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Key Points:8

• We introduce atmospheric river (AR) sequences as a way to measure the hydro-9

logic hazard from temporally compounding (back-to-back) ARs.10

• AR sequences in GFDL SPEAR model projections increase in frequency, inten-11

sity, and duration in California by the end of the century.12

• ”Super-sequences” over 60 days long drive the projected increase in frequency and13

present a growing water management threat in California.14
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Abstract15

When multiple atmospheric rivers (ARs) occur in rapid succession, the combined16

effect on the hydrologic system can lead to more flooding and damage than would be ex-17

pected from the individual events. This temporally compounding risk is a source of grow-18

ing concern for water managers in California. We present a novel moving average-based19

definition of AR “sequences” that identifies the time periods of elevated hydrologic haz-20

ard that occur during and after consecutive AR events. This marks the first quantita-21

tive evaluation of when temporal compounding is contributing to AR flood risk. We also22

assess projected changes in sequence frequency, intensity, and duration in California us-23

ing the GFDL SPEAR global coupled model. Sequence frequency increases over time24

and is fairly uniform across the state under both intermediate (SSP2–4.5) and very high25

(SSP5–8.5) emissions scenarios, with the largest changes occurring by the end of the cen-26

tury (+0.72 sequences/year in SSP2–4.5, +1.13 sequences/year in SSP5–8.5). Sequence27

intensity and duration both see increases in the medians and extreme values of their re-28

spective distributions relative to the historical baselines. In particular, “super-sequence”29

events longer than sixty days are projected to occur 2–3x more frequently and to emerge30

in places that have never seen them in the historical record. In a world where Califor-31

nia precipitation is becoming more variable, our definition of sequences will help iden-32

tify when and where hydrologic impacts will be most extreme, which can in turn sup-33

port better management of the state’s highly variable water resources and inform future34

flood mitigation strategies.35

Plain Language Summary36

Atmospheric rivers (ARs) are a type of storm that are vital to water resources in37

the western United States, but can also cause significant flooding and damage. Back-38

to-back AR events have historically been a source of concern for water managers because39

the compound effect of multiple events together can increase the probability of damag-40

ing floods. We present a definition of AR “sequences” that identifies periods of time where41

the likelihood of compound effects is increased. We look at the relationship between se-42

quences, runoff, and soil moisture in California and show that sequences are in fact align-43

ing with time windows of elevated hydrologic hazard in the historical record. We then44

look at sequences in two future climate projections and find that sequence frequency, in-45

tensity, and duration are all projected to increase with increasing emissions levels. In par-46

ticular, “super-sequences” more than sixty days long are projected to become two to three47

times more frequent across all of California. Our definition of sequences captures and48

communicates new information about the risk associated with temporally compound-49

ing hydrologic events in present and future climates.50

1 Introduction51

1.1 Background52

California is a land of hydrological extremes. It has the highest interannual pre-53

cipitation variability of any state in the country (Dettinger, 2016), and the rapid wet-54

dry cycling that characterizes its Mediterranean climate is expected to intensify in a warm-55

ing world (Swain et al., 2018). Precipitation is also highly seasonal, occurring primar-56

ily from October to April, and up to half of each year’s precipitation occurs in a span57

of approximately 100 hours (Lamjiri et al., 2018). When it rains, it pours, with signif-58

icant implications for hydrologic systems and flood risk management (Dettinger et al.,59

2011; Lund, 2012).60

Up to 85% of California’s interannual precipitation variability can be attributed61

to atmospheric rivers (ARs), long, filamentary corridors that carry moisture from the62
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tropics to the extratropics (Dettinger, 2016). While there is no single agreed-upon method63

for detecting ARs in the meteorological record, an event is generally identified and la-64

beled as an AR based on a combination of its geometry, duration, and some metric of65

moisture content such integrated water vapor transport (IVT) (Rutz et al., 2019). A large66

body of research has tied ARs to extreme precipitation both globally (Waliser & Guan,67

2017; Liu et al., 2020) and specifically in California and the western United States (US)68

(Ralph et al., 2019). ARs bring 30–50% of California’s precipitation and make up 60–69

100% of the most extreme storms regionally (Lamjiri et al., 2017). AR landfalls are closely70

related with heavy precipitation events—ARs produce up to twice as much precipita-71

tion as other types of storms (Neiman et al., 2008) and are a major contributor to ex-72

treme precipitation events (Chen et al., 2018). Because ARs cause such significant pre-73

cipitation, they are also strongly connected to hydrologic impacts. ARs have positive ef-74

fects on California’s hydrology as drought busters (Dettinger, 2013), ecosystem boost-75

ers (Albano et al., 2017), and sources of reservoir replenishment (Guan et al., 2010). How-76

ever, ARs also contribute to significant flooding (Dettinger, 2011; Ralph et al., 2006; Le-77

ung & Qian, 2009; Konrad & Dettinger, 2017; Chen et al., 2019; Albano et al., 2020).78

This has led to ARs being labeled as a dual “boon and bane” for California communi-79

ties and residents (Rhoades et al., 2020).80

ARs, and their consequences, are projected to intensify in a future climate. Pre-81

vious research shows that ARs will increase in frequency and in size along the western82

coast of the US (Gao et al., 2015; Massoud et al., 2019; Payne et al., 2020; Rhoades et83

al., 2020), although both the choice of climate model (Espinoza et al., 2018) and AR de-84

tection algorithm (O’Brien et al., 2022) affect the estimated magnitude of the trend. With85

these atmospheric changes come increased hydrologic volatility (Swain et al., 2016). While86

precipitation from smaller, non-AR storms is projected to decrease, AR events are likely87

to see increased precipitation, contributing a larger percentage to California’s overall an-88

nual precipitation total (Dettinger, 2016; Gershunov et al., 2019). A larger portion of89

AR-driven precipitation is projected to occur during extreme storm events rather than90

the more moderate beneficial events. The most extreme ARs in California are projected91

to deliver precipitation at higher intensity rates in shorter amounts of time (Persad et92

al., 2020) and to generate precipitation in excess of Clausius-Clapeyron scaling estimates,93

with increases in some places as large as 40% (X. Huang et al., 2020).94

However, when considering the hydrologic and economic consequences of present95

and future ARs, assessing individual events in isolation only reveals part of the picture.96

