this study is Seaside, located on the coast of Oregon, USA. It is a relatively small
city with a population of around 6,500 according to the 2010 census (Bureau, 2022). It was chosen because
it is only 130 km away from the Cascadia Subduction Zone (CSZ), a fault which runs parallel to the North
American West Coast stretching from Vancouver to Northern California. The CSZ is positioned between
the Juan de Fuca and North American plate, where the heavier Juan de Fuca plate slowly slides beneath
the lighter North American Plate at a shallow angle. At shallower depths (<30 km), the plate is locked by
frictional forces. However at deeper depths, the edge of the sinking plate becomes molten under intense heat
and stress, allowing large slipping between the plates to occur, resulting in large earthquakes (magnitude
8.0+).
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Because of the massive length of this fault, it is capable of producing earthquakes that can exceed
magnitude 9.0. The average interval between large earthquakes (M8.0+) is approximately 500 years, but
historical records show that the interval can vary anywhere from 210 to 910 years (Atwater et al., 2011).

There have been several studies detailing the probabilistic tsunami hazard assessment for Seaside, OR
(González et al., 2009; Dominey-Howes et al., 2010; Park & Cox, 2016; Park et al., 2019). In these studies,
maximum tsunami amplitudes for different time spans such as 100 or 500 years are first calculated by looking
at historical records and determining the largest earthquake most likely to occur in this range of time. From
this, the corresponding maximum tsunami amplitude is calculated and fed into an inundation simulator to
produce the inundation map. Historic studies suggest Seaside has been struck by several tsunamis in the
past, either from CSZ ruptures or from other far-field tsunamis (Fiedorowicz & Peterson, 2002). It is known
that on average once every 500 years, the Cascadia Subduction Zone ruptures, causing a massive tsunami
that strikes the coast of North America (Peterson et al., 2008). However, other tsunamis which have origins
elsewhere have caused flooding in Seaside. These would notably be the 1946 Alaska event, the 1960 Chile
event, and the 1964 Alaska event which caused significant property damage (Lander et al., 1993).

Seaside, Oregon is particularly vulnerable as it sits directly on a gradually sloping beach, providing little
to no barrier for any large wave that comes its way. Figure 1 shows two aerial views in addition to a map in
order to highlight the city’s susceptibility to a large wave.

Figure 1: Left: Map of Seaside showing the buildings and city layout (Seaside Map, 2020). Top right: Aerial photo of the city
which particularly highlights its susceptibility to an incoming tsunami (F., 2011). Bottom right: Another aerial photo looking
south (Frank, n.d.).

3 Database Development

3.1 Earthquake Rupture Scenarios

Generating earthquake rupture scenarios for a tsunami database is crucial because it forms the initial
conditions from which all subsequent simulations begin. If the CSZ ruptures in a way which is contained
within the basis defined by this database, then the neural network should be able to make an accurate
prediction for inundation. In an attempt to span a large amount possible earthquakes caused by the Cascadia
Subduction Zone within the Oregon region, a database of 3000 earthquakes was made.
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When developing such a collection of earthquakes, each one must remain sufficiently unique such that
there are no substantially overlapping scenarios in the database. To accomplish this, previous studies involv-
ing machine learning on a database of tsunamis either take each subfault and randomly assign a slip value
(Makinoshima et al., 2021), or systematically vary the position and size of the fault over a region (Mulia et
al., 2020; Fauzi & Mizutani, 2020). However in this study, a procedure inspired by Goda et al. (2018) was
used.

Shown in Figure 2 are five stochastically generated slip distributions used in the database created by a
process similar to Goda et al. (2018).

Figure 2: Five randomly generated slip distributions used in this study made by introducing correlations, setting maximum slip
targets, and applying cutoffs.

The procedure used to create slip distributions such as the ones depicted in Figure 4.5 begins with the
definition of the rectangular fault itself. The rectangular fault defined here stretches ∼660 km from Northern
Washington to Southern Oregon with a width of about ∼170 km. The upper most edge of the fault follows
the Cascadia fault line and extends downward at a shallow angle of ten degrees towards the East where it
reaches a depth of 30k. The fault is split up into a 20x20 grid of rectangular subfaults, totaling 400. Each
rectangular subfault is given its own individual slip value, but the direction of the slipping is unidirectional.

