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Key Points: 11 

• Chromophoric dissolved organic matter removal is more than terrestrial dissolved organic 12 
carbon (tDOC) remineralization in coastal water. 13 

• Commonly used optical properties can quantify percent tDOC in natural environment but 14 
with different sensitivity. 15 

• None of the optical properties can indicate the extent of tDOC remineralization from 16 
natural biogeochemical processing. 17 

  18 
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Abstract 19 

Terrestrial dissolved organic carbon (tDOC) is significant for coastal carbon cycling, and  20 

spectroscopy of chromophoric and fluorescent dissolved organic matter (CDOM, FDOM) is 21 

widely used to study tDOC cycling. However, CDOM and FDOM are often amongst the more 22 

labile components of tDOC. Because few studies have compared spectroscopy to measurements 23 

of both bulk tDOC concentration and tDOC remineralization, it remains unclear how accurately 24 

CDOM and FDOM actually trace tDOC in coastal waters when tDOC undergoes extensive 25 

remineralization. We collected a 4-year coastal timeseries in Southeast Asia, where tropical 26 

peatlands provide a large tDOC input. A carbon stable isotope mass balance shows that on average 27 

56% of tDOC was remineralized upstream of our site, while 77% of CDOM was bleached. Despite 28 

this extensive tDOC remineralization and preferential CDOM loss, optical properties could still 29 

reliably quantify tDOC. CDOM spectral slope properties, such as S275–295, are exponentially related 30 

to tDOC; these are highly sensitive tDOC tracers at low, but not at high, tDOC concentrations. 31 

Other properties are linearly related to tDOC, and both specific ultraviolet absorbance (SUVA254) 32 

and DOC-normalized fluorescence intensity may be suitable to quantify tDOC over a wider range 33 

of concentrations. However, the optical properties did not show consistent changes with the extent 34 

of tDOC remineralization. Our data support the validity of CDOM and FDOM spectroscopy to 35 

trace tDOC across coastal gradients even after the majority of tDOC has been remineralized, but 36 

they also show that these measurements may not provide direct information about the degree of 37 

natural tDOC processing. 38 

1 Introduction 39 

Annually around 0.25 Pg C of terrestrial dissolved organic carbon (tDOC) are transported from 40 

land to ocean, playing an important role in global and especially coastal carbon cycling (Ciais et 41 

al., 2013; Dai et al., 2012; Raymond & Spencer, 2015). A large fraction of tDOC is remineralized 42 

in ocean margin environments (Bélanger et al., 2006; Letscher et al., 2011; Painter et al., 2018). 43 

For instance, it is reported that 40%-70% of tDOC is remineralized on the Louisiana Shelf, in the 44 

Eurasian Arctic Shelf Sea and in the Sunda Shelf Sea before reaching the open ocean (Fichot & 45 

Benner, 2014; Kaiser et al., 2017; Zhou et al., 2021). The remineralization results in the formation 46 

of dissolved inorganic carbon (DIC) along with transformation of nutrient elements, thus causing 47 

ocean acidification (Capelle et al., 2020; Semiletov et al., 2016; Wit et al., 2018; Zhou et al., 2021) 48 
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and influencing nutrient distributions (Alling et al., 2012; Qualls & Richardson, 2003; Vähätalo & 49 

Zepp, 2005). In addition, a fraction of tDOC—chromophoric dissolved organic matter (CDOM) 50 

can absorb light, causing light attenuation in natural waters and affecting primary productivity and 51 

other biological activities (Aksnes et al., 2009; Martin et al., 2021; Urtizberea et al., 2013). 52 

Since terrestrial dissolved organic matter (tDOM) is rich in CDOM and fluorescent DOM 53 

(FDOM), absorbance and fluorescence spectroscopy are widely exploited to trace tDOC in aquatic 54 

environments, due to their high sensitivity and ease of measurement (Bauer & Bianchi, 2011; 55 

Coble, 2007; Dittmar, 2015; Stedmon & Nelson, 2015). The most commonly used optical 56 

properties (Table 1) include absorption coefficients (al, m-1), CDOM spectral slopes (such as 57 

S275-295, nm-1) and the CDOM spectral slope ratio (SR=S275-295/S350-400), specific ultraviolet 58 

absorbance (SUVA254, L mg-C-1 m-1), the fluorescence index (FI) and the humification index 59 

(HIX).  60 

 61 

Table 1. Description of widely used optical properties indicating sources and compositions of DOM. 62 

Optical property Provided information Reference 

al (m-1) Represents CDOM concentration, often linearly 
correlated to DOC and lignin phenol concentrations in 
different aquatic environments 

Fichot and Benner (2011); Hernes 
and Benner (2003); Osburn et al. 
(2016); Vantrepotte et al. (2015) 

S275-295 (nm-1) Negatively correlated to DOM apparent molecular 
weight, exhibits exponential relationship with 
concentration of lignin phenols 

Del Vecchio and Blough (2002); 
Fichot and Benner (2012); Helms 
et al. (2008) 

SR Higher values indicate higher content of low apparent 
molecular weight components in DOM; increases 
upon photo exposure 

Helms et al. (2008) 

S320-412 (nm-1) An indicator of freshly produced autochthonous 
marine DOM, strong linear correlation to DOC-
specific al during phytoplankton bloom 

Danhiez et al. (2017) 

SUVA254 (L mg-C-1 m-1) Shows linear relationship with aromaticity of DOM Cartisano et al. (2018); Chin et al. 
(1994); Hur et al. (2006); 
Weishaar et al. (2003) 

FI DOM is likely to be terrestrial when FI<1.4, while is 
more marine-sourced with higher FI 

Cory et al. (2010); McKnight et al. 
(2001) 

HIX An indicator of content of humic substances or extent 
of humification in DOM, higher values corresponds to 
higher humification level 

Ohno (2002) 

BIX An indicator of autochthonous biological activity, 
high values (>1) indicate dominance of aquatic DOM  

Huguet et al. (2009) 
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Typically, tDOC is characterized by high values for al, SUVA254 and HIX, and low values for 63 

S275-295, SR and FI (Gandois et al., 2014; Huguet et al., 2009; Kida et al., 2018; Stedmon et al., 64 

2011). In addition, parallel factor analysis (PARAFAC) of FDOM spectra is commonly used to 65 

identify and quantify terrestrial fluorescent components to trace tDOC distribution in natural 66 

environments (Murphy et al., 2008; Stedmon et al., 2003).  Apart from these indices of terrestrial 67 

source materials, the FDOM biological index (BIX) and more recently the CDOM spectral slope 68 

between 320 and 412 nm (S320-412, nm-1) are used as tracers for in-situ production of autochthonous 69 

DOM (Table 1). 70 

However, while these optical properties are clearly useful, especially as qualitative markers for 71 

identifying the presence and biogeochemical cycling of tDOC, it is still often unclear how accurate 72 

they really are as tracers of total tDOC across coastal gradients where tDOC undergoes extensive 73 

remineralization. Several studies have shown that some of the optical properties (al, S275–295) are 74 

related to tDOC composition in estuarine and coastal environments, and that these optical 75 

properties can therefore be used to quantify tDOC concentration (Fichot & Benner, 2012; Fichot 76 

et al., 2016; Hernes & Benner, 2003). However, on the one hand, terrigenous CDOM and FDOM 77 

may be more labile and lost preferentially relative to bulk tDOC, especially when subject to 78 

photodegradation (Benner & Kaiser, 2011; Moran et al., 2000; Osburn et al., 2009). Yet on the 79 

other hand, tDOC itself can only be estimated from proxy measures, and comparisons between 80 

optical properties and tDOC have primarily relied on lignin phenols as a biomarker to quantify 81 

tDOC. While lignin phenols unambiguously show that tDOC is present, they are only a small 82 

fraction of the bulk tDOC (Fichot & Benner, 2012; Louchouarn et al., 2000; Osburn & Stedmon, 83 

2011), and may also decompose more easily than bulk tDOC during remineralization, especially 84 

from photodegradation (Benner & Kaiser, 2011; Cao et al., 2018; Hernes & Benner, 2003). This 85 

is further demonstrated by the fact that lignin phenols are scarce in the open-ocean DOC pool 86 

(Hedges et al., 1997; Meyers-Schulte & Hedges, 1986; Opsahl & Benner, 1997), although 87 

molecular and carbon isotope data suggest that oceanic DOC may in fact contain more tDOC than 88 

previously recognised (Cao et al., 2018; Medeiros et al., 2016; Zigah et al., 2017). Moreover, few 89 

studies have compared the various different optical properties comprehensively to evaluate which 90 

are the most reliable for tracing tDOC in natural samples with mixed sources. Where systematic 91 

comparisons have been conducted, they have been largely based on laboratory studies using DOM 92 

from a limited range of plant, soil, or microbial sources, and subjected to purely photochemical or 93 
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purely microbial degradation experiments (Hansen et al., 2016; Lee et al., 2018). Specifically, 94 

Hansen et al. (2016) showed that individual optical properties depended on both source and DOM 95 

degradation process, with photochemical and microbial degradation often causing opposing 96 

changes. They recommended that multiple optical properties should be used to evaluate DOM 97 

sources in a qualitative perspective but did not show any quantitative information. Similarly, Lee 98 

et al. (2018) concluded that SUVA, BIX and FI are most reliable as indicators of DOM source 99 

because they are rarely affected by biogeochemical processes, but they did not derive statistical 100 

relationships between optical properties and tDOC either. While these laboratory experiments have 101 

provided important insights, we do not know how closely these results resemble what happens in 102 

the coastal environment, where the DOM pool consists of many more different sources, and 103 

physical, photochemical, and microbial processes interact in potentially complex ways (Antony et 104 

al., 2018; Karen & Mary Ann, 1999; Miller & Moran, 1997). Consequently, more environmental 105 

datasets are needed in which optical parameters can be directly compared and related to the actual 106 

tDOC concentration across a known gradient of tDOC remineralization. 107 

In this study, we used a multi-year time series of DOC concentration, DOC and DIC carbon stable 108 

isotope composition, and DOM optical analysis from coastal Southeast Asia. Southeast Asia’s 109 

extensive tropical peatlands deliver around 10% of global land–ocean DOC flux (Baum et al., 110 

2007; Huang et al., 2017; Moore et al., 2011), while the region’s archipelagic geography and 111 

monsoon-driven ocean current reversal result in long water residence times on the shelf (Mayer et 112 

al., 2022), allowing the majority of tDOC to be remineralized within the shelf sea (Wit et al., 2018; 113 

Zhou et al., 2021). We used a carbon stable isotope mass balance approach to calculate both the 114 

percentage contribution of tDOC to the bulk DOC pool (tDOC%) and the proportion of tDOC that 115 

had been remineralized to DIC. This allows us to test how accurately different optical properties 116 

can quantify tDOC%, and also to test whether any of the optical properties change purely as a 117 

function of the extent of tDOC remineralization. In addition, we compared our environmental data 118 

to results obtained from laboratory tDOC remineralization experiments to examine whether the 119 

changes in optical properties during such simplified experiments reflect the patterns we observed 120 

in our environmental data. This study not only provides a comprehensive dataset of a hotspot for 121 

carbon cycling investigation to fill the gap in global coastal carbon and optical analysis, but also 122 

proves the validity of applying spectroscopic techniques to broadly trace tDOC quantitatively in 123 

natural environment. 124 



manuscript submitted to JGR Biogeosciences 

 5 

2 Dataset and Methods 125 

2.1 Datasets used in the present analysis 126 

The main dataset used in the present analysis is a multi-year time series of DOC concentration, 127 

stable carbon isotope composition, and optical properties collected in the Singapore Strait. In the 128 