Compound events have been identified globally as an important area of study for our chang-97

ing climate (Seneviratne et al., 2021). ARs and their impacts fit many of the compound98

event typologies defined by Zscheischler et al. (2020). They can be multivariate, e.g., through99

simultaneous coastal and riverine flooding (Khouakhi & Villarini, 2016); spatially com-100

pounding, e.g., through teleconnected climate modes (Ward et al., 2014); preconditioned,101

e.g., through rain-on-snow flooding (Guan et al., 2016); or temporally compounding, e.g.,102

through the “back-to-back” AR events that are the focus of this study. ARs are uniquely103

suited to a temporally compounding perspective because of the association between suc-104

cessive cyclones and heavy precipitation (Moore et al., 2021) and the inherent lag be-105

tween the end of the AR event and the time for the hydrologic system to fully recover106

(Fish et al., 2022). This time lag amplifies the impacts of back-to-back events and can107

lead to consequences beyond what a single AR could generate on its own.108

1.2 Motivation and Scope109

The first step towards understanding temporally compounding events is to define110

when they exist, i.e., when two or more individual hazards occur close enough together111

in time and space to cause interacting and overlapping effects. Fish et al. (2019) created112

a metric to identify “AR families” that focused on differentiating the underlying synop-113

tic conditions. Outside of the world of ARs, Baldwin et al. (2019) created a metric for114
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temporally compounding heat waves. However, both are count-based methods, mean-115

ing they combine multiple individual events into a compound one when they occur within116

a certain time period, irrespective of event size. Additionally, each of these prior works117

has specific limitations: Fish et al. (2019) define all AR families to have a maximum du-118

ration of five days by construction, and Baldwin et al. (2019) assume that the first ini-119

tiating heat wave will always be the largest event, which is not necessarily true for ARs.120

We propose sequences as a tool to capture the increased hydrologic hazard that occurs121

due to the cumulative effect of back-to-back ARs. Creating a new metric that identifies122

when multiple ARs are acting as one compound event improves our ability to charac-123

terize, quantify, and track changes in temporally compound extremes, which are a sig-124

nificant source of uncertainty for flood risk management in California.125

Section 2 lists data sources and introduces the sequence algorithm. Section 3 shows126

that sequences capture time periods of elevated hydrologic hazard, as measured by runoff127

and soil moisture. In Section 4 we apply our definition of sequences to future climate sim-128

ulation data and assess how sequences are anticipated to change under different emis-129

sions futures. Section 5 discusses some implications of the projected changes, and Sec-130

tion 6 concludes with a summary of key findings.131

2 Methodology132

This section first introduces the data used in this study. Atmospheric reanalysis133

data are used to identify AR sequences in the historical record. Hydrologic data such134

as streamflow and soil moisture are used to characterize the impacts of sequences, and135

global climate model projections are used to understand how sequences will change from136

present to future. We also include the results of a bias correction implementation to align137

the historic climate simulations with the reanalysis data. The final part of this section138

presents the sequence definition. We introduce the algorithm used to identify AR sequences,139

including both a description and a visual example, and provide both literature and phys-140

ical support for the algorithm parameter values.141

2.1 Data142

2.1.1 Reanalysis Data143

The sequence definition is based on integrated water vapor transport (IVT) cal-144

culated from the Modern-Era Retrospective analysis for Research and Applications, Ver-145

sion 2 (MERRA-2; Gelaro et al., 2017). MERRA-2 was chosen for several reasons: it was146

designed with an explicit focus on the hydrologic cycle (Rienecker et al., 2011); it has147

been used extensively to study ARs, both in the US and globally (Payne & Magnusdot-148

tir, 2015; Mundhenk et al., 2018; Lora et al., 2020); and it is the reference dataset for149

Tier 1 of the AR Tracking Model Intercomparison Project (ARTMIP; Shields et al. (2018);150

Rutz et al. (2019)). It has been shown to compare well against both satellite (Jackson151

et al., 2016) and in situ (Guan et al., 2018) estimates of IVT, and it is particularly good152

at capturing strong vapor transport (Sellars et al., 2017; Dettinger et al., 2018). MERRA-153

2, as well as its predecessor MERRA (Rienecker et al., 2011), have been used for many154

studies of AR-driven precipitation (Chen et al., 2018; Lamjiri et al., 2018), hydrologic155

impacts (Payne & Magnusdottir, 2016; Chen et al., 2019; Cordeira et al., 2018), and eco-156

nomic loss (Ralph et al., 2019) in California and the western US. Finally, it was the dataset157

of choice for Fish et al. (2019, 2022) in their work on AR families.158

MERRA-2 covers the globe at a horizontal grid resolution of 0.5◦×0.625◦ (∼50km159

× 50km) and reports data from water year (WY) 1981–2021 at a three-hour time step.160

We randomly sampled one 3-hour IVT value from each 24-hour window to align with161

the temporal resolution of the climate model projections presented in Section 2.1.3. We162

only retained days in California’s wet season (October–April) as we are focusing on events163
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likely to cause negative hydrological impacts, which tend to be concentrated in that sea-164

sonal window. ARs were identified using the Rutz et al. (2014) detection algorithm, which165

defines an AR as a contiguous area with length ≥ 2,000 km and IVT ≥ 250 kg/m/s. AR166

events are defined only for the results related to Hydrologic Hazard (Sect. 3) and are not167

used for identifying sequences.168

2.1.2 Hydrologic Data169

Precipitation data was retrieved from the Parameter-elevation Regressions on In-170

dependent Slopes Model (PRISM), (PRISM Climate Group, 2023), an interpolated ob-171

servational dataset produced by the PRISM Climate Group at Oregon State University.172

PRISM daily precipitation records are available from 1981 to present at a 4km resolu-173

tion.174

Streamflow data was retrieved from United States Geological Survey (USGS) gages175

in California using the National Weather Information System (NWIS) (USGS, 2022). Fol-176

lowing Konrad and Dettinger (2017), we kept only gages with records that covered at177

least 10 years of the 41-year MERRA-2 time window, and we added an additional cri-178

terion that at least 25% of days in each gage’s record needed to have recorded data. Gaps179

shorter than a week were imputed with a moving average. This filtering process left a180

total of 567 streamflow gages for consideration. We converted streamflow (ft3/s) to runoff181

