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Abstract

Snow interacts with its environment in many ways, is constantly changing with time, and thus has a highly heterogeneous

spatial and temporal variability. Therefore, modeling snow variability is difficult, especially when additional components such

as vegetation add complexity. To increase our understanding of the spatio-temporal variability of snow and to validate snow

models, we need reliable observation data at similar spatial and temporal scales. For these purposes, airborne LiDAR surveys

or time series derived from snow sensors on the point scale are commonly used. However, these are limited either to one point

in space or in time. We present a new, extensive dataset of snow variability in a sub-alpine forest in the Alptal, Switzerland.

The core dataset consists of a dense sensor network, repeated high-resolution LiDAR data acquired using a fixed-wing UAV,

and manual snow depth and snow density measurements. Using machine learning algorithms, we determine four distinct spatial

clusters of similar snow depth dynamics. These clusters are characterized and further used to derive daily snow depth and

snow water equivalent (SWE) maps. The results underline the complex relation of topography and canopy cover towards snow

accumulation and ablation. The derived products are the first to our knowledge that provide daily, high-resolution snow depth

and SWE based almost exclusively on field data. They are therefore ideally suited for the validation of distributed snow models.

Our approach can be applied to other project areas and improve our understanding of the spatio-temporal variability of snow

in forested environments.
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Key Points: 13 

• A new snow distribution dataset for sub-alpine forests comprising UAV-based LiDAR 14 
data, a dense sensor network, and manual measurements. 15 

• A workflow to derive clusters of similar snow dynamics and daily maps of snow water 16 
equivalent based exclusively on experimental data. 17 

• The results highlight the importance of forest gap sizes and edges on snow variability. 18 
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Abstract 20 

Snow interacts with its environment in many ways, is constantly changing with time, and thus 21 
has a highly heterogeneous spatial and temporal variability. Therefore, modeling snow 22 
variability is difficult, especially when additional components such as vegetation add 23 
complexity. To increase our understanding of the spatio-temporal variability of snow and to 24 
validate snow models, we need reliable observation data at similar spatial and temporal scales. 25 
For these purposes, airborne LiDAR surveys or time series derived from snow sensors on the 26 
point scale are commonly used. However, these are limited either to one point in space or in 27 
time. We present a new, extensive dataset of snow variability in a sub-alpine forest in the Alptal, 28 
Switzerland. The core dataset consists of a dense sensor network, repeated high-resolution 29 
LiDAR data acquired using a fixed-wing UAV, and manual snow depth and snow density 30 
measurements. Using machine learning algorithms, we determine four distinct spatial clusters of 31 
similar snow depth dynamics. These clusters are characterized and further used to derive daily 32 
snow depth and snow water equivalent (SWE) maps. The results underline the complex relation 33 
of topography and canopy cover towards snow accumulation and ablation. The derived products 34 
are the first to our knowledge that provide daily, high-resolution snow depth and SWE based 35 
almost exclusively on field data. They are therefore ideally suited for the validation of distributed 36 
snow models. Our approach can be applied to other project areas and improve our understanding 37 
of the spatio-temporal variability of snow in forested environments.  38 

Plain Language Summary 39 

Snow distribution, or more precisely the amount of water stored in snow and its spatial 40 
variability, depends on the complex interplay of topography, meteorology and vegetation. 41 
Scientists try to predict snow distribution as accurately as possible with the help of models. In 42 
order to test how well these models represent reality and which processes are relevant to be 43 
considered in the models, detailed field measurements are urgently needed. To obtain such data, 44 
drones equipped with modern ("LiDAR") sensors are often used to measure the spatial 45 
distribution of snow depth, even underneath a tree canopy. In our study, we present a new dataset 46 
for an alpine forest in Switzerland. The dataset consists of snow depth maps acquired with a 47 
drone, manual measurements and continuous snow depth observations. Based on this dataset, we 48 
could show that snow depth in forests and its temporal dynamics reoccur in spatially distinct 49 
areas. Furthermore, our approach delivers daily maps of snow depth and snow water equivalent 50 
at a spatial resolution of 1 m and can be applied to similar datasets worldwide. Thus, our 51 
workflow allows snow models to be tested not only on the days of the drone flight itself, but on a 52 
daily basis. 53 
  54 
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1 Introduction 55 