The process of assigning slip values to each of the 400 subfaults is as follows. First, each subfault is given
a value from a Gaussian distribution of mean 10 m and standard deviation 60 m. Negative slip values will
be generated from this distribution but they will be handled later. Then, a portion of the fault is chosen
along the latitudinal direction. The slip values within this range are then multiplied by an arbitrarily large
factor such as 20 as used here. This is meant to prioritize a randomly selected region of the fault, as one
cannot assume the entire fault will rupture at once. For example, in Figure 2, the left most slip distribution
was generated by amplifying the slip values from -150 km to 200 km.

After the rupture is localized, correlations are introduced to the 20x20 grid of subfaults by way of the
Fourier filter technique, which takes a grid of random values and transforms them into the frequency domain
where the slope of the power spectral decay is manually set by choosing a Hurst number. This technique has
also been implemented by Løvholt et al. (2012) where 500 heterogeneous slip realizations were generated for
an analysis on he variability of runup.

The process of introducing correlations is as follows. After the grid has been initialized by some set of
semi-randomly generated values hij , a fast Fourier transform of the 2D grid is taken, giving Hij . First, the
radial wave number kij is defined as
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kij =
√

1 + i2 + j2 (1)

Then, the Fourier transformed values Hij are scaled by the factor k
−β/2
ij . This is written as

H ′ij = Hij/k
β/2
ij (2)

where β depends on the Hurst parameter H and is defined as

β = 2(H + 1) (3)

The Hurst parameter is set to one in this study, indicating maximal correlation for this grid.
An inverse fast Fourier transform is then applied to obtain the new correlated slip values h′ij . Afterwards,

the current slip distribution is scaled such that its peak reaches a target maximum slip of 50 m. The negative
slip values are then set to 0 to prevent slip in the opposite direction.

In order to obtain the surface displacement of the seafloor due to the slipping of the rectangular subfaults,
analytical solutions of dislocation in an elastic half-space are used (Okada, 1985). Here, only the vertical
component of displacement is considered for the tsunami initial condition.

The distribution of the moment magnitudes MW produced by the procedure above for all 3000 earth-
quakes can be seen in Figure 3.

Figure 3: Distribution of magnitudes for all 3000 earthquakes in the earthquake database. Magnitudes range from ∼8.8 to
∼9.4.

Since the mean slip values were not adjusted to be log-normal, the distribution of magnitudes is not ex-
pected to be normal. The magnitudes range from 8.8 to nearly 9.4, representing a large Cascadia Subduction
Zone rupture. The machine learning algorithm’s predictability will therefore be restricted to earthquakes of
magnitudes within this range.

3.2 Tsunami and Inundation Simulations

The tsunami and inundation simulations were both carried out by Tsunami Squares (TS), a wave and
inundation simulator which uses a cellular automata approach to equivalently solve non-linear wave equations,
making it computationally efficient. It has been tested against numerous historic tsunamis and landslides as
well as other proven simulators to verify its accuracy (Xiao et al., 2015; Wang et al., 2019; Wilson et al., 2020).
In addition, the recent improvements made to TS increase the resolution of the waveform, allowing more
information to be preserved from the initial condition. For the purposes of creating a database of tsunami
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and inundation simulations, TS is a highly suitable as it is computationally fast and now has sufficient
resolution to produce distinguishable tsunami simulations with similar initial conditions. Distinguishability
is very important in the creation of such a database because it ensures every unique earthquake event is
paired uniquely with its own unique tsunami, decreasing the number of overlapping events (Mulia et al.,
2018, 2020). Computational speed is also important in the creation of a database as it increases the number
of total simulations which can be used to train the neural network. For this study, computational power was
limited to a single Intel Core i7-8700 CPU (3.20GHz) node with 12 cores, making computational efficiency a
necessity. Similar studies involving a database of inundation simulations are usually limited to a few hundred
events (Mulia et al., 2020; Fauzi & Mizutani, 2020), as inundation simulations can be very costly to simulate
since they rely on solving non-linear equations in order to propagate waves and runup.

The wave simulation is split up into two separate simulations: a large, low resolution simulation of
the entire region and a small, high resolution simulation of the coast. It is typical to first simulate the
tsunami wave in a low resolution bathymetry grid, then switch to a high resolution bathymetry grid for
the coast where small details in the topography are more important for runup. This is to save considerable
computation time and resources, as using high resolution bathymetry for the entire tsunami event would be
very inefficient.

