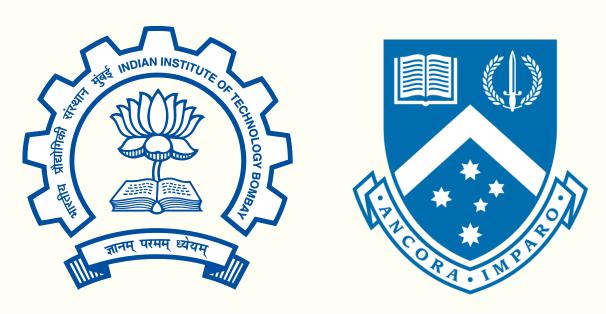
Evaluating CCS readiness in India: CO₂ storage potential, source-sink mapping and policy outlook

Yashvardhan Verma^{1,2,3} and Vikram Vishal¹

¹Department of Earth Sciences, Indian Institute of Technology Bombay ²Department of Civil Engineering, Monash University ³IITB Monash Research Academy, Indian Institute of Technology Bombay