(mm/day) by dividing each timeseries by the drainage area at each gage as calculated182

with the USGS StreamStats online tool (USGS, 2019). We used the fractional weight-183

ing method from Brakebill et al. (2011), which is also the method used by USGS for the184

computed runoff reported on their official WaterWatch web page, to create a map of daily185

runoff at the subbasin scale (Hydrologic Unit Code 8).186

Soil moisture data was retrieved from the Western Land Data Assimilation Sys-187

tem (WLDAS), a hybrid observational/simulated product produced by the National Aero-188

nautics and Space Administration (NASA) for long-term near-surface hydrological vari-189

ables (Erlingis et al., 2021). WLDAS provides soil moisture data at a daily resolution190

on a 0.01◦ (∼1km) grid with three vertical levels: 0–10 cm, 10–40 cm, and 40–100 cm.191

We aggregated the data to approximately match the 4km resolution of the PRISM data192

and integrated the three vertical layers to produce the total equivalent height of water193

in the top meter of soil, measured in mm/m.194

2.1.3 Climate Model Projections195

To assess the change in sequence characteristics over different climate states in Cal-196

ifornia, we analyzed IVT from the Seamless System for Prediction and EArth system197

Research (SPEAR) ensemble (Delworth et al., 2020). SPEAR is the next-generation cli-198

mate model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), National199

Oceanic and Atmospheric Administration (NOAA). It shares the same model configu-200

rations (i.e., coupled atmospheric, land, oceanic, and sea-ice models) with GFDL Cli-201

mate Model version 4, which is a contributor to the Coupled Model Intercomparison Project202

phase 6 (CMIP6), except with parameterizations optimized for seasonal-to-decadal pre-203

diction and long-term projection. SPEAR has moderately high (∼50km) resolution in204

the atmosphere and land, which can explicitly simulate ARs and their statistics, while205

the 1-degree ocean model enables computational time savings. Importantly, SPEAR has206

the same resolution as MERRA-2 over land. Horizontal resolution has been shown to207

significantly impact AR identification (Jackson et al., 2016), so a common grid facilitates208

comparison between the two products.209

There is no one “best” climate model for California, but out of over thirty of the210

models involved in CMIP5, GFDL-CM3 (a precursor to SPEAR) was one of the ten mod-211

els identified as most appropriate for water resources planning applications in Califor-212
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nia (California Department of Water Resources (DWR) & Climate Change Technical Ad-213

visory Group (CCTAG), 2015) and was used in California’s Fourth Climate Change As-214

sessment (Bedsworth et al., 2018). Models were selected based on a three-tier evalua-215

tion process that assessed model performance on global, regional, and California-specific216

metrics. In addition, despite its status as a newer climate model, SPEAR has already217

been extensively validated for ARs. Zhao (2020) showed that ARs calculated using AM4,218

the atmospheric component of SPEAR, for 1950–2014 matched well the frequency, length,219

width, latitude, IVT, and orientation of ARs in the European Centre for Medium-Range220

Weather Forecasts interim reanalysis product (ERA-Interim; Dee et al. (2011)). They221

also confirmed that SPEAR can replicate reasonably well the variability of AR frequency222

associated with large-scale circulation patterns, reporting pattern correlation coefficients223

during the Northern Hemisphere winter (November–March) of 0.68 for the El Niño South-224

ern Oscillation (ENSO), 0.86 for the Northern and Southern Hemisphere annular modes225

(NAM/SAM), and 0.81 for the Pacific-North America teleconnection (PNA) (Zhao, 2020).226

SPEAR has also been used to estimate that the climate change-driven increase in AR-227

day frequency over subtropical oceans will emerge from the noise of internal variability228

by 2060 (Tseng et al., 2022) and to make multiseasonal forecasts of AR frequency up to229

nine months in advance (Tseng et al., 2021). We are therefore confident in SPEAR’s abil-230

ity to resolve both local climate trends in California and global circulation patterns rel-231

evant to ARs.232

This paper uses a five-member subset of the larger thirty-member SPEAR ensem-233

ble and uses IVT and AR statistics as calculated by Tseng et al. (2022). Tseng et al. (2022)234

have demonstrated that the AR statistics derived from a single ensemble member are235

still representative of the entire large ensemble, provided the analysis period is sufficiently236

long (≥30 years), given the short memory of AR events from season to season. We ex-237

amined simulations with historical forcing and with projected forcings following two dif-238

ferent shared socioeconomic pathways (SSPs). SSP2–4.5 and SSP5–8.5 represent inter-239

mediate and very high greenhouse gas emissions scenarios, respectively (Arias et al., 2021).240

The historical simulation covers the period of 1921–2010 and the two warming simula-241

tions cover the period of 2011–2100.242

2.1.4 Bias Correction243

Both the historical and projected timeseries of IVT from SPEAR were bias-corrected244

such that the statistics of the historical SPEAR simulation matched the statistics of MERRA-245

2 data over the thirty-year period of overlap (WY 1981–2010). Bias correction is war-246

ranted because of the focus on rare events in this paper; while GFDL SPEAR credibly247

simulates both the circulation patterns and climate trend in California, it underestimates248

the most extreme daily IVT values. Quantile mapping (QM) is a common choice for bias249

correction because of its flexibility to adjust both the location and scale of the target dis-250

tribution (Maraun & Widmann, 2018); however, traditional QM is limited in its abil-251

ity to accurately represent extreme events (Dosio et al., 2012; Cannon et al., 2015) and252

does not necessarily preserve the projected future climate signal (Hempel et al., 2013;253

Maraun et al., 2017). We therefore implemented scaled distribution mapping (SDM; Switanek254

et al. (2017)), a parametric bias correction method that preserves the future climate sig-255

nal and more accurately represents extreme events, to perform the bias correction.256

We first empirically fit gamma-Pareto mixture models (Volosciuk et al., 2017) to257