Figure 4: Map of the Cascadia Subduction Fault showing the simulated regions. A large, low resolution simulation is used to
simulate the tsunami wave until it nears the coast. A smaller, high resolution simulation is then used for inundation. (Google,
2022).

Figure 4 shows how the CSZ is partitioned for the purpose of simulating. The larger simulation nearly
spans the length of the Washington and Oregon coast and extends ∼500 km into the sea. Since it is so large,
a 60 arc-second resolution bathymetry was used (N. N. G. D. Center, 2009). Also, to minimize computation
time, a time step of four seconds was chosen which is the largest time step TS can allow given the constraints
of the simulator. The wave was allowed to propagate for 200 time steps (13 minutes) where most waves
are ∼50 km away from the coast. At this point, the last time step of the large simulation is used as the
initial condition for the smaller simulation of the coast. For this, a high resolution bathymetry of the U.S.
Northwest coast was used (N. N. G. D. Center, 2003). It is at a considerably higher resolution of three
arc-seconds compared to 60 arc-seconds for the larger simulation and provides enough resolution for hazard
assessment along the coast. As for the parameters of the coastal simulation, 1000 time steps (50 min) were
simulated with a time step of three seconds, providing enough time for a given wave to reach the shore and
drain back into the ocean. For both the low resolution and high resolution simulations, the computation
time required to produce each simulation was around 20 minutes.

Figure 5 shows sequential frames for one of the high resolution inundation simulations contained in the
database. In this example, inundation begins as soon as ∼25 minutes after the earthquake occurs which
is followed by the main wave, striking ∼10 minutes later. An analysis of the database-average waveform
confirms Figure 5 is a representative case as most tsunamis inundate the coast ∼25 minutes after the initial
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earthquake.

Figure 5: Simulation of the coast of Seaside, OR, USA for a randomly selected event in the database. Inundation begins ∼25
min after the earthquake has occurred, whereas the main wave strikes 10 min later. (Google, 2022).

Once the database of the high resolution simulations of the coast have been established, a map of the
maximum flow depth is created for each simulation. Here, the flow depth is defined as the height of the
water measured from the surface of the ground.

3.3 Buoy Data

Tsunami detection buoys are designed to measure tsunami wave heights in the open ocean generated by
underwater earthquakes. They are deployed specifically for the purpose of early detection of tsunamis to
aid in the issuing of an accurate warning. In its standard mode of operation, wave height data is recorded
every 15 minutes. However, when a large seismic event occurs, the buoys switch into event mode where wave
height data is recorded every 15 seconds. The simulated buoy data used here assumes event mode.

For a given tsunami in the database, each buoy can be represented by a time series consisting of 50 data
points, each separated by 15 seconds totaling ∼13 minutes. Each buoy’s time series is then stacked to form
the input that the neural network will see. More on the data formatting will be discussed in further sections.
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NOAA’s National Data Buoy Center has a map of all the buoys currently in service for the West Coast
of the United States. These locations were referenced to test how well a neural network could forecast
inundation based on existing infrastructure. The 14 buoys which were referenced are shown in Figure 4.16.
These do not represent all of the available buoys in the simulated area. Some were removed based on their
distance from the site of interest. In addition, any buoys which were very close to each other were seen as
duplicates and were similarly omitted.

Figure 6: Currently operational wave height measurement buoys near the site of interest, Seaside, Oregon. (N. N. D. B. Center,
2022)

To test the capabilities of the inundation forecasting method, different numbers of hypothetical sensors
in various configurations were used. Square grids with various separation distances were tested to explore
how inundation prediction error changes with increasingly tight grids. The spacing of the tightest grid
configuration was chosen to be 18 km, with every subsequent grid spacing expanding by 9 km. In total, 18
grid spacings were tested ranging from 18 km to 173 km with the total number of buoys ranging from ∼10
to ∼800. Figure 4.17 shows four examples of the differently spaced grids used in this study.
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Figure 7: 4 of the 18 hypothetical buoy configurations used to create input data for the neural network. Grid spacings range
from 18 km to 173 km.