Water stored in the snowpack plays a crucial role in the hydrologic cycle as it serves as an 56 
intermediate storage of winter precipitation and renews groundwater resources (Dozier et al., 57 
2016). It is therefore a prerequisite for functioning eco-hydrologic systems, especially during dry 58 
seasons (Siirila-Woodburn et al., 2021; Sturm et al., 2017). Climate change will have various 59 
impacts on catchments currently influenced by snow, such as a shift from snow to rain, earlier 60 
snowmelt and a decrease in peak snow accumulation (Bormann et al., 2018; López-Moreno et 61 
al., 2021; Marty et al., 2017; Notarnicola, 2020). This will reflect on water availability and thus 62 
has implications for energy and food production (D. Li et al., 2017). In the European Alps, a 63 
continuous seasonal snow cover exists above an elevation of around 1200 m (López-Moreno et 64 
al., 2021). As the tree line lies around 2000 m, snow falls on forested and complex topography in 65 
a broad altitudinal band. This sub-alpine altitudinal band accounts for 25% of the total area of the 66 
European Alps and is thus more widespread in terms of area than the alpine (>2000m altitude) 67 
altitudinal band (15%). It is in these sub-alpine environments, that forest and water management 68 
strategies are needed to counteract the mentioned climate change impacts and to preserve a 69 
functioning eco-hydrologic system (Barnhart et al., 2016; Manning et al., 2022; Niittynen et al., 70 
2018).  71 
Snow cover and its spatio-temporal variability are controlled by vegetation, topography and 72 
meteorology (e.g. Mazzotti et al., 2022; Strasser et al., 2011). Assuming low wind speeds, spatial 73 
variability of snowfall (accumulation) events over forested areas are dominated by interception 74 
and subsequent sublimation processes of snow in the tree canopy. Its magnitude depends 75 
strongly on the three-dimensional (3D) structure of the canopy (Moeser et al., 2015; Russell et 76 
al., 2021). Interception reduces accumulation in coniferous forests by 30-40%, depending on 77 
vegetation characteristics and meteorological conditions (Broxton et al., 2014; Jost et al., 2007; 78 
Varhola et al., 2010a). Since vegetation structures are relatively stable, they correlate with the 79 
accumulation rates of individual events and, in particular, with the maximum snow distribution 80 
at the end of the accumulation period (Koutantou et al., 2022; Mazzotti et al., 2022; Pflug & 81 
Lundquist, 2020; Varhola et al., 2010a). Snow melt (ablation) and its spatial variability, 82 
however, is much more complex. The prerequisite for ablation, thus water percolation out of the 83 
snowpack, is a completely saturated (“ripe”) snowpack. The metamorphosis to this state and the 84 
subsequent ablation itself, is determined by the sum of the energy inputs to the snow cover. 85 
Energy inputs are dominated by longwave (LWR) and shortwave radiation (SWR), latent heat 86 
(LH), ground heat and energy from rain. The canopy generally reduces incoming SWR by 87 
shading and emits (increases) LWR. However, the magnitude of these effects and thus the 88 
change of net energy available for melt depends on the aspect and climate (Mazzotti et al., 2022; 89 
Safa et al., 2021), the time during the season (Strasser et al., 2011) and cloud coverage (H.-Y. Li 90 
& Wang, 2011). Moreover, if rain falls on snow (RoS), ablation rates can increase and become 91 
uncorrelated with the canopy (Garvelmann et al., 2014, 2015).  92 
To adequately predict available water resources in snow-dominated watersheds, snow models are 93 
an essential tool for decision-makers, as they can provide spatio-temporal information on the 94 
snowpack that cannot be achieved with observations. An encompassing snow model 95 
intercomparison study (Essery et al., 2009) concluded that model performance is poor in forested 96 
areas, especially for study sites where mean winter air temperatures lie above 0 °C. Since then, 97 
much effort has been put into improving hyper-resolution snow models (Gouttevin et al., 2015; 98 
Mazzotti et al., 2020b; Mazzotti et al., 2020a). To make use of this gained knowledge in process-99 
level modeling for larger-scale applications, future work should focus on sub-grid model 100 
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parametrizations (Currier & Lundquist, 2018; Mazzotti et al., 2021). Therefore, a modeling unit 101 
(grid-cell) must be explicitly divided into its classes (and their fractions) of similar snow 102 
dynamics. For instance, Mazzotti et al. (2022) found classes of similar snow dynamics north of 103 
canopy edges, in open terrain and underneath the forest canopy. Schirmer et al. (2011) found 104 
repetitive patterns in alpine terrain on lee and windward slopes. Thus, defining such classes is 105 
possible but complex and requires study site specific approaches (Currier & Lundquist, 2018). 106 
However, promising studies showed that classes of similar snow dynamics, once defined, are 107 
transferable to other years (Pflug & Lundquist, 2020; Schirmer et al., 2011).  108 
To measure snow distribution spatially continuously (e.g., for model validation), airborne Light 109 
Detection and Ranging (LiDAR) surveys have become the state-of-the-art technology in the field 110 
of snow hydrology, as LiDAR can create more robust snow depth maps (HS-maps) compared to 111 
other systems and is suitable to measure sub-canopy snow depth (Harder et al., 2020). As 112 
commercially available LiDAR sensors are becoming light-weight and affordable, an increasing 113 
number of studies have been published using LiDAR-systems mounted on multi-rotor 114 
Unmanned Aerial Vehicles (UAV) instead of airplanes (Harder et al., 2020; Jacobs et al., 2021; 115 
Koutantou et al., 2022; Rathmann et al., 2021). Compared to LiDAR data acquired using 116 
airplanes, UAVs allow reduced revisiting time between surveys (Koutantou et al., 2022), 117 
increase point densities and help analyze snow processes at very high spatial resolutions (Russell 118 
et al., 2021). The drawback of UAVs is the short flight duration and thus low spatial coverage, 119 
making airborne systems still important for larger-scale applications (Kostadinov et al., 2019). A 120 
compromise between the high spatial resolution and increased flexibility of UAVs and, on the 121 
other side, larger spatial coverages can be achieved using fixed-wing UAVs (Geissler et al., 122 
2021). Fixed-wing UAVs, in contrast to multi-rotor UAVs, are equipped with wings and rely on 123 
forward (instead of downward) thrust. Due to limited payload capacities, so far fixed-wing 124 
UAVs have only been used in combination with photogrammetric sensors to map snow 125 
distribution (Michele et al., 2016).  126 
For the generation of HS-maps from LiDAR, a snow-off and a snow-on survey are needed. From 127 
the resulting point clouds, points classified as vegetation are removed. The remaining ground 128 
points are typically rasterized to a digital elevation model (DEM) and subtracted from each 129 
other. The resulting differential elevation model is then co-registered using snow-free areas such 130 
as streets or snow pits to account for systematic vertical shifts between the elevation models. 131 
More information on this method can be found in Deems et al. (2013), Koutantou et al. (2022) 132 
and Mazzotti et al. (2019). Many of these studies acknowledge that this processing workflow 133 
does not consider other than vertical offsets of the original DEMs. However, we are not aware of 134 
a study that was able to perform a full co-registration of the snow-on and snow-off surveys 135 
comparable to methods used in other fields of research, e.g. for the determination of geodetic 136 
glacier mass balances (Nuth & Kääb, 2011). 137 
As remote sensing data is generally limited to a few surveys throughout one season, they are not 138 
capable to validate snow model products temporally continuously. Therefore, a spatially 139 
continuous validation of hydrologic parameters derived from snow models, such as the season's 140 
maximum snow water equivalent (SWEmax), ablation and accumulation rates, snow 141 
disappearance or fractional snow cover is still difficult to achieve (Mazzotti et al., 2022). 142 
Another challenge in creating a non-biased validation dataset is the conversion from the LiDAR-143 
derived HS-maps to SWE-maps, which is typically based on manual or automatic density 144 
measurements of the snowpack. However, the interpolation of these density measurements leads 145 
to systematic errors of the SWE-maps, especially in mid-winter (Broxton et al., 2019). 146 
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In this study, we present a novel dataset consisting of multiple UAV-based LiDAR HS-maps, 147 
over a sub-alpine forested study site (0.23 km²) in the European (Pre-)Alps. The LiDAR-derived 148 
HS-maps were derived using a fixed-wing UAV. We apply a co-registration approach that 149 
considers 3D shifts and rotations between snow-on and snow-off surveys to the HS-maps. The 150 
LiDAR-data is supplemented with a dense sensor network of automatic Snow Measuring 151 
Stations (SnoMoS) (Varhola et al., 2010b) and repeated manual snow surveys. Besides 152 
presenting this comprehensive dataset, the goals of this study are:  153 