IVT by decade based on the thirty-year periods centered on each decade. For example,258

the distribution representing 2021–2030 was fit using data from 2011–2040, the distri-259

bution representing 2031–2040 was fit using data from 2021–2050, etc. The first and last260

decades (2011–2020 and 2091–2100) in the GFDL SPEAR projections were not included261

because we lacked data for the full thirty-year intervals. We then calculated the SDM262

bias correction for each decade. The distributional comparison of observed versus bias-263

corrected IVT is included as Supplementary Figure S1. The bias-corrected IVT time-264
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series produces similar sequence frequency (Supplementary Figure S2), intensity (Sup-265

plementary Figure S3), and duration (Supplementary Figure S4) results as the MERRA-266

2 record when compared over the period of overlap (WY 1981-2010).267

2.2 Sequence Definition268

2.2.1 Sequence Identification Algorithm269

Sequences are defined in a three-step process. We first calculate the five-day cen-270

tered moving average IVT (IVT5). Next, we identify continuous intervals, which are time271

periods when IVT5 exceeds the 30-year median IVT. Lastly, any continuous interval where272

max [IVT5] ≥ 250 kg/m/s are labelled as a sequence. This process is demonstrated vi-273

sually in Figure 1.274

Figure 1. Example sequence timeseries. Visual description of the sequence definition

for an example IVT timeseries. The original IVT record at a three-hour temporal resolution is

shown in dark grey and the tick marks along the horizontal axis indicate weeks. The dashed grey

horizontal line indicates the start-end threshold, defined as the 30-year median IVT (92 kg/m/s

for this example location), and the solid grey line indicates the magnitude filter, defined as 250

kg/m/s. The three-step sequence identification process is as follows: 1. calculate the five-day

moving average, IVT5 (black line); 2. calculate continuous intervals of IVT5 exceeding the 30-

year median IVT (light and medium blue fill); and 3. of the intervals identified in step 2, identify

those where max [IVT5] ≥ 250 kg/m/s (medium blue fill). The medium blue area is defined as a

single sequence and the light blue areas are discarded. The resulting AR days and sequence days

are shown along the bottom with dark blue bars and medium blue bars, respectively.

2.2.2 Definition Parameters275

The sequence definition uses three new parameters: the width of the moving av-276

erage window; the moving average value that starts and ends continuous intervals, re-277

ferred to as the start-end threshold; and the peak moving average value that determines278

which continuous intervals are counted as sequences, referred to as the magnitude filter.279

We used five days as the width of the moving average window because Fish et al. (2019)280

found this to be a suitable time length to cluster families of AR events with similar syn-281

optic characteristics. The choice to define sequences based on a moving average of IVT282

rather than the raw timeseries represents a departure from previous methods, but offers283

several key benefits: it (1) captures the interstitial time between closely linked succes-284

sive AR events where precipitation may still be occurring, (2) adds an additional tem-285

poral buffer to the front and back tails of AR events to account for the lag between at-286
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mospheric forcings and hydrologic response, and (3) introduces a new measure of sequence287

intensity independent of duration.288

We defined the start-end threshold as the thirty-year (WY 1981–2010) median IVT289

calculated at each MERRA-2/SPEAR grid cell. We allow this parameter to vary spa-290

tially to account for regional climatological variability, and we define the time window291

as thirty years to be consistent with the standard for climatological normals used in El292

Niño Southern Oscillation forecasting and other applications.293

We defined the magnitude filter to be 250 kg/m/s, a common threshold value for294

AR identification across multiple detection algorithms (Rutz et al., 2019). Requiring the295

five-day moving average to reach this value filters out smaller, loosely associated AR events296

and focuses attention on the periods that are more likely to cause temporally compound-297

ing hazard effects.It also negates the need to define a cutoff based on a minimum num-298

ber of ARs per sequence. The sequence algorithm therefore remains independent of any299

one AR detection method. Different detection methods produce different numbers of ARs300

based on the same timeseries, so maintaining the independence between sequences and301

ARs eliminates a significant source of potential variability in our results (Rutz et al., 2019).302

While the direction and magnitude of the results presented in this paper are ro-303

bust to changes in these three parameters, the statistics of sequence frequency, intensity,304

and duration will vary based on the chosen parameter values. We consider the flexibil-305

ity of the parameters to capture a range of events as a benefit of the proposed sequence306

definition. Further discussion and sensitivity analysis of the parameters are included in307

the Supplemental Information (Text S1 and Figure S5).308

3 Results: Hydrologic Hazard309

The objective of the sequence metric is to identify time windows of AR activity where310

temporal compounding is contributing to elevated hydrologic hazard over the MERRA-311

2 reanalysis period of WY 1981–2021. We examine the relationship between ARs, se-312

quences, and hydrologic hazard by investigating three variables: precipitation, runoff,313

and soil moisture. While extreme precipitation is closely tied with AR activity, runoff314

and soil moisture are more related to the hydrologic system response (Albano et al., 2020).315

We therefore characterize hydrologic hazard using runoff and soil moisture, and we char-316

acterize elevated hazard as days with anomalously high values of these variables. We then317

examine when those days with elevated hydrologic hazard intersect with days labeled318

as ARs or sequences.319

The four columns in Figure 2 represent all wet-season days, extreme precipitation320

days, extreme runoff days, and extreme soil moisture days, where extremes are measured321

as the 95th percentiles of the respective distributions for the given grid point (e.g., Payne322

& Magnusdottir, 2014; Moore et al., 2021). Figures 2a–b show the overall frequency of323

AR days (top) and sequence days (bottom) within California’s wet season. AR days (Fig-324

ure 2a) cover 8.8±5.6% of the record statewide. Sequence days (Figure 2b) are slightly325

more frequent, especially in the northwest, occurring across 16.4±11.7% of the record.326

Both maps exhibit a clear spatial pattern of higher frequencies in the northwest and lower327

frequencies in the southeast. Along California’s North Coast, AR days represent up to328

18% and sequence days represent up to 32% of all wet-season days. The lowest frequen-329

cies of AR days and sequence days occur on the lee side of the Sierra Nevada Mountains330

and around the Mojave Desert. This spatial pattern is consistent with previous research331

detailing the climatology of ARs (Payne & Magnusdottir, 2014) and precipitation (Lamjiri332

et al., 2018) in California.333

The relationships between extreme precipitation and AR days/sequence days are334

shown in Figures 2c–d. The percentage of extreme precipitation days captured by ARs335

is 20–30% in the low-precipitation regions, namely the leeward side of the Sierra Nevada336
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Figure 2. Hydrologic impacts of sequences, WY 1981–2021. Rows indicate what per-

centage of each column was labeled as an AR day (top) and or a sequence day (bottom). Panels