3.4 Convolutional Neural Network

In order to convert the buoy data into an inundation forecast, a convolutional neural network (CNN) was
utilized and implemented in PyTorch (Paszke et al., 2017). CNNs mainly specialize in pattern recognition
and image classification (Lo et al., 1995; Lawrence et al., 1997; Ciregan et al., 2012; Garcia & Delakis, 2004;
Sermanet et al., 2013; Russakovsky et al., 2015). It has seen uses in facial recognition, natural language
processing, X-ray image analysis, object detection, and many other areas. A CNN was chosen mainly for its
potential to detect patterns in the time series arrays containing wave height data (buoy data) used in this
study.

Typical CNN models consist of layers constructed in the following order: an input layer, one or more
convolutional layers with pooling layers mixed in, two or more fully connected layers, an output layer. The
CNN architecture developed for this study follows this general structure and can be seen below in Figure 8.
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Figure 8: The CNN architecture. Each column in the input layer consists of the time series from one buoy, where the depth
(or number of channels) equals the number of buoys. Data is passed through the subsequent convolutional layers where it is
reduced to a flattened array of length 512. This is then passed on to two fully connected layers where a flattened inundation
map is produced.

Layer Kernel Size Stride Padding Input Channels Output Channels
Conv 1 1 0 # Buoys 5
Conv 3 1 1 5 256
Conv 5 5 0 256 256
Conv 5 5 0 256 256
Linear None None None 512 800
Linear None None None 800 800
Output None None None 800 732

Table 1: The parameters of each layer for the CNN presented in Figure 8. In between each layer is a ReLU function.

10



The CNN architecture in Figure 8 was inspired by the neural networks found in Makinoshima et al.
(2021) and Toledo-Maŕın et al. (2021), but was ultimately determined by trial and error.

The CNN in Figure 8 consists of four convolutional layers and two fully connected layers. The first
convolutional layer has a kernel size of 1x1 and is meant to act as a filter across channels (Lin et al., 2013).
Since the kernel extends down through all channels, the weights assigned to the 1x1 kernel are equivalent
to a weight assigned to the channel itself. If the optimization algorithm decides one channel (or one buoy)
is particularly important, it will give that channel a high weight. In essence, the 1x1 convolutional layer
used here takes the number of input channels (or input buoys) and distills them to five channels. Since
the number of buoys varies from 10 to 800 depending on which grid is used (Figure 7), the addition of this
type of convolutional layer was critical to ensure that the following layers will receive a consistent amount
of parameters. This removes the neural network structure as a confounding variable in the comparison of
accuracy between differently sized inputs.

The following layer uses a kernel size of three with a padding value of one to preserve the length of each
channel. This layer outputs 256 channels of length 50. The following two layers are convolutional pooling
layers and act to downsample the data. To achieve this pooling effect, the kernel and stride of the filters were
both set to five to downsample the length from 50 to 10 in the first layer, then from 10 to 2 in the second
layer. The convolutional pooling layer approach to downsampling was chosen over the traditional maximum
pooling operation solely due to an empirical improvement in performance. The 256 channels of length two
are then flattened into a 1D array of 512 elements and fed into the two linear layers of length 800, where it
is finally transformed into a 732 pixel inundation map by the output layer. To prevent overfitting, dropout
with a probability of 0.001 was implemented directly before the output layer. Dropout refers to the process
of temporarily ignoring, or “dropping out” different nodes in a given layer during each epoch of the training
process. The network is therefore training on a different randomly generated thinned version of the network
at every epoch. This has the effect of combining many different neural network architectures together to
produce an averaged output, allowing the network to generalize well as it approximates an ensemble approach
(Srivastava et al., 2014).

Regarding the hyperparameters of the CNN, a learning rate of 0.0005 was chosen and trained for a total
of 800 epochs. At the end of the 800 epochs, the weights from the epoch with the best validation accuracy
was chosen. A mean squared error cost function was chosen as it performed better compared to the least
absolute error cost function. The Adam Optimizer Algorithm (Kingma & Ba, 2014) was used for gradient
descent.

4 Results and Discussion

4.1 Various Grid Configurations

Here we discuss the inundation forecasting results from the buoy data used as input for the CNN. In
addition to using existing buoys located off the coast of Oregon, several hypothetical arrangements of buoys
were also used to test the capabilities of this method. The hypothetical arrangements consist of grids of
buoys spanning the simulated region, each with their own buoy-to-buoy separation distance. In total, 18
grids were tested with separation distances ranging from 18 km to 171 km as shown in Figure 7.