Singapore Strait, the monsoon system causes a seasonal reversal of water currents (Mayer et al., 129 

2022; Susanto et al., 2016; van Maren & Gerritsen, 2012): this causes tDOC originating from 130 

peatlands on Sumatra to be transported to our study site during the Southwest (SW) Monsoon 131 

(May to September), while water from the South China Sea with a mostly marine DOC pool is 132 

delivered during the Northeast (NE) Monsoon (November to March) (Zhou et al., 2021). The map 133 

of the study area is provided as Figure S1 in supporting information (SI). The present analysis 134 

extends this time series by one more year compared to our previous publications (Zhou et al. 2021; 135 

Martin et al. 2021), and focuses on comparing the performance of different optical properties in 136 

tracing actual tDOC in coastal environment. While our previous publications only used part of the 137 

optical dataset, mostly as supporting data to qualitatively confirm the monsoon-driven tDOC input, 138 

the present study provides a comprehensive analysis to determine how the optical properties relate 139 

quantitatively to variation in natural tDOC concentration and remineralization. 140 

Because we lack optical data from the peatland-draining rivers on Sumatra that form the riverine 141 

endmember for our study site (Martin et al., 2022; Zhou et al., 2021), we complement our analysis 142 

using two other data sources. For CDOM absorption (as a440), we calculated the discharge-143 

weighted average for the main peatland-draining rivers based on Wit et al. (2018) and Siegel et al. 144 

(2019), detailed in Section 2.5.2. The resulting values of a440 and DOC follow the same CDOM-145 

DOC relationship found for the various peatland-draining rivers in Sarawak (Figure S2; Martin et 146 

al., 2018). This indicates that the tDOC composition and optical properties are broadly similar 147 

across Southeast Asian peatlands, which is also consistent with the fact that DOC concentrations 148 

in peatland-draining rivers follow a single, strong relationship to catchment peatland cover across 149 

both Sumatra and Borneo (Rixen et al., 2022). Therefore, for the other optical properties, we used 150 

CDOM and FDOM data acquired from three expeditions in rivers in Sarawak, Borneo (Martin et 151 

al., 2018; Zhou et al., 2019). The Sarawak data were divided into three categories: peat-majority 152 
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rivers (salinity<1), with catchment peatland coverage ≥50%, non-peat-majority rivers (salinity<1), 153 

with catchment peatland coverage <50%, and Sarawak estuarine and coastal water (salinity³1). 154 

2.2 Singapore Strait timeseries sampling 155 

The Singapore Strait timeseries data were collected from October 2017 to July 2021. Water 156 

samples were collected from 5-m depth at two sites in the Singapore Strait using a Niskin bottle. 157 

Sampling was undertaken monthly except during pandemic-related restrictions. The water was 158 

filtered onboard through a pre-rinsed 0.22 μm polyethersulfone membrane (Supor, Merck 159 

Millipore) with a peristaltic pump. All vials and tubes had been washed with 1 M HCl and ultrapure 160 

water (18.2 MW cm−1). Amber borosilicate vials for DOC and optical measurements were pre-161 

combusted at 450 ℃ for 4 h after washing. At each station, a depth profile of salinity and 162 

temperature was measured using a fastCTD Profiler (Valeport Ltd). The water column typically 163 

does not show stratification (Martin et al., 2022). 164 

2.3 Sample analysis 165 

2.3.1 Dissolved carbon and total alkalinity analysis 166 

Triplicate DOC samples were acidified with 50% sulfuric acid, stored at +4 ℃, and analysed on a 167 

Shimadzu TOC-L system with a high-salt combustion kit. For each sample, 5–7 replicate injections 168 

were performed to ensure that the coefficient of variation was less than 2%. Deep-sea water (42−45 169 

µmol/L DOC) from the University of Miami, USA was analysed on each run (long-term mean and 170 

standard deviation from 2017–2022: 46.7 ± 4.2 µmol/L). 171 

Dissolved inorganic carbon (DIC) was analysed on an Apollo SciTech AS-C5 DIC analyser at 172 

room temperature (22 ± 0.5°C). Each sample was measured 3−5 times to obtain a relative standard 173 

deviation less than 0.1%. Certified reference material (CRM) from Scripps Institution of 174 

Oceanography (Batch 172) or an in-house secondary standard of Singapore Strait seawater was 175 

used for calibration. The analytical precision was ±0.15%. 176 

Total alkalinity (TA) was analysed at room temperature (22 ± 0.5 °C) on an Apollo SciTech AS-177 

ALK2 titrator with a ROSS combination glass pH electrode (Orion 8302BNUMD), conducting 178 

the Gran titration (Gran, 1952) automatically. The titration was conducted with a 25-mL aliquot 179 
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and 0.1 M hydrochloric acid (HCl) and repeated 2−4 times for each sample. The CRM or secondary 180 

standard above was used for calibration and the analytical precision was ±0.13%. 181 

Stable isotope ratio of DOC (d13CDOC) samples were stored at -20 °C, then thawed and acidified 182 

with 35 µL concentrated HCl to pH of 2−3 and analyzed at the Ján Veizer Stable Isotope 183 

Laboratory, University of Ottawa, Canada (2-sigma analytical precision of ±0.4%). 184 

Stable isotope composition of DIC (d13CDIC) samples were partly analyzed at the Stable Isotope 185 

Facility, University of California, Davis using a GasBench II system with a Thermo Scientific 186 

Delta V Plus isotope-ratio mass spectrometer (analytical precision of ±0.1‰), and partly analysed 187 

in the Marine Geochemistry Laboratory, Nanyang Technological University, Singapore as 188 

described previously (Zhou et al., 2021), with analytical precision of ±0.2‰. 189 

2.3.2 Optical analyses 190 

Samples for CDOM and FDOM were analysed at room temperature (~22 °C) on the day of 191 

collection or after overnight storage at +4℃. CDOM absorption was measured on a Thermo 192 

Evolution 300 dual-beam spectrophotometer from 230 nm to 900 nm at 1-nm resolution in 10-cm 193 

or 2-mm quartz cuvettes with ultrapure water as a reference. They were baseline-corrected and 194 

analysed using the R package “hyperSpec” (Beleites & Sergo, 2018; Green & Blough, 1994). We 195 

calculated the following properties: a350 or a440 (m-1; Green and Blough, 1994), S275-295 (nm-1; 196 

Helms et al., 2008), S320-412 (nm-1; Danhiez et al., 2017), SR (Helms et al., 2008) and SUVA254 (L 197 

mg-C-1 m-1; Weishaar et al., 2003). 198 

FDOM steady-state fluorescence excitation–emission matrices (EEMs) were measured on a 199 

HORIBA Jobin Yvon FluoroMax-4 fluorometer in a 1-cm or 3-mm quartz cuvette at excitation 200 

wavelength of 250–450 nm with 5-nm intervals and emission wavelength of 290–550 nm with 2-201 

nm intervals, with 5 nm for both bandwidths. EEMs of ultrapure water were analyzed to record 202 

Raman and Rayleigh scattering. EEMs were processed using the Matlab drEEM toolbox (Murphy 203 

et al., 2013) to achieve inner filter effects (IFE) correction, blank subtraction, and conversion to 204 

Raman units (RU; Lawaetz & Stedmon, 2009). We calculated the fluorescence index (FI; Cory et 205 

al., 2010), humification index (HIX; Ohno, 2002) and biological freshness index (BIX; Huguet et 206 
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al., 2009). The calculations of these optical properties and the information that they are considered 207 

to provide are described in Table 1. 208 

2.4 Photodegradation experiments 209 

We used data from the same photodegradation experiments reported by Zhou et al. (2021) that 210 

were conducted with water samples from a peatland-draining river on Borneo (Maludam River) 211 

and from the Singapore Strait during the SW Monsoon. Although we used the same dataset as the 212 

previous publication, our purpose here is to identify whether any of the properties is quantitatively 213 

related to the extent of tDOC photochemical remineralization, which was not addressed in Zhou 214 

et al. (2021). The experimental methods are described in detail in Zhou et al. (2021); briefly, 30 215 

mL filtered water was added into replicate cylindrical quartz cells (50 mm pathlength, 50 mm 216 

diameter) with Teflon screw caps, and irradiated under a xenon lamp with daylight optical filter in 217 

an Atlas Suntest CPS + solar simulator. Dark controls of filtered water were placed in Duran bottles 218 

fully wrapped with aluminium foil in the solar simulator. Two replicates each for light-exposed 219 

and control samples were withdrawn at each time point for DOC concentration and optical 220 

measurements.  221 

2.5 Statistical analysis 222 

2.5.1 Parallel factor analysis 223 

Parallel factor analysis (PARAFAC) can partition fluorescence EEMs into underlying fluorescent 224 

components to characterize and quantify the relative contribution of different fractions (Cory & 225 

McKnight, 2005; Murphy et al., 2013; Stedmon & Bro, 2008). A total of 550 sample EEMs, 226 

including environmental data from the Singapore Strait and Sarawak, Borneo, and experimental 227 

data from photodegradation and bio-incubation for coastal seawater and Maludam water (Zhou et 228 

al., 2021; Zhou et al., 2019), were analysed by PARAFAC using the drEEM toolbox in MATLAB 229 

(Murphy et al., 2013). Eleven EEMs were excluded because they were identified as outliers by 230 

visual inspection. A five-component model was generated and validated by split-half analysis. The 231 

excitation and emission peak wavelengths of the 5 components (C1−C5) were compared with other 232 

studies (Coble, 1996; Murphy et al., 2008; Osburn et al., 2016; Stedmon & Markager, 2005a; 233 

Stedmon et al., 2003; Zhou et al., 2019) to attribute possible sources of the DOM fractions they 234 

represent (Figure S3 and Table S1). The fluorescence intensity at the excitation and emission 235 
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maximum (Fmax) is a measure of the contribution to total fluorescence and of the concentration 236 

of each DOM fraction represented by the corresponding PARAFAC component. 237 

2.5.2 Mixing models and carbon isotope mass balance calculation 238 

We assessed the mixing behaviour of the optical parameters across the whole salinity gradient. 239 

Moreover, we used a carbon isotope mass balance approach to calculate the amount of tDOC that 240 

has been remineralized, following the approach of previous publications (Humborg et al., 2017; 241 

Samanta et al., 2015; Su et al., 2017; Zhou et al., 2021). Specifically, we used two-endmember 242 

mixing models to estimate expected distributions of measured parameters across the salinity 243 

gradient for purely conservative mixing between a riverine and a marine endmember. We obtained 244 

riverine endmember values of DOC concentration, a440, d13CDOC, d13CDIC, DIC and TA (Table S2) 245 

by taking discharge-weighted averages of data from the four main peat-draining rivers on Sumatra 246 

(the Indragiri, Kampar, Siak and Batanghari in Figure S1b) that are the most plausible sources of 247 

peatland tDOC to the Singapore Strait (Siegel et al., 2019; Siegel et al., 2009; Wit et al., 2018; 248 