(i) To determine and discuss patterns of similar snow dynamics for a sub-alpine forested 154 
study site using a clustering workflow. 155 

(ii) To create a spatially and temporally continuous dataset of daily HS- and SWE-maps 156 
based only on experimental data. 157 

 158 

2 Method 159 

2.1 Study Site and Data 160 

We selected a west-facing hillside of the Alptal, Switzerland (see Figure 1) as study site, which 161 
is a sub-alpine catchment that is known for its long history of snow and hydrologic research 162 
(Essery et al., 2009; Gouttevin et al., 2015; Stähli et al., 2009; Stähli & Gustafsson, 2006). The 163 
forest canopy is heterogeneous with a varying canopy structure and tree heights of up to 35 m. 164 
The shape of the project area resulted from the flight planning for the UAV flights, maximizing 165 
the surveyed area as well as the aim to minimize snow variability caused by an additional 166 
altitude gradient. More details on the study site can be found in Table 1. We collected data 167 
throughout a full winter season from 26 November 2021 to 25 April 2022 (Water Year (WY) 168 
2022).  169 
 170 
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Table 1: Details on our Study Site in the Alptal, Switzerland 174 
Attribute Value 

Coordinates 47°02'33.8"N 8°42'53.3"E 
Forest Type Spruce and Fir 

Leaf Area Index 4-5 m²/m² 
Maximum Tree Height 35 m 

Canopy Coverage 35% 
Aspect West (211° - 296°) 
Slope 11° - 25° 

Elevation 1170 m – 1240 m 

Snow-free Albedo 0.11 (forest) 
0.19 (open) 

Mean Winter Temperature DJFMA 
1989-2019 (WY 2022) 0.5°C; (1.5°C) 

Mean Winter Precipitation DJFMA 
1989-2019 (WY 2022) 788 mm; (757 mm) 

 175 

2.1.1. Snow Monitoring Stations 176 

16 SnoMoS (Pohl et al., 2014; Varhola et al., 2010b) (Figure 1-a) were installed to capture the 177 
temporal variability of the snowpack at a fixed location with an ultrasonic sensor (MaxBotix MB 178 
7060). The sensors are mounted on wooden bars at around 2 m above ground. Apart from being 179 
set on flat terrain with minimal ground vegetation to cover the full spatio-temporal variability of 180 
the snowpack, the sensor locations were chosen based on local expert knowledge and 181 
information about the canopy (Figure 1-d). SnoMoS 16 is located at the climate station 182 
Erlenhoehe, where precipitation and temperature data used in this study (Figure 2) are measured. 183 
The sensor configuration was set to measure hourly means and standard deviation (SD) derived 184 
from 20 measurements per hour. The raw distance measurements were filtered using thresholds 185 
for the SD (< 0.3 m) and the distance (> 0.35 m and < 2.5 m) to eliminate outliers. Snow depth 186 
was derived by correcting the raw distance with the data of an internal measuring unit (IMU) and 187 
the air temperature. Finally, the corrected height was subtracted from the height of the sensor 188 
that was estimated from the sensor measurements right after snow disappearance to minimize the 189 
effects of the vegetation. Negative snow depths were set to 0 m and subsequently, the time series 190 
were aggregated to daily means. The SnoMoS were equipped with a time-lapse camera to get 191 
qualitative information on the snowpack and to fill data gaps (10.2%) using a scale that was 192 
painted on the wooden bars. Additionally, snow depth was measured manually at each sensor 193 
location after five LiDAR-surveys to estimate the associated error to the SnoMoS snow depth 194 
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We used the proprietary software POSPac UAV Version 8.3 to compute trajectories and 223 
associated positional and rotational errors from the APX-15 data using the correction data of a 224 
GNSS reference station placed in the field before each flight campaign. Subsequently, the raw 225 
Velodyne data was georeferenced using these trajectories. We associated the respective 226 
positioning (i.e. GNSS coordinates) and attitude (i.e. roll, pitch, yaw angles) to each data point 227 
additionally. Thereafter, noise was filtered out using the Statistical Outlier Removal algorithm 228 
(Rusu & Cousins, 2011) as well as thresholds for the positional and rotational errors using the 229 
open-source software CloudCompare (CloudCompare, 2022).  230 
For each UAV survey within the post-processing the pre-processed point cloud of the second 231 
flight was co-registered to the complementary point cloud of the same day's first flight. 232 
Subsequently, the co-registered point clouds were merged. For the generation of the final LiDAR 233 
product, namely the HS-maps, the combined snow-off point cloud was co-registered with the 234 
combined snow-on point cloud. Finally, all point clouds were rasterized to a 1 m spatial 235 
resolution. We used three 3m x 3m snow pits, distributed within the study area to correct the 236 
final HS-maps vertically by the mean within these areas. To exclude further obvious (but rare) 237 
outliers, we excluded snow depths below – 0.15 m and above 3 m. Remaining negative values 238 
are subsequently set to 0 m. 239 
The co-registrations of two point clouds, as described above, followed four steps: i) the point 240 
clouds are cut to the study area, ii) the point clouds are classified in ground and non-ground 241 
points using the Cloth Simulation Filter (CSF) algorithm (Zhang et al., 2016), iii) a 4x4 242 
transformation matrix is determined using the Iterative Closest Point (ICP) algorithm (Besl & 243 
McKay, 1992; Chen & Medioni, 1992) to co-register non-ground points of the second flights’ 244 
point cloud (or the combined snow-on) to the first flights point cloud (or the combined snow-off) 245 
and finally, iv) the transformation matrix is applied to the full second flight (snow-on) point 246 
cloud. This approach accounts for 3D offsets as well as scaling or rotational errors between the 247 
point clouds. The post-processing was conducted using the CloudCompare software in command 248 
line mode. 249 
Topographic parameters as well as the Canopy Height Model (CHM) of our study site were 250 
derived from R (R Core Team, 2021) using the raster (Robert J. Hijmans, 2021) and lidR 251 
(Roussel et al., 2020) Package in 1 m spatial resolution. Canopy Cover fraction (CC) (proportion 252 
of forested area to total area within a given radius) was derived for a radius of 5 m from the 253 
CHM following Mazzotti et al. (2020a). 254 

