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Abstract6

Here we review, synthesize, and analyse the size-based approach to model7

unicellular plankton cells and communities. We first review how cell size in-8

fluences processes of the individual the cell: uptake of dissolved nutrients9

and dissolved organic carbon, phototrophy, phagotrophy, and metabolism.10

We parameterise processes primarily from first principles, using a synthesis11

of existing data only when needed, and show how these processes determine12

minimum and maximum cell size and limiting resource concentrations. The13

cell level processes scale directly up to the structure and function of the14

entire unicellular plankton ecosystem, from heterotrophic bacteria to zoo-15

plankton. The structure is described by the Sheldon size spectrum and by16

the emergent trophic strategies. We develop an analytical approximate so-17

lution of the biomass size spectrum and show how the trophic strategies of18

osmotrophy, light- and nutrient-limited phototrophy, mixotrophy, phagotro-19

phy depend on the resource environment. We further develop expressions to20

quantify the functions of the plankton community: production, respiration21

and losses, and carbon available to production of higher trophic levels, and22

show how the plankton community responds to changes in temperature and23

grazing from higher trophic levels. We finally discuss strengths and limi-24

tations of size-based representations and models of plankton communities25

and which additional trait axes will improve the representation of plankton26

functional diversity.27

Keywords— Cell size, traits, plankton, DOC, Sheldon, mixotrophy28
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1 Introduction29

The pace of global change spurs the imperative for predictive, global scale models of ma-30

rine ecosystems. Key questions that confront us are how the diversity and functioning31

of marine ecosystems will change, how these changes will impact key ecosystem ser-32

vices such as primary and secondary production, ocean oxygen concentration and carbon33

sequestration, and whether these services are subject to tipping processes. Traditional34

models, that have been lovingly calibrated and validated to current-day situations, and35

through which we have learned so much of marine ecosystem dynamics, are challenged36

with this task. The world is moving rapidly out of the calibration envelopes for which they37

were calibrated, and the validation of model predictions with observed ecosystems can no38

longer be the sole gold-standard measure of model success. In an ideal world predictive,39

global scale models should be rooted in “first principles”: the rules of the natural world40

whose validity are considered fundamental and unchanging. In this context, mass and41

energy conservation, chemical reaction kinetics and evolution by natural selection can be42

considered examples of first principles. Models of ecosystems do not have recourse to43

such first principles per se. Nevertheless, individual organisms are constrained by first44

principles that are manifested at all scales of life, from the reaction kinetics and topol-45

ogy of life’s fundamental molecules, the physical limitations of functions of the cells, the46

circulatory systems, and the geometry of the body plan. One aspect of life where first47

principle constraints are most evident is in relations to the size of individual organisms48

(Haldane, 1926; Andersen et al., 2016). Here we attempt to scale from individual organ-49

ism to ecosystem structure and function. We use unicellular planktonic life as an example50

where first principles constraints on the individual cell have a particularly strong effect on51

the ecosystem structure and function (Kiørboe, 1993).52
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Unicellular plankton is an incredibly diverse group of organisms. Taxonomically they53

represent four domains of life: archaea, bacteria, algae and protozoa. In terms of cell54

size, plankton spans 8 orders of magnitude in mass, the same range as between a beetle55

and an elephant. Functionally, unicellular planktonic ecosystems show the entire range56

of trophic strategies of primary producers (phytoplankton), grazers and predators (zoo-57

plankton), and detritivores (bacteria). The unicellular planktonic food web drives the fast58

turnover of inorganic dissolved matter in the oceans, half the global primary production,59

the main carbon flux from the photic zone, and the turn-over of inorganic and organic60

matter in the world’s oceans and lakes. All metazoans – multicellular plankton, jellies,61

fish, benthic organisms, and marine mammals – rely on surplus production from unicel-62

lular plankton food webs (Ryther, 1969; Stock et al., 2017). Without the unicellular food63

web, macroscopic life in the oceans would be extremely impoverished.64

The difficulty of observing and experimenting with unicellular plankton food webs65

have put models in a central position, not just for predictions of responses to changes,66

but also for understanding the structure and function of the ecosystems. Any ecosystem67

model faces a choice of how to represent the diversity of organisms. The classic food web68

approach, which is often applied to higher trophic levels, attempts to resolve all popula-69

tions and their interactions with other populations. This approach only works for smaller70

isolated ecosystems and is clearly unsuited to unicellular plankton where we rarely have71

a clear overview of the full taxonomic diversity. Plankton models instead describe diver-72

sity by lumping species into distinct functional groups. The simplest grouping is between73

phytoplankton (P) and zooplankton (Z), with phytoplankton representing all phototrophic74

organisms and zooplankton their grazers (Franks, 2002). This grouping together with75

nutrients (N) lead to “NPZ” models, which have been remarkably successfully in captur-76
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ing the main features of seasonal succession (Evans and Parslow, 1985; Fasham et al.,77

1990; Anderson et al., 2015) and global patterns of production (e.g. Palmer and Totter-78

dell, 2001). However, their success is contingent on model parameters being tuned to the79

observations themselves. In this way, parameters of each group are adjusted to represent80

the physiology and ecology of the dominant species in the group within the geographic81

region that is modelled. When conditions change though, other species with different pa-82

rameters may become dominant and the model no longer represents the new ecosystem83

(Franks, 2009). This parameter tuning therefore reduces our confidence in the model’s84

ability to reproduce ecosystem dynamics when conditions change outside the model’s85

tuning envelope.86

A further elaboration of plankton diversity is achieved by breaking the trophic groups87

into additional functional groups (Anderson, 2005; Le Quere et al., 2005; Hood et al.,88

2006). The functional groups are often aligned with dominant taxonomic groups includ-89

ing coccolithophores, dinoflagellates, ciliates, and diatoms, or more general groups, e.g.,90

silicifiers, calcifiers etc.. While the functional-group approach introduces additional flex-91

ibility and accuracy it does so at the price of increased complexity and additional pa-92

rameters. Nevertheless, each group still represents a huge diversity of organisms – for93

example, the size range of diatoms spans from a few tens to 107 cubic micrometers – and94

parameters for each group are still tuned to represent the dominant species in the modelled95

region. While the introduction of further realism improves the models fit to observations96

it does not solve the fundamental problem of parameter tuning. Further, the addition of97

new functional groups leads into a complexity trap with a proliferation of state variables98

and parameters.99

Size-based models break free of the complexity trap of functional groups by repre-100
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senting the plankton community with size groups that each represent all cells in a given101

size range regardless of their taxonomic affiliation. Technically, each size group is mod-102

elled largely in the same way as a functional groups. The main difference is that the103

parameters are not independently determined for each size group. Instead, parameters104

follow from a smaller set of scaling coefficients and exponents that apply to all sizes. In105

this manner size models are flexible with respect to the number of state variable while106

retaining a small set of parameters that is, at least in theory, generally valid. Breaking free107

of the complexity trap in this manner comes at the cost of a poor representation of taxo-108

nomic diversity. However, the size-based model provides a framework where functional109

diversity is an emergent property of the model rather than a consequence of its structure.110

There are other reasons for using cell size as the governing axis of diversity. It111

is now well documented that within plankton many of the fundamental rates and pro-112

cesses scale with cell size (Fenchel, 1987; Kiørboe, 1993; Finkel et al., 2010; Marañón,113

2015): affinities for nutrients (Edwards et al., 2012) or light (Taguchi, 1976; Edwards114

et al., 2015), maximum bio-synthesis rates and respiration rates (Kiørboe and Hirst, 2014),115

clearance rates (Kiørboe and Hirst, 2014), predator-prey mass ratios (Hansen et al., 1994)116

and predation risk from larger organisms (Hirst and Kiørboe, 2002). Importantly, many117

of these scaling relations emerge from fundamental physical limitations due to geome-118

try (light affinity), diffusion (affinity for dissolved organic matter), and fluid mechanics119

(e.g. Stokes’ law or feeding mechanics (Nielsen et al., 2017)). In other words: the pa-120

rameters are constrained by first principles from geometry or classical physics. A further121

advantage of size-based models is the conceptual simplicity that comes from being based122

on a general description of a single cell. The simplicity extends to the implementation,123

which only needs a small parameter set and have simpler code. These advantages make124
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size-based descriptions appealing to add diversity within a functional group (Terseleer125

et al., 2014; Stock et al., 2014) or for the full model structure. Existing size-based models126

mostly rely on empirical relationships between size and parameters such as half-saturation127

coefficients, maximum growth rates etc.. This approach facilitates a good fit with obser-128

vations. Here, we instead try to establish the fundamental mechanisms and strive to de-129

termine parameters from fundamental principles by reviewing the literature on the theory130

of size-based relations with cell size.131

Size-based models of plankton have a long history (Armstrong, 1994; Moloney and132

Field, 1989; Baird and Suthers, 2007; Stock et al., 2008; Banas, 2011; Negrete-Garcı́a133

et al., 2022). Size-based concepts are now increasingly used in biogeochemical mod-134

els to increase the diversity within functional groups according to size (Terseleer et al.,135

2014; Dutkiewicz et al., 2020; Stock et al., 2014). Most size-based models retain the dis-136

tinction of functional trophic groups by operating with separate phyto- and zooplankton137

size distributions (Poulin and Franks, 2010; Ward et al., 2018). A recent strand is purely138

size-based models where the only difference between cells are their size and no a priori139

distinction between trophic strategy is imposed (Ward and Follows, 2016; Ho et al., 2020;140

Chakraborty et al., 2020). Such models completely forgo taxonomic-oriented assump-141

tions about the function of the modelled groups (Andersen et al., 2015). All functional142

differences between size groups and of the community are emergent properties of the143

model.144

There exists an abundance of reviews on the empirical relationships between cell size145

and various processes (Kiørboe, 1993; Hansen et al., 1994; Finkel et al., 2010; Edwards146

et al., 2012; Kiørboe and Hirst, 2014; Marañón, 2015; Hillebrand et al., 2021). They tend147

to focus on phytoplankton and upon describing size-relations as a single power-law func-148
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tion. However, in many cases there is more than one underlying physical process at play.149

This means that there are transitions between one power-law relation and another, e.g.,150

between nutrient diffusion and surface uptake (Armstrong, 2008) or between maximum151

synthesis rates and nutrient uptake (Ward et al., 2017). Such transitions at characteris-152

tic sizes often lead to important transition in the ecosystem structure (Andersen et al.,153

2016), for example between phototrophs, mixotrophs, and heterotrophs (Andersen et al.,154

2015). Identifying characteristic sizes where there is a cross-over between two power-law155

relations is perhaps even more important for ecosystem structure and function than the156

power-law relations themselves.157

Here we review existing knowledge of size-based relationships for unicellular plank-158

ton, from bacteria to zooplankton, and attempt a synthesis that demonstrates the impor-159

tance of size-based relations for emergent ecosystem structure and function. Our ambition160

is to identify the first principles responsible for the size-based relations, thereby tying pa-161

rameters to physical and chemical processes and geometry. Our synthesis show how size-162

based relationships determine community-level patterns of biodiversity and ecosystem163

function: the viable size-range, competition, biomass size structure, ecosystem primary164

and secondary production, and trophic efficiencies. By focusing on the processes related165

to cell size, we demonstrate the power of these relations for determining community-level166

patterns and ecosystem functions. The work is organised in five parts. After an initial167

discussion of the concept of “size” of a cell, we review the relations governing resource168

uptake, losses, and biosynthesis of a cell, including the theory that links these processes169

to first principles. Second, we exploit the simple form of the size-based relations to derive170

analytical solutions for the smallest and largest cell sizes, and for the limiting resources.171

Third, we scale from the cell-level process to the community size distribution and explore172
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emergent trophic strategies. We derive a scaling solution of the biomass size distribution173

and explore the trophic strategies and compare with simulations of the size-based model174

in a chemostat. From the emergent size spectrum and trophic strategies we derive ecosys-175

tems functions, including production, and show how the plankton community responds to176

predation by higher trophic levels or changes in temperature. Our aim is to make a mini-177

mal size-based model framework where we prioritize simple conceptual implementation178

and analytical analysis over capturing complete and accurate biogeochemistry. Never-179

theless we show that the model gives reasonable predictions of biomass and production.180

Overall, our synthesis highlights the importance of fundamental first principles for con-181

straining the unicellular plankton communities and their related functions. We finish by182

discussing the limitations of the size-based approach and prioritize which additional traits183

will best improve the representation of functional diversity.184

2 Measures of cell size185

The size of a cell can be measured in two ways: by its physical size – radius or volume –186

or by its mass, e.g., mass or moles of carbon or nitrogen. There is no universally optimal187

measure; for some processes physical size is most relevant, for some it is the mass, and188

for others both measures of size matter. For example, the settling velocity due to Stokes’189

law is determined by both the physical size and the mass of the cell. In general, physical190

size is mostly used to describe limitations due to geometry, e.g., surface limitation, while191

mass is used to describe metabolism and mass budget of the cell.192

Unicellular plankton display an astonishing diversity in cell shape (Ryabov et al.,193