(a–b) in the leftmost column represent all wet-season days. Moving from left to right, the next

columns represent wet-season days with (c–d) extreme precipitation, (e–f) extreme runoff, and

(g–h) extreme soil moisture, where “extreme” is defined as values above the 95th percentile of

the distribution. Values range from 0–100% as shown in the legend at the bottom. AR days and

sequence days are calculated from MERRA-2 (Gelaro et al., 2017); precipitation is calculated

from PRISM (PRISM Climate Group, 2023); runoff is calculated from the USGS NWIS (USGS,

2022); and soil moisture is calculated from WLDAS (Erlingis et al., 2021). Data processing steps

are detailed in Section 2.1.

mountains on the eastern border of the state and the southeastern desert region. It rises337

to 60–70% in the wetter regions of the north-central coast and the Sacramento Valley.338

This observation agrees with existing literature on the relationship between ARs and ex-339

treme precipitation (e.g., Ralph et al., 2020). The percentage of extreme precipitation340

days captured by sequences is higher than that captured by AR days along the coast,341

particularly in the San Francisco Bay Area, and lower than that captured by AR days342

inland.343

Extreme runoff (Figures 2e–f) and extreme soil moisture (Figures 2g–h) are more344

likely to occur during sequence days statewide. The regional pattern across both vari-345

ables is an amplified version of the east-west dichotomy visible in Figure 2d. For the north-346

western half of the state, where ARs tend to be the primary drivers of hydrologic risk347

(Barth et al., 2017; Albano et al., 2020), sequence days capture over 90% of extreme runoff348

days and over 70% of extreme soil moisture days. AR days capture about 55% and 35%,349

respectively. Sequence days capture less of the extreme runoff and soil moisture days in350

the desert southeast, where ARs contribute less to the overall water balance. Therefore351

the AR sequence metric is successfully capturing time periods of elevated hydrologic haz-352

ard in areas where ARs are the dominant precipitation- and flood-producing mechanism.353
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4 Results: Sequence Characteristics354

The previous section confirmed that sequences can identify windows of elevated hy-355

drologic hazard due to ARs, characterized by anomalously high runoff and soil moisture,356

in the historical record. We now use the sequence metric to consider potential tempo-357

ral compounding risk in the future. We first quantify the historical frequency, intensity,358

and duration of sequences, then examine how those characteristics are projected to change359

in a future climate.360

4.1 Historical Characteristics361

In the California historical record, the statewide average annual sequence frequency362

is 1.5 ± 1.1 sequences per year from WY 1981–2010. However, there is significant re-363

gional variation around this number, as seen in Figure 3, for the reasons discussed in Sec-364

tion 3. There is also high interannual variation due to the large differences in seasonal365

water totals between wet and dry years; on average, about a third of all 1981–2010 wa-366

ter years in each grid cell have no sequences at all.367

Sequence intensity is defined as the peak 24-hour IVT measured over the lifetime368

of the sequence event (measured in kg/m/s) and sequence duration is defined as the length369

of continuous sequence conditions (measured in days). Unlike frequency, which is a sin-370

gle summary number for each grid cell, intensity and duration are recorded individually371

for every record in the event catalog. Figures 3a and 3b show the regional distributions372

of sequence average intensity and average duration, respectively, from WY 1981–2010.373

Average sequence intensity is higher in the northwestern half of the state, matching the374

distribution of average AR intensity. Average sequence duration follows a different pat-375

tern; the longest averages occur in the eastern Sierra Nevada mountains, where very few376

sequences occur (as indicated by bubble size) and the effects of averaging are not as strong.377

Other than those locations, average sequence duration seems to be relatively constant378

across the state, and is actually lowest in the regions with the highest sequence frequency.379

The values in Figure 3 will be used as the “baseline” to discuss changes from present to380

future in the following subsections.381

4.2 Projected Frequency Change382

Figure 4 reveals that the projected frequency of AR sequences is increasing over383

time. Figures 4a and 4b show the additive change in sequence frequency by decade un-384

der SSP2–4.5 and SSP5–8.5, respectively. The lines are colored by the hydrologic region385

(4-digit Hydrologic Unit Code (HUC4)) shown in Figure 4c. Rather than averaging the386

results by hydrologic region, which would flatten variability and create unrealistically387

smooth results, we selected the SPEAR grid cells at the centroid of each hydrologic re-388

gion and used those as representative examples to get an overview of differences and sim-389

ilarities in statewide behavior.390

While absolute frequency varies regionally based on California’s climatology, the391

additive change from historical to projected future is fairly consistent statewide, as seen392

by the clustering of the lines in Figures 4a and 4b; under SSP2–4.5, all hydrologic re-393

gions see annual frequency increases starting at a mean of +0.13 sequences/year in this394

decade and increasing to a mean of +0.72 sequences/year by the 2080s. SSP5–8.5 shows395

slightly more regional variation and ends with a higher average increase of +1.13 sequences/year.396

4.3 Projected Intensity Change397

We analyze the full distribution of sequence intensity through two lenses in Fig-398

ure 5. We first “zoom in” on the full intensity distribution for one case study grid cell.399

Each boxplot in Figure 5a represents one of the bias-corrected SPEAR ensemble mem-400
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Figure 3. Historical sequence intensity and duration. Bubbles are colored by the mean

values of (a) peak 24-hour IVT (kg/m/s) and (b) duration (days) at each SPEAR grid cell in

California, averaged across all WY 1981–2010 sequences occurring in that grid cell. Bubble size

represents average annual sequence frequency (sequences/year) as shown in the legend at the

bottom.

bers for historical (yellow), SSP2–4.5 (orange), and SSP5–8.5 (red) forcings at this lo-401

cation. The boxplots representing future scenarios show data from WY 2061–2090. This402

thirty-year period allows for analogous comparisons to the thirty-year historical base-403

line of WY 1981–2010 and approximates an “end-of-century” prediction. The Figure 5a404

results are specific to the grid cell chosen to represent hydrologic region 1804 (shown in405