2.1.3. Snow Survey 255 

The dataset is complemented by manual snow survey data. Within six hours after each LiDAR 256 
survey, snow depth (every meter) and SWE (every five meters) were measured along four 257 
transects (Figure 1-d) using snow sampling tubes. The transect locations were chosen to capture 258 
a high variability of the snow depth within each sub-plot and to be accessible with minimum 259 
impact on the snowpack. In line with Neumann et al. (2006), all transects are 50 m long and L-260 
shaped. All LiDAR, HS- and SWE-maps within this study are validated with these 261 
measurements. 262 
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The imputed eight LiDAR surveys are subsequently split into four surveys for model training, 280 
two surveys for model calibration and two surveys for final model validation (Figure 2, bottom). 281 
The model itself consists of a two-step unsupervised classification (clustering): The k-means 282 
clustering algorithm (Hartigan & Wong, 1979) first detects clusters in a small subsample of the 283 
training data. These detected clusters serve as the target variables within a subsequent random 284 
forest classification. As a result, a map is generated for each cluster providing allocation 285 
probabilities for each cell to the respective cluster. Next, we combine these clusters with the 286 
observed temporal information from the SnoMoS. More precisely, we derive snow depth time 287 
series for each cluster c based on the relative probability of the SnoMoS locations belonging to 288 
one of the clusters wୡ (Supporting information, S2). Snow depth of a grid cell HS୧୨ on a day t 289 
(daily HS-maps) is then derived by the sum of the probabilities of the respective cell belonging 290 
to a cluster c w୧୨,ୡ and the snow depth for each cluster on that day (Equation 1). 291 

 HS୧୨(t) = ∑ w୧୨,ୡ ∙ ቆ ୵ౙ∑ ୵ౙ ∙ HS(t)ቇ (1) 

For the calibration of the model parameters two independent UAV surveys  are used (Figure 2, 292 
bottom).The model is then run with parameters on default, changing only one parameter within a 293 
given range and step width. Each set of model parameters is run 50 times to derive the mean as 294 
well as the variance of the goodness-of-fit metrics. The final value for the model parameters is 295 
then derived from the results by minimizing the observed root mean squared error (RMSE) as 296 
well as considering computational expense and the interpretability of the results (Supporting 297 
information, S1). The final model configuration is then validated using the remaining two UAV 298 
surveys (see Figure 2, bottom) as well as snow survey data (See Figure 4). 299 
In this study, the error associated with the derived products is evaluated using the RMSE and 300 
MAE as well as the Pearson’s correlation coefficient R. We also provide the normalized version 301 
of RMSE and MAE (NRMSE and NMAE) for error intercomparisons (normalized by dividing 302 
the original error metrics by the mean of the observations).  303 

2.3 SWE-maps and derived products 304 

To derive the hydrologically important SWE, we convert the daily HS-maps to daily SWE-maps. 305 
We selected the ΔSnow.Model (Winkler et al., 2021) to process the snow depth time series of the 306 
clusters. Daily SWE-maps are then derived following the same method as for the HS-maps 307 
(Equation 1). The model is calibrated and subsequently validated against 50% of the available 308 
snow survey data respectively to increase model performance. Calibration results can be found in 309 
the supporting information, S1. 310 
Snow hydrologic variables are derived from the daily SWE-maps for each raster cell 311 
individually: The maximum SWE (SWE୫ୟ୶ [mm]), the mean ablation rate (Abl୮[୫୫ୢ]) and the 312 

mean accumulation rate (Acc୮[୫୫ୢ]). SWE୫ୟ୶ is defined by the maximum SWE throughout the 313 
whole season, whereas the rates result from the absolute change of SWE for each period (Figure 314 
2) divided by the length of the period in days. For the determination of the Abl୮, only days in 315 
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which snow was present and absolute rates exceeded 1 mm/d are considered. In the following, 316 
the ablation rates are denoted as Abl୮ with p being the number of the period (Figure 2 and Sect. 317 
3.1.). The overall ablation rate derived (summed change of SWE in all periods p divided by the 318 
length of all periods p in days) is referred to as the Abl୲୭୲ୟ୪. The same nomenclature is used for 319 
the accumulation rates. 320 