2021). The functional role of cell shape is largely unknown, though it is conjectured to be194
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related to defence from predation (Smetacek, 2001). For simplicity we ignore the diversity195

of shapes (except for its relation to the minimum size in Section 4.1), and consider cells196

to be spherical with physical size characterized by radius r. Conversion between physical197

size (equivalent spherical radius r) and mass of substance X , mX is then:198

mX = ρC:Xρ
4

3
πr3 ⇔ r =

(
3mX

4πρC:Xρ

)1/3

, (1)

where ρ is the carbon density (carbon mass per volume) and ρC:X is the elemental mass199

ratio between carbon and X .200

In the following, mass is considered as carbon mass and the subscript C is suppressed201

m = mC. For the theoretical calculations we use a density of ρ = 0.4·10−6 µgC/µm3 and202

Redfield elemental ratios. Conversion between physical size and mass needs to account203

for differences in density. In particular diatoms are special due to their vacuole which204

lowers their density. Here we use the comprehensive compilation of Menden-Deuer and205

Lessard (2000) that explicitly distinguishes between diatoms and other protists to convert206

observations of cell size to cell mass.207

Not all of the cell’s massm is available for functions of biosynthesis (ribosomes), light208

harvesting (chloroplast) etc. Some part of the cell is devoted to the cell membranes, DNA209

and RNA, (Kempes et al., 2016). The cell membrane and cell wall takes up a fraction of210

the cell mass (Raven, 1994; Marañón, 2015). For a spherical cell the fraction of the cell211

used by the membrane and wall is approximately:212

ν ≈ 3
δ

r
, for r � δ (2)

where δ ≈ 50 nm is the thickness of the cell wall and membrane (adjusted a bit down213
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from 70-80 nm as given by Raven (1987) to correct for the approximation used in Eq. 2).214

The effective functional mass is therefore m(1 − ν). As the cell wall fraction scales as215

1/r, small cells will be severely limited in the functions due to the material cost of cell216

membrane and wall. Kempes et al. (2016) further considered the limitation of DNA and217

RNA, however, the most limiting factor was the cell wall and membrane.218

3 Effects of cell size on fundamental rates: resource219

uptake, losses, and biosynthesis220

Ecosystem dynamics are driven by individual cells acquiring and processing resources,228

eventually leading to cell division and cell growth. This section reviews how cell size229

determines the uptakes of resources: dissolved nutrients, inorganic carbon through photo-230

harvesting, dissolved organic carbon, and feeding on other, typically smaller, organisms,231

and how these uptakes are determined by first principles. Some of the acquired resources232

are lost through passive exudation or used for respiration. The remaining resources are233

used for biosynthesis (Fig. 1).234

3.1 Resource uptake235

Cells take up resources through three mechanisms: diffusive uptake of dissolved organic236

carbon (DOC) and inorganic matter (N ), photoharvesting of light (L), and phagotrophic237

uptake of particulate matter (F ). The potential uptake of resourceX is proportional to the238

resource concentration:239

jX = aX(m)XρC:X , X ∈ {DOC, N, L, or F} (3)

11



221

Figure 1: Sketch of the fluxes of nutrients (blue) and carbon (green) in and out
of a cell. The grey insets sketches the size-dependency of each mass-specific
rate (units of 1/time). Uptakes of nutrients jN, food jF, photoharvesting jL, and
dissolved organic carbon jDOC are subjected to losses from respiration jR and
passive exudation jpassive before they are synthesised with a maximum rate jmax.
The end result is the growth (i.e. division) rate g.

222
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224
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227
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where jX is the mass specific flux (in units of gC/gC/time), aX is the mass specific affinity240

(volume/day/gC), X is the resource in units of X per volume, and ρC:X = ρC:N is the241

C:N ratio for diffusive uptake of nutrients. By multiplying N uptake with the fixed C:N242

ratio all the fluxes are measured in the same units and are therefore directly comparable243

(uptake of food and light is measured in units of carbon as ρC:F = ρC:L = 1).244

Note that we characterise a cells resource uptake ability by the affinity aX , following245

Aksnes and Cao (2011); Fiksen et al. (2013); Flynn et al. (2018). This choice contrasts the246

commonly used Monod/Michaelis-Menten formulation of the functional response, where247

uptake is described with a half-saturation coefficient and a maximum uptake rate. In a248

mechanistic context, the Monod formulation of the uptake rate is problematic because the249

half-saturation coefficient cannot be associated with a physical or physiological charac-250

teristic of the cell – it acts purely as a convenient fitting parameter. Mathematically, the251

affinity follows from the Monod formulation as the product of the half-saturation coeffi-252

cient and the maximum synthesis rate, which we use to relation to calculate affinities from253

literature sources of half saturation coefficients. The Monod formulation also includes the254

process of saturation, which we return to later. Separating the processes of encounter255

and biosynthesis explicitly with two different parameters (affinity and maximum synthe-256

sis rate) avoids the pitfalls of considering the half-saturation constant as a physiological257

trait (Kiørboe and Andersen, 2019).258

The affinity aX measures the cell’s ability to encounter and assimilate resource X .259

The affinity is determined partly by encounter with the resource and partly by the cell’s260

investment in capacity to take up and assimilate the resource (Shuter, 1979; Bruggeman261

and Kooijman, 2007; Chakraborty et al., 2017). The encounter results from the physical262

processes of diffusion, self-shading, and fluid dynamics. The limitation due to uptake ca-263
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pacity is relevant when the cell encounters abundant amounts of the resource but is unable264

to process it all by its uptake machinery, e.g., porters for diffusive uptake, light harvest-265

ing machinery, or phagotrophic assimilation. For all resource uptakes, the mass-specific266

affinity is constant or decreases with size, as we will show below. Uptake limitation is267

most prominent for small cells that have high affinities, leading to a higher encounter with268

resources that they can process. If investments in uptake capacity scales with the mass269

of the cell, the uptake limitation of mass-specific affinity is independent of size. Small270

cells therefore have limited ability to increase their uptake capacity, and their affinity will271

be limited by uptake capacity. The affinity therefore has two size-scaling regimes: for272

small sizes the affinity is independent with size (uptake limitation), and for larger sizes it273

is constant or declining with size (encounter limitation) (e.g. Armstrong, 2008).274

The processes that determine encounter and uptake capacity, and how they scale with275

cell size, depend on the type of resource.276

3.1.1 Encounter and uptake of dissolved matter285

The theory behind uptake of dissolved matter is well developed, as reviewed by Fiksen286

et al. (2013). Nutrient uptake is limited by three processes: the rate at which molecules287

diffuse towards the cell, the rate at which nutrients are transported across the cell mem-288

brane by porters, and the capacity of the cell to utilize nutrients in biosynthesis.289

The flux of molecules towards a sphere was shown by Pasciak and Gavis (1974) to290

be proportional to the sphere’s radius and the difference between the concentration far291

away and at the surface of the sphere. Assuming that the sphere absorbs all encountered292
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Figure 2: Specific nutrient affinity (aN) as a function of radius. Triangles: am-
monium uptakes; circles: nitrate uptake; diamonds: phosphorous uptake. The
dotted lines are the theoretical maximum affinity due to diffusion limitation and
porter limitation. The solid line is a fit-by-eye of the radius where porter limitation
becomes important, around r∗D = 0.75µm. Data from Edwards et al. (2015). Con-
versions between volume and mass are done using the relations in Menden-Deuer
and Lessard (2000).
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molecules the concentration at the surface is zero and the mass-specific affinity becomes:293

aD =
3D

ρ
r−2 = αDr

−2, (4)

where D is the diffusivity of the dissolved molecules, ρ is the cell carbon density, and r294

is the cell radius. However, if the cell is embedded in an external flow, such as turbulence295

or when the cell is sinking, then the boundary layer around the cell will be smaller and296

the flux of molecules increased. The increase in flux due to such advective flows is char-297

15



acterized by the Sherwood number, which is the dimensionless ratio between transport298

by advection and diffusion (Kiørboe, 1993). A Sherwood number � 1 means that the299

transport is enhanced by advection. However, Kiørboe (1993) found that for most cases300

the Sherwood number is very close to 1, such that Eq. 4 does not have to be corrected for301

advective effects.302

The simple scaling in of affinity in Eq. 4 has formed the start of an extensive theo-303

retical discussion of additional effects cell size on the affinity (reviewed by Fiksen and304

Jørgensen, 2011). We provide a full mathematical derivation in Box 1 and proceed with305

qualitative arguments here. At small cell radius, where the mass specific affinity is very306

high, uptake might become limited by either the number and capacity of porters, or by the307

cells’ ability to process incoming nutrients. Berg and Purcell (1977) accounted for uptake308

limitation by introducing an extra term in Eq. 4 (see Box 1 for complete derivation and309

discussion):310

aD(m) = αDr
−2 1

1 + (r/r∗D)−2
(5)

where r∗D is the cell size at the cross-over between uptake (porter/processing) limitation311

and diffusion limitation. Small cells d � r∗D are porter/processing limited with affinity312

aD = 4πD/r∗2
D while larger cells, d � r∗D are diffusion limited with aD = 4πDr−2

313

(Fig. 2). Precisely what controls the cross-over size r∗D remains uncertain. Geometric314

consideration based on the size and density of porter site on the cell have been explored315

(Casey and Follows, 2020; Armstrong, 2008) as have the kinetics of porter handling times316

and energy costs (Aksnes and Egge, 1991) (Box 1) but remain unresolved.317

As a practical solution to determine the cross-over size between diffusive encounter318

limitation and uptake limitation, we turn to observations. The available data are, however,319

very scattered (Fig. 2; see Table 1 for a summary of all parameters). The data do con-320
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firm the theoretical prediction of an upper limit to encounter by diffusion limitation. The321

data also indicate that the affinity of smaller cells (smaller than around r∗D = 0.75 µm) is322

limited by another process than diffusion limitation, which could be porter or uptake lim-323

itation. It should be noted, though, that the date do not lend much support to the value of324

rD, only that it should not be less than 1 µm. Below these two upper limits there is a large325

scatter in the data with some species having a factor 1000 smaller affinity for phospho-326

rous. Our interpretation of this scatter is that species adapted to high nutrient loads, like327

the fresh-water green algae, are not diffusion or porter limited. They therefore invest less328

in nutrient uptake with the result that the affinity is smaller than it could potentially be.329

In the following we use the diffusion/porter limitation to define nutrient affinity as it well330

represents the affinity in communities with strong nutrient competition. In other com-331

munities, e.g. during a spring bloom where nutrients are plentiful, it does not matter that332

this formalism predicts a too affinity as growth will be limited by the ability to perform333

biosynthesis and not by nutrient uptake. In conclusion, we have a fully developed theo-334

retical apparatus to understand the maximum affinity of cells to dissolved organic matter,335

however, we need a better understanding of the specific processes related to molecule336

capture to fully relate the limitation at small cell sizes to fundamental processes.337
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Box 1: derivation of nutrient affinity

The diffusive flux of a substance N to a partial absorbing sphere of radius r has a

well known solution:

Q = 4πrD(X −X0) (6)

where D molecular diffusivity, and N and N0 the nutrient concentration at distance

and on the cell surface respectively. For a perfectly absorbing sphere N0 = 0 and

the flux becomes Q = 4πrDN . A real cell however is not perfectly absorbing but is

covered by a finite number of uptake sites in an otherwise impervious cell membrane.