Zhou et al., 2021). The resulting riverine endmember values were corroborated by the fact that the 249 

a440 and DOC fall onto the same CDOM–DOC relationship found for the various peatland-draining 250 

rivers in Sarawak (Figure S2; Martin et al., 2018). This suggests that peatland tDOM pools and 251 

their optical properties are quite similar across Southeast Asian peatlands, and that variation in 252 

tDOC concentration among rivers is primarily a function of catchment peatland coverage rather 253 

than reflecting differences in tDOM characteristics (Rixen et al., 2022). Since d13CDOC in peatland-254 

draining rivers of Southeast Asia mostly ranges between −30 and −28‰ (Evans et al., 2014; 255 

Gandois et al., 2014; Zhu et al., 2020), we adopted an approximated value of −29‰ as the riverine 256 

endmember. Photodegradation and combined photo-biodegradation of tDOC can cause 257 

fractionation of −1.4‰ to −5.8‰ between the original d13CDOC and the produced d13CDIC values 258 

(Opsahl & Zepp, 2001; Osburn et al., 2001; Spencer, Stubbins, et al., 2009). Given that peatland-259 

derived tDOC in Southeast Asia appears to be fairly refractory to direct biodegradation but shows 260 

high photo-lability (Nichols & Martin, 2021; Zhou et al., 2021), we adopted a fractionation of 261 

−3‰, thus taking −32‰ as the d13CDIC value for remineralized tDOC in our calculation. Marine 262 

endmember values were determined as averages of the measurements during late February and 263 

March, when marine water from the open South China Sea predominates in the Singapore Strait 264 
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with little tDOC presence (Figure 1). The fractional contributions of freshwater and seawater were 265 

determined from salinity. 266 

To quantify the remaining tDOC concentration and how much tDOC had already been 267 

remineralized to DIC, we assumed that tDOC is the only source of remineralized terrigenous 268 

carbon while terrigenous POC does not make contribution, and that autochthonous DOC cycling 269 

does not influence our estimation. These assumptions are discussed in Section 4.1. The equations 270 

for the carbon isotope mass balance calculation are provided in the SI (Samanta et al., 2015; Zhou 271 

et al., 2021). Briefly, the concentration of tDOC in each sample was calculated from the measured 272 

d13CDOC and DOC concentration using a two-endmember isotope mixing model. We refer to this 273 

as “remaining tDOC concentration” because it represents the fraction of the initial tDOC input that 274 

remains in form of DOC, as opposed to the fraction that has been remineralized. Based on the 275 

known stoichiometric effects of primary production, remineralization, calcium carbonate 276 

production and dissolution, and air-sea CO2 exchange on the deviations of DIC and TA from their 277 

conservative mixing values (Zeebe & Wolf-Gladrow, 2001), and on the fractionation of d13C 278 

(Opsahl & Zepp, 2001; Osburn et al., 2001; Spencer, Aiken, et al., 2009), the amount of tDOC in 279 

a sample that has already been remineralized can be back-calculated as in other studies (Humborg 280 

et al., 2017; Samanta et al., 2015; Su et al., 2017; Zhou et al., 2021). We refer to the sum of 281 

remaining tDOC and remineralized tDOC as the “total initial tDOC concentration”. 282 

The mixing patterns of both the remaining tDOC and total initial tDOC closely resembled 283 

conservative mixing, suggesting that physical mixing still dominates the concentration changes in 284 

our sampling site and that the difference between remaining tDOC and total initial tDOC results 285 

mainly from remineralization upstream of our site. As such, using our conservative mixing model, 286 

we estimated the apparent (and actual) riverine endmember DOC concentration by extrapolating 287 

the remaining tDOC (and total initial tDOC) back to salinity 0. The errors of tDOC extrapolation 288 

were the standard deviations calculated from Monte Carlo simulation by taking all uncertainties 289 

of measurements and calculation into consideration (Table S2) and recalculating 10,000 times. 290 

Similarly, the apparent riverine endmember value of a440 was obtained by extrapolating our a440 291 

timeseries data to salinity 0 based on the conservative mixing model. The actual riverine 292 

endmember a440 was obtained from the discharge-weighted average as explained in the previous 293 

paragraph. The errors of apparent and actual riverine endmember a440 were obtained directly from 294 
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the linear regression of a440 against salinity and as the standard deviation from the discharge-295 

weighted average calculation, respectively. These riverine endmember values are presented in 296 

Table S3. 297 

3 Results 298 

3.1 Temporal variation of DOM optical properties in the Singapore Strait 299 

There is a seasonal change in biogeochemistry in the Singapore Strait driven by the monsoonal 300 

current reversal. The extended timeseries data in the present study demonstrates similar seasonal 301 

patterns compared to our previous publications (Martin et al., 2022; Martin et al., 2021; Zhou et 302 

al., 2021). Here, we further examine additional optical parameters (S320-412, FI, BIX, HIX, and C2 303 

from PARAFAC analysis) to examine the application of spectroscopic techniques to quantify the 304 

concentration and remineralization of tDOC in natural environment directly, instead of using other 305 

proxies such as lignin phenols to represent the bulk tDOC. 306 

During the SW Monsoon (May to September), currents carry freshwater from the east coast of 307 

Sumatra to our study site in the Singapore Strait, causing salinity to drop from approximately 33 308 

to around 29 (Figure 1a and Figure S1a). DOC concentrations and CDOM (a440) increased by, 309 

respectively, 1.2-1.7 and 2-10 times compared to other seasons, with maximum concentrations 310 

showing clear interannual variability (Figure 1b-c). S275−295 and SR showed the lowest values 311 

during the SW Monsoon, in the range of 0.016−0.020 nm-1 and 0.95−1.23, respectively (Figure 312 

1d-e). In contrast, SUVA254 and HIX reached peak values of higher than 3.3 L mg-C-1 m-1 and 313 

0.9, respectively (Figure 1f-g). This seasonality in the optical properties indicates a large amount 314 

of tDOC input by freshwater. During the NE Monsoon and the following early inter-monsoon 315 

season (December to March), water without much terrestrial input flows from the South China Sea 316 

to the study site, resulting in relatively high S275−295, low SR, low SUVA254 and low HIX. In 317 

contrast, FI and BIX tended to have consistently low values during the SW Monsoon, respectively 318 

at around 1.4 and 0.7, but exhibited variable values in the other seasons, so that the overall seasonal 319 

contrast was less strong than that for optical properties typically associated with tDOC (Figure 320 

1h-i). Finally, S320−412 showed very little variation and no seasonality, with values mostly from 321 

0.015 to 0.019 nm-1 (Figure 1j). 322 
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 323 
Figure 1. Timeseries data of salinity, DOC concentration and optical properties in the Singapore Strait. Data from 324 

Northeast (NE) Monsoon and Southwest (SW) Monsoon are distinguished by different shading colors. Salinity, DOC 325 
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concentration, a440, S275−295, SR, SUVA254, FI and HIX presented seasonal changes driven by the monsoonal current 326 

reversal, while S320−412 and BIX showed limited or no seasonality. 327 

 328 

3.2 Temporal variation of PARAFAC components in the Singapore Strait 329 

Five fluorescent components (C1−C5) were identified by PARAFAC analysis (Figure S3 and 330 

Table S1), explaining 99.4% of the variability of the dataset. Among these 5 components, C1, C2 331 

and C3 emitted mostly at visible wavelengths, which may suggest a large contribution of molecular 332 

conjugation or interaction (Chen et al., 2020; Coble, 1996; Del Vecchio & Blough, 2004a). 333 

Specifically, C1 has been identified in different water bodies (Stedmon & Markager, 2005a) and 334 

is typically associated with fulvic acid fluorophores. Emission peaks of C2 at around 430 nm with 335 

two excitation maxima at 250 nm and 430 nm have been respectively assigned as humic-like 336 

components peak A and C in previous work (Coble, 1996), and have been widely thought to 337 

represent DOM fractions with high apparent molecular weight (Jaffé et al., 2014; McKnight et al., 338 

2001; Stedmon et al., 2003; Yamashita et al., 2008). C2 has been reported to be highly correlated 339 

with lignin phenol concentration (Yamashita et al., 2015) and is found only at low intensities in 340 

the open ocean (Murphy et al., 2008), thus is considered to be terrestrial derived. DOC-normalized 341 

C2 intensity was used previously to estimate tDOC percent contribution in the Sarawak FDOM 342 

dataset (Zhou et al., 2019). C3 also resembled the maxima characteristic of peak A but possessed 343 

a wider emission wavelength range, which has been found to be dominated by DOM derived from 344 

forest and wetland regions (Stedmon et al., 2003). Although C4 was traditionally considered 345 

related to marine humic-like material (Coble, 1996; Yamashita et al., 2015), it was related to 346 

microbial processed materials (Grunert et al., 2021; Osburn et al., 2016) and was found to have 347 

significant terrestrial signals in Southeast Asia (Harun et al., 2016; Zhou et al., 2019). In the present 348 

study, the terrestrial origin of C4 was proven by the consistent seasonal change with freshwater 349 

input caused by monsoon-driven currents. Finally, C5 showed high similarity to peak T and peak 350 

B, which are considered as protein-like fluorophores produced from microbial processes, and 351 

usually associated with fresh phytoplankton-produced DOM (Coble, 1996; Kowalczuk et al., 352 

2013; Stedmon & Markager, 2005b; Yamashita & Tanoue, 2003; Yang & Hur, 2014). 353 

Generally, the signals of C1−C4 exhibited similar seasonal changes during the 4 years, with high 354 

fluorescence contribution during the SW Monsoon, roughly 4−11 times greater than those during 355 
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other seasons (Figure 2a−d). This seasonality is consistent with the reported attribution of 356 

PARAFAC components mentioned above and the monsoon-driven freshwater delivery to the 357 

sampling site. There was also an interannual variability of peak values, consistent with that 358 

observed in DOC concentration, a440 and SUVA254. Among these four components, their intensities 359 

followed an order of C3 > C2 > C4 > C1. In contrast, Fmax of C5 stayed within the range of 360 

0.015−0.035 RU without obvious seasonality (Figure 2e). This suggests that there is a baseline of 361 

marine-sourced DOM in the Singapore Strait that is hardly influenced by seasonal water advection 362 

and mixing. 363 

 364 
Figure 2. Timeseries data of FDOM component intensities derived from PARAFAC analysis. Components 1-4 were 365 

identified as terrestrial components as their variability was consistent with seasonal freshwater input. The highest 366 
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values were observed in SW Monsoon when tDOM is delivered from the west coast of Sumatra by water currents. 367 

Component 5, which was attributed to marine-sourced DOM, showed little variability. 368 

 369 

3.3 Carbon isotope mass balance and preferential CDOM loss relative to tDOC 370 

During the SW Monsoon, d13C tended to be more negative for both the DOC and DIC pool, with 371 

values mostly from -25.5‰ to -24‰ and -1.8‰ to -0.9‰, respectively (Figure 3a-b), indicating 372 

the large contribution of terrigenous carbon. Based on our carbon isotope mass balance, the 373 

remaining tDOC and total initial tDOC concentrations reached peak values of 50-60 µM and ~120 374 

µM, respectively (Figure 3c-d). During the NE Monsoon and the following inter-monsoon 375 

seasons, in contrast, the timeseries data exhibited the most enriched d13CDIC and d13CDOC and the 376 

lowest values for the remaining tDOC and total initial tDOC concentrations. 377 

Apparent conservative mixing was observed for both tDOC concentrations and CDOM absorption 378 

(a440) in the Singapore Strait (Figure 3e-f). By calculating linear regressions against salinity for 379 

both remaining tDOC and total initial tDOC, we infer an apparent riverine tDOC concentration of 380 