3 Results 321 

3.1 Spatio-temporal Variability 322 

Measured within the study area, at the Erlenhoehe climate station, the winter season of WY 2022 323 
(December 2021 to April 2022) had an average temperature of 1.5 °C, which is 1.0 °C warmer 324 
than the average of 1989 through 2019. 757 mm of precipitation was measured during these 325 
months, thus 4% less than average. The snow season may be summarized in three accumulation, 326 
three ablation and two compaction periods (Figure 2). The first accumulation period (Accଵ), 327 
between 26 November 2021 and 12 December 2021, is characterized by varying temperatures 328 
between -5 °C and 2 °C and 251 mm (peak 68 mm in one day on 04 December 2021) of total 329 
precipitation within 16 days. From 12 December 2021 on, a warm period of 12 days led to a 330 
compaction of the snowpack. Slight, mixed precipitation (15 mm) occurred between 24 331 
December 2021 and 27 December 2021. Thereafter, temperatures as well as precipitation 332 
amounts increased and caused a three-day RoS-induced ablation of the snowpack (19 mm/d, 333 Ablଵ). Ablଵ continued during the following warm period until 04 January 2022. A long 334 
accumulation period followed with temperatures varying around freezing temperatures until 26 335 
February 2022 (Accଶ, 318 mm and -0.4 °C). March 2022 was the driest march since 1989 with 336 
only 2 mm of precipitation and mean air temperatures of 3 °C until 30 March 2022. In this 337 
exceptionally dry March, the snowpack densified until 07 March 2022. Thereafter, the second 338 
ablation period (Ablଶ) was dominated by high temperatures and clear-sky conditions. Ablation 339 
was intensified after 14 March 2022, due to high concentrations of Sahara dust deposited on the 340 
snowpack during a small precipitation event (14 March 2022) which induced a lowering of the 341 
snow albedo. The following third precipitation period (Accଷ) between 31 March 2022 and 02 342 
April 2022 added 47 mm of precipitation within three days at -2 °C mean air temperature. The 343 
snowpack completely vanished during the third ablation period (Ablଷ) between 03 April 2022 344 
and 25 April 2022, where high temperatures (5 °C) and (mostly liquid) precipitation (110 mm) 345 
caused high ablation rates. 346 

3.2 LiDAR HS-maps 347 

The UAV-based LiDAR setup (Sect. 2.1.) achieved an average point density of 126 points/m² 348 
per flight. Since almost all UAV surveys consist of two merged flights, an average point density 349 
of 219 points/m² was achieved for all UAV surveys. The point density of points classified as 350 
ground lies at 118 points/m² on average for all LiDAR surveys. Derived HS-maps contain 8% 351 
data gaps on average. The co-registrations included a 3D shift and rotations around all axes. 352 
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None of the transformation matrixes determined by the ICP algorithm applies scaling, although 353 
the methodology includes the possibility. The ranges of the absolute shift in x- and y- 354 
(horizontal), and z- (vertical) direction are 0.01 m to 0.42 m, 0.01 m to 0.22 m and 0.02 m to 355 
0.53 m respectively. The absolute Euler angles of the rotations around the x-, y- and z-axis are 0 356 
° to 0.006 °, 0.002 ° to 0.03 ° and 0 ° to 0.0003 ° respectively. The final goodness-of-fit metrics 357 
of the LiDAR HS-maps can be found in Table 2. Goodness-of-fit variables are relatively 358 
constant between the individual LiDAR surveys, with the RMSE varying between 0.085 m and 359 
0.108 m and R between 0.84 and 0.97. However, since the mean snow depth changed throughout 360 
the snow surveys, the normalized error metrics change among the surveys. The co-registration 361 
including the ICP algorithm in addition to the snow-free areas improves the goodness-of-fit 362 
metrics of all LiDAR HS-maps compared to the exclusive registration using solely snow-free 363 
areas (NRMSE –2%, R +0.2). If interception was present during the LiDAR survey, the result of 364 
the ICP algorithm is biased in the vertical direction by up to 0.3 m. However, it still improves the 365 
LiDAR HS-maps error metrics, as the ICP was followed by a correction with the snow-free 366 
areas. 367 

3.3 Modeled daily HS and SWE-maps 368 

Following the workflow shown in Figure 3, we derived daily HS and SWE-maps. An animation 369 
can be found in the supplementary material (ds01) of this study. Mean associated errors (Figure 370 
4, Table 2) show generally high correlations when compared to the manual snow survey data (R 371 
= 0.95 for HS-maps and R = 0.89 for SWE-maps). Relative errors (regarding snow survey data) 372 
increase by 5-6% from the daily HS-maps to the daily SWE-maps, and R decreases by 0.06. 373 
Given a mean snow depth at snow survey dates of 0.4 m the absolute RMSE of the HS-maps lies 374 
at 8 cm (MEA = 6 cm). Regarding the SWE-maps, the measured mean lies at 132 mm, thus the 375 
absolute errors are 35 mm (RMSE) and 26 mm (MEA). Error metrics for the HS-maps are higher 376 
when compared to the LiDAR HS-maps. 377 
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RoS-event started (28 December to 29 December 2022). Ablation in the remaining two clusters 434 
starts with the end of precipitation 29 December 2022 and continues in the following dry period. 435 
During Ablଷ, snow was only present during the first RoS-event (out of four individual events) for 436 
the open, exposed and forested cluster. Thus, different snow disappearance days during this event 437 
influenced the derived mean ablation rate even though we considered this by excluding days 438 
where no snow was present in the calculation of these rates (Sect. 2.3). The long and dry ablation 439 
period Ablଶ has a weak correlation with the RoS-induced Ablଵ and Ablଷ (R= -0.35 and 0.47). 440 
Here, the ablation rates are generally lower compared to the RoS-induced events. During Ablଶ, 441 
lowest ablation rates can be found in the forested cluster and highest in the open, intermediate 442 
cluster. It is noticeable that ablation start and ablation rate maximum (and its timing) vary 443 
between the clusters (Supporting information, S5): for the forested cluster, ablation starts on 10 444 
March 2022, followed by the open, exposed (14 March 2022), open, intermediate (16 March 445 
2022) and open, shaded (17 March 2022) clusters. Maximum ablation rates during Ablଶ occur 446 
for the forested cluster on 16 March 2022 (8.5 mm/d). Compared to the forested cluster, ablation 447 
rate maxima of the other clusters are higher (maximum of 17.6 mm/d in open, intermediate) and 448 
later (latest maximum on 27 March 2022 in open, shaded). 449 