A classic result (Berg and Purcell, 1977) considers the cell surface is covered by

n porter sites each of radius s. If sites are small (specifically s � r), sparsely

distributed, and perfectly absorbing, then the diffusive flux towards each site is Qs =

4sDN0. For n such sites then

Q = 4πrD(N −N0) = 4nsDN0 ⇒ N0 = N
πr

πr + ns
(7)

which leads to:

Q = 4πrDN
ns

πr + ns
. (8)

A correction accounts for potential interference of diffusive fluxes when porter sites

are tightly packed (Zwanzig, 1990). Specifically, expressing the surface fraction of

porters as p = ns2/(4r2)

N0 = N
πr(1− p)

πr(1− p) + ns
⇒ Q = 4πrDN

ns

πr(1− p) + ns
. (9)
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As p→ 1 (i.e. the entire cell surface becomes covered with perfectly absorbing porter

sites) N0 → 0 and Q → 4πrDN . While theoretically sound and widely built upon,

these results are actually not particularly germane to the question of nutrient uptake

in plankton. In the first instance, for typical cell sizes and porter sizes, the correction

(Eq. 9) saturates extremely rapidly so a very low porter density is sufficient to achieve

near maximum uptake flux (Jumars et al., 1993). This implies that limitation of the

number of porter sites due to surface crowding is unlikely to be an issue. Secondly, it

is not realistic that uptake sites are perfectly absorbing discs. While diffusion towards

the sites is a fair representation, uptake requires active transport across the cell wall

(Aksnes and Egge, 1991; Armstrong, 2008), a process that (1) occupies the uptake

site for a finite amount of time and (2) is energetically costly, requiring about 1 mole

of ATP per mole of nutrient transported.
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Figure 3: Light affinities of protists as a function of carbon mass compared to the
first-principles formulae (Eq. 13; thick black line and (Eq. 12); green line). The
three limiting factors: cells mass, cell surface, and cell membrane are shown with
dotted lines. The black line is the total affinity. Data from Edwards et al. (2015),
corrected for day length.
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3.1.2 Light harvesting; theory and data389

Box 2: derivation of light affinity

The net absorption of light by a cell depends on the density and distribution of indi-

vidual chromophores within the cell’s cytoplasm. For a spherical cell (radius r) with

uniformly distributed chromophores throughout the cell volume (number density c

(µm−3), optical cross section a (µm2)) , the rate at which photons are absorbed is

given by:

Q(r, λ) =
πL

2λ2

[
(1 + 2λr) exp(−2λr) + (2λ2r2 − 1)

]
, (10)

where λ = ac (µm−1) is the light absorption coefficient within the cytoplasm, and L

(µmol m−2s−1) is the light flux (Duyens, 1956; Kirk, 1975). This relationship, while

exact for a sphere, is somewhat clumsy. A more accessible formulation, developed

by Hansen and Visser (2019), assumes a cylindrical cell with the same volume and

cross-sectional area as the sphere. Under this geometry, the optical path through the

cell is 4r/3 and:

Q(r, λ) = πLr2 (1− exp(−4λr/3)) . (11)

Given that these formulae give very nearly identical results, and that cell shape is

always a confounding factor, we opt for the simpler. From the form of (Eq. 11)

it is clear that for large cells with a high investment in chromophores (λr � 1),

photon absorption is proportional to the cell’s cross-sectional areaQ ≈ πr2Lwhereas

for small cells with low chromophores investment (λr � 1), photon absorption is

proportional to cell volume Q ≈ 4/3πr3λL.
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The mechanisms relating photon absorption to carbon fixation are complex and de-

pendent a variety factors including photon energy, type of pigments and details of the

photosystem used. While some of these aspects are accessible to modelling, we use

the commonly used quantum yield y (gC/(mol photon)) as a simplification (Emerson,

1958). The specific light affinity then becomes aL = y(Q/L)/m. We can also write

λ = κLφL relating the cell’s absorption coefficient to φL, the fraction of its carbon

mass invested in light harvesting where κL the constant of proportionality. Observa-

tions indicate that λ = 0.1 µm−1(Raven, 1984, 1997) when about half of the cell’s

mass is devoted to light harvesting, suggesting that κL = 0.2 µm−1. It follows then

that

aL =
3y

4ρ

1

r
(1− exp(−4κLφLr/3)) , (12)

which is identical to Eq. 13 with parameters (αL, r
∗
L) corresponding to

(3y/(4ρ), 3/(4κLφL)) respectively. Quantum yield estimates ranges from 0.12 to 0.6

gC/(mol photon) (Kishino et al., 1986). Using y = 0.16 gC/(mol photon) suggests

αL = 0.30 (dµmol m−2s−1)−1µm and r∗L = 7.5 µm.
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Fig. 3 shows that there are cells with almost a factor 10 higher affinity that predicted

by Eq. 12. The source of this variation is likely due to uncertainty in the quan-

tum yield y, which depends on the type of pigment and the wavelength of the light

(Kishino et al., 1986).
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Photosynthesis is fundamentally powered by the capture of photons by light harvest-436

ing complexes, and the number of photons captured by a cell depends on both the number437

of photons incident on the cell, as well as the number of light harvesting complexes within438

the cell. In terms of scaling, it can be reasoned then that the former depends on the cross439

sectional area of the cell, while the latter on some proportion of its functional carbon440

mass. However, light harvesting complexes shade one another and in larger cells not all441

complexes can be equally effective for light harvesting (Kirk, 1975; Morel and Bricaud,442

1981). The affinity for light harvesting therefore transitions from being independent of443

size for small cells to being proportional to the surface area for large cells (see Box 2):444

aL =
αL

r

(
1− e−r/r∗L

)
(1− ν). (13)

This formulation of affinity has asymptotic scaling of aL → αL/r
∗
L for intermediate cells,445

aL → αL/r for r � r∗L and goes to zero for small cells (the factor 1− ν).446

Previous analyses of light affinity has focused on fitting just one power law and has447

consistently found a scaling close to the predicted surface law ∝ r−1 (Taguchi, 1976;448

Finkel et al., 2010; Edwards et al., 2015). Our reanalysis of the available data indicates449

a transition from mass to surface scaling with a transition size around r∗L ≈ 7.5 ± 3 µm450

(Fig. 3) in accordance with the first-principles argument in Box 2. The divergence to zero451

due to the cell wall limitation 1 − ν for smaller cells is consistent with a lower limit of452

one chloroplast at cell volume of ≈ 1 µm3 or r ≈ 0.5 µm(Okie et al., 2016).453

As with the nutrient affinity there is a large scatter in the data of one order of magni-454

tude around the first-principle prediction. Here, though, the prediction does not reflect the455

upper limit of light affinity rather an average estimate. This indicates that some plankton456

can invest more in light harvesting to increase their affinity. In developing the prediction457
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we assumed that plankton invest at most half of their cell mass to light harvesting. Cells458

might invest more if they are fully dedicated to light harvesting in low light environments459

leading to a higher affinity. Further, the quantum yield is uncertain and a higher value is460

within the observed range. However, the absolute value of the affinity is less important461

for the plankton community than how affinity scales with cell size. In a water column, the462

production maximum adjusts itself vertically to the point where light limitation matches463

nutrient limitation (Ryabov et al., 2010). Therefore, a higher light affinity leads to a464

deeper production maximum and vice versa. The overall value of the affinity is therefore465

less important for the general production of the plankton community because production466

will be limited by nutrients, unless the light is so low that production can only occur in467

the surface. What is important, though, for the structure of the trophic strategies with cell468

size is that the specific affinity decreases with cell size overall, and that decline is well469

borne out by the data.470
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Figure 4: Specific clearance rate (aF) as a function of carbon mass. Data of
nanoflagellates, dinoflagellates, and ciliates from Kiørboe and Hirst (2014).
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3.1.3 Phagotrophy474

Box 3: Derivation of clearance rate
The specific clearance rate aF (volume/time/cell mass) can be estimated from the

work required to displace the fluid that a cell moves through or filters. We assume

that the work is approximately the same as pushing a sphere through the fluid, i.e.,

given by Stokes’ law: W = 12πµu2r, where u is the velocity, r the cell radius, and

µ the dynamic viscosity of water. The metabolic power that the cell has available to

filter water scales with the cell’s mass cmρe, where c is the fraction of the cell’s mass

that can be used for swimming and ρe is the energy density of the cell. Equating the

work needed and the power available gives the velocity as:

u =

√
1

12π

cρe

µr
m.

Assuming that the cell clears an area corresponding to its own cross section we get

the specific clearance rate as the clearance area πr2 multiplied by the velocity and

divided by the mass:

aF =

√
cρe

4µρ
, (14)

using Eq. 1 to convert between radius and mass. The specific clearance rate is con-

stant (independent of cell size). With a dynamic viscosity of µ = 1 g/(m s), energy

density ρe = 40 ·103m2gs−2gC
−1 (Boudreau and Dickie, 1992), and that the fraction

of body mass used for driving the flow is 0.1 day−1 gives aF = 0.0073 l/day/µgC,

very close to the geometric average of 0.018 from the data in Fig. 4.
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Phagotrophy is the ingestion of food particles, typically smaller cells. Prey cells are499

encountered either by the predator moving through the fluid or with the predator creating500
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a feeding current that brings prey towards it (Kiørboe, 2011). In this case the affinity is501

the clearance rate, i.e., the volume of fluid cleared of potential prey per time. Hansen502

et al. (1997) showed that the half saturation constant and the maximum consumption rate503

was roughly constant among unicellular plankton, which corresponds to a constant mass504

specific clearance rate. Kiørboe (2011) expanded the analysis a showed that the clearance505

rate was approximately 106 cell volumes per day, though variations exist among feeding506

modes (passive, active, cruising or feeding current). It appears evident that the scaling507

of clearance rate with cell size should emerge from fluid mechanic constraints. Despite508

arguments having been made for fish, they have not been made for unicellular plankton.509

We develop an argument in Box 3 that reproduces the observed constant specific clearance510

rates and also gets the average value reasonably correct (Fig. 4).511

For the actual food consumption, we also need to consider the limitation imposed by512

assimilation over the food vacuole membrane. The surface area of the vacuole scales∝ r2
513

and the specific maximum assimilation therefore scales with r−1. We can then described514

the uptake with a classic functional response with affinity aF and maximum assimilation515

rate cFr
−1:516

jF = εFcFr
−1 aFF

aFF + cF/r
. (15)

where εF is the assimilation efficiency. This formulation has the limit jF → εFaFF for517

smaller cells and jF → εFcF/r for larger cells with the cross-over size between the two518

regimes being food-dependent: r∗F = cF/(αFF ). We do not have any direct measure-519

ments of the assimilation limitation, however, we will use the measurements of maximum520

growth rate of larger cells to estimate this process as cF ≈ 30 µm/day. It can be argued521

that the reduction in functional mass of small cells (the factor ν) should lead to a reduction522

in phagotrophy for small cell, similar to the reduction in phototrophy. However, phagotro-523
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phy is not relevant for the smallest cells because they have no suitable food, so including524

the effect of cell membrane for phagotrophy is irrelevant.525

3.2 Passive losses across the membrane536

It is well recognized that cells leak smaller molecules across their membrane, however, the537

exact processes behind this loss are not well understood. Bjørnsen (1988) distinguished538

between losses as “income taxes” and “property taxes”. Income taxes are those losses539

incurred during uptake. These losses are represented as a less than 100% efficiency of the540

uptakes. Property taxes are those losses that occur regards of the uptakes, which we here541

consider as passive exudation. The passive exudation can be assumed to scale with the542

surface area (Kiørboe, 2013) and, assuming a negligible external concentration, becomes:543

jpassive = cpassiver
−1, (16)

where cpassive = 3P where P is the permeability of a phytoplankton membrane. Values of544

the membrane permeability varies wildly: Braakman et al. (2017) argues for a very high545

membrane permeability in excess of ≈ 106 µm/day. This high permeability would imply546

that the cell spends significant amounts of energy continuously re-uptaking lost nutrients.547

Bjørnsen (1988) considers that P ≈ 1 µm/day. Even this value is very high. However,548

considering than only about 10% of the compounds are of sufficiently low molecular549

weight to escape through the membrane, cpassive should be reduced by a factor 10. Further,550

the smallest cells, which are those which are most affected by passive exudation losses, are551

bacteria with a different cell membrane than the phytoplankton considered by Bjørnsen552

(1988). We therefore propose to further reduce the permeability further and use cpassive ≈553
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Figure 5: Maximum growth rates of plankton. Phototrophs from Edwards et al.
(2015), mixotrophs (nano- and dinoflagellates and ciliates from Kiørboe and Hirst
(2014) and “bacterivores” from Rose and Caron (2007)), heterotrophs (“herbi-
vores” from Rose and Caron (2007)) and of bacteria (Kirchman, 2010). Rates
are converted to 10 degrees with a Q10 = 1.5 for phototrophs and Q10 = 2.8 for
mixo- and heterotrophs. The solid line is Eq. 17 with αmax = 1.5 day−1. The red
line is the maximum assimilated phagotrophic uptake εFcF/r. The diameter-axis
on the top of the panel is not accurate for diatoms because of their vacuole which
gives them a smaller density than other cells.
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0.03 µm/day.554

3.3 Biosynthesis and basal metabolism555

The maximum rate of biosynthesis is limited by the cell’s investment in synthesis ma-556

chinery, i.e., ribosomes. If we consider the number of ribosomes to be proportional to the557

functional cell mass then the synthesis rate, the biomass synthesized per time and per cell558

mass, becomes independent of functional cell mass, i.e., ∝ 1− ν:559

jmax = αmax(1− ν). (17)

We have no first-principle arguments to set the level of maximum synthesis rate αmax (but560

it may be possible to develop an argument based on the size and capacity of a ribosome).561

A more detailed argument that dynamically predicts the maximum synthesis rate as a562

trade-off between investment in ribosomes and chloroplast has been developed (Shuter,563