389±97 µmol L-1 and an actual riverine tDOC concentration of 814±133 µmol L-1. Our actual 381 

riverine tDOC concentration is within the uncertainty range of the discharge-weighted average 382 

DOC (890 ± 159 µmol L-1) reported from the four main peat-draining rivers in Sumatra that 383 

represent the most plausible source of tDOC input to Singapore (Wit et al., 2018). Our estimate is 384 

also very close (within 9%) to the value published previously based on a shorter timeseries (Zhou 385 

et al., 2021). The difference between the apparent and actual endmember tDOC concentrations 386 

indicates that, on average, 56% of the initial tDOC is remineralized before reaching our sampling 387 

site. 388 

We quantified CDOM using the a440 rather than a350 to allow a direct comparison to the data 389 

published from Sumatra (Siegel et al., 2019; Siegel et al., 2009). CDOM absorption showed a 390 

strong linear correlation with salinity in the Singapore Strait (r2 = 0.76, p < 0.01, Figure 3f), from 391 

which we infer an apparent riverine endmember a440 of 2.7 m-1. This is 77% lower than the 392 

discharge-weighted riverine endmember a440 of 11.7 m-1 that we calculated based on the data in 393 

Siegel et al. (2019) and Wit et al. (2018). We therefore conclude that on average 77% of CDOM 394 

absorption is lost before reaching our sampling site. This shows that there is preferential loss of 395 

CDOM relative to tDOC, albeit not by a very large amount. 396 
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 397 
Figure 3. Timeseries data of stable carbon isotope ratios and tDOC concentrations, and mixing behaviours of tDOC 398 

and CDOM. (a) d13CDOC and (b) d13CDIC presented the most depleted values during the SW Monsoon due to freshwater 399 

input, while (c) the remaining tDOC and (d) total initial tDOC concentrations showed the highest values during this 400 

season. (e) The results of conservative mixing for tDOC concentrations suggested that on average 56% of tDOC is 401 

remineralized, while (f) on average 77% of CDOM is bleached before reaching our study site, showing some 402 

preferential removal of CDOM. 403 

 404 

3.4 Mixing pattern of DOM optical properties in Singapore and Sarawak 405 

The compiled Singapore and Sarawak carbon and optical data against salinity showed that the 406 

DOM properties at the two sites broadly fell within an overlapping range on the same mixing 407 

continuum (Figure 4). The Sarawak data showed a clear distinction for DOC concentration and for 408 

a440 of samples from rivers with >50% and <50% peatland in their catchments (squares in Figure 409 
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4). Clear differences between peat-majority and non-peat-majority rivers were also seen for 410 

SUVA254, FI, HIX, and BIX, but less so for the CDOM spectral slope parameters. At low salinities 411 

(<25), corresponding to estuarine samples, high variability for DOC concentration, a440 and 412 

SUVA254 was observed while the values for S275−295, SR, FI, HIX and BIX were more compacted 413 

(triangles in Figure 4). 414 

Between salinities of 27-33, corresponding to more mixed coastal waters beyond the dominant 415 

influence of a single river, the values of these DOM properties for Singapore and Sarawak coastal 416 

water largely overlapped for a given salinity (triangles and circles in Figure 4). Given that the 417 

marine endmember water for Singapore and Sarawak is the southern South China Sea, the overlap 418 

in DOM properties for a given salinity suggests that the riverine endmembers from Sarawak and 419 

Sumatra have similar average tDOM composition and optical properties, as also suggested by the 420 

similar relationship of CDOM a440 to DOC concentration for the river data (Figure S2). Because 421 

optical properties other than a440 have not been measured in rivers on Sumatra, we therefore use 422 

the freshwater data from the river systems in Sarawak to provide indicative ranges of these 423 

parameters for samples of pure tDOC in our further analysis of the Singapore data below. 424 
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 425 
Figure 4. DOC and optical properties of coastal water in the Singapore Strait, and of rivers and estuarine/coastal waters 426 

in Sarawak (Borneo) against salinity. River data from Sarawak are distinguished by whether the catchment has >50% 427 

or <50% peatland. For all parameters, the data from the Singapore Strait fall within the same mixing continuum as 428 

coastal waters from Sarawak. 429 

 430 

3.5 Relationships of optical properties to tDOC content 431 

Our isotope mass balance calculation for the Singapore Strait timeseries allows us to estimate for 432 

each sample both the proportion of the bulk DOC pool that is tDOC and the amount of initially 433 

present tDOC that has been remineralized. We can therefore test how well the different optical 434 

properties are related to the tDOC content and whether they reflect the extent of prior 435 

remineralization. Given the similarity in DOM optical properties between our Singapore and 436 

Sarawak coastal water data (Figure 4 and Figure S2), we use the river data from Sarawak (at 437 

salinity 0) to provide an estimated range of values for the optical properties at 100% tDOC, prior 438 
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to experiencing remineralization in the coastal environment. The observed percentage of tDOC in 439 

coastal water is the combined result of both water mass mixing and remineralization. 440 

Most of the optical properties showed significant relationships with the percentage of bulk DOC 441 

contributed by the remaining tDOC (tDOC%, Figure 5, statistical parameters are listed in Table 442 

2). Specifically, a440 presented a strong and linear relationship with tDOC% (Figure 5a), although 443 

owing to the preferential CDOM loss (Figure 3e–f) this relationship deviated from the river data. 444 

The spectral slope properties S275−295 and SR showed exponential relationships with tDOC%, with 445 

both r2 being 0.55. When the relationships were extrapolated to 100% tDOC they fell in the range 446 

of the Sarawak river data (Figure 5b-c), suggesting that these properties are applicable across the 447 

full range of tDOC%. The CDOM spectral slope S320−412, which is indicative of fresh primary 448 

production of DOM (Danhiez et al., 2017), did not vary much throughout the whole tDOC% range 449 

(Figure 5d). SUVA254 was linearly related to tDOC% and had the highest r2 (0.66) of any of the 450 

optical properties (Figure 5e). Moreover, the relationship also fell within the range of the river data 451 

when extrapolated to 100% tDOC. Furthermore, compared to S275−295 and SR, SUVA254 showed 452 

less scatter around the linear fitting line and possessed relatively narrower confidence and 453 

prediction intervals. For the fluorescence properties, there was a linear relationship between FI and 454 

tDOC% (Figure 5f) and the extrapolation fell within the range of collected river data, although the 455 

river values showed relatively large scatter. In contrast, HIX showed an exponential relationship 456 

with tDOC% and the relationship did not extrapolate into the range of the river data (Figure 5g). 457 

There was no relationship of BIX against tDOC% because BIX, like S320–412, is more related to 458 

autochthonous marine DOM (Huguet et al., 2009). Finally, the DOC-normalized Fmax value of 459 

PARAFAC component 2 (C2-Fmax/DOC), which was previously used to estimate tDOC 460 

contribution in Sarawak estuaries (Zhou et al., 2019), was linearly related to tDOC%, showing 461 

similarly high r2 (0.64) as SUVA254 and exhibiting good consistency with the river data (Figure 462 

5i). 463 
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 464 
Figure 5. Relationships between optical properties and percentage contribution of tDOC to total DOC (tDOC%). The 465 

relationships were calculated only with the Singapore Strait data during NE Monsoon, Inter-Monsoon-1 (IM-1, the 466 

intermonsoon after NE Monsoon), SW Monsoon and Inter-Monsoon-2 (IM-2, the intermonsoon after SW Monsoon), 467 

but were extrapolated to 100% tDOC to compare to the reference river data from Sarawak. 468 

  469 
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Table 2. Summary of statistical relationships of optical properties with tDOC% (all N=76, p<0.05). 470 

Optical property Fitting formula 
Parameter 

Adjusted r2 Consistent with 
river data* 

a b 

a440 (m-1) y = a ´ tDOC% + b 4.75 ´ 10-3 3.08 ´ 10-2 0.60 ´ 

S275-295 (nm-1) y = exp(a´ tDOC% + b) -8.52 ´ 10-3 -3.59 0.55 Ö 

SR y = exp(a´ tDOC% + b) -1.06 ´ 10-2 5.83 ´ 10-1 0.55 Ö 

SUVA254 
(L mg-C-1 m-1) 

y = a ´ tDOC% + b 3.14 ´ 10-2 7.86 ´ 10-1 0.66 Ö 

FI y = a ´ tDOC% + b -3.17 ´ 10-3 1.62 0.45 Ö 

HIX y = exp(a´ tDOC% + b) 6.21 ´ 10-3 -4.43 ´ 10-1 0.62 ´ 

C2-Fmax/DOC y = a ´ tDOC% + b 1.07 ´ 10-5 1.29 ´ 10-4 0.64 Ö 

*Consistency corresponds to whether the extrapolated relationship at 100% tDOC falls within the reference river data 471 
from Sarawak: Ö—falls in the range, ´—falls out of the range. 472 

 473 

3.6 Relationships of optical properties to tDOC remineralization 474 

Our isotope mass balance showed that the tDOC had experienced a varying extent of 475 

remineralization before reaching our sampling site. Unlike the strong relationships with tDOC%, 476 

none of the optical properties were related to the extent of tDOC remineralization, even though the 477 

extent of tDOC remineralization ranged from 7% to 75% during the  SW Monsoon (Figure S4). 478 

This suggests that although most of the optical properties can be used as tracers of tDOC%, they 479 

do not appear to be sensitive to the extent of tDOC remineralization in the natural environment. 480 

We restricted this analysis to include only data from the SW Monsoon as this is the only season 481 

with sufficiently large tDOC input to quantify the remineralization percentage accurately. The 482 

absolute concentration of tDOC is much lower in other seasons, and small variations in d13CDIC 483 

can then result in a very large range of inferred percentage tDOC remineralization, which we 484 

consider to be inaccurate. 485 

In contrast, most of the optical properties did show clear relationships to percentage tDOC loss in 486 

our laboratory photodegradation experiments, both with pure tDOC samples from a peatland-487 

draining river (Maludam) and with coastal water samples from the Singapore Strait during the SW 488 

Monsoon (Figure 6). For Maludam river samples, CDOM a440 decreased linearly with tDOC loss 489 

while S275−295 and SR increased linearly by 64% and 156%, respectively (Figure 6a-c). S320−412 and 490 
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SUVA254 showed exponential decreases from ~0.016 to ~0.012 nm-1 and from ~5.2 to ~1.5 L mg-491 

C-1 m-1, respectively (Figure 6d-e). However, fluorescence properties showed more variability. FI 492 

first dropped by ~10% upon 30%−40% tDOC loss, after which it increased (Figure 6f). HIX 493 

always stayed at around 0.93 across the whole percent tDOC loss (Figure 6g) and BIX started to 494 

rise once tDOC loss exceeded 50% (Figure 6h). C2-Fmax/DOC exhibted a general increase of 495 

more than two times of the initial value. For the two coastal water samples from Singapore, we 496 

estimated tDOC loss by taking the prior natural tDOC remineralization (from our isotope mass 497 

balance) into account, and we conservatively assumed that all DOC lost during the incubation was 498 

tDOC, because marine DOC at our site is not very photo-sensitive (Zhou et al. 2021). Although 499 

only little DOC was remineralized in the coastal water samples, S275−295 and SR changed by more 500 

than twofold relative to the initial values, while SUVA254, HIX and C2-Fmax/DOC decreased 501 

linearly to a smaller degree with percent tDOC loss. S320−412 and BIX only changed slightly. 502 