4 Discussion 450 

4.1 Advantages of presented LiDAR-system and data processing 451 

This study presented the first to our knowledge HS-maps that were derived from a LiDAR sensor 452 
mounted on a VTOL fixed-wing UAV. VTOL fixed-wing UAVs allow the start and landing 453 
position to be in complex terrain (e.g. canopy gaps with >10 m diameter) and thus eliminate a 454 
limitation described in other studies using fixed-wing UAVs (Michele et al., 2016). With a flight 455 
duration of more than 60 minutes, the DeltaQuad Pro could cover areas of >1 km² (assuming flat 456 
topography). From our experience in winter and complex terrain, the limiting factor was to 457 
maintain visual contact with the UAV and a loss of flight stability at wind speeds greater than 5 458 
m/s. 459 
We took advantage of the vegetation information that was measured by the LiDAR during every 460 
flight to perform a full (3D) co-registration of i) the point clouds of same-day surveys and ii) the 461 
(merged) snow-on and snow-off point clouds. The transformations applied to the point clouds are 462 
dominated by a shift in x- and y- (horizontal) and z-direction (vertical). This co-registration, if 463 
combined with the final correction of the DEM using the snow-free areas, improved the error 464 
metrics of all of our UAV surveys. The result underlines the importance of not limiting the 465 
registration to the vertical (z) direction by exclusively using snow-free areas. Shifts in the x- and 466 
y- directions can potentially be of the same order of magnitude (for our LiDAR configuration). 467 
These observations could describe the observed varying RMSE between different LiDAR 468 
acquisitions in other studies (Koutantou et al., 2022). Further testing of this method is needed to 469 
test its robustness, for instance against other point densities. For the co-registration, ground 470 
control points (reflective tapes of 0.1 m²) were also deployed in the field, as suggested by 471 
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Koutantou et al. (2022). However, the derived point densities were not sufficient for a co-472 
registration based on these points. 473 
Accuracies of the presented LiDAR HS-maps (Table 2) have the same order of magnitude 474 
compared to other recent studies (Harder et al., 2020; Jacobs et al., 2021; Koutantou et al., 2022). 475 
Various sources of error are known from other studies, such as i) snow probes penetrating into 476 
the soil (Sturm & Holmgren, 2018), ii) the geolocalisation of reference measurements 477 
(Hopkinson et al., 2012), iii) vegetation classified as ground (Jacobs et al., 2021) or iv) errors 478 
that result from the LiDAR processing (Deems et al., 2013). We noticed another systematic 479 
source of error, caused by the elapsed time between the LiDAR survey (10:00 am to 12:00 pm) 480 
and the reference measurements (12:30 pm to 4 pm). This time lag is sufficient for the snowpack 481 
to settle, generating an offset between LiDAR and snow survey data. Additionally, a large bias 482 
occurred in the LiDAR-derived HS-map where vegetation elements (e.g. fallen tree trunks) were 483 
classified as vegetation in the snow-off point cloud and then, when snowed in, were classified as 484 
ground in the snow-on point cloud.  485 
We found no differences between forested and open terrain error for this study’s LiDAR HS-486 
maps (RMSE of 9 cm and MEA of 8 cm in both terrain types). Jacobs et al. (2021) reported 487 
MEA of 1 cm and RMSE of 2 cm for open terrain, and MEA of 7 cm and RMSE of 10 cm for 488 
forested terrain using the same LiDAR-system hardware components mounted on a multi-copter 489 
UAV. Harder et al. (2020) used different LiDAR-system hardware, also mounted on a multi-490 
rotor UAV. They reported lower error metrics for open terrain (MEA 3-4 cm and RMSE 9-10 491 
cm) but larger errors in forested terrain too (MEA 9-13 cm, RMSE 15-16 cm). More data 492 
acquisitions using fixed-wing UAVs are needed to evaluate to what extent error metrics are 493 
influenced by this platform’s flight characteristics. 494 

4.2 Transferrable workflow for daily HS- and SWE-maps 495 

The proposed workflow (Figure 3) was used to derive clusters with a k-means clustering 496 
algorithm followed by a random forest algorithm. We derived daily HS-maps by assigning the 497 
temporal information from the snow depth time series, which were measured by the SnoMoS, to 498 
the clusters. The derived daily HS-maps are used for the accuracy assessment and thus the 499 
calibration and validation of the workflow’s parameters.  500 
Since classification algorithms in general can barely handle incomplete data, missing LiDAR 501 
observations were  imputed in R using the mice package (Doove et al., 2014; Shah et al., 2014). 502 
The results allow the application of our workflow to the full project area. Only cells with at least 503 
five LiDAR measurements (out of eight surveys) were imputed, which resulted in a total of 14% 504 
of the total number of observations that were imputed. Error metrics increased by 0.5 cm 505 
(RMSE) and 0.3 cm (MEA) from the original to the imputed LiDAR HS-maps. However, these 506 
error estimates must be considered with caution as the number of validation measurements only 507 
increased by 10%. 508 
The k-means algorithm is one of the simplest algorithms for unsupervised classification and 509 
clustering. Thus, drawbacks that are caused by its simplicity must be taken into account (Ahmed 510 
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et al., 2020). For instance, the performance of the k-means algorithm is weak for small clusters, 511 
data containing outliers or different data types and the result depends on the placement of the 512 
initial centroids. However, we chose this algorithm because the training data only contains few 513 
outliers and is made up of the same type of data (LiDAR HS-maps) and variable (snow depth in 514 
meters). Another disadvantage of the k-means algorithm is that the number of clusters must be 515 
specified as a parameter by the user before the clustering. Various methods exist for selecting the 516 
number of clusters (Charrad et al., 2014). However, these resulted in a range of recommended 517 
number of clusters from two (silhouette width) to five (gap statistic) depending on the selected 518 
method. We thus integrated the selection of the number of clusters into the workflow during 519 
calibration. However, the selection remains subjective (supporting information, S1). We chose a 520 
low number of clusters (despite decreasing RMSE with a higher number of clusters) to increase 521 
the interpretability of this study. Note the different maps for model runs with three, four and five 522 
clusters in the supporting information, S3. A normalization of the training data was tested but 523 
decreased the RMSE of the resulting daily HS-maps by 2 cm. The subsequent random forest 524 
algorithm is used to extrapolate clusters found in the subset of the data by the k-means algorithm 525 
to the full dataset. The main purpose of the random forest is the generation of a fuzzy 526 
(probability-based) result that increased the accuracy of the derived HS-maps compared to a 527 
clustering based solely on k-means by 2 cm (RMSE). 528 
SWE is derived from the snow depth time series using the ΔSnow.Model. Technically, no 529 
calibration is necessary for this model, as it was calibrated for the European Alps. However, 530 
local calibration reduced the NRMSE of the daily SWE-maps by 7% (RMSE changed from 47.6 531 
mm to 37.3 mm) and merely slightly changed the model parameters (see supporting information, 532 
S1). Only the k.ov-parameter, a model-specific overburden parameter, changed noticeably (but 533 
within the suggested range of Winkler et al. (2021)) and with only low sensitivity. NRMSE 534 
increases from the generated HS-maps to the SWE-maps by 6% (Table 2). We suspect that the 535 
increased associated error to the SWE-maps is caused by i) the limited capability of 536 
ΔSnow.Model to model RoS-events (Winkler et al., 2021), ii) an increased error of the validation 537 
data (Beaudoin-Galaise & Jutras, 2022) and iii) a reduced number of validation measurements. 538 
However, using the ΔSnow.Model allows us to avoid errors that are otherwise created by the 539 
extrapolating of density measurements into space (Broxton et al., 2019). 540 
The derived daily HS- and SWE-maps are not capable of representing extreme values. For 541 
instance, a small, south-exposed slope in open terrain (between SnoMoS 2 and 6 (Figure 1) or 542 
the north-west corner of Figure 5), falls into the forested cluster. In areas as this we find the 543 
largest error when comparing the derived HS-maps with the LiDAR-HS-maps. Since such 544 
extremes are not covered by the manual snow survey validation data, error metrics of the derived 545 
HS-maps increase when compared to the LiDAR data. Future measurement campaigns that want 546 
to apply the presented workflow or simply capture the full snow depth variability, are 547 
recommended to select SnoMoS locations based on repeated LiDAR data. For our dataset, 548 
averaged over all surveys, 11% of the LiDAR HS-map observations had snow depths outside the 549 
measured range of the SnoMoS.  550 
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The presented workflow is transferrable to different regions and scales. For this study fairly 551 
constant topography was imperative to focus on snow distribution patterns driven by canopy 552 
cover. However, if the proposed workflow will be used on a study area with more complex 553 
terrain (in terms of elevation or aspect) or more profound redistribution of snow due to wind, we 554 
expect a larger number of clusters to emerge. For the successful implementation of the presented 555 
workflow, SnoMoS must represent the mean of each cluster adequately. Thus, great care must be 556 
taken for the choice of adequate locations for point measurements.  557 