1979; Serra-Pompei et al., 2019, e.g. ), however, even then the crucial parameters are not564

constrained by first principles arguments constrained. The available data show a large565

scatter with maximum synthesis rates varying between almost zero and 3 day−1 (Fig. 5).566

The data also indicates that maximum synthesis rates are lower for small and large cells567

than for intermediate-sized cells. The reduction in max synthesis rate of large cells can be568

explained by the limitation due to phagotrophic assimilation (Eq. 15) as larger cells are569

purely phagotrophic. We have, rather arbitrarily, chosen a value of αmax = 1.5 day−1.570

This value does not represent the upper limit and it will therefore somewhat limit the571

community’s ability to create a strong bloom in a seasonal environment.572

The division rate is further limited by the basal metabolism. The basal metabolism573
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supports the functions needed to keep the cell alive but not the respiration associated574

with resource assimilation and biosynthesis. In this simple model we do not distinguish575

between basal metabolism and other respiration (but see Chakraborty et al. (2017, 2020))576

and consider simply that all respiratory costs are a fraction of cell mass, and therefore that577

jR is constant. For simplicity we write it proportional to the maximum synthesis capacity:578

jR = αRαmax. (18)

with αR ≈ 0.1.579

3.4 Temperature effects580

The temperature response of a cell is commonly modelled by multiplying the maximum581

growth rate with a Q10 or Arrhenius factor. For heterotrophic plankton a Q10 ≈ 2 well582

represents the temperature response of cell metabolism, whereas a lower factor is used583

for phytoplankton. It is therefore common for models to use different Q10 factors for584

phyto- and zooplankton (e.g. Archibald et al., 2022). However, the temperature response585

of phototrophic plankton is more complex, and recent experimental work has shown a586

strong dependence on the resource environment (Schaum et al., 2017; Thomas et al., 2017;587

Marañón et al., 2018). Shuter (1979) showed how temperature effects in phytoplankton588

should emerge as a result of the Q10’s of each metabolic or resource uptake process in589

the cell. Serra-Pompei et al. (2019) took this idea further and applied it to mixotrophic590

plankton. They found that temperature responses of the cell’s growth rate varied between591

almost no temperature response in environments with low nutrients and high light, to592

around Q10 = 2 in high food environments.593
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Temperature effects are introduced by multiplying rates with aQ10 function: Q(T−Tref)/10
10594

which gives the fractional increase in the rate when the temperature is increased 10 de-595

grees from a reference temperature of Tref = 10 degrees. The Q10 factors are (Serra-596

Pompei et al., 2019): Q10 = 1.5 for diffusive uptakes, no temperature correction for597

light capture and a standard “metabolic” correction of Q10 = 2 on respiration, maximum598

phagotrophy, and maximum synthesis capacity. For feeding one could follow Eq. 14 and599

use the temperature scaling of viscosity (Q10 ≈ 1.5). However, prey also have escape600

maneuvers which will become equally faster so we assume that the two effect cancel one601

another and use Q10 = 1 for feeding.602
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Table 1: Parameters for the cell-level processes (Section 3) and the size-based
model (Section 4.5). “d” is the unit of time (days).

603

604

605 Parameter Value Reference
Cell size and density

606 Carbon density ρ = 0.4 · 10−6 µgC/µm3 (a)
607 Membrane thickness δ = 50 nm (f)
608 C:N mass ratio ρC:N = 5.68 gC/gN

Cell rate parameters
609 Diffusive aff. coef. αD = 0.972 l·µm2/d/µgC Fig. 2, Box 1
610 Diffusive aff. cross-over r∗D = 0.4 µm Fig. 2, Box 1
611 Light aff. coef. αL = 0.3 (d·µmol m−2s−1)−1µm Fig. 3, Box 2
612 Light aff. cross-over r∗L = 7.5 µm Fig. 3, Box 2
613 Light uptake eff. εL = 0.8
614 Clearance rate aF = 0.018 l/d/µgC Fig. 4, Box 3
615 Max. phagotrophy coef. cF = 30 µm/d Fig. 5
616 Assimilation efficiency εF = 0.8
617 Passive loss coef. cpassive = 0.03 Sec. 3.2
618 Max. synthesis coef. αmax = 1.5 d−1 Fig. 5
619 Basal metabolism coef. αR = 0.1

Prey encounter
620 Predator-prey mass ratio β = 500 (b)
621 Predator-prey width σ = 1.3 (b)

Community model parameters
622 DOC remin. of feeding γF = 0.1 (e)
623 DOC remin. of lysis γv = 0.5 (e)
624 Lysis mortality coef. µv0 = 0.004/ log(m+/m−) (c)
625 Size of HTL mort. mhtl = 8.9 · 10−5 µgC (d)
626 HTL mortality coef. µhtl0 = 0.1 d−1 Sec. 5.2

Chemostat parameters
627 Mixing rate d = 0.0001...1 d−1 Sec. 4.5
628 Deep nutrient conc. N0 = 50 µgN/l Sec. 4.5
629 Productive layer M = 20 m

(a) Rough average of data on protists excl. protists in Menden-Deuer and Lessard (2000). (b)
Rough average from Fig. 6.6 in Kiørboe (2008). (c) Inversely proportional to the log width of the
computational cells, log(m+/m−). Adjusted to be smaller than the predation mortality. (d) A
factor β1.5 smaller than the largest size in the simulations (1 µgC). (e) Tuned to give reasonable
ranges in Fig. 13.(f) Reduced from the value of 70-80 nm from Raven (1987).
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4 Size structure of the plankton community636

The previous section was devoted to describe the processes of the single cell as a function637

of its size and tie this processes down to first principles as far as possible. This section is638

devoted to analyse the structure of the plankton community and how it emerges from the639

first principles constraints on the cell processes. What actually defines the “size structure”640

of a community? It is how the community varies with cell size: which types of cell641

dominate a given size group and how big is their biomass.642

The section is split into two parts: first we analyse the cell’s resource uptake and643

metabolism as a function of size to identify the maximum and minimum size of cells,644

the competitive abilities of different sized cells, and their dominant trophic strategies. In645

the second part we scale from the cell-level processes up to the biomass distribution of646

the plankton community, both with a simple theoretic argument and with a full dynamic647

model.648

4.1 Smallest and largest cells649

Raven (1994) argued that the cell membrane sets a lower limit of the size of the smallest650

cell. The absolute smallest size is when the cell membrane uses the entire mass, i.e., when651

the cell membrane fraction ν = 1 (Eq. 2):652

rmin = δ ≈ 50 nm ≈ 0.03µg. (19)

This is an extreme lower limit for a cell with plenty of resources and no losses. Consid-653

ering that losses to respiration and passive losses (Eq. 16) can not exceed the maximum654
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synthesis rate (Eq. 17): jmax > jR + jpassive, gives a larger minimum size of:655

rmin =
cpassive + 3αmaxδ

αmax − jR
≈ 0.2µm ≈ 0.16µg. (20)

The largest unicellular plankton are heterotrophs (Andersen et al., 2016). They are656

limited by two processes: the rate at which oxygen diffuses into the cell (Fenchel, 1987;657

Payne et al., 2011) and the rate at which they can assimilate food through their feeding658

vacuoles (red line in Fig. 5). Considering the limiting effects of food uptake, the maximum659

size rmax is when the maximum rate of assimilated consumption, εFcF /r (Eq. 15) equals660

the metabolic costs jR:661

rmax =
εFcF

jR
≈ 160µm ≈ 10µg. (21)

Fenchel (Chap. 1 1987) considered that the upper size limit is imposed by the diffusion of662

oxygen into the heterotrophic cell. He finds that the largest radius where O2 diffusion can663
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satisfy the metabolic demand is:664

rmax =

√
6XO2D

jRρSO2
≈ 800µm ≈ 800µg, (22)

whereXO2 is the external oxygen concentration,D the diffusivity of oxygen, and SO2 the665

oxygen:carbon mass ratio (Payne et al. (2011) did a similar evaluation and found an upper666

limit around 1 mm under present day oxygen concentrations). The upper limit imposed by667

oxygen is rather large compared to the upper limit imposed by assimilation (Eq. 21) and668

it is tempting to disregard oxygen as a constraint on maximum cell size. However, it is669

instructive to look also on the size distribution on cell shape, as analysed by Ryabov et al.670

(2021) (Fig. 6). The smallest cells are spherical, which is the shape that minimizes the671

cell membrane per mass. Cells larger than about 0.05 µgCare dominated by cylindrical672

cells. Being cylindrical minimizes the distance of oxygen diffusion from the cell surface673

to the center. That larger cells are cylindrical therefore indicates the importance of oxygen674

for the upper limit of cell size. It is possible that not only the diffusion limits the cell size,675

but also the permeability of the cell wall; a complication that is ignored in the argument676

by Fenchel (1987).677

To overcome the upper limitation of size, organisms will have to become multicellular.678

The smallest adult copepods are on the order of 0.01 µg, which corresponds to the size679

where the feeding vacuole becomes limiting for growth (Fig. 5).680

4.2 Limiting resources, R∗681

The growth of plankton is limited by their ability to acquire and assimilate resources of689

nutrients, DOC, food from predation, and light. As dissolved resources are subject to690
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Figure 7: Minimum resource concentrations for survival (R∗). Shown with mor-
tality µ = 0 (solid lines) and µ = 0.4 day−1 (dotted lines). Carbon sources (light
and DOC) assume plenty of nutrients; N∗ assume plenty of carbon; F ∗ is for
a pure phagotroph. The grey area indicates the minimum viable size of a cell
(Eq. 20).

683

684

685

686

687

competition by all cells, nutrients and DOC are exhausted to the lowest level that the most691

competitive groups can just survive on. This level is commonly referred to as the “R∗”692

value, sensu Tilman (1982). Ward et al. (2014) calculated the limiting nutrient resource693

N∗ as a function of cell size and found that limiting resource increases with cell size –694

confirming the classic result that the smallest cells are the most competitive for nutrients695

(Munk and Riley, 1952). Here we extend the R∗ concept to the concentration of DOC,696

food, and light. Food is different than the dissolved resources because not all size groups697

compete for all sizes of food due to size-based selection. Nevertheless, F ∗ indicates the698

minimum level of biomass of their prey. Finally, we can calculate the minimum level699

of light L∗ where purely phototrophic plankton can survive. Plankton does not compete700

for light (except in extreme cases of biomass as seen in some fresh water environments;701

Klausmeier and Litchman (2001)), but the L∗ indicates the minimum light level – and702
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Table 2: Limiting resource levels

N∗(r) =
(cpassive + µr)(r2 + r2

D)

rαD

X∗
DOC(r) =

(cpassive + (jR + µ)r)(r2 + r2
D)

rαD

L∗(r) =
1

1− e−r/rL
cpassive + (jR + µ)r

αL

F ∗(r) =
cF(cpassive + (jR + µ)r)

cFεF − αFr(cpassive + (jR + µ)r−)

688

thus the maximum depth – where photosynthesis alone can support plankton growth.703

We can find the limiting resources by calculating the resource level that just balances704

losses to exudation, respiration, and mortality, e.g., for light: jL(L∗) = jpassive + jR + µ,705

where µ is mortality losses (see Table 2). N∗ is calculated from the assumption that706

carbon is abundant so we can ignore respiration. Similarly, the calculation of L∗ and707

DOC∗ assumes abundant nutrients but no alternative carbon source (from DOC, light or708

food). F ∗ also assumes no other carbon source (no phototrophy or DOC).709

The actual values of the limiting resources cannot be compared directly between one710

another because they are in different units, however, the interesting aspect is also mainly711

which size can survive on the lowest resource levels. All limiting resources have a min-712

imum at a specific size (Fig. 7). The minimum emerges as the result of two opposing713

effects: the passive losses which decreases with cell size (due to decreasing surface to714

volume ratio; Eq. 16), and the affinity which also decreases (or is constant) with size.715

The most pronounced minimum is for diffusive uptake of dissolved carbon and nutrients.716

In contrast to the results by Ward et al. (2014) the N∗ for the very smallest sizes again717

increases, however, this increase is likely not relevant as the smallest cell are limited by718
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Table 3: Approximate expressions for the sizes where strategies transition from
osmotrophy to phototrophy, from light- to nutrient-limited phototrophy, and from
phototrophy to mixotrophy. The expressions are derived by using Eq. 4 for diffu-
sive affinity and by ignoring the correction term in the parentheses of Eq. 13.