 503 
Figure 6. Changes in optical properties as a function of the percentage loss of tDOC during pure photodegradation 504 

experiments for Singapore coastal water and water from a peatland-draining river in Sarawak (Maludam River). 505 

Unlike the patterns of optical properties against percent tDOC loss in natural coastal water, most of the parameters 506 
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did present certain correlations to tDOC loss in laboratory incubation purely under photo exposure, but the correlations 507 

were different for different water types. 508 

 509 

4 Discussion 510 

4.1 Reliability of tDOC calculation 511 

Carbon stable isotope measurements can provide strong insights into sources and biogeochemical 512 

processing of DOM (Alling et al., 2008; Bauer & Bianchi, 2011; Lee et al., 2020). As DOM from 513 

terrestrial source and marine environment possess distinctive carbon isotope compositions, the 514 

d13CDOC values are widely used as fingerprints to distinguish DOC from different sources based 515 

on endmember mixing models (Humborg et al., 2017; Ye et al., 2018; Zhou et al., 2021). Our 516 

estimated endmember d13CDOC values (Table S2) conform to the generally reported ranges of –25‰ 517 

to –32‰ and –21‰ to –22‰ for riverine and marine endmembers, respectively (Bauer, 2002; 518 

Beaupré, 2015; Gandois et al., 2014). From our estimated endmember values for d13CDOC and the 519 

measured DOC concentrations in our coastal samples we could therefore use a mixing model to 520 

estimate the remaining tDOC concentration (Section 2.5.2 and Text S1.1). Besides, it is known 521 

that apart from physical mixing, biogeochemical processes including primary 522 

production/remineralization, CaCO3 dissolution/calcification and CO2 outgassing/uptake, also 523 

cause stoichiometrically constrained changes in DIC and TA, and can induce carbon isotope 524 

fractionation (Zeebe & Wolf-Gladrow, 2001). In our case, the deviations in DIC and TA are 525 

primarily caused by remineralization and CaCO3 dissolution/calcification, while net CO2 526 

outgassing is expected within the Sunda Shelf (Kartadikaria et al., 2015; Wit et al., 2018; Zhou et 527 

al., 2021). 528 

Several previous studies have applied the stable carbon isotope mass banlance approach to quantify 529 

the contribution of terrestrial organic matter degradation to the observed DIC and d13CDIC in 530 

different regions (Humborg et al., 2017; Samanta et al., 2015; Su et al., 2020; Zhou et al., 2021) 531 

For example, it was estimated from the depletion in d13CDIC that annually 4.0 Tg terrestrial organic 532 

matter is respired in the central and outer Laptev Sea in the Arctic (Humborg et al., 2017). Based 533 

on a compiled dataset including DIC, d13CDIC, dissolved calcium and oxygen, it was found that 534 

remineralization is the main cause of the deviation from conservative mixing in the Hooghly River 535 
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estuary in India (Samanta et al., 2015). Similarly, a mass balance calculation in the hypoxic zone 536 

of the Pearl River estuary in China demonstrated that on average 35% of the total organic matter 537 

remineralization was of terrestrial organic matter (Su et al., 2017), while the calculation in the 538 

Chesapeake Bay in the US showed that autochothounous organic matter rather than terrestrially 539 

derived organic matter dominated oxygen-consuming process (Su et al., 2020). The deviation of 540 

measured d13CDIC from its conservative mixing value in our dataset (around –1‰ during SW 541 

Monsoon) is similar to the deviation observed in these previous studies, which suggests that our 542 

mass balance calculation provides robust estimates of tDOC remineralization. 543 

The riverine endmember values in the present analysis can be considered entirely contributed by 544 

tDOC and terrigenous CDOM. On the one hand, DOM produced from phytoplankton or other 545 

microbial processes always stayed at a stedy and low level. This is demonstrated by stable S320–412 546 

values and low C5-Fmax largely around or even less than 0.05 RU for both coastal water and river 547 

water (Figure 4d and data not shown), both of which did not show any seasonality (Figure 1f and 548 

Figure 2e). The low S320–412 and little signals of  C5 are aligned with the annually low concentration 549 

of chlorophyll-a which is possibly caused by limited light availability (Martin et al., 2021; Morgan 550 

et al., 2020) and tidal mixing of the water column (Mayer & Pohlmann, 2014). Besides, 551 

typically >95% of the terrigenous organic carbon in Souteast Asian peatland-draining rivers is in 552 

form of DOC (Baum et al., 2007; Moore et al., 2011; Müller et al., 2015), and the small part of 553 

transported POC can probably sink and accumulate in the sediment, thus the remineralization of 554 

POC can hardly make a difference in the observed DIC and d13CDIC. 555 

4.2 Preferential loss of CDOM compared to tDOC during natural remineralization 556 

tDOC generally has a high content of chromophores, and CDOM in estuaries and coastal waters 557 

is therefore often of terrestrial origin (Asmala et al., 2012; Chen et al., 2015; Osburn et al., 2016; 558 

Santos et al., 2016). This characteristic provides the basis for using optical properties to study 559 

tDOC. Absorption coefficients (al) often show strong correlations with bulk DOC concentrations 560 

in rivers, estuaries and coastal waters (Asmala et al., 2012; Fichot et al., 2016; Mann et al., 2016; 561 

Martin et al., 2018; Stedmon et al., 2011). However, we also observed preferential removal of 562 

CDOM compared to tDOC remineralization, although the difference was relatively modest (77% 563 

versus 56% loss). This finding is consistent with previous work on biological and photochemical 564 

processes of DOM for freshwater (Benner & Kaiser, 2011; Martin et al., 2018; Spencer, Stubbins, 565 
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et al., 2009) and coastal waters (Moran et al., 2000; Osburn et al., 2009). For example, the half-566 

life time of CDOM in the Mackenzie River was estimated to be shorter than that of DOC when the 567 

river water was exposed to sunlight (Osburn et al., 2009). Similarly, removal of CDOM was found 568 

to be 21% more than that of DOC in biodegradation incubations conducted with water from a 569 

coastal estuary in Georgia after it was photo-exposed (Moran et al., 2000). Moreover, a large 570 

decrease in a355/DOC ratio against salinity was observed in waters from the Middle Atlantic Bight, 571 

especially when the solar irradiance was higher (Del Vecchio & Blough, 2004b). A key mechanism 572 

driving preferential CDOM loss is likely that aromatic structures in chromophores can be partly 573 

oxidised to non-chromophoric DOC during biogeochemical processes, especially by reactive 574 

oxygen species formed under photo exposure (Cory & Kling, 2018; Del Vecchio & Blough, 2002; 575 

Vione et al., 2009). Furthermore, it is reported that photochemical reactions of specific molecules 576 

of DOM, such as aromatic amino acids, could change DOM characteristics and possibly make the 577 

products unavailable for microbes, thus inhibiting bacterial degradation processes (Amado et al., 578 

2015). Our finding that CDOM loss is greater than tDOC loss is therefore fully consistent with 579 

previous experimental and observational research in other regions. 580 

Pure biodegradation of Southeast Asian peatland DOM appears to be much too slow to account 581 

for the observed remineralization (Nichols & Martin, 2021), while photodegradation can remove 582 

large fractions of the tDOC and CDOM(Zhou et al., 2021). However, pure photochemical 583 

remineralization is usually fairly slow in the natural environment due to the comparatively low 584 

natural sunlight doses (Fichot & Benner, 2014; Osburn et al., 2009; Reader & Miller, 2012). 585 

Therefore, it is most likely that interactive photo-stimulated biodegradation plays an important role 586 

in tDOC remineralization and CDOM decomposition. Notably, although there is a large extent of 587 

tDOC and CDOM removal, the tDOC and CDOM concentrations still showed a pattern of 588 

conservative mixing at our study site. While this might appear to be contradictory, in fact this only 589 

indicates that physical mixing over the salinity range observed at our site occurs faster than the 590 

remineralization rate, and that the majority of the observed remineralization therefore takes place 591 

upstream of our sampling site. 592 

4.3 Accuracy of optical properties as tracers of tDOC content in natural water 593 

DOM optical properties have been widely measured in estuarine and coastal environments, and it 594 

is clear that they can be sensitive indicators of the presence of tDOC (Fichot & Benner, 2012; 595 
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Kaiser et al., 2017; Massicotte et al., 2017; Mizubayashi et al., 2013; Painter et al., 2018; Stedmon 596 

& Nelson, 2015). Several environmental studies have also demonstrated that some optical 597 

properties (al and S275–295) can be used to quantify tDOC concentration as calculated from lignin 598 

phenols (Fichot & Benner, 2012; Fichot et al., 2016; Hernes & Benner, 2003; Lu et al., 2016; 599 

Walker et al., 2013). However, lignin phenols are a small (typically 0.1–4% of DOC; Hernes et 600 

al., 2007; Opsahl & Benner, 1997; Osburn et al., 2016) and potentially rather labile (Cao et al., 601 

2018; Hernes & Benner, 2003; Ronald Benner & Kaiser, 2011) fraction of tDOC, while terrigenous 602 

CDOM and FDOM may also be preferentially removed relative to bulk tDOC (Benner & Kaiser, 603 

2011; Moran et al., 2000; Osburn et al., 2009). Specifically, both lignin and CDOM/FDOM are 604 

composed to a significant degree of aromatic moieties, which are especially photo-labile, while 605 

most aliphatic compounds are less susceptible to photodegradation (Berggren et al., 2022; Opsahl 606 

& Benner, 1998; Osburn et al., 2001; Schmitt-Kopplin et al., 1998). In contrast, aromatic 607 

components are generally more recalcitrant to microbial processes (Kang & Mitchell, 2013). These 608 

difference in reactivity can likely account for preferential removal of lignin phenols and of 609 

CDOM/FDOM relative to the bulk tDOC. For example, it was reported that the removal of lignin 610 

phenols and CDOM was more than twice as high as the loss of DOC during combined photo- and 611 

biodegradation of water from Broad River in South Carolina in the US (Benner & Kaiser, 2011). 612 

However, the degree to which optical properties are lost preferentially is likely dependent on the 613 

relative rates of different degradation processes, which are poorly quantified in natural 614 

environments. Therefore, it is still unclear how accurately these optical properties can trace total 615 

tDOC when it is also being subjected to natural remineralization processes. In the present study, 616 

we therefore used d13CDOC to estimate tDOC concentration and d13CDIC to estimate the extent of 617 

prior tDOC remineralization. Our results provide robust statistical evidence that all the optical 618 

properties typically used to identify tDOM are significantly related to tDOC% even when more 619 

than half of tDOC has already been remineralized (Figure 5). However, the different properties 620 

have variably strong relationships and differ in their sensitivity to tDOC in different parts of the 621 

tDOC% range. 622 

The strong linear relationship between a440 and tDOC% shows that CDOM absorption coefficients 623 

can still be used to quantify tDOC in coastal water even when extensive remineralization has taken 624 

place. However, the fact that we did observe preferential removal of CDOM relative to tDOC 625 

(Figure 3e–f) underscores the fact that al–tDOC relationships are sensitive to the extent of tDOM 626 
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biogeochemical degradation and must therefore change significantly across estuarine and coastal 627 

gradients. In addition, the high variability of a440 in estuaries can result from the mixing of seawater 628 

and different rivers with highly distinctive concentrations of tDOC and CDOM depending on the 629 

catchment coverage of peatland (Rixen et al., 2022). Caution would therefore be needed in 630 

attempting to calculate tDOC concentrations from al when the range in remineralization might be 631 

large and when the riverine influence is complex. 632 

The non-linear relationships we observed for S275–295 and SR with tDOC% are consistent with 633 

previous studies showing exponential relationships for S275–295 with lignin phenol concentration 634 