4.3 Clusters of snow distribution in forests 558 

The spatial arrangement of the clusters determined by this study's workflow generally divides the 559 
study area into forested and open clusters. The entire sub-canopy variability was aggregated into 560 
one cluster. This suggests that under the canopy the snow distribution is relatively constant. In 561 
contrast, the open clusters are further subdivided, dominantly based on their distance and 562 
orientation to the canopy edges, into exposed, shaded and intermediate clusters. This supports 563 
the findings of other studies highlighting the importance of canopy gaps (and their diameter) 564 
(Metcalfe & Buttle, 1995, 1998; Seyednasrollah & Kumar, 2014; Sun et al., 2018) as well as 565 
distances to canopy edges (Dickerson‐Lange et al., 2015; Mazzotti et al., 2019; Mazzotti et al., 566 
2020a). Moreover, the spatial arrangement of the determined clusters corresponds with more 567 
conceptual approaches from other studies that were used for defining explicit sub-grid variability 568 
for upscaling purposes (Currier et al., 2022; Currier & Lundquist, 2018). 569 
We observed a reduction of the overall accumulation rate between 28% and 36% for the forested, 570 
compared to the open clusters. This observation, dominated by the interception of snow in the 571 
canopy, corresponds in its magnitude to existing literature values (Moeser et al., 2015; Russell et 572 
al., 2021). The high correlations between individual accumulation events (R: 0.81 – 0.83) also 573 
agree with findings by Mazzotti et al. (2022).  574 
Seyednasrollah and Kumar (2014) highlight that ablation rates increase with the gap diameter D 575 
relative to the surrounding canopy height H (D/H). This finding was confirmed by this study's 576 
clusters: The open, shaded clusters are located in canopy gaps of diameters ranging from 12 m to 577 
45 m (D/H 0.4 to 2.1) as well as open terrain that is shaded by canopy. Their overall absolute 578 
ablation rate is higher compared to the open, exposed cluster, which combines small gaps (D/H 579 
<0.5) and open terrain south of canopy edges. In fact, this combination of small canopy gaps and 580 
open terrain south of canopy edges within one cluster is counter-intuitive. Small canopy gaps are 581 
characterized by reduced SWR (shading) and increased (positive) LWR (radiation emitted by the 582 
canopy) whereas open areas are characterized by high SWR (especially in clear-sky conditions) 583 
and low (negative) LWR (emitted from the snowpack) (Garvelmann et al., 2014; Strasser et al., 584 
2011). Thus, these areas being combined in one cluster suggests that for our dataset the described 585 
effects balance each other out. However, this could limit the transferability of our clusters to 586 
other years. 587 
The open, shaded cluster often lies spatially adjacent to the open, intermediate cluster. The open, 588 
intermediate cluster differs from the open, shaded cluster in slightly lower accumulation rates,  589 
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(unknown reason), higher ablation rates during the dry and warm march (likely due to less 590 
shading) and higher ablation rates during RoS-events, which is potentially due to an earlier 591 
saturation of the snowpack. 592 
 593 