Osmo. to phototrophy
αD

αL

XDOC

L
+ 3δ

Light to nutrient limit.
αD

αL

ρC:NN

L
+ 3δ

photo. to mixotrophy
αD

αF

ρC:NN

F

the cell membrane (the grey area in Fig. 7). Regarding light, a very wide range of sizes719

can survive on the lowest light levels. Phototrophy therefore selects weakly for cell size,720

and the selection only enters because the cells also need nutrients, which select for small721

cells. The minimal food requirement F ∗ is almost independent of size and is around 1722

µgC/l. Environments with less food therefore cannot support a longer food chain with723

purely heterotrophic plankton.724

4.3 Trophic strategies725

The other dimension of community structure is the trophic strategies, i.e., how cells ac-739

quire resources: by osmotrophy (diffusive uptake of DOC), phototrophy, or by phagotro-740

phy. The dominant strategy is determined by which of the three fluxes jDOC, jL and741

JF is the largest (Andersen et al., 2016). Fig. 8a shows the fluxes of DOC, carbon from742

phototrophy, nutrients, and food in an environment specified by concentrations of DOC,743

N and food (specified by the level of the size spectrum κ), and by light. Typically, very744

small cells are osmotrophs, somewhat larger cells are light-limited phototrophs, medium-745

sized cells are nutrient limited and larger cells are mixotrophs or heterotrophs. However,746

the transitions between the dominant strategies occur at different sizes: less nutrients or747
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more available food favours mixotrophic and heterotrophic strategies, while more DOC748

favours osmotrophy. Andersen et al. (2016) provided analytical expressions for the sizes749

where the dominant strategies switch from one strategy to the other. This was possible750

because they used simple power-low relationships for the affinities. Here, however, the751

relationships are more complex and exact analytical expressions are not possible. How-752

ever, approximations can be made, which show how the transition sizes depend upon the753

resource concentrations and the affinities (Table 3).754

The perspective of trophic strategy being set by the most favourable strategy adds755

more detail to the argument developed above about the structure being determined by the756

most competitive size. Generally, the two perspective agree: small cells are dominated757

by osmotrophs because they are the most competitive for dissolved resources. The per-758

spective of the dominant strategy adds more detail, though, by showing how the smallest759

phototrophs are light limited while larger phototrophs are nutrient limited, and showing760

the size ranges of mixotrophs and pure heterotrophs.761
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Box 4: Theoretical derivation of the size spectrum

If the cell is not limited by uptake over the feeding vacuole (i.e., that aFF � cFr in

Eq. 15) then the effective encounter rate is jF = εFaFF (Eq. 15). The encountered

food F is found by inserting the ansatz b(m) = κmλ−1 in Eq. 31 to give F (m) =

κmλα, where α =
√

2πσβλeλ
2σ2/2 is a factor that depends on the parameters of

the size preference function (Eq. 30). Following Andersen and Beyer (2006) we now

assume that the encounter rate of food jF is proportional to the metabolic needs jR

and independent of size. Then we can equate encountered food with metabolic needs:

εFaFκm
λα ∝ jR. (23)

This relation is only true if the dependency on m disappears, i.e., if λ = 0. When

λ = 0 the abundance distribution is b(m) ∝ m−1, corresponding to the Sheldon

spectrum B (Eq. 29) being constant (independent of cell size).
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The level of the spectrum, κ, can be estimated by assuming that the entire flux of

new nutrients dN0 into the photic zone is taken up and used. This assumption is

reasonable as nutrient concentrations in the surface are much less than deep nutrient

concentrations in the productive season. The flux of potential new production is dN0

which can support a new primary production of dN0ρC:N (gC/day/liter). There are

three sources of losses: higher trophic level predation, diffusion losses, and respira-

tion. The losses to higher trophic levels are found by integrating over the range where

the higher trophic level mortality acts, i.e., a factor β:

JHTLloss =

∫ βmhtl

mhtl

κm−1µhtl dm (24)

= κµhtl ln(β). (25)

Diffusion and respiration losses are found by integrating over the entire size range:

Jloss =

∫ mmax

mmin

κm−1(d+ jR) dm = κ(d+ jR)ω, (26)
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where the ranges of the integration are given by Eqs. 20 and 21, and ω =

ln(mmax/mmin) ≈ 25. Equating the new production with losses, and accounting

for a fraction εhtl of the higher trophic level losses being remineralized in the photic

zone, gives:

κ =
dN0ρC:N

(1− εhtl)µhtl lnβ + (d+ jR)ω
, (27)

792

793
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Box 5: definition of the Sheldon size spectrum

The structure of the plankton community is represented by the biomasses in the

size groups Bi. This representation has the disadvantage that the level of the

biomasses depend on the size-range of each group: broader (fewer) size-groups

leads to higher average biomass level and vice versa. To avoid this depen-

dency size distributions are often shown as “normalized size spectra” (Sprules

and Barth, 2016), by dividing the biomass with the size range of the group:

b(mi) = Bi/(m
+
i − m−

i ), where m+
i and m−

i are the upper and lower sizes

in the size group. If we assume a scaling biomass spectrum, b(m) = κmλ−1

then the relation between the normalized biomass spectrum and the binned size

groups is:

Bi =

∫ m+
i

m−
i

b(m) dm = κ log(m+
i /m

−
i ) (28)

if λ = 0. If size groups are evenly distributed on a log scale then m+
i /m

−
i is

constant (independent of mass) and the biomasses in each groups are roughly the

same. To avoid that results depends on the binning of the size groups we here

define the “Sheldon” spectrum as:

B(m) = Bi/ log(m+
i /m

−
i ). (29)
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4.4 Theoretical size spectrum817

The size spectrum was first introduced by Sheldon and Parsons (1967) who plotted the818

biomass as a histogram in log-spaced size groups and showed that the biomass was819
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roughly independent of cell size. Since that pioneering work the regularity of the log-820

histogram spectrum has been demonstrated over and over again, as reviewed by Sprules821

and Barth (2016). The histogram representation is, however, inconvenient, because the822

height of the histogram depends on the width of the size bin that are used. This led Platt823

and Denman (1977) to introduce the “normalized size spectrum” as the biomass distri-824

bution as a function of cell size b(m). Being a distribution means that the spectrum has825

dimensions of biomass per cell mass, and that the integral of the spectrum is the total826

biomass. It is convenient to introduce the “Sheldon spectrum” as b(m)m because it has827

the same property as the log-binned histogram that it is approximately flat (Box 4).828

The flat Sheldon spectrum is commonly understood as emerging from predator-prey829

interactions. First, Sheldon et al. (1972) showed how the biomass in successive trophic830

levels scaled as εTβ0.25 ≈ 0.9, where εT ≈ 0.2 is the trophic efficiency and β ≈ is the831

predator prey mass ratio. This results was later re-derived as part of the metabolic theory832

of ecology (Brown et al., 2004), however, only by introducing an extra assumption about833

energy equivalence. The result relies on the trophic efficiency, which is a quantity that is834

hard to estimate, and which eventually is an emergent property of the community struc-835

ture (Borgmann, 1987). An alternative argument by Andersen and Beyer (2006) derived836

the size spectrum purely based on individual-level properties. As all of these arguments837

only rely upon predator-prey interactions, it is not clear how well they apply among the838

lower trophic levels of the ocean where many cells mainly subsist on photosynthesis and839

recycled production from dissolved organic matter and less on predation on smaller par-840

ticles. Poulin and Franks (2010) refined the argument by considering phytoplankton and841

zooplankton spectra separately to show a flat phytoplankton spectrum and a declining842

zooplankton spectrum. Here we will explain the scaling of the community size spectrum843
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only from considerations of predator-prey interactions by an extension of the Andersen844

and Beyer (2006) argument, and later show that the predictions fit surprisingly well with845

dynamical simulations.846

Predator-prey interactions are described by bigger cells predating on smaller cells847

(Hansen et al., 1997). The size preference for predation can be described by a log-normal848

size selection function:849

φ(m,mprey) = exp

[
− ln2(m/(βmprey))

2σ2

]
, (30)

where mprey is prey size, β the preferred predator:prey mass ratio and σ the width of the850

preference function. The available food is found by integrating across all size groups:851

F (m) =

∫
φ(m,mprey)b(mprey) dmprey, (31)

where b(m) is the biomass size spectrum. From this description we can derive the size852

spectrum as (Box 5):853

b(m) = κm−1, with κ =
dN0ρC:N

(1− εhtl)µhtl lnβ + (d+ jR)ω
. (32)

The spectrum scales with mass asm−1, which means that the Sheldon spectrum∝ b(m)m854

is constant. The height of the spectrum (the coefficient κ) is a novel result. The height855

depends on the mixing rate d, the concentration of nutrients being mixed up from the deep856

N0, the mortality imposed by higher trophic levels µhtl, and the length of the size spectrum857

ω = ln(mmax/mmin). The main controlling parameter is the mixing rate. The height of858

the spectrum increases with mixing but saturates at high mixing rates (d � µhtl lnβ/ω).859
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Table 4: Processes and equations to calculate the division rate g of a cell (note that
the population growth rate also requires the subtraction of losses). All rates are in
units of gC/gC per time.

863

864

865

Encounter and synthesis:
Available carbon jC.net = jDOC + jL + jF − jR − jpassive (M1)
Available nutrients jN.net = jN + jF − jpassive (M2)
Leibig’s law jnet = min{jC.net, jN.net} (M3).
Synthesis g = jmax

jnet

jnet+jmax
. (M4)

Down-regulation of uptakes
Feeding j̃F = max{0, jF − (jnet − g)} (M5)
Photoharvesting j̃L = jL −max{0,min{(jC.net − (jF − j̃F)− g), jL}} (M6)
DOC uptake j̃DOC = g − j̃F − j̃L (M7)
Mortalities:
Predation: µp(mj) =

∑
i
j̃F.i
εF

Φij
Fi
Bi (M7)

Viral lysis: µv.i = µv0Bi (M8)

Higher trophic levels: µhtl(m) =

{
µhtl0φ(m,m) for m < mhtl

µhtl0 for m ≥ mhtl
(M9)

All fluxes are calculated according to the relations in Section 3. Available food is Fi =
∑

j ΦijBj

where the effective preference between size groups Φij is found by integration across the width
of the size groups (Appendix A). The tildes above the uptakes of light and food indicates down-
regulation in eqs. (M5-6). (M1-2): Uptakes are given by Eq. 3 combined with affinities for nutri-
ents and DOC (Eq. 5), light (Eq. 13) and food (Eqs. 15 and 31). (M3): a standard functional type
II response aka. “Monod” function. (M7): The predation mortality exerted by unicellular plankton
can be calculated as the ratio between the amount of food eaten by all predators from size group
j and biomass at size group j. The amount eaten is: Ej =

∑
i(j̃F.i/εF)Biφ(mi, mj)Bj/Fi.

Moving Bj outside the sum to calculate predation mortality as µp.j = Ej/Bj gives M7.

866

867

868

869

870

871

872

873

874

875

At very high mixing rates the production will be limited by the synthesis capacity of the860

cell, which is not accounted for here, however, that is probably a rare occurrence in nature.861

4.5 Dynamic size-based model862

Further insight into the size structure requires numerical simulations. Here we simulate876

the entire unicellular plankton community by embedding the model of cell resource uptake877

and metabolism in a simple ecosystem model. Cells are divided into size group with each878
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group i representing the biomassBi within a range of cells with the geometric mean mass879

mi. For simplicity we have assumed that cells have constant C:N mass ratio ρC:N = 5.68,880

but the model can be extended to dynamic stoichiometry (Ho et al., 2020; Ward et al.,881

2018). The rate of change (the growth rate) of biomass in a size group is:882

1

Bi

dBi
dt

= g(mi)− µ(mi), (33)

where g(m) is the division rate and µ(m) is the total morality. The division rate is deter-883

mined by resource encounter and synthesis (Table 4, eq. M4).884

Mortality has three origins: predation by unicellular plankton µp through the pro-885

cess of big cells eating smaller cells (M7), viral lysis µ2 (M8), and predation by higher886

trophic levels µhtl (M9). Viral mortality is modelled by assuming that viral mortality is887

proportional to biomass. Mortality by higher trophic levels acts on the largest size groups.888

We use a selection function consisting of combination of the logarithmic size selection889

function in Eq. 30 and a constant level.890

Nutrients and DOC are updated with the uptakes and losses from the cell-level pro-

cesses:

dN

dt
=

1

ρC:N

∑
i

−jN.i︸ ︷︷ ︸
Uptake

+ jpassive.i︸ ︷︷ ︸
Exudation

+ max{0, jN.net.i − gi}︸ ︷︷ ︸
Surplus

+
1− εF
εF

j̃F.i︸ ︷︷ ︸
Feeding losses

+µv0Bi︸ ︷︷ ︸
Lysis

Bi

(34)
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dDOC

dt
=
∑
i

− j̃DOC.i︸ ︷︷ ︸
Uptake

+ jpassive.i︸ ︷︷ ︸
Exudation

+
1− εL
εL

j̃L︸ ︷︷ ︸
Photoharvesting

+ γF
1− εF
εF

jF.i︸ ︷︷ ︸
Feeding losses

+ γvµv0Bi︸ ︷︷ ︸
Lysis

Bi. (35)