Figure 9 shows three plots containing results for the average absolute error, the average percent error,
and the percent difference in coverage. For these measures of error, both predicted and expected inundation
heights below 15 cm are ignored. Otherwise, a measure of the average error will likely return falsely accurate
since the calculation will be diluted by a large number of closely matching predicted and expected heights
of around zero.

The equation used to calculate average event error for each event j is given as

Ej =
1

Nj

Nj∑
i=0

|hi − ĥi| if ĥi > 0.15 m or hi > 0.15 m (4)

where Ej is the average error for the jth event in the testing set, ĥi is the expected inundation height of the
ith pixel, hi is the predicted height of the ith pixel, and Nj is the total number of pixels in event j which
satisfy the Boolean expression.
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The percent error for each event j is defined by

Percent Ej =
100

N

N∑
i=0

|hi − ĥi|
ĥi

if hi > 0.15 m (5)

where ĥi is the expected inundation height of the ith pixel, hi is the predicted height of the ith pixel, and
Nj is the total number of pixels in event j which satisfy the Boolean expression.

The percent difference in coverage for each event j is defined by

Percent Differencej = 100 · |n− n̂|
n̂

(6)

where n̂ represents the total number of inundated pixels in the expected inundation map and n represents
the total number of inundated pixels in the predicted inundation map for a given event j in the testing set.
An inundated pixel is defined as one with a maximum height greater than 0.15 m.

To display the error for all 300 events in the testing set, the 10th, 50th, and 90th percentiles were calculated
to give an accurate representation of the error distribution. For reference and comparison purposes, the
results using the existing buoys are shown in the form of black horizontal lines.
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Figure 9: Measures of error as a function of buoy separation distance (increasing sparseness). Percentiles for the results from
existing buoy locations are indicated by solid and dotted black lines. Results most notably indicate 90th percentiles increase
significantly with increasing buoy sparseness.
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The average absolute error plot shown in Figure 9 shows an upwards trend in the 50th percentile. This
is expected since as the buoy separation distance increases, the total number of buoys decreases, providing
the CNN with less data from which to make a prediction. A tight grid of buoys (separation distance 20-40
km) produces a median error of ∼0.25 m and the existing buoys produce a slightly higher median error of
∼0.35 m. In fact, the median error of the grids outperform existing buoys until a separation distance of
∼80 km. However, the difference between 0.25 m and 0.35 m error is not very significant. Focus is therefore
given to the 90th percentile, which is ∼0.5 for tight grids and ∼1.0 for existing buoys. For larger buoy
separation distances, the 90th percentile increases dramatically to over 2 m. This means for configurations
with sparse grids (existing buoys and 100-180 km separation distances), the chances of a high error prediction
are significant.

As with the average absolute error plot, the percent error results show a steadily increasing trend in the
50th percentile. A tight grid of buoys produce a median percent error of ∼15% while the existing buoys
produce ∼20%. However, although the median percent errors are similar, the 90th percentile of the existing
buoys is significantly higher at ∼45% compared to the tight grid configurations at 35%. This indicates that
a tight grid of buoys will ensure accurate predictions for almost all events in the testing set while the existing
buoys have the potential to produce a prediction with nearly 50% error.

The percent difference in coverage is mainly consistent for the 50th percentile at ∼10%. The only
significant trend can seen in the 90th percentile where it generally increases from 20% to 50%.

An interesting feature of plots in Figure 9 can be seen in the form of dips in the error present at separation
distances of 110 km and 170 km. This is due to some grid configurations containing buoys positioned very
near to the point of interest. These buoys offer critical information the CNN needs in order to make a more
accurate inundation prediction, thus decreasing the error for grid configurations with these buoys.

Figures 10, 11, and 12 show forecasts for six randomly selected events from the test set for three buoy
configurations: existing buoys, a grid with an 18 km separation distance, and a grid with a 162 km separation
distance.
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Figure 10: Results for six randomly selected events in the testing set using existing buoys.
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Figure 11: Results for six randomly selected events in the testing set using a hypothetical grid of buoys with 18 km separation
distance.
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Figure 12: Results for six randomly selected events in the testing set using a hypothetical grid of buoys with 162 km separation
distance, the arrangement with the highest error.
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Overall, the results from the six randomly selected events using the existing buoys (Figure 10) seem
acceptable. The error remains under 1 m for the most part with the exception of event #5 which exhibits
error in the 1-2 m range. The results from the 18 km separation distance grid (Figure 11) show more
consistency as the errors for all events shown are below 1 m. We begin to see erroneous predictions when
viewing the results from the 162 km separation distance grid (Figure 12). With the exception of two out of
the six events shown, the remaining four events display error above 2 m, with one event reaching up to 8 m.