4.4 Outlook 594 

This study highlights that patterns (“clusters”) of similar snow depth dynamics reoccur in space 595 
within forested environments if topography is of minor influence. Further work is needed to 596 
evaluate to what extent the observed clusters remain constant among different years. Since Pflug 597 
and Lundquist (2020) showed that clusters are inter-annually consistent for years of similar 598 
characteristics, this is a promising approach. We expect that the robustness of the observed 599 
clusters to inter-annual variability would increase by including LiDAR-derived HS-maps from 600 
different seasons in the training data. The presented clusters support conceptual approaches to 601 
derive sub-grid variability (Currier & Lundquist, 2018). As they are determined empirically 602 
based on LiDAR HS-maps, they could increase our ability to adequately define sub-grid forest 603 
variability. 604 
We created daily HS- and SWE-maps by combing these spatial clusters and snow depth time 605 
series from multiple point measurements. We see great potential in using the presented dataset 606 
for validations of hyper-resolution snow models such as SnowPALM (Broxton et al., 2014), 607 
FSM2 (Mazzotti et al., 2020b) or others. This could allow improvements of the respective snow 608 
models, entailing the evaluation of mid-winter and late-winter RoS-events.  609 
The presented workflow is transferable to other climates and spatial scales. For many watersheds 610 
worldwide LiDAR HS-maps have been acquired in recent years and are often accompanied by 611 
point measurements and manual snow survey data. If the presented workflow is applied to these 612 
available datasets, daily HS- and SWE-maps can be derived, which are exclusively based on 613 
experimental data and data mining algorithms. Moreover, if future work confirms that clusters 614 
are inter-annually consistent, this could have positive implications for the availability of 615 
experimentally collected data. Clusters, once determined using similar data and the workflow 616 
presented, could help to regionalize a small number of targeted point measurements into larger 617 
scales. Thus, daily HS- and SWE- maps could be derived with only little effort from only a small 618 
number of point measurements. Their accuracy, as shown in our study, could be monitored (if 619 
possible) via transects.  620 
This study provided i) a full co-registration workflow of LiDAR point clouds for a more robust 621 
generation of HS-maps, ii) a workflow to derive clusters of snow variability, iii) an experimental 622 
snow distribution dataset, continuous in space and time and iv) insights into various 623 
accumulation and ablation events in forested environments. It thus contributes towards a better 624 
process understanding and model representation of forest-snow interaction in the field of snow 625 
hydrology. The latter two can help to improve forest and water management strategies that 626 
preserve a functioning eco-hydrologic system in a changing climate. 627 
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5 Conclusion 628 

This study presents LiDAR HS-maps using a VTOL UAV and underlines its advantages of 629 
longer flight durations (compared to multi-rotor UAVs) and the ability to start and land in 630 
complex terrain (compared to other fixed-wing UAVs). We perform a full co-registration of the 631 
snow-on and snow-off point clouds and thereby obtain constant error metrics for all eight 632 
surveys (RMSE between 0.085 m and 0.108 m). Based on the co-registered LiDAR HS-maps, 633 
this study determines four clusters of similar snow depth dynamics throughout the winter season 634 
of WY 2022 for the forested, sub-alpine study site Alptal in the European Alps (Switzerland). 635 
The clusters underline that spatio-temporal variability in forested environments is driven by 636 
horizontal and vertical canopy structures (canopy height and gap sizes), considering a 637 
neglectable topography. We further derive daily, spatially continuous SWE (and HS) maps based 638 
on these clusters. They are exclusively based on experimental data and data mining algorithms 639 
and correspond with manual observations (RMSE of SWE-maps: 35 mm and of HS-maps: 9 640 
cm). The presented dataset is thus ideally suited to validate hyper-resolution snow models. The 641 
daily SWE-maps and derived hydrologic parameters give detailed insights into individual 642 
accumulation and ablation events.  643 
This study's experimental setup and methodology are transferable to other regions, spatial and 644 
temporal scales. They can be used to i) create similar snow model validation data sets, ii) 645 
determine clusters of similar snow depth dynamics, or iii) evaluate event-based processes 646 
spatially continuously within the study site. Such clusters (once determined) can help to decrease 647 
the number of point measurements needed to represent the full spatio-temporal variability of a 648 
study site. Finally, they can improve the representation of small-scale canopy structure effects on 649 
snow distributions in larger-scale models. Further research is needed to evaluate to what extent 650 
these clusters repeat inter-annually. 651 
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Introduction  

The supporting information contains six figures and one movie that should give the 

interested reader background information on the presented workflow and data set. S1 

contains the results of the calibration, where the strongly varying sensitivity of the 

individual parameters becomes clear. Building on this, S2 visualizes the probability based 

contributions of the individual SnoMoS to the time series of the clusters (c.f. Equation 1 of 

the main publication). S3 shows how the clusters change depending on the pre-defined 

number-of-clusters (‘nclass’) parameter. S4 and S5 can be used by the interested reader for 

a more in-depth analysis of the accumulation and ablation dynamics during the individual 

events. The density information included in these figures is based solely on the quotient of 

maximum snow water equivalent (SWE) - and snow depth (HS)- maps and must therefore 
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be considered with caution. Finally, S6 provides the spatial distribution of the clusters, the 

maximum SWE and canopy height model (CHM) for the entire study site for the sake of 

completeness (compare with sub-plots of Figure 5). An animation of the daily SWE-maps 

is uploaded separately as ds01. 

Figure S1. Calibration result of the unsupervised classification model and of the 

Snow.Model; Blue boxes are hyperparameters from the random forest model, orange are 

from the k-means–algorithm and green from the Snow.Model; Black lines show the mean 

RMSE, grey ranges indicate the standard deviation of 50 model runs for the respective 

parameter value. The final value chosen is illustrated by the vertical red line.  
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Figure S2. Probability based contributions of the individual SnoMoS time series to the 

time series of the Clusters (Equation 1). (Locations of the SnoMoS can be found in the 

main publication, Figure 1)  

 

 

Figure S3. CHM and HS-map (16 March 2022) of a sub-area of the study site (left) and 

different numbers of clusters determined with the workflow presented in the main 

publication. Resolution of the raster data is 1 m. 
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Figure S4. Time series of daily temperature and precipitation at climate station Erlenhoehe, mean daily density (derived by dividing 

daily SWE-maps by daily HS-maps) in kg/m³, SWE in mm and daily change of SWE in mm for the individual clusters over the entire 

season as well as the individual accumulation events. 
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Figure S5. Time series of daily temperature and precipitation at climate station Erlenhoehe, mean daily Density (derived by dividing 

daily SWE-maps by daily HS-maps) in kg/m³, SWE in mm and daily change of SWE in mm for the individual clusters over the entire 

season as well as the individual ablation events.



 

 

1 

 

 

Figure S6. Canopy Height Model, map of Clusters and maximum SWE for the entire study 

area in 1 m spatial resolution.  

 

Data Set DS1. Animation of daily SWE maps in mm and 1 m spatial resolution. 