Generation of N happens through assimilation losses, passive exudation and reminer-891

alised viral lysis. Generation of labile DOC happens through passive exudation, assim-892

ilation losses from light harvesting and phagotrophy, and from remineralized viral lysis.893

We assume that all nutrient losses from viral lysis are made available over short time894

scales (Carlson, 2002), but only a fraction γv of carbon losses are labile. All the losses to895

higher trophic levels are eventually converted to particulate organic matter (which is not896

explicitly resolved here) so there is no remineralization of those losses.897

Five parameters control the chemostat: mixing rate d, deep nutrient concentrationN0,920

light L, temperature T and the mortality imposed by higher trophic levels µhtl0, however,921

only three are important. The mixing rate and the deep nutrient concentration mainly922

enter as a product so we can focus on only one of them – the mixing rate is commonly923

chosen. In a water column the productive layer will adjust itself to the depth where cells924

are co-limited by light and nutrients (Ryabov et al., 2010; Beckmann and Hense, 2007;925

Klausmeier and Litchman, 2001). The light level is therefore also of minor importance, as926

long as it is sufficiently high to not be limiting. We first concentrate on the mixing rate d927

and take up the importance of higher trophic level mortality and temperature in the follow928

section.929

Chemostat simulations in eutrophic situations with a high mixing rate show an ex-930
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Figure 8: The trophic strategies of unicellular plankton under different environ-
mental conditions. a) The gains from light (green), nutrients (blue), food (red),
and DOC (brown), and phagotrophy (red). The dominant trophic strategy is
shown by shading: heterotrophy, when surplus nutrient is leaked (red); mixotro-
phy when the carbon gain from phagotrophy and DOC surpass the potential gain
from phototrophy and the nutrient gain from feeding surpass that of diffusive nu-
trient uptake (light red); nutrient limited phototrophy when the potential gain from
phototrophy and DOC surpass the nutrient uptake (blue); light limited phototro-
phy when nutrient uptake surpass carbon uptake (green); osmotrophy when car-
bon from DOC surpass carbon from light harvesting (brown). b-e) Variations in
the dominant trophic strategy with changes in nutrients, light, biomass and DOC
around the conditions in panel (a) are indicated with a dotted line in each panel.
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Figure 9: Results of simulations under eutrophic conditions with high mixing.
a) Sheldon size spectrum (Box 5). The background colours indicate the trophic
strategy (see Fig. 8). b) Rates of uptakes and losses in biomass specific units
(day−1). The dotted lines show maximum possible uptakes or growth rates. The
thick black lines in panel b are the total division and loss rates (note that in this
case they are not equal as the simulation is not in a steady state; the variation
is indicated in panel a with the grey area around the mean). Parameters: Light
L = 40 µE/m2/s, mixing rate d = 0.1 m/day, and higher trophic level mortality
µhtl = 0.1 day−1.
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Figure 10: Results of simulations for an oligotrophic situation with low diffusivity
of nutrients; see Fig. 9 for explanation (note different y-axis on panel b). Mixing
rate d = 0.001 1/day.
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Figure 11: Size spectra with varying mixing rates under high light. Panels a-c:
size spectra fitted to a power-law (Eq. 32) truncated at high and low sizes (dotted).
Panels d-f: results of the fits for height (κ), exponent (λ) and upper and lower size
limits. The dashed lines are the theoretical predictions of κ from Eq. 27, exponent
λ from Eq. 32, and min and max sizes from Eqs. 20 and 21. The “wiggles” are
due to inaccuracies in the fit of the size spectra. The vertical dotted lines in panels
d-f show the three mixing rates used to calculate panels a-c. L = 100 µE/m2/s.

913

914

915

916

917

918

919

52



tended flat Sheldon spectrum occupying the full size range (Fig. 9). The level of the size931

spectrum fits with the theoretical prediction (Eq. 27). Phototrophic cells span a wide size932

range and due to the high influx of nutrients they are light limited and not nutrient limited.933

Microplankton and partly nanoplankton have a significant influx of carbon and nutrients934

from phagotrophy. Only the largest cells are fully heterotrophic in the sense that they leak935

surplus nutrients from phagotrophic uptakes.936

Under oligotrophic situations with a low mixing rate the spectrum is still flat, but the937

realized size range is smaller in both ends of the spectrum. Therefore the “height” of the938

spectrum (κ) is also higher than predicted, because the prediction was only valid for a full939

range spectrum. Under oligotrophic situations the phototrophs are fully nutrient limited.940

It is unrealistic that very small cells are absent in oligotrophic conditions, because they941

are expected to dominate. This is because of the rising limiting nutrient values (N∗) of942

small cells due to the limitation imposed by the cell membrane (Fig. 7).943

Simulating across mixing rates shows generally flat Sheldon size spectra (Fig. 11).944

The spectrum exponent (panel e) is roughly zero and the size spectrum level (κ) follows945

the prediction from Eq. 27 (panel d). At small mixing rates small picoplankton dominates.946

As mixing rate increase, the upper size range extends. The extension of the upper size947

increases the length of the food chain. This result was demonstrated in a simple size-948

based by Armstrong (1994) and confirmed by alternative derivations by Poulin and Franks949

(2010) and Ward et al. (2014). At very high mixing rates the spectrum again becomes950

truncated. The truncation at high mixing rates is a result of plankton being mixed out951

of the productive layer faster than the maximum growth rate. Overall it is clear that the952

overall size spectrum exponent is unaffected by the environmental conditions, only the953

height and the extent of the spectrum are affected.954
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Table 5: Ecosystem biomass and functions. M is the thickness of the mixed layer,
here set to 20 m.

956

957

Value
Function Formula Olig. Eut.
Biomasses
Biomass Btotal = M

∑
iBi 0.38 3.8 gC/m2

Chlorophyl(1) BChl = M
∑

i j̃L.iBi/L 0.085 1.5 µgChl/l
Production
Gross PP Pgross = M

∑
i j̃L.iBi/εL 20 360 gC/m2/yr

Net PP Pnet = M
∑

i max{0, j̃L.i − jR.i}Bi 0 150 gC/m2/yr
Net bact. prod. Pbact = M

∑
i max{0, jDOC.i − jR.i}Bi 0.12 66 gC/m2/yr

New prod. Pnew = Md(N0 −N)ρC:N 2.1 210 gC/m2/yr
Prod. of HTLs Phtl = M

∑
i µhtl.iBi 2.5 60 gC/m2/yr

Efficiencies
Eff. of PP εPP = Pnet/Pgross 0.0 0.43
Eff. of bact. εbact = Pbact/Pnet - 0.42
Eff. of HTL εhtl = Phtl/Pnet - 0.43
(1) Mass of Chl per carbon mass is approximately proportional to the down-regulated
mass-specific light affinity j̃L.i/L. (Edwards et al., 2015).
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959

960

5 Ecosystem functions955

The size distribution combined with the cell-level characteristics allows the calculation of966

ecosystem functions. Ecosystem functions can be divided into biomasses, production, and967

efficiencies. Because size-based models consider cells with multiple trophic strategies,968

calculating the functions are somewhat different than for ordinary functional group type969

of models (see Table 5). In the chemostat model the integration over the water column970

comes about simply by multiplying with the thickness of the productive layer that we971

arbitrarily set to M ≈ 20 m.972
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Figure 12: Ecosystem biomass and functions at low and high light (L = 10 and
100 µmol m−2s−1). In the top row the gray lines show pico-, nano-, and mi-
croplankton. The last row shows the community production rate as the net primary
production divided by biomass.
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Gross primary production is the total amount of carbon fixed :973

Pgross = M
∑
i

jL.iBi/εL. (36)

The net production is the carbon available for biomass production, i.e., the gross pri-974

mary production minus the exudation losses and respiration. That definition, however,975

only works for purely phototrophic plankton. Here, plankton are mixotrophs and some976

larger mixotrophs may contribute negatively to primary production because they fix neg-977

ligible amounts of carbon. To compensate, we consider only the groups where net fix-978

ation (fixation minus respiration) is positive. This procedure assumes that carbon from979

photosynthesis is prioritized for respiration over other carbon sources (DOC or feeding).980

Bacterial production is net production based on DOC uptake. It faces a similar problem981

as the net primary production, and again we only consider positive net contributions. New982

production is the amount of nutrient that diffuses up into the photic zone to fuel primary983

production. Finally, we can calculate the production to higher trophic levels as the losses984

to higher trophic level mortality.985

Efficiencies the ratio between a production and the net primary production. They are986

typically in the range 0 to 1.987

The total biomass is roughly proportional to the mixing rate d (Eq. 27) until it be-988

comes limited by light, around d = 0.02 day−1 in low light conditions (Fig. 12 a+f). The989

total Chl-concentration varies between 0.01 to 1 µgChl/l (panels b+g), which is in line990

with outputs of global circulation model simulations (Van Oostende et al., 2018). When991

production becomes light limited the nutrient level increases because plankton production992

cannot fix all the available nutrients (at mixing rates of 0.01 and 0.1 day−1 in low and high993

light respectively). The increases in biomass is reflected in the productions, which also994
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increase roughly proportional to the biomass (panels c+h). However, the relative magni-995

tude of the different productions changes with mixing rate, as reflected in the efficiencies996

(panels d+i). The production efficiency generally increases with the mixing rate. Surpris-997

ingly, the higher trophic level production can become larger than net primary production998

resulting in εhtl > 1. This occurs in oligotrophic situations where a high gross primary999

production fuels a high DOC production from exudation. That DOC also fuels plankton1000

production, which eventually manifests itself in high net production to higher trophic lev-1001

els. The gross efficiency of higher trophic level production (Phtl/Pgross will always be1002

< 1.1003

5.1 DOC and bacteria production1004

A difficult aspect of the ecosystem model is to parameterize the production and uptake of1018

dissolved organic matter (DOC). Part of the difficulty stems from our incomplete knowl-1019

edge of DOC: how much is labile and how much is not? And further: what are the sources1020

of DOC: how much DOC is produced by incomplete assimilation and how much by pas-1021

sive exudation – or between “income” and “property” taxes (Bjørnsen, 1988)? In the1022

ecosystem model DOC represents the labile DOC that can be immediately taken up and1023

used. Labile DOC is produced by incomplete assimilation of photoharvesting (εL), from1024

passive exudation (jpassive), from assimilation losses due to feeding (εF), and from viral1025

lysis (jv).1026

Pelagic ecosystem models typically describe DOC release as a constant fraction of1027

fraction of primary production (Thornton, 2014), though some include size-based passive1028

exudation (Kriest and Oschlies, 2007) using Bjørnsen (1988)’s model, or a more complex1029

division between labile and non-labile pools (Anderson and Williams, 1998; Flynn et al.,1030
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Figure 13: Losses to DOC as a function of cell size for oligotrophic conditions
(Fig. 4.5) and eutrophic conditions (Fig. 9). Top row: losses as fraction of cell
growth rate. Bottom row: total losses with fractions of gross primary production
given in the legend.
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2008). The size-based model represents all processes: passive size-based exudation, exu-1031

dation due to uptake, incomplete feeding, and viral lysis, but does not distinguish between1032

labile and refractory DOC.1033

All the incompletely assimilated carbon from photoharvesting is assumed to be avail-1034

able as DOC. The assimilation fraction is commonly set between 2-10%; following An-1035

derson and Williams (1998) we use 20% (εL = 0.8) to have sufficient DOC available.1036

Passive losses are discussed in section 3.2; we assume that all passive losses are labile.1037

58



Plankton surface area (µm2/l)

B
ac

te
ria

l g
en

er
at

io
n 

tim
e 

(d
)

2e+07 6e+07 1e+08

0
10

20
30

40
50

1010

Figure 14: Bacterial generation time as a function of the total surface area of
plankton in the size range ESD = 5 to 60 µm. The bacterial productivity is cal-
culated as the flux of DOC uptake (jDOC) minus losses to passive exudation and
respiration: max{0, jDOC − jpassive − jR}. The generation time is 1 divided by
the average of all bacterial productivities larger than 0. The lines shows a fit to a
power law with fixed exponent −0.82. The mixing rate ranges between 0.001 and
0.1 d−1 and light is from 10 to 60 µE/m2/s.
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Feeding losses from phagotrophy are set to 20% (εF = 0.8). However, not all feeding1038

losses may be available, as mostly non-digestible material will be exuded; Anderson and1039

Williams (1998) send only 10% of feeding losses back to DOC so we set the available1040

fraction at γF = 0.1. There is disagreement about the fraction of lysed cells that is1041

available as labile DOC. Carlson (2002) find that the majority of the dissolved organic1042

matter released from bacterial lysis is available, while (Anderson and Williams, 1998)1043

only assume that 3.4% is available as labile DOC. We assume that half is available; γv =1044