Since a random selection of events does not reveal the true accuracy of these models, is valuable to
analyze the predictions with the highest absolute error and the highest percent error. The results can be
seen in Figure 4.34.

Figure 13: The events with the highest absolute error and the highest percent error for the models using existing buoys, an 18
km separation distance grid, and a 162 km separation distance grid.

It is clear from Figure 13 that both the highest absolute error prediction and the highest percent error
prediction using the 162 km grid display significant deviation from the expected. This means given a
particular event, there is a chance for a severely inaccurate prediction. Both the existing buoys and the
tight arrangement of buoys perform moderately well in their respective worst case scenarios. However, the
tight arrangement of buoys perform slightly better in its worst case. This is in line with Figure 9 which
shows a lower 90th percentile for the tight grid of buoys compared to the existing buoys. It can also again be
concluded that although the existing buoys perform similarly to a tight grid of buoys for a random selection
of events, the severity of the most erroneous predictions decrease with a tight grid.

It is important to note that by the nature of a percent error formula, high percent error events will
naturally tend towards those with relatively low inundation heights. Using the same logic, events with high
absolute error tend towards those with already high inundation heights. This tendency can be seen for the
worst cases of both the existing buoys and the 18 km grid. However, the 162 km grid does not follow this
tendency because the errors are so high.

4.2 Sensitivity Analysis

In the tests below, we aim to find an arrangement of the minimal amount of buoys required to achieve
results equivalent to that of a dense network of tightly spaced buoys. The number of buoys contained in
the grids tested above range from 10 for the sparsest arrangement to over 800 for the tightest arrangement.
However, not every buoy is equally utilized by the CNN when predicting inundation. The CNN naturally
prioritizes buoys which contain more predictive power and as a result, only a few are necessary. This
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prioritization can be measured in terms of sensitivity, a measure of how much of an effect one input variable
has on the accuracy of the output.

To explore the sensitivity of the CNN with respect to its input buoy data, an occlusion test was performed
(Makinoshima et al., 2021; Zeiler & Fergus, 2014; Nielsen & Voigt, 2018). It works by omitting one input
parameter at a time and observing its effect on the accuracy. In this case, we first take the trained CNN
for a particular grid configuration and run it without any modifications on the test set to obtain the base
average error. Then, the values of a selected buoy’s time series are set to zero before giving it to the CNN
to obtain a value of the modified average error. The ratio of the modified average error to the base average
error is then calculated and scaled to a range of one to two. A sensitivity value of one would indicate the
buoy has no effect on the prediction, while a value of two would indicate the buoy has strong influence on the
prediction. This process is repeated for every buoy in the grid to obtain a map displaying relative sensitivity.
The sensitivity maps for the eight tightest grid arrangements are shown in Figure 14. To help aid in the
visualization of the placement of the buoys, the peak of the database-averaged tsunami waveform at the end
of the buoy observational period were overlaid (13 min after the start of the simulation).

Figure 14: Buoy sensitivity tests for the eight tightest grids. Overlaid is the database-averaged waveform at the end of the
buoy observational period (13 min). The CNN is most sensitive to buoys near the peak of the waveform at 13 min or buoys
near the site of interest.

An interesting result can be seen in the upper left hand plot in Figure 14 showing the sensitivity map
with the tightest buoy spacing. It indicates that if given access to an extremely dense grid of wave height
time series data, the CNN will prioritize buoys at the location where the wave is at its peak (at the time the
buoys stop collecting data). This sensitive region generally persists with increasing buoy separation with the
exception of 36 km and 54 km, where the most sensitive buoys are the ones positioned nearest the site of
interest. This is an important result as it indicates the CNN can gain similar accuracy by either prioritizing
near the site of interest, or near the peak of the waveform. The positioning of the buoys relative to the site
of interest is also important. From buoy spacings of 27 km, 36 km 45 km, 54 km, and 72 km, the most
sensitive buoys were ones in a line extending perpendicularly out from the site of interest. The two grid
spacings which did not share this characteristic, 63 km and 81 km, split the sensitivity between two parallel
lines adjacent to the site of interest.