(Benner et al., 2005; Fichot & Benner, 2012) and linear correlation for SR with carbon-normalized 635 

lignin yield (Spencer et al., 2010). Besides, after extrapolating the fitting curve to salinity 0, the 636 

relationships showed good consistency with tropical peatland river data, suggesting that unlike 637 

CDOM absorption, these spectral slope-based properties maintain a constant relationship to 638 

tDOC% even as tDOC is remineralized. Based on the r2 and confidence intervals, both S275–295 and 639 

SR show similar accuracy for quantifying tDOC% (Figure 5 and Table 2), resulting from the 640 

relatively steady S350−400 across the whole salinity gradient (data not shown), consistent with 641 

previous research (Fichot & Benner, 2012). It is interesting to note that compared to S275–295, the 642 

slope ratio SR shows less variability at mid-salinities in the data from Sarawak, suggesting that SR 643 

might be less sensitive to the mixing among different rivers (Figure 4d). However, in our time 644 

series data from the Singapore Strait, S275–295 and SR were equally well related to tDOC% (Figure 645 

5). 646 

SUVA254 is usually interpreted as a measure of DOM aromaticity, as shown by 13C-NMR 647 

measurements with organic matter from a variety of aquatic environments (Weishaar et al., 2003). 648 

Moreover, SUVA254 was recently proposed as a measure to distinguish between primarily 649 

photochemically labile tDOC and bio-labile tDOC in the UniDOM biogeochemical modelling 650 

framework (Anderson et al., 2019). Our study demonstrates that SUVA254 is linearly related to 651 

tDOC% and performs better than other CDOM measures as a quantitative tDOC tracer, given that 652 

the relationship shows less scatter (r2 = 0.66) and narrower confidence and prediction intervals 653 

(Figure 5e). This is consistent with the robust positive relationships between SUVA254 and the 654 

fraction of humic substances obtained from a diverse range of watersheds in the US (Spencer et 655 

al., 2012). We note that our SUVA254–tDOC% relationship extrapolates to the lower boundary of 656 
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available river data. While the true SUVA254 for rivers on Sumatra is not known, this result likely 657 

indicates some sensitivity of SUVA254 to preferential CDOM loss during tDOC remineralization. 658 

Our data cannot confirm whether reduction in SUVA254 reflects the conversion of primarily photo-659 

labile tDOC to bio-labile structures as suggested in the UniDOM model (Anderson et al., 2019), 660 

but they do suggest that SUVA254 can provide a good measure of tDOC in coastal environments. 661 

The fluorescence index (FI) and humification index (HIX) are also widely used as tDOC tracers 662 

but mainly as qualitative indicators. It is suggested that when FI is less than 1.4, the DOC pool is 663 

dominated by terrestrial matter, while FI larger than 1.4 indicates an increasing dominance of 664 

microbially-derived DOC (Cory et al., 2010; McKnight et al., 2001).  Our data show that FI has a 665 

clear linear relationship with tDOC% (Figure 5f), which notably contrasts with the poor 666 

relationship between FI and the proportion of humic substances in DOM reported from a river 667 

basin in eastern Thailand (Kida et al., 2018). However, the formula of FI calculation is not strictly 668 

fixed, depending on how fluorescence spectral correction is conducted (Cory & McKnight, 2005; 669 

Cory et al., 2010; McKnight et al., 2001). Additionally, it has been suggested that FI changes by 670 

at least 0.1 units when there is a source change in DOM (McKnight et al., 2001). It is clear that FI 671 

can change up to 0.3 in the Singapore Strait over a range of tDOC% from 0 (during inter-monsoon 672 

seasons) to ~60% (during the SW Monsoon). However, FI is also the most variable parameter in 673 

the river data, with some rivers having FI values similar to the inter-monsoon data from the 674 

Singapore Strait, despite carrying predominantly tDOC (Zhou et al., 2019). FI is therefore 675 

potentially less useful as a tDOC tracer than the other optical properties. 676 

It is expected that HIX rises along with tDOC% increase because it indicates humification level, 677 

and humic substances are an important component of tDOC (Ohno, 2002; Zsolnay et al., 1999). 678 

However, similar to FI, the HIX calculation is not identical in different studies (Birdwell & Engel, 679 

2010; Inamdar et al., 2011; Lee et al., 2018; Ohno, 2002). We choose to use the formula after 680 

inner-filtering correction (Ohno, 2002) as our dataset spans a large range of DOC concentrations. 681 

HIX does show a clear relationship with tDOC%, but notably, the river data do not fall on the same 682 

relationship extrapolated from the coastal water data. It is well known that humic substances can 683 

be broken down after tDOC experiences biogeochemical processes, reducing the humification 684 

level (Catalán et al., 2013; Hansen et al., 2016; Huguet et al., 2009; Wilske et al., 2020). 685 

Nevertheless, some studies also report that DOM can be transformed to humified materials under 686 

photo-exposure or during microbial degradation, thus causing HIX to increase (Chen & Jaffé, 687 
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2014; Garcia et al., 2018; Hansen et al., 2016; Kieber et al., 1997; Ortega-Retuerta et al., 2010). 688 

The complex changing patterns during biogeochemical processes may make HIX insensitive above 689 

a certain level of humification or tDOC%. For example, we note that HIX showed almost no 690 

change during photo-exposure of the Maludam River samples (Figure 6g).  691 

We additionally consider C2-Fmax/DOC, as it was used previously to estimate tDOC% for the 692 

Sarawak data, assuming that there would be no preferential removal of C2 relative to bulk tDOC 693 

over the small spatial scales of the estuaries in Sarawak (Zhou et al., 2019). Our new data from 694 

Singapore correspond to a longer water residence time, providing more opportunity for preferential 695 

removal of C2, which is expected to be fairly photo-labile (Grunert et al., 2021; Sankar et al., 696 

2019). Some other studies have investigated relationships between absolute Fmax values and 697 

tDOC tracers such as lignin phenols (Osburn & Stedmon, 2011; Walker et al., 2013; Yang & Hur, 698 

2014). However, given the substantial physical dilution, DOC normalization is appropriate. C2-699 

Fmax/DOC is thus analogous to SUVA254. Our data confirm that this measure is able to quantify 700 

tDOC% nearly as well as SUVA254 across the large range seen in our Singapore Strait data, with 701 

a strong correlation coefficient (r2=0.64, Figure 5i). This agrees with the strong linear correlation 702 

of C2 fluorescence to concentrations of lignin phenols obtained from Arctic rivers (Walker et al., 703 

2013). 704 

In contrast to these optical measures associated with tDOC, neither S320−412 nor BIX were related 705 

to tDOC%, and indeed showed little variation throughout our time series. The Singapore Strait 706 

does not appear to experience large seasonality in phytoplankton production (Martin et al., 2022), 707 

and the production and microbial processing of autochthonous DOC are likely closely coupled 708 

year-round, with a relatively refractory marine DOC pool (Zhou et al., 2021). While our data thus 709 

cannot evaluate how well these two optical properties can trace the presence of freshly produced 710 

autochthonous DOC, our results do show that in the absence of fresh autochthonous DOC inputs, 711 

they show fairly stable values even as the DOC pool receives highly variable amounts of additional 712 

tDOC input (Figure 1f and Figure 2e). 713 

Overall, our data thus demonstrate that all optical properties that are typically associated with 714 

tDOC (a440, S275–295, SR, SUVA254, FI, HIX and C2-Fmax/DOC) are indeed quantitatively related 715 

to tDOC% in coastal water, even after the tDOC has undergone a substantial degree of 716 

remineralization. However, the optical properties differ in the shape of the relationship to tDOC%, 717 
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indicating differences in applicability.  S275−295, SR and HIX show non-linear change with tDOC%, 718 

which makes them very sensitive to small changes in tDOC concentration at low tDOC%, but 719 

much less sensitive to tDOC% above a certain level (~40%-60%). On the other hand, a440, 720 

SUVA254, FI and C2-Fmax/DOC present linear behaviors. This means that they are less sensitive 721 

than the non-linear-related indicators at low tDOC%, but they show a consistent ability to quantify 722 

tDOC% at least within the range of 0-60%. Clearly, however, the preferential removal of CDOM 723 

means that al needs to be used cautiously for quantifying tDOC if the range in possible 724 

remineralization extent is large. The fact that SUVA254 and C2-Fmax/DOC are normalized to DOC 725 

concentration appears to make these measures more robust, although the need for DOC 726 

measurements makes these parameters less easy and less rapid to measure. Thus, it is essential to 727 

understand basic characteristics of certain water samples and consider measurement limitations 728 

before choosing appropriate optical indicators to quantify tDOC%. 729 

4.4 Qualitative proxies of tDOC biogeochemical processes 730 

Our carbon stable isotope mass balance shows clearly that a variable proportion of the original 731 

tDOC was remineralized before reaching our site. It has previously been demonstrated that 732 

biodegradation and UV irradiation can cause optical properties to change in different directions 733 

and/or at different rates (Hansen et al., 2016; Helms et al., 2008; Lee et al., 2018). Subsequently, 734 

such changes might allow one to use optical properties to diagnose certain biogeochemical 735 

processes: for example, photochemical and microbial degradation of tDOC are reported to affect 736 

SR differently (Hansen et al., 2016; Helms et al., 2008), while photochemical degradation 737 

consistently increases S275–295 (Fichot & Benner, 2012; Helms et al., 2014; Zhou et al., 2021). Here, 738 

we additionally tested whether the optical properties can also be used to infer the extent of natural 739 

tDOC remineralization in the environment. However, unlike the strong relationships to tDOC%, 740 

and despite spanning a range of 20−80% tDOC loss, none of the optical properties showed any 741 

consistent trends with tDOC loss (Figure S4). 742 

The fact that the optical properties show little change with tDOC loss could arise from the 743 

complexity of biogeochemical processes in the environment, where photodegradation, 744 

biodegradation, and their interactions take place simultaneously (Del Vecchio & Blough, 2002; 745 

Fovet et al., 2020; Lønborg et al., 2010; Osburn et al., 2009; Ward et al., 2017). Generally, 746 

photodegradation is considered to play a significant role in tDOC remineralization. Yet, the extent 747 
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and rate of photo-induced remineralization and optical property change can vary depending on 748 

light intensities, irradiation wavelengths and specific origins of tDOC (Clark et al., 2020; Du et 749 

al., 2016; Hansen et al., 2016; Lee et al., 2018; Moran et al., 2000). It has been shown that 750 

biodegradation may cause optical properties of DOM to change less and possibly in an opposite 751 

direction compared to photodegradation (Hansen et al., 2016; Hernes & Benner, 2003; Hur et al., 752 

2011; Lee et al., 2018). Microbial remineralization of tDOC is often significantly enhanced after 753 

partial photodegradation (Hansen et al., 2016; Miller & Moran, 1997; Moran et al., 2000), but 754 

conversely, photochemical reactions can also compete with microbial processes (Amado et al., 755 