Figure 5b), and Supplementary Figure S6 replicates the results for representative loca-406

tions within all hydrologic regions in California.407

The medians of the different ensemble members in Figure 5a vary within a given408

forcing category. The overall ensemble medians, though, increase from the historical sim-409

ulation to the projected future, and continue to increase with increasing emissions lev-410

els. This pattern holds true for the 75th percentile (upper end of the box) and the 95th411

percentile (upper end of the whisker); values are larger in the projected future than in412
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Decade

(c)

Figure 4. Projected change in sequence annual frequency by decade. Timeseries

plots show the additive change in sequence annual frequency by decade for emissions scenarios

(a) SSP2–4.5 and (b) SSP5–8.5. The vertical axis measures absolute (additive) change in se-

quences/year relative to the baseline historical time period of WY 1981–2010, averaged across

all five ensemble members. Each line represents one grid cell from each of California’s hydrologic

regions and are color-coded based on the legend at the bottom. (c) Map of California 4-digit

Hydrologic Unit Codes (HUC4), indicating hydrologic regions, with MERRA-2/SPEAR grid cells

outlined in gray. Representative grid cells (HUC4 regional centroids) are highlighted and marked

with a dot.

the historical past, and larger under SSP5–8.5 than under SSP2–4.5. It also holds for413

values above the 95th percentiles (outlier points above the upper whiskers). There are414

more sequences where the peak 24-hour IVT exceeds 750 kg/m/s, and there are even some415

sequences that break new ground and exceed a peak 24-hour IVT of 1,000 kg/m/s. This416

is consistent with prior work that finds shifts in the “cutoff scale” for extreme events that417

allow events with previously rare or unheard-of magnitudes to appear in a future climate418

(Neelin et al., 2017).419

We then “zoom out” to understand the relative change from historical to projected420

future across the entire state. We focus on the median, which measures distribution cen-421

tral tendency and serves as a good heuristic for the behavior of the bulk of the distri-422

bution, and the 95th percentile, which measures extreme behavior at the upper tail. To-423

gether, these two statistics create a picture of overall distribution behavior. For each statis-424

tic we calculate a multiplicative change factor between the historical scenario and one425

of the two future emissions scenarios, then convert the change factor to a percent change.426

Figure 5c illustrates how relative change metrics are derived for the median (in light blue)427

and the 95th percentile (in dark blue). The relative change statistics derived in Figure428

5c are then repeated for every grid cell and for both future emissions scenarios to gen-429

erate the density plots in Figures 5d–e, which summarize results for all SPEAR grid cells430

in the state.431
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(c) (d) (e)

Relative Change in 

Median = 1.07x (7%)

Relative Change in 

95th p. = 1.16x (16%)

(b)(a)(a)

Figure 5. Projected sequence intensity change. (a) Boxplots of the distributions of

sequence peak 24-hour IVT from individual SPEAR ensemble members for the case study grid

cell. Boxplots are separated by climate model forcing, where yellow represents historical (WY

1981–2010), orange represents SSP2–4.5 (WY 2061–2090), and red represents SSP5–8.5 (WY

2061–2090). The medians for individual members are marked with black lines and the overall

ensemble medians are marked with colored lines. Ensemble medians are calculated by combining

all five ensemble members into a single set and calculating the median value of that set. The

box contains the interquartile range (IQR, 25th–75th data percentile) and the whiskers contain

the 5th–95th data percentile. Values smaller than the 5th percentile and larger than the 95th

percentile are plotted as black dots. (b) Spatial location of the example grid cell, which is the ge-

ographic centroid of hydrologic region 1804. (c) Illustrative figure showing how relative changes

in the median and 95th percentiles are calculated. For visual simplicity, only the averages of the

historical and SSP2–4.5 ensemble members are shown and outlier points are not plotted. (d–e)

Statewide summaries of all grid cell values are shown for the relative changes in the (d) median

and (e) 95th percentile.

Figures 5d–e confirm that trends observed in the case study grid cell are represen-432

tative of the rest of California. The median and 95th percentile are larger than the his-433

torical baseline in almost all locations, and tend to be larger under SSP5–8.5 than SSP434

2–4.5. Overall, the median increases statewide by an average of 6.5±4.3% (SSP2–4.5)435

and 11.6±5.6% (SSP5–8.5) from WY 1981–2010 to WY 2061–2090. The 95th percentile436

increases by an average of 12.7±6.2% (SSP2–4.5) and 19.1±5.7% (SSP5–8.5). For both437

statistics, the statewide average values under the SSP 2–4.5 emissions scenario are at least438

one full standard deviation above zero (median: 6.5% > 4.3%; 95th percentile: 12.7% >439

6.2%). The SSP5–8.5 statewide averages are also both at least one standard deviation440

above zero (median: 11.6% > 5.6%; 95th percentile: 19.1% > 5.7%).441
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4.4 Projected Duration Change442

(a)

(b) (c)

Figure 6. Projected sequence duration change. (a) Boxplots of duration distributions

from individual ensemble members for the case study grid cell shown in Figure 5b. Boxplots

are separated by climate model forcing, where light blue represents historical (WY 1981–2010),

medium blue represents SSP2–4.5 (WY 2061–2090), and dark blue represents SSP5–8.5 (WY

2061–2090). The box contains the interquartile range (IQR, 25th–75th data percentile) and the

whiskers contain the 5th–95th data percentile. Values smaller than the 5th percentile and larger

than the 95th percentile are plotted as black dots. (b–c) Statewide summaries of all grid cell

values are shown for the relative changes in the (b) median and (c) 95th percentile.