0.5. Feeding by higher trophic levels could also lead to DOC production. We assume that1045

most sloppy feeding by higher trophic levels lead to particulate organic matter, which is1046

not represented here, so γhtl = 0.1047

The model gives total DOC losses around 30 % (Fig. 13c+d), which is within the1048
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expected range. Overall we expect the average losses to DOC from passive exudation and1049

assimilation losses from feeding to be 10-30 % of their production (growth rate) (Kiørboe,1050

1993; Carlson, 2002). This is within the range simulated by the model Fig. 13a+b. Smaller1051

cells have much higher passive losses, which is essentially the process that determines the1052

lower cell size.1053

The fraction of primary production becoming labile DOC should vary between 2-1054

40%; highest in oligotrophic waters (Teira et al., 2001). In productive regions DOC origi-1055

nates mainly from passive exudation while assimilation losses from feeding supply DOC1056

in oligotrophic regions (Teira et al., 2001). The observed fraction of primary production1057

exuded is 2-40 % (Teira et al., 2001; López-Sandoval et al., 2013); highest in oligotrophic1058

regions. The model have a total losses in the same range (Fig. 13c+d legend). An impor-1059

tant source in eutrophic waters is viral lysis while in oligotrophic waters the main source1060

is photoharvesting.1061

Regarding the size-scaling of DOC losses the evidence is conflicted. Kiørboe et al.1062

(1990) sees strong evidence of size-scaling of passive exudation, Teira et al. (2001) sees1063

some indirect evidence, while Maranón et al. (2004) did not see any evidence (but notes1064

that nutrient limitation may be a confounding factor). The diverging evidence reflects1065

the difficulty in distinguishing between different sources of DOC and that studies focus1066

on different size-ranges of cells. For example, López-Sandoval et al. (2013) notes that1067

there is no overall size-scaling of DOC exudation among the plankton, which may be due1068

to different processes dominating among small cells (passive exudation) and large cells1069

(assimilation losses). The modelled total amount of DOC losses is roughly independent of1070

size (Fig. 13b+c), though with higher passive losses for small cells. Among smaller cells1071

the main source of losses are a combination of passive exudation, photosynthesis losses,1072
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and viral lysis. Among larger cells feeding assimilation losses are a potential important1073

term, which is, however, limited by the assumption that only a small fraction of feeding1074

losses are labile (γF = 0.1).1075

The only quantitative evidence on the size-relation between bacterial production and1076

cell size is that the bacterial generation time is inversely correlated with the total surface1077

area of plankton cells with a power-law exponent −0.82 (Kiørboe et al., 1990). The1078

model gives a similar relation (Fig. 14), though with slower generation times. This may1079

have to do with how the average generation time is calculated. In the model the generation1080

time also includes cells with very slow DOC uptake rates, which increased the average1081

generation time.1082

The modelled concentrations of labile DOC are very low (around 1 µM; Fig. 12b+g).1083

This is because all DOC is considered labile and it is therefore immediately taken up and1084

drawn down towards limiting concentrations which are around 0.1 µM (Fig. 7). Including1085

also refractory DOC would allow for higher DOC concentrations.1086

5.2 Effect of higher trophic level mortality1087

The model results depend upon the mortality exerted by the larger multicellular organisms1095

as represented by the higher trophic level mortality µhtl. The importance of the HTL mor-1096

tality is not unique to size-based models; results of all plankton model are sensitive to this1097

closure term. However, the important effects of this closure term is rarely acknowledged1098

(but see Steele and Henderson, 1992). Varying the HTL mortality affects the size struc-1099

ture and the functions of the plankton ecosystem (Fig. 15). The main effect of increasing1100

higher trophic level mortality is to truncate the size-spectrum. The truncation releases1101

the smaller plankton from predation and they respond by becoming more abundant. Due1102
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to this trophic cascade the total biomass and the net primary production are only weakly1103

affected by the HTL mortality (Fig. 15b). The main effect is on the production towards1104

the higher trophic levels, which has a uni-modal shape with a maximum at intermediate1105

mortalities. This behaviour is similar to how fisheries models responds to fishing where1106

the maximum is termed the “maximum sustainable yield”. In lower productive system1107

the effect of HTL mortality is stronger and the peak in HTL mortality is reached at lower1108

mortalities (not shown).1109

Since the HTL mortality is an extrinsic parameter, we would like to know a reason-1110

able value. That is difficult because the level of mortality depends on the predators: higher1111

productivity of the larger plankton will lead to a higher HTL mortality. This effect is also1112

seen inside the spectrum on the level of the predation mortality in Figs. 4.5-9b: in the olig-1113

otrophic system the level of mortality on the smallest plankton is around 0.1 day−1rising1114

to around 0.25 day−1in the eutrophic system. HTL mortality should therefore not be1115

higher than 0.25 day−1. Here we have used 0.1 day−1.1116

5.3 Effects of temperature1117

Water temperature directly affects affinities and metabolism and, through this, a host of1125

processes from the division rate of cells, to ecosystem structure and functions (see Sec-1126

tion 3.4; Fig. 16). Higher temperature increases the division rates of all cell sizes up to1127

a point where division rates begin to decrease (panels a+d). The increase is relatively1128

modest, though, and much less than indicated by a “metabolic” Q10 = 2, even for large1129

heterotrophic cells. It is also less than the Q10 values often used in plankton simulation1130

models (e.g. Archibald et al., 2022). The reason for the relatively slow increase in divi-1131

sion rates is that the cells are generally limited by encounter with resources (nutrients,1132
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light, and prey), which has a small Q10. The decrease at higher temperature occurs when1133

respiration losses, with a high Q10, begins to dominate over the resource uptakes with1134

smaller Q10’s. The increasing division rates have a modest effect on ecosystem func-1135

tions and structure (panel b-e), but they do increase net primary production and increases1136

the maximum size in the size spectrum. The temperature response is, however, very de-1137

pendent upon the conditions. Under oligotrophic conditions the temperature response is1138

almost absent. The oligotrophic situation is dominated by carbon input from phototrophy1139

(Fig. 9), which is independent of temperature (Q10 = 1). Furthermore, light is avail-1140

able in excess (dotted green line in Fig. 9b) and can easily support the basal metabolism.1141

Clearly, the response to temperature depend on the mixing rate and light in complicated1142

ways (Serra-Pompei et al., 2019) making it hard to make generalisations.1143

6 Discussion1144

We have reviewed how cell-level processes can be related to cell size and first principles,1145

and how they ultimately determine major aspects of plankton community structure and1146

function. The approach builds upon the central role of cell size for resource uptake and1147

metabolism of unicellular plankton. By cultivating a view of each cell as a “generalist”1148

that can perform all types of resource uptakes – essentially being a combination of a1149

bacteria, a phytoplankton, and a zooplankton – the trophic strategies become an emergent1150

property. The fundamental processes at the cell level is based upon existing theory and1151

knowledge with a few novel elements: a fluid-mechanical argument for the clearance1152

rate, the upper limit of phagotrophic assimilation, and the identification of two scaling1153

regimes for light affinity. The synthesis of all processes in a dynamic “minimal” size-1154
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based, along the lines of Ward and Follows (2016) and Andersen et al. (2015), leads to1155

a complete ecosystem model that resolves the community size spectrum as well as the1156

dominant trophic roles of plankton of different sizes. Novelties in the minimal model1157

is the inclusion of dissolved organic carbon to represent carbon reuse and the microbial1158

loop, and the development of closed-form analytical solutions for the scaling and level of1159

the size-spectrum. Throughout we have maintained a focus on simplicity of all processes1160

to bring forth a clear understanding of how each process contributes to the community1161

structure. Despite that operational plankton models – even those only based on cell size1162

– are more complex and complete than the minimal framework analysed here, the effects1163

of nutrient enrichment, higher trophic level mortality, temperature, and light upon the1164

structure and function of the community are likely to be universally present.1165

The model generally reproduce observed ranges of biomass, chlorophyll, and produc-1166

tivity as observed in natural systems. The structure of the ecosystem is determined by a1167

combination of the bottom-up processes from nutrient availability and light, by the inter-1168

nal process of predation, and by the top-down process of higher trophic level predation.1169

As also shown by Poulin and Franks (2010) the availability of nutrients determine the1170

potential length of the food chain (the maximum size). This result is similar to the classic1171

insight in theoretical ecology about resource productivity determining food chain length1172

(Oksanen et al., 1981). However, the top-down effect of higher trophic level mortality1173

plays a key role in the structure and function of the community (Steele and Henderson,1174

1992). From a modelling perspective, this is problematic, as it to some degree ruins the1175

universal nature of the model: in a given situation the level of the higher trophic level mor-1176

tality needs to be determined. In global simulations the higher trophic level mortality will1177

vary depending upon the predation pressure from the multicellular plankton community,1178
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which is not the same throughout the global ocean. One solution is to use a higher trophic1179

level mortality that varies linearly with plankton biomass (a “quadratic” loss term); a more1180

complex solution is to include a representation of multicellular plankton (Serra-Pompei1181

et al., 2020). In terms of size spectrum slope, the model generally reproduce the com-1182

monly observed flat Sheldon spectrum (Sprules and Barth, 2016; Kenitz et al., 2019). The1183

model therefore reproduces the conclusion by Poulin and Franks (2010) that the spectrum1184

slope in itself is not informative of the plankton structure.1185

In the following we discuss how first principles constrain the cell’s function and which1186

processes are still weakly constrained. Second, we discuss the limitations of the size-1187

based approach to modelling plankton communities and how it relates to trait-based and1188

functional-group based plankton models.1189

6.1 Parameters from first principles or empirical meta analy-1190

ses1191

“First principles” are relations rooted in physics, chemistry, evolution, or geometry. Ty-1192

ing descriptions of processes and parameters to first principles has succeeded to varying1193

degrees. We distinguish between four levels of success: i) The process is known and the1194

parameter(s) can be calculated from first principles; ii) scaling exponents with cells size1195

(mass, volume, or diameter) are known from first principles but the coefficients have to be1196

calibrated with laboratory measurements or from meta-analyses; iii) The governing pro-1197

cess is known but the theoretical argument has not been developed and parameters rely1198

solely on empirical knowledge; iv) The empirical evidence is lacking and parameters are1199

only constrained indirectly via loose arguments or tuning of the outcome with observa-1200

tions of the community structure. For unicellular plankton all four levels are encountered.1201
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The most complete level (i) description is how diffusion limits uptake of dissolved nu-1202

trient or DOC uptake and phototrophy, including the temperature scaling. For phototrophy1203

there are clear theoretical arguments for all coefficients and scaling exponents – including1204

the novel argument for the transition between two scaling regimes – simply from geomet-1205

ric arguments. However, a better understanding of the quantum yield is needed to fully1206

describe the observed variation in light affinity. The other well known effect is how the1207

cell membrane limits the lower size of a cell, though the thickness of the cell wall is not1208

(yet) constrained by first principle arguments. Another example of the role of geometry,1209

which is not explored here, is the importance of a vacuole, a principle characteristic of di-1210

atoms, to modify the diffusion uptake (Hansen and Visser, 2019; Cadier et al., 2020). The1211

other level (i) description is the novel argument of how clearance rate of prey encounter1212

is derived from fluid mechanics, though it must be recognised that the amount of energy1213

available to the cell is a guesstimate. As the fraction of energy only enters as a square1214

root in Box 3 this value is not crucial. Comparing the theoretical result with data (Fig. 4)1215

shows a scatter of ± 1 order of magnitude. It is known how the variation in clearance rate1216

across the mean is due to the hydrodynamics of different flagella arrangements that also1217

results in different predation risk (lower clearance leads to smaller predation risk; Nielsen1218

and Kiørboe (2021)) – we return to this in the next section.1219

Most processes belong to the second level where scaling exponents are well described1220

but empirical knowledge is needed to determine exact parameter values. To this category1221

belong the processes related to the “secondary” scalings of nutrient and light uptake, i.e.,1222

that the scaling is flat for small sizes. We can confidently argue that the scaling should be1223

flat, but cannot determine the value of the parameters (r∗D and r∗L). From the simulations1224

we see that these flat scalings do not have a strong impact on the resulting ecosystem, so1225
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one could even omit them without a great loss of accuracy. Other level two processes are1226

the passive exudation, metabolism, and the temperature scaling of metabolism. The tem-1227

perature dependence of metabolism is a complicated mixture of many different processes1228

and a simple first-principles argument does not exist.1229

Finally, some of the parameters associated to DOC losses are largely guesswork (level1230

iv). The poor state of knowledge is partly due to our limited understanding of the enor-1231

mous diversity of DOC compounds and their lability, which makes the lumping of DOC1232

into one group crude. We note that this problem is recently receiving attention (Zakem1233

et al., 2021) and hope that a better understanding of DOC is forthcoming.1234

Overall, while it is clear that first principles constrain cellular processes there is still1235

room for improving the theoretical and empirical basis for estimation of some parame-1236

ters. How the values of the uncertain parameters influence community structure is partly1237

addressed by the analytical analyses in Sec. 4: the upper and lower cell sizes, the limit-1238

ing levels of resources and the sizes which are most competitive for resources, and the1239

overall biomass of the community. For example, the levels of DOC and nutrients depend1240

inversely on the diffusive affinity αD but increase with the coefficient of passive losses1241

cpassive. Likewise, the minimum size increase with respiratory losses while the maximum1242

size decreases. Finally, the sizes where the dominant strategies change depend upon the1243

affinities (Table 3). For example, increasing the light affinity coefficient αL will decrease1244

the sizes where there is a switch from osmotrophy to light-limited phototrophy and from1245

light- to nutrient-limited phototrophy; increasing the clearance rate for phagotrophy αF1246

will decrease the size where mixotrophy becomes dominant.1247
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6.2 Size-, trait-, and functional-group based plankton modelling1248