2015; Ward et al., 2017). In natural coastal environments, photo-induced reactions and microbial 756 

remineralization most likely always co-occur and interact at least to some degree. It is therefore 757 

possible that different co-occurring remineralization processes result in more limited changes in 758 

optical properties than those observed in single-process incubation experiments. A recent 759 

experimental study showed that microbial and combined photochemical + microbial degradation 760 

caused the optical properties of different plant leachates to converge over time despite large 761 

differences in initial properties (Harfmann et al., 2019). Tropical peatland tDOM experiences 762 

partial degradation within the peat dome before entering rivers (Gandois et al., 2014), so it is 763 

possible that the optical properties of the riverine tDOM pool have already undergone “microbial 764 

buffering” (Harfmann et al., 2019). Subsequent interactive photochemical and microbial 765 

degradation might then only have a limited impact on CDOM and FDOM spectral characteristics, 766 

consistent with our observations. 767 

In the case of riverine tDOC from Southeast Asian peatlands, pure microbial remineralization 768 

appears to be relatively slow and no clear alteration of optical properties was found in microbial 769 

incubation experiments of 3–6 months duration (Nichols & Martin, 2021; Zhou et al., 2021). We 770 

therefore compare our environmental data to results from pure photodegradation experiments. For 771 

most parameters, especially S275–295, SR, and SUVA254, we observed clear changes with consistent 772 

direction (i.e., increasing or decreasing) as a function of tDOC loss for both the peatland-draining 773 

river samples and the coastal water samples, and these changes are consistent with those reported 774 

previously for tDOM photobleaching experiments (Du et al., 2016; Helms et al., 2013; Lee et al., 775 

2018; Magyan & Dempsey, 2021). Notably, we observed that the coastal water samples mostly 776 

showed much more obvious changes in optical properties for a given %tDOC loss than the river 777 

samples. The different rates of change are to be expected because coastal water samples contain 778 
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overall less CDOM and FDOM, and consist of a mixture of marine and terrestrial DOM, while the 779 

river samples still consisted of tDOM even at the end of the incubations. The results of bio- and 780 

photo-incubation for water from the peatland-draining river suggest that Southeast Asian peatland-781 

derived tDOM behaves similar to other highly humified photo-labile but bio-refractory tDOM 782 

during remineralization (Chen & Jaffé, 2014; Dempsey et al., 2020). The fact that our 783 

environmental data do not demonstrate such clear relationships between optical properties and 784 

tDOC loss therefore suggests that natural tDOC remineralization in this region proceeds through 785 

complex interactive degradation processes that do not leave clear signatures in the optical 786 

properties. Further research would be valuable to understand how sequential and simultaneous 787 

photo- and biodegradation of tDOM alter its optical properties, which can help to further our 788 

interpretation of optical properties from natural water samples containing DOM from different 789 

sources and after environmental processing. 790 

5 Conclusions 791 

In summary, our study shows that there is preferential removal of optically active tDOM relative 792 

to total tDOC, but that DOM optical properties are nevertheless robust and potentially quantitative 793 

indicators of tDOC% in coastal waters. The commonly used optical properties a440, S275–295, SR, 794 

SUVA254, FI, and HIX, as well as C2-Fmax/DOC, can all quantify tDOC% in coastal water, but 795 

their relationships with tDOC% exhibit different shapes, accuracies and applicable ranges. 796 

Specifically, CDOM spectral slope parameters are very sensitive to the presence of low levels of 797 

tDOC, but show little further change once tDOC exceeds ~40% of total DOC. In contrast, SUVA254 798 

and C2-Fmax/DOC show linear relationships with tDOC contribution across a larger range of 799 

values. However, none of the optical properties we considered showed a relationship to the extent 800 

of tDOC remineralization, which we attribute to the likely complexity of multiple interacting 801 

biogeochemical degradation processes. 802 
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Introduction  

The dataset contains previous data collected from Sarawak in north-western Borneo 
(Martin et al., 2018; Zhou et al., 2019), monthly data collected in the Singapore Strait, and 
experimental data for Singapore coastal water and a peatland-draining river water in 
Sarawak (partly published in Zhou et al. (2021)). Text S1 explains the calculation of the 
tDOC concentration and remineralized tDOC based on a two-endmember mixing model 
and a carbon isotope mass balance. Figure S1 shows a map of our study area. Figure S2 
shows the derivation and validation of the riverine endmember value of a440 obtained from 
discharge-weighted average of four main rivers located on Sumatra (Siegel et al., 2019; 
Wit et al., 2018). Figure S3 presents fingerprints of five fluorescent components identified 
by parallel factor analysis (PARAFAC). Figure S4 shows that there is no relationship 
between dissolved organic matter optical properties and the extent of tDOC 
remineralization. Table S1 shows the parameter values used for the isotope mass balance 
calculation and the corresponding uncertainty calculation. Table S2 presents apparent and 
actual riverine endmember values from conservative mixing of remaining tDOC, total initial 
tDOC and timeseries a440 in the Singapore Strait, and discharge-weighted average a440 
from data of four main rivers on Sumatra. Table S3 describes spectral characteristics and 
possible sources of the five PARAFAC components.  
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Text S1: Calculations of the remaining tDOC concentration and the amount of 
remineralized tDOC  

S1.1 Remaining tDOC 

We used a two-endmember isotope mixing model to calculate the concentration of tDOC 

in each sample, i.e., remaining tDOC concentration, from measured d13CDOC and total DOC 

concentration. As our samples are the mixture of tDOC and marine DOC (mDOC), the 

measured DOC concentration and 13C concentration are expressed as equations (Eqs.) S1–

3: 

[𝐃𝐎𝐂]𝐦𝐞𝐚𝐬 = [𝐭𝐃𝐎𝐂] + [𝐦𝐃𝐎𝐂]  (S1) 

[𝐃𝐎 𝐂𝟏𝟑 ]𝐦𝐞𝐚𝐬 = [𝐃𝐎 𝐂𝟏𝟑 ]𝐭𝐃𝐎𝐂 + [𝐃𝐎 𝐂𝟏𝟑 ]𝐦𝐃𝐎𝐂  (S2) 

[𝐃𝐎 𝐂𝟏𝟑 ]𝐦𝐞𝐚𝐬 = [𝐃𝐎𝐂]𝐦𝐞𝐚𝐬 ×
𝐂𝟏𝟑

𝐂𝟏𝟐 + 𝐂𝟏𝟑 + 𝐂𝟏𝟒 	 (S3) 

As 12C accounts for >98.9% of total carbon in the natural environment, we can approximate: 

𝐂𝟏𝟑

𝐂𝟏𝟐 + 𝐂𝟏𝟑 + 𝐂𝟏𝟒 ≈ 𝐂𝟏𝟑

𝐂𝟏𝟐   (S4) 

𝐂𝟏𝟐

𝐂𝟏𝟐 + 𝐂𝟏𝟑 + 𝐂𝟏𝟒 ≈ 𝟏  (S5) 

Therefore, Eq. S3 is approximated as Eq. S6, in which the 13C/12C ratio (denoted as R) in the 

measured sample are calculated from measured d13CDOC (Eq. S7): 

[𝐃𝐎 𝐂𝟏𝟑 ]𝐦𝐞𝐚𝐬 ≈ [𝐃𝐎𝐂]𝐦𝐞𝐚𝐬 × 𝐑𝐦𝐞𝐚𝐬	 (S6) 

𝐑𝐦𝐞𝐚𝐬 = (d 𝐂𝟏𝟑
𝐃𝐎𝐂,𝐦𝐞𝐚𝐬(‰) ÷ 𝟏𝟎𝟎𝟎 + 𝟏) × 𝐑𝐕𝐏𝐃𝐁  (S7) 

where the subscript “VPDB” denotes the international standard Vienna Pee Dee Belemnite 

(RVPDB = 0.01123720, IAEA (1993)). 
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Likewise, the concentrations of 13C respectively contributed by tDOC and mDOC are 

approximated as Eqs. S8–9; RtDOC and RmDOC are calculated from d13CDOC values of the 

riverine and marine endmember, respectively (Eqs. S10–11): 

[𝐃𝐎 𝐂𝟏𝟑
𝐭𝐃𝐎𝐂] ≈ [𝐭𝐃𝐎𝐂] × 𝐑𝐭𝐃𝐎𝐂 (S8) 

[𝐃𝐎 𝐂𝟏𝟑
𝐦𝐃𝐎𝐂] ≈ [𝐦𝐃𝐎𝐂] × 𝐑𝐦𝐃𝐎𝐂  (S9) 

𝐑𝐭𝐃𝐎𝐂 = (d 𝐂𝟏𝟑
𝐃𝐎𝐂,𝐫𝐢𝐯(‰) ÷ 𝟏𝟎𝟎𝟎 + 𝟏) × 𝐑𝐕𝐏𝐃𝐁  (S10) 

𝐑𝐦𝐃𝐎𝐂 = (d 𝐂𝟏𝟑
𝐃𝐎𝐂,𝐦𝐚𝐫(‰) ÷ 𝟏𝟎𝟎𝟎 + 𝟏) × 𝐑𝐕𝐏𝐃𝐁  (S11) 

By applying Eq. S6 and S8–9 to Eq. S2, we have: 

[𝐃𝐎𝐂]𝐦𝐞𝐚𝐬 × 𝐑𝐦𝐞𝐚𝐬 = [𝐭𝐃𝐎𝐂] × 𝐑𝐭𝐃𝐎𝐂 + [𝐦𝐃𝐎𝐂] × 𝐑𝐦𝐃𝐎𝐂  (S12) 

Therefore, we calculated tDOC and mDOC concentrations in each sample by solving Eqs. 

S1, S7 and S10–12. 

S1.2 Remineralized tDOC 

For DIC, TA and d13CDIC, deviations between measured values and values predicted for 

conservative mixing are caused by photosynthesis/remineralization, CaCO3 

dissolution/calcification and CO2 outgassing/uptake, in known stoichiometric proportions 

(Samanta et al., 2015; Zeebe & Wolf-Gladrow, 2001). Therefore, we firstly calculated the 

expected values for DIC, TA and d13CDIC from conservative mixing and then estimated the 

amount of carbon that had undergone each biogeochemical processes from the difference 

between predicted and measured values and the stoichiometry of each process. 

The fraction of river water (friv) and marine water (fmar) was determined from salinity (Eqs. 

S1–3): 

𝐟𝐦𝐚𝐫 = 𝐬𝐚𝐥𝐢𝐧𝐢𝐭𝐲𝐦𝐞𝐚𝐬 	÷ 	𝐬𝐚𝐥𝐢𝐧𝐢𝐭𝐲𝐦𝐚𝐫  (S13) 

𝐟𝐫𝐢𝐯 = 𝟏	 −	𝐟𝐦𝐚𝐫  (S14) 
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where the subscripts “mar”, “riv” and “meas” denote the marine and riverine endmembers, 

and measured data, respectively. 

Expected values for DIC, TA, DI12C and DI13C from conservative mixing were calculated as: 

𝐕𝐚𝐫𝐦𝐢𝐱 = 𝐕𝐚𝐫𝐫𝐢𝐯 × 𝐟𝐫𝐢𝐯 + 𝐕𝐚𝐫𝐦𝐚𝐫 × 𝐟𝐦𝐚𝐫  (S15) 

where “Var” stands for the variables DIC, TA, DI12C and DI13C, and the subscript “mix” 

denotes values expected from conservative mixing. 