From this, further testing was done to find a configuration which uses a minimal amount of buoys while
still maintaining the accuracy of a tight grid of buoys. The decided upon configuration can be seen in Figure
15. It consists of four buoys, spaced 27 km apart, arranged in a line extending out to sea from the point of
interest.
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Figure 15: A minimal arrangement of buoys tested with aims to achieve similarly accurate results as a tight grid. Chosen based
on sensitivity measurements (Figure 4.35) are four buoys spaced 27 km apart extending out to sea from the site of interest.

The results for the four buoy configuration in Figure 15 can be seen below in a layout similar to that of
Figure 9. However, instead of the black horizontal lines representing existing buoys, they now represent the
results of the four buoys arranged in a line extending out to sea.
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Figure 16: Plots identical to that of Figure 9 except with black lines now indicating results from the arrangement of four buoys
(Figure 15). The four buoy arrangement achieves equally accurate results as the tightest grid spacings.
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Results indicate that the accuracy using the four buoy arrangement for all three metrics are similar to
that of a tight grid of buoys (separation distance <50 km). These results show that although a tight grid of
buoys will produce inundation forecasts which are both accurate and consistent, the CNN does require all
buoys in order to obtain an equally accurate forecast.

However, the findings here do not necessarily indicate that only four buoys are needed for any CSZ
rupture scenario. Results are heavily confined by the locations and the magnitudes of the earthquake
scenarios present in the database, namely earthquakes of magnitude ∼9 with epicenters very near the site of
interest. Earthquakes outside these constraints may heavily affect which buoys are necessary. For example,
if an earthquake with an epicenter far north of the site of interest were to occur, the wave would travel
mainly south until reaching the site of interest. In this case, a line of buoys extending East to West would
not capture the incoming waveform, thus leading to an erroneous or even missed prediction. In addition,
the four buoy arrangement may not produce similar results given a different buoy observational window. In
this study, 13 min of buoy data was collected before using it as input for the CNN. For shorter observational
windows, buoys placed farther out to sea may be prioritized instead.

5 Conclusion

In this study, we presented a machine learning model (CNN) trained on buoy wave height data in order
to forecast tsunami inundation due to a potential rupture of the Cascadia Subduction Zone (CSZ) for the
town of Seaside, Oregon. Due to the short distance between the CSZ and the coast of Oregon, an early
and accurate tsunami warning is crucial. This method introduces an alternative to existing direct non-linear
forward modeling in real-time to obtain inundation forecasts, where rapid tsunami source estimations and
significant computational resources are needed to simulate nonlinear tsunami propagation.

Work done here modifies the CNN and input data structure of Makinoshima et al. (2021) to forecast
maximum runup height maps similar to that of Fauzi & Mizutani (2020) and Mulia et al. (2020). Instead of
confining the experiments to existing buoys, various hypothetical buoy configurations were tested to explore
the predictive power of this method. The study here also produces earthquakes using a procedure similar
to that of Goda et al. (2018), where correlations and target maximums were introduced to the slip map to
produce more realistic rupture scenarios.

Tests using currently operating buoy stations were found to produce accurate inundation forecasts with
a median error of ∼0.5 m. When using a hypothetical dense grid of buoys as input to the CNN, it was found
to decrease the magnitude and frequency of large error predictions. It was also found through a sensitivity
analysis that only a small number of buoys were needed by the CNN to produce accurate forecasts. Results
indicate that a configuration of four strategically placed buoys were sufficient to obtain results as accurate
as a dense grid of buoys for earthquakes (M∼9.0) localized near the Oregon coast for the city of Seaside.

The proposed CNN method using time series buoy data shows promise to produce fast and accurate
inundation predictions. In addition, the method of determining the minimal number of necessary buoys
through a sensitivity measure proved to be successful. In the future, we aim to expand the database to
include a wider range of earthquake magnitudes and epicenter locations to more accurately cover the total
possible rupture scenarios for the Cascadia Subduction Zone. The length of the buoy observational period
will also be varied to determine its effect on accuracy, exploring the possibility of a continuous prediction
based on the amount of data collected.
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