The central role of cell size for all vital processes makes it an obvious choice as the1249

structuring variable for plankton community modelling. The community structure is then1250

described as the “size spectrum” which generally follows the flat Sheldon spectrum. The1251

minimal size-based model takes this approach further as also the structure of the trophic1252

strategies with cell size – on the continuum of osmo-, photo-, and heterotrophy (Andersen1253

et al., 2015) – emerges as a second dimension of community structure. This idea was pre-1254

viously based upon simple scaling arguments with only a single scaling exponent for each1255

process (Andersen et al., 2016; Ward and Follows, 2016). Here we show that the same1256

results holds even with the more complex scaling two-regime scaling laws for nutrient and1257

light uptake. However, the transitions between the dominant resource uptake power laws1258

are still responsible for the structure of the trophic strategies in the full dynamic model1259

(Figs. 4.5b and 9b). The advantage of the minimal size-based description is that the entire1260

community, from the smallest bacteria to the largest heterotrophic cells, are captured with1261

one set of parameters that is universal across geography and time. The universal proper-1262

ties makes the model well suited for global simulations (Ward and Follows, 2016) under1263

global change. The obvious disadvantage is of course that biodiversity is only described1264

by cell size and the dominant trophic strategy.1265

Additional diversity can be introduced by adding other traits in addition to cell size.1266

The size-based approach is closely related to a trait-based description of plankton (Kiørboe1267

et al., 2018) (also referred to as the approach of “infinite diversity” (Bruggeman and Kooi-1268

jman, 2007)). Size-based models are essentially the simplest form of trait-based plankton1269

models where the only trait is cell size. The trait-based approach represents plankton1270

by a select few traits that together best represent the functional diversity of plankton.1271
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Traits are often related to investment in two competing resource uptakes or metabolic1272

functions (Andersen et al., 2015): light harvesting vs. maximum synthesis rate (Shuter,1273

1979; Serra-Pompei et al., 2019), light harvesting vs. nutrient uptake (Bruggeman and1274

Kooijman, 2007), adaptation between osmo-heterotropy and phototrophy (Bruggeman,1275

2009; Ward et al., 2011), between nutrient uptake, light harvesting, and phagotrophy1276

(Berge et al., 2017). The trait-distribution of these traits are often Gaussian (normal dis-1277

tributed) and can be well represented simply by their optimal trait value (Shuter, 1979;1278

Chakraborty et al., 2020), or by their moments (Wirtz and Eckhardt, 1996; Norberg et al.,1279

2001; Bruggeman and Kooijman, 2007). Considering resource uptake traits in isolation1280

represents a limited aspect of plankton diversity because the big variation in resource up-1281

take parameters related with size is not represented. A full representation can be obtained1282

by combining resource uptake traits with cell size (Terseleer et al., 2014; Chakraborty1283

et al., 2017; Serra-Pompei et al., 2019; Chakraborty et al., 2020). The size spectrum itself,1284

however, is continuous as shown in the analytical derivation of the Sheldon size spectrum.1285

Descriptions where the size spectrum is only reduced to its moment or the optimal size1286

(e.g. Acevedo-Trejos et al., 2018) may represent the changes of one group of plankton,1287

but they are insufficient to resolve the entire community. Trait-size models therefore need1288

to combine a full resolution of the size-spectrum (as done here) but can use optimization1289

or moment-close to reduce the number of state variables for other traits.1290

Plankton diversity is traditionally represented by dividing phyto- and zooplankton1291

into functional groups, including picoplankton, diatoms, flagellates, ciliates, etc. (Fasham1292

et al., 1990). Parameters in each group can be calibrated to represent the dominant group1293

in a given study area to achieve good fits with observations of the different taxonomic1294

groups. Their power comes at the expense of introducing additional parameters and by1295
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requiring re-calibration if there are changes in the dominant species groups due to envi-1296

ronmental change. A good example of a minimal functional-type model is the plankton1297

model of bacteria, auto- and heterotrophic flagellates, diatom, and copepods (Thingstad1298

et al., 2007). With the same complexity in terms of parameters as the minimal size-based1299

model, the Thingstad model provides an explicit taxonomic resolution that is lacking in1300

size-based models, though, of course, without the resolution of cell size. Size-based mod-1301

els are not replacements of functional-group type models, but the two types of models1302

should be considered as complementary descriptions of the same system. Therefore global1303

plankton models increasingly adopt descriptions that combine size and functional groups1304

(Stock et al., 2014; Dutkiewicz et al., 2020, e.g.) to provide generality to functional-group1305

type of models for global applications without inflating the parameter space, much like1306

the combination of size- and trait-based models discussed above.1307

6.3 Additional traits related to cell size1308

Besides the resource harvesting traits discussed above there are other traits which relate1309

to cell size. Here we first discuss the role of organisms that increase their physical size1310

without increasing carbon mass (diatoms and gelatinous zooplankton), alternative forms1311

of nutrient uptakes (diazotrophs), organisms with extreme predator-prey mass ratios (cil-1312

iates and larvaceans), the difference between bacteria and eukaryotes, and then present a1313

suggestion for additional trait axes to represent that diversity.1314

Diatoms and gelatinous plankton increase their physical size by a large inert vacuole1315

or a gelatinous body. In this way they gain the advantages of large physical size: higher1316

nutrient uptake, higher photoharvesting rates, higher clearance rates, and lower average1317

predation risk, without paying the cost of building and maintaining a large carbon mass. In1318
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a sense their success hinges on lowering their effective body density. The advantages of a1319

lower body density follow directly from the size based relations developed here (Hansen1320

and Visser, 2019), however, variable density is not explicitly represented in the model1321

developed herein. Representing these life forms requires an additional trait, e.g. vacuole1322

size (Terseleer et al., 2014; Cadier et al., 2020) or body density.1323

Diazotrophy is a dominant trophic strategy that is not represented in the minimal size-1324

based model. Diazotrophs fix dissolved nitrogen gas and thereby break away from the1325

diffusion limitation on uptake of bio-available nitrogen. However, they are also limited1326

by diffusive uptakes of dissolved phosphorous and iron. Diazotrophy requires an oxygen-1327

free environment, which forces the cell to limit the diffusion of oxygen into the cell. As1328

the diffusion of oxygen into the cell follows the same size scaling as diffusive uptakes1329

small cells will have a high influx of oxygen. It is therefore challenging for small cells1330

to develop diazotrophy. While the limitations of cell size on diazotrophy have not been1331

described in the literature the fundamental understanding of diazotrophy and the role of1332

oxygen is available (e.g. Inomura et al., 2017). With such a description, diazotrophy could1333

be added directly as an additional process into the minimal size-based model, without1334

even adding a new trait dimension, and make diazotrophy an additional emergent trophic1335

strategy.1336

The minimal model assumes that all cells have the same preferred predator-prey mass.1337

Some organisms, however, may have very low predator-prey mass ratios, notably di-1338

noflagellates (Kiørboe, 2008), while others have high ratios, notably larvaceans. The1339

variation in preferred predator-prey mass ratios is accommodated to some degree by us-1340

ing a prey size preference with a wide size range σ > 1. However, that solution poorly1341

resolves the importance of organisms with large predator-prey masses in oligotrophic sit-1342
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uations where they act to transfer carbon from the dominant picoplankton towards larger1343

body sizes with a re accessible to higher trophic levels. Not resolving higher predator-prey1344

masses will underestimate the trophic efficiency in oligotrophic situations.1345

Finally, the insistence on just one governing set of parameters for all sizes ignores the1346

difference between bacteria and eukaryotes. Bacteria have a different cell wall structure1347

which most likely limits their functional cell mass (the ν factor) less than in the description1348

developed here (Kempes et al., 2016).1349

Some of the limitations of the pure size-based approach can be addressed by including1350

additional traits as other axes of diversity. We consider two additional axes to be prime1351

candidates: vacuoles and a fast-slow life history axis. The vacuoles represent organisms1352

with a lower density (diatoms) and the methodology has been successfully developed pre-1353

viously (Terseleer et al., 2014; Cadier et al., 2020). Technically, vacuoles are introduced1354

as an additional size-spectrum with either a fixed vacuole size or a vacuole size which1355

is optimized dynamically. The other trait axis would be a representation of a slow-fast1356

life history continuum. This axis would represent how some species invest in high clear-1357

ance rates and high maximum synthesis rates to achieve a fast dominance in high resource1358

environments, while other invest in high competitive ability – low limiting resource and1359

low respiration – and/or defence to lower the predation risk. These investments comes1360

with trade-offs. The trade-offs between investments in resource harvesting and synthe-1361

sis is somewhat understood (Andersen et al., 2015) (but see Kiørboe and Thomas, 2020),1362

however, the investments in defence are more subtle. Recent developments in understand-1363

ing the trade-offs between clearance rates and predation risk of flagellates from direct1364

fluid mechanical simulations provides a first-principle avenue to parameterize this cru-1365

cial trade-off (Nielsen and Kiørboe, 2021). Incorporating the fast-slow life history axis1366
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would also address some of the scatter in the purely size-based data of clearance rate and1367

maximum synthesis rate (Figs. 4 and 5).1368

6.4 Conclusion1369

Despite the primitive representation of plankton diversity, the minimal size-based model1370

forms a backbone on which to add other complications. Its strength is conceptual sim-1371

plicity and a small set of universal parameters tied to first principles. The main effects1372

observed in the minimal model will also be manifest in more complex size-based mod-1373

els, and as such the model is a useful tool to understand the mechanics of more complex1374

size-based models. The importance of the additional complications – vacuoles, diazotro-1375

phy, high predator-prey mass ratios, or other functional groups – can be assessed with1376

reference to the minimal size-based model. While the model is not intended as an opera-1377

tional biogeochemical model, the computational simplicity of the minimal model makes1378

it useful as a basis for further theoretical ecological insights.1379

Code1380

R code to generate all figures on github: https://github.com/Kenhasteandersen/FirstPrinciplesPlankton.1381

The code also includes a web-based simulator, which can be found on: http://oceanlife.dtuaqua.dk/Plankton/R.1382
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A Calculation of effective prey preference for dis-1771

crete size groups1772

The effective prey preferences function between size groups of predators i and prey j is1773

calculated by integrating over the prey size preference (Eq. 30). The encountered prey in1774

size group j by all predators in group i is:1775

Eij =

∫ m+
i

m−
i

aFm

∫ m+
j

m−
j

φ(m, w)B(w) dwB(m)/mdm. (A.1)

Here, B(m) represents the normalized biomass spectrum. We assume a Sheldon distri-1776

bution, i.e., B(m) ∝ m−1. With the discrete prey and predator groups we write the1777

encountered food as:1778

Eij = aFmiΦijBjNi (A.2)

Where Bj is the total biomass in group j, Bj =
∫
B(w) dw and Ni is the total abundance

of predators Ni =
∫
B(m)/mdm. Equating the two terms and isolating Φij gives:

Φij =

√
∆

(∆− 1) log(∆)[(
1

2
s

(
e−

log2(∆z
β )

s + e−
log2(β∆

z )
s − 2e−

log2( zβ )
s

)
−

1

2

√
π
√
s

(
log

(
∆z

β

)
erf
(

log(β)− log(∆z)√
s

)
+ log

(
β∆

z

)
erf
(

log(z)− log(β∆)√
s

)
+

log

(
z

β

)
erf

 log
(
z
β

)
√
s

 (A.3)

where s = 2σ2 and z = mi/mj and ∆ = m+/m−.1779
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Figure A.1: Size preference function for different grid expansions (∆) and number
of size groups (n).
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