To calculate conservative mixing d13CDIC values, we followed the approximation in Eqs. S4–

5 and S8–11, and riverine and marine endmember values for DI12C and DI13C were 

calculated from Eqs. S16–17: 

[𝐃𝐈 𝐂𝟏𝟑 ]𝐞𝐧𝐝 ≈ [𝐃𝐈𝐂]𝐞𝐧𝐝 × 𝐑𝐞𝐧𝐝 (S16) 

[𝐃𝐈 𝐂𝟏𝟐 ]𝐞𝐧𝐝 ≈ [𝐃𝐈𝐂]𝐞𝐧𝐝 × 𝟏 (S17) 

where the subscript “end” denotes riverine/marine endmembers. 

Combined with [DI12C]mix and [DI13C]mix from Eq. S15, d13CDIC-mix was calculated following 

Eqs. S18–19: 

𝐑𝐦𝐢𝐱 =
[𝐃𝐈 𝐂]𝟏𝟑

𝐦𝐢𝐱
[𝐃𝐈 𝐂]𝟏𝟐

𝐦𝐢𝐱
  (S18) 

d 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐦𝐢𝐱(‰) = 𝐑𝐦𝐢𝐱,𝐑𝐕𝐏𝐃𝐁

𝐑𝐕𝐏𝐃𝐁
× 𝟏𝟎𝟎𝟎  (S19) 

Taking all the physical and biogeochemical processes and their stoichiometric effect into 

account, which can be derived from the slopes in a TA against DIC plot (Zeebe & Wolf-

Gladrow, 2001; Zhou et al., 2021), the measured DIC and TA are expressed as: 

𝐃𝐈𝐂𝐦𝐞𝐚𝐬 = 𝐃𝐈𝐂𝐦𝐢𝐱 + (+𝟏) ×𝐌𝐫𝐞𝐦 + (+𝟏) ×𝐌𝐝𝐢𝐬𝐬 + (−𝟏) ×𝐌𝐨𝐮𝐭𝐠  (S20) 

𝐓𝐀𝐦𝐞𝐚𝐬 = 𝐓𝐀𝐦𝐢𝐱 + (−𝟎. 𝟎𝟐𝟓) ×𝐌𝐫𝐞𝐦 + (+𝟐) ×𝐌𝐝𝐢𝐬𝐬 + 𝟎 ×𝐌𝐨𝐮𝐭𝐠  (S21) 
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where M represents the molar contribution of different processes, and the subscripts “rem”, 

“diss” and “outg” denote tDOC remineralization/primary production, CaCO3 

dissolution/production and CO2 outgassing/uptake, respectively. 

The impacts of tDOC remineralization, calcium carbonate dissolution and CO2 outgassing 

on d13CDIC were estimated according to Samanta et al. (2015): 

∆𝛅 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐫𝐞𝐦 ≈ 𝐌𝐫𝐞𝐦

𝐃𝐈𝐂𝐦𝐢𝐱
× (𝛅 𝐂𝟏𝟑

𝐭𝐃𝐈𝐂 − 𝛅 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐦𝐢𝐱)  (S22) 

∆𝛅 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐝𝐢𝐬𝐬 ≈

𝐌𝐝𝐢𝐬𝐬
𝐃𝐈𝐂𝐦𝐢𝐱

× (𝛅 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐝𝐢𝐬𝐬 − 𝛅 𝐂𝟏𝟑

𝐃𝐈𝐂,𝐦𝐢𝐱)  (S23) 

∆𝛅 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐨𝐮𝐭𝐠 ≈

,𝐌𝐨𝐮𝐭𝐠

𝐃𝐈𝐂𝐦𝐢𝐱
× 𝟏𝟎𝟑 × (𝛂𝐂𝐎𝟐 − 𝟏)  (S24) 

where the symbol “D” represents the deviation between measured data and values 

expected from conservative mixing caused by each process; d13CtDIC is the d13C of DIC 

produced by tDOC remineralization, which we take as –32‰ (see Section 2.5.2) d13CDIC- diss 

is the d13C of DIC produced by carbonate dissolution, reported as 0‰ (Samanta et al., 

2015; Su et al., 2019); aCO2 is the fractionation factor between air and sea surface, and is 

calculated from the in-situ temperature and the approximation (Rau et al., 1996; Zeebe & 

Wolf-Gladrow, 2001; Zhou et al., 2021): 

𝛆𝐂𝐎𝟐 = 𝟐𝟑. 𝟔𝟒𝟒 − 𝟗𝟕𝟎𝟏. 𝟓 ÷ 𝐓(𝐊)  （S25） 

𝛆𝐂𝐎𝟐 ≈ 𝟏𝟎𝟑 × 𝐥𝐧𝛂𝐂𝐎𝟐 ≈ 𝟏𝟎𝟑 × (𝛂𝐂𝐎𝟐 − 𝟏) （S26） 

Then, the measured d13CDIC is expressed as the combination of physical mixing and these 

biogeochemical processes: 

d 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐦𝐞𝐚𝐬(‰) = d 𝐂𝟏𝟑

𝐃𝐈𝐂,𝐦𝐢𝐱(‰) + 𝐌𝐫𝐞𝐦
𝐃𝐈𝐂𝐦𝐢𝐱

× (𝛅 𝐂𝟏𝟑
𝐭𝐃𝐈𝐂 − 𝛅 𝐂𝟏𝟑

𝐃𝐈𝐂,𝐦𝐢𝐱) +
𝐌𝐝𝐢𝐬𝐬
𝐃𝐈𝐂𝐦𝐢𝐱

×

(𝛅 𝐂𝟏𝟑
𝐃𝐈𝐂,𝐝𝐢𝐬𝐬 − 𝛅 𝐂𝟏𝟑

𝐃𝐈𝐂,𝐦𝐢𝐱) +	
,𝐌𝐨𝐮𝐭𝐠

𝐃𝐈𝐂𝐦𝐢𝐱
× 𝟏𝟎𝟑 × (𝛂𝐂𝐎𝟐 − 𝟏)  (S27) 
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By solving Eqs. S20–21 and 27, Mrem, Mdiss and Moutg were calculated. Further details of the 

derivation and approximation can be found in Zhou et al. (2021). 

 

 

 

 

 

 

 

 
Figure S1. (a) Regional map showing our sampling sites (Singapore Strait and Sarawak) 
and the monsoon-driven reversal in ocean currents (arrows). (b) Locations of the four 
peatland-draining rivers (Siak, Kampar, Indragiri and Batanghari) that represent the most 
plausible main source of tDOC input to the Singapore Strait, and which we used to 
estimate riverine endmember values. 
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Figure S2. (a) Relationship between average a440 and DOC concentration for the four main 
peatland-draining rivers on Sumatra (Indragiri, Kampar, Siak and Batanghari; data from 
(Siegel et al., 2019; Wit et al., 2018)). Note that for the Batanghari river there is no published 
a440, so the Batanghari a440 was estimated based on the a440–DOC relationship of the other 
rivers (red star; relationship forced through the origin). (b) Based on the a440 and DOC 
concentrations in panel (a) and the river discharge data in Wit et al. (2018), we calculated 
a discharge-weighted average a440 and DOC concentration for the four Sumatran rivers as 
estimated mean riverine endmember values (blue star) for the peatland DOM input to the 
Singapore Strait. This estimated average riverine a440 and DOC for Sumatra falls very close 
to the relationship of a440 to DOC observed for river data measured in Sarawak (Martin et 
al., 2018).  
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Figure S3. Components revealed by PARAFAC analysis of our combined FDOM dataset; 
top row shows excitation-emission plots and bottom row shows the corresponding 
excitation and emission spectra (components 1–5 are ordered left-to-right). 
 

Table S1. Spectral characteristics of the five components identified by PARAFAC analysis 
for our combined FDOM dataset, and interpretation of possible sources of each compound 
based on previous literature. 
Component Exmax (nm) Emmax 

(nm) 
Description and probable 
source 

References 

C1 265 (330) 506 Soil fulvic acid, common to 
a wide range of freshwater 

(Osburn et al., 2016; 
Stedmon & Markager, 
2005a; Stedmon et al., 
2003) 

C2 <255 (330) 436 Humic fluorophore group, 
highest concentration in 
forest stream and wetlands 

(Stedmon & Markager, 
2005a; Stedmon et al., 
2003) 

C3 <255 462 Terrestrial humic 
substances 

(Coble, 1996; Osburn et 
al., 2016; Stedmon et al., 
2003) 

C4 <255 (300) 384 Protein-like materials; 
terrestrial humic materials; 
possible microbial 
processed 

(Cory & McKnight, 2005; 
Stedmon & Markager, 
2005b; Stedmon et al., 
2003; Zhou et al., 2019) 

C5 275 326 Non-humic-like materials, 
autochonomous DOM, 
tryptophan-like 
components 

(Du et al., 2016; Murphy 
et al., 2008; Osburn et 
al., 2016) 
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Table S2. Endmember values and their uncertainties for all parameters used to calculate 
the remaining tDOC and total initial tDOC concentrations. Uncertainties for each 
parameter for the riverine and marine endmembers represent 1 standard deviation and 
were used to estimate the overall uncertainty for remaining and total initial tDOC using a 
Monte Carlo Simulation. Analytical uncertainties for each parameter are also given (1 
standard deviation).  

Parameter Riverine 
endmembera 

Marine endmember Uncertainty of 
measurements 

Salinity 0 32.56 ± 0.37 ± 0.01 

DIC (µmol kg-1) 453 ± 34 1901 ± 14 ± 0.15% 

TA (µmol kg-1) 310 ± 34 2159 ± 17 ± 0.13% 

d13CDIC (‰) -15.32 ± 1 -0.23 ± 0.10 ± 0.2 

d13CDOC (‰) -29 ± 1 -21.39 ± 1.71 ± 0.2 

d13CtDIC (‰) -32 ± 1 - - 
a Discharge-weighted average of published data (Siegel et al., 2019; Wit et al., 2018) 

 

Table S3. Apparent and actual riverine endmember values for remaining and total initial 
tDOC and for remaining CDOM a440 were estimated by extrapolating linear regressions for 
each parameter versus salinity back to salinity 0, using the Singapore Strait time series 
data. The total initial a440 was estimated as the discharge-weighted average a440 from the 
published river data from Sumatra (see Figure S2).  
Parameter used to calculate 
riverine endmember 

Riverine 
endmember value 

Uncertainty Loss percent 

Remaining tDOC (µmol L-1)a 389 ± 97 - 

Total initial tDOC (µmol L-1)a 814 ± 133 55.5% 

Remaining CDOM (a440, m-1)a 2.72 ± 0.18 - 

Total initial CDOM (a440, m-1)b 11.67 ± 0.90 76.5% 

a Apparent conservative mixing of timeseries data in the Singapore Strait 
b Discharge-weighted average of four main rivers located on Sumatra (Siegel et al., 2019; Wit et al., 
2018) 
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Figure S4. The relationship between optical properties and percentage tDOC 
remineralization (as calculated from the proportion of remineralized tDOC relative to total 
initial tDOC based on the carbon stable isotope mass balance). Coastal water data from 
the Singapore Strait are shown in blue circles (SW Monsoon season only) while Sarawak 
river data are showed in light and dark brown squares for rivers with, respectively, <50% 
and >50% peatland coverage in their catchments. We found no significant correlations for 
the Singapore data, indicating that these optical properties may not be able to quantify 
the extent of tDOC remineralization.  
 
 
 
Data Set S1. Compiled dataset including multi-year time series (from Oct-2017 to Jul-
2021) of DOC concentration, stable carbon isotope composition, and optical properties 
collected in the Singapore Strait, environmental data collected from three expeditions in 
Sarawak, Borneo and experimental data from photo- and biodegradation incubations for 
peatland-draining river water and coastal seawater. 
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