Figure 6a shows duration distributions from each of the five SPEAR ensemble mem-443

bers, for the same case study grid cell representing hydrologic region 1804 identified in444

Figure 5b. Boxplots of sequence duration for representative cells from all California hy-445

drologic regions are shown in Supplementary Figure S7. Many of the trends identified446

for the distribution of sequence intensity in Figure 5a are repeated for sequence dura-447

tion in Figure 6a. The medians and 75th percentiles increase from historical to future448

forcings, although duration seems to be less sensitive to the specific emissions scenario.449

While the 95th percentiles are a bit more noisy, they seem to trend upwards with increas-450

ing emissions as well.451

Moving from the case study grid cell to the statewide perspective, the median du-452

ration (Figure 6b) increases by an average of 10.9±10.5% (SSP2–4.5) and 17.9±10.0%453

(SSP5–8.5). The 95th percentile (Figure 6c) increases by an average of 7.6±12.4% (SSP2–454

4.5) and 28.4±16.8% (SSP5–8.5). Interestingly, SSP2–4.5 does not lead to a robust statewide455

distributional change in the end-of-century prediction (median: 10.9% ≈ 10.5%; 95th456

percentile: 7.6% < 12.4%). By contrast, the SSP5–8.5 values for both statistics are well457

above the one standard deviation threshold (median: 17.9% > 10.0%; 95th percentile:458
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28.4% > 16.8%), which may speak to a greater importance of the specific level of emis-459

sions for sequence duration than was apparent in the case study grid cell.460

The most distinct difference between the two emissions scenarios, though, is in the461

outliers past the 95th percentile. In Figure 6a, the longest sequences in the projected fu-462

ture exceed those from WY 1981–2010 by more than a month and approach total du-463

rations of up to four months. To better understand these extreme events, we define a464

new category of “super-sequence” events that are longer than 60 days. Across Califor-465

nia, 73% of SPEAR grid cells had at least one super-sequence in any of the five ensem-466

ble members during WY 1981–2010, and only 39% of locations had multiple super-sequences467

in at least one ensemble member. The percentage of grid cells experiencing at least one468

super-sequence during WY 2061–2090 jumps to 87% for SSP2–4.5 and 99% for SSP5–469

8.5. Even more dramatically, the percentage of locations that experience multiple super-470

sequences in at least one ensemble member during WY 2061–2090 is 67% for SSP2–4.5471

and 94% for SSP5–8.5, which is an extraordinary expansion of the historical spatial cov-472

erage. The increasing frequency and widening footprint of super-sequence occurrence has473

serious implications for water management in locations that have never before experi-474

enced temporal compounding of this severity and duration.475

Super-sequences are also the dominant driver of the projected change in overall se-476

quence frequency. Figure 7 compares the historical versus projected future annual fre-477

quency for sequences of different durations. Figures 7a–b show that the frequency rates478

of sequences under two weeks long are essentially unchanged. Sequences that are 15–30479

days long (Figures 7c–d) and 31–60 days long (Figures 7e–f) see moderate increases in480

frequency. In the rightmost column (Figures 7g–h), super-sequences longer than 60 days481

are slated to approximately double in frequency in the SSP2–4.5 scenario and triple in482

the SSP5–8.5 scenario. The longer sequences are, the greater their change in annual fre-483

quency.484

5 Discussion485

5.1 Comparison of Sequence Changes and AR Changes486

Both the existing body of work on future ARs (e.g., Espinoza et al., 2018; Ralph487

et al., 2020) and the sequence projections presented in this paper indicate that future488

climate conditions will preferentially increase extremes at the expense of more moder-489

ate events. The results presented in Section 4 show that sequences are projected to in-490

crease in frequency, intensity, and duration in a warming climate. The changes in sequence491

frequency observed in Section 4.2 match the projected increases in AR frequency and492

intensity that we discussed in Section 1.1; however, this linked relationship was not a fore-493

gone conclusion. The sequence metric captures both the severity of individual AR events494

and the second-order effects of temporal sequencing on hydrologic impacts. Not only will495

the ARs themselves increase in frequency and magnitude, but these new and larger storms496

will occur in areas that are more likely to be in a state of elevated hydrologic hazard,497

further amplifying their effects on watersheds, ecosystems, and communities.498

One of the most concerning trends in our findings is the dramatic growth in the499

frequency and spatial extent of super-sequences from the historic baseline (WY 1981–500

2010) to the end of the century (WY 2061–2090). We hypothesize that sequences morph501

into super-sequences when smaller sequence events grow so large that they overlap and502

combine, as observed by Baldwin et al. (2019) in the context of temporally compound-503

ing heat waves. We find support for this hypothesis in Figure 4. For many of the hydro-504

logic regions sequence frequency continues to increase through the end of the century.505

However, hydrologic region 1801 (one of the wettest regions in California) shows a sur-506

prising decrease, starting in the 2070s under SSP2–4.5 and in the 2080s under SSP5–8.5.507

When individual sequences start to saturate the time window and merge together, it re-508
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Figure 7. Sequence annual frequency as a function of duration. Each point represents

data from one SPEAR grid cell in California. Plots show the annual sequence frequency in his-

torical (WY 1981–2010) versus projected future (WY 2061–2090) simulations. Moving from left

to right, the results are shown for sequences of specific durations, where the categories are (a–b)

≤14 days, (c–d) 15–30 days, (e–f) 31–60 days, and (g–h) >60 days. Rows represent emissions

scenarios SSP2–4.5 (top) and SSP5–8.5 (bottom).

duces the total number of sequences even as the number of sequence days continues to509

rise. Our hypothesis about the evolution of super-sequences is additionally supported510

by the additive decadal change in sequence days (Supplementary Figure S8), which do511

not see the same decrease towards the end of the century.512

We also highlight the longest super-sequences in the projected future, the events513

that have durations approaching the entire length of the six-month wet season. Having514

a single atmospheric river last for multiple months would be unreasonable. However, there515

can be gaps of multiple days within sequences where there is no precipitation, and a se-516

quence spanning multiple months merely indicates that the hydrologic environment never517

has time to revert to its baseline state between successive AR events. Super-sequences518

are not anticipated to occur every year; recall the statistic presented in Section 4.2 that519

on average a third of all water years in WY 1981–2010 within each GFDL SPEAR grid520

cell have zero sequences. The percentage of water years with super-sequences is 1.9±521

1.9% under the historical baseline, 4.2±3.6% under SSP2–4.5, and 10.5±6.3% under522

SSP5–8.5. These values equate to super-sequence return periods of approximately 54,523

24, and 10 years, respectively, averaged across the state.524

Previous research has shown that California’s hydroclimate is projected to see more525

“precipitation whiplash” events that oscillate between wet and dry extremes (Swain et526

al., 2016, 2018) and that the temporal distribution of ARs will sharpen and concentrate527

more events into a smaller portion of the wet season (Chen et al., 2019; Rhoades et al.,528

2020). A “megaflood” is plausible in the next century, comparable to or larger than the529

Great Flood of 1862 when it rained or snowed almost continuously for 2.5 months and530

the Central Valley remained inundated for several months afterward (X. Huang & Swain,531

2022). The most extreme super-sequences are infrequent, but they are possible, and iden-532
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tifying them with the sequence algorithm highlights a previously overlooked source of533

risk in California.534

5.2 Study Limitations535

There are three main sources of uncertainty in estimates of future climate change:536

forcing uncertainty (arising from unknown future conditions external to the modeled cli-537

mate system), model uncertainty (arising from the assumptions made to create simpli-538

fied representations of reality), and internal variability (arising from the stochastic na-539

ture of the climate system) (Maraun & Widmann, 2018). We have considered forcing540

uncertainty through the quantitative and qualitative comparison of two SSPs, and we541

have considered internal climate variability by using five ensemble members from GFDL542

SPEAR. Because ARs are transient phenomena, accurately representing their uncertainty543

is tied to the representation of long-term climate variability modes, and previous research544

has shown that long-term climate variability can be well approximated by as little as a545

single ensemble member given a record of approximately thirty years (Tseng et al., 2022;546

H. Huang et al., 2021). However, because we are only presenting results from a single547

climate model, model imperfections and model uncertainty are not characterized in this548

work. To better understand how AR sequences and temporally compound risk will evolve549

in a future climate, multi-model evaluations are needed to explore the full stochastic range550

of potential outcomes. Future work could expand to include one or more of the climate551

models recommended by the California Department of Water Resources (DWR) and Cli-552

mate Change Technical Advisory Group (CCTAG) (2015) for water planning applica-553

tions in California.554

Another potential limitation of the results presented in this paper is the 50km res-555

olution of the MERRA-2 grid. While this work shows a broad relationship between AR556

sequences, which are defined and identified based on atmospheric data alone, and on-557

the-ground hydrologic hazard, it is not a substitute for a high-resolution, process-based558

analysis that resolves the underlying physical phenomena and establishes a causal path-559

way. However, it does serve to motivate the need for future analysis related to the tem-560

poral compounding at local scales. This paper presents a compelling argument that tem-561

porally compound AR flood risk is worthy of further investigation in convection-permitting562

simulations that resolve the physical connections between AR sequences and hydrologic563

impacts.564

6 Summary and Conclusions565

Temporally compounding (back-to-back) atmospheric rivers cause outsize impacts566

relative to their individual intensities. This paper introduces a definition of atmospheric567

river (AR) sequences as a new way to identify and measure when temporal compound-568

ing is contributing to hydrologic hazard and risk. The sequence definition utilizes a mov-569

ing average of integrated water vapor transport (IVT) at a given location. We identi-570

fied all days with sequences in the historical record in California and showed that sequences571

capture the elevated hydrologic hazard that occurs during and after back-to-back AR572

events, especially in regions where ARs are the dominant contributors to total precip-573

itation and flooding.574

We created a catalog of sequence events for every 50km × 50km grid cell in Cal-575

ifornia. Each sequence event has a recorded intensity (measured as peak 24-hour IVT,576

kg/m/s) and duration (measured as days of continuous sequence conditions). We used577

bias-corrected GFDL SPEAR climate simulations to compare the changes in intensity,578

duration, and frequency from historical to projected future, using both a middle-of-the-579

road greenhouse gas emissions scenario (SSP2–4.5) and a high-end emissions scenario580

(SSP5–8.5). Sequence frequency is projected to increase by decade, with the largest changes581

occurring towards the end of the century in SSP5–8.5.582
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We assessed changes in sequence intensity and duration based on future climate583

projections from GFDL SPEAR, presenting both an in-depth analysis of a specific hy-584

drologic region and a broad statewide overview of key distributional statistics. Sequence585

intensity sees increases in the distribution medians and 95th percentiles under both SSP2–586

4.5 and SSP5–8.5, with a larger change recorded from historical to SSP2–4.5 than from587

SSP2–4.5 to SSP5–8.5. Sequence duration medians and 95th percentiles also increase al-588

most everywhere in the state, and the change from SSP2–4.5 to SSP5–8.5 is similar to589

or larger than the change from historical to SSP2–4.5. Both sequence intensity and du-590

ration have notable increases in extreme values larger than the 95th percentile. “Super-591

sequences” with durations longer than 60 days are projected to dramatically increase in592

frequency and spatial coverage, especially for SSP5–8.5. Overall we conclude that tem-593

porally compounding extremes are projected to increase in frequency and severity in the594

future, generally at the expense of more moderate events, which is consistent with pre-595

vious work about projected changes in ARs.596

Temporal compounding is a key concern for California’s water managers (Fish et597

al., 2022) and a major contributor to some of the state’s most severe water crises (X. Huang598

& Swain, 2022; Michaelis et al., 2022). However, no work to date has quantified the link599

between temporally compounding ARs and hydrologic impacts. This paper thus fills a600

gap in our understanding the effect of temporal compounding on the hydrologic conse-601

quences of ARs.602

Open Research Section603

Atmospheric reanalysis data, including integrated water vapor transport (IVT) and604

precipitation, were retrieved from the Modern-Era Retrospective analysis for Research605

and Applications, Version 2 (MERRA-2; Gelaro et al., 2017). Daily streamflow data was606

retrieved from United States Geological Survey (USGS) gages in California using the Na-607

tional Weather Information System (NWIS) (USGS, 2022). Drainage areas for each of608

the 567 USGS streamflow gages used in this study were calculated with the USGS Stream-609

Stats online tool (USGS, 2019). Soil moisture data was retrieved from the Western Land610

Data Assimilation System (WLDAS; Erlingis et al., 2021). Climate model projections611

were retrieved from the Seamless System for Prediction and EArth system Research612

(SPEAR) ensemble (Delworth et al., 2020). This paper uses a five-member subset of the613

larger thirty-member SPEAR ensemble and uses IVT and AR statistics as calculated by614

Tseng et al. (2022).615

Calculations were performed using R and Sherlock, Stanford University’s high-performance616

computing cluster. All scripts used to generate, process, and analyze results can be found617

on Github (Bowers, 2023). In particular, the R Markdown file reproduce figures.html linked618

in the readme page of the Github repository replicates all figures and numerical results619

presented in this paper.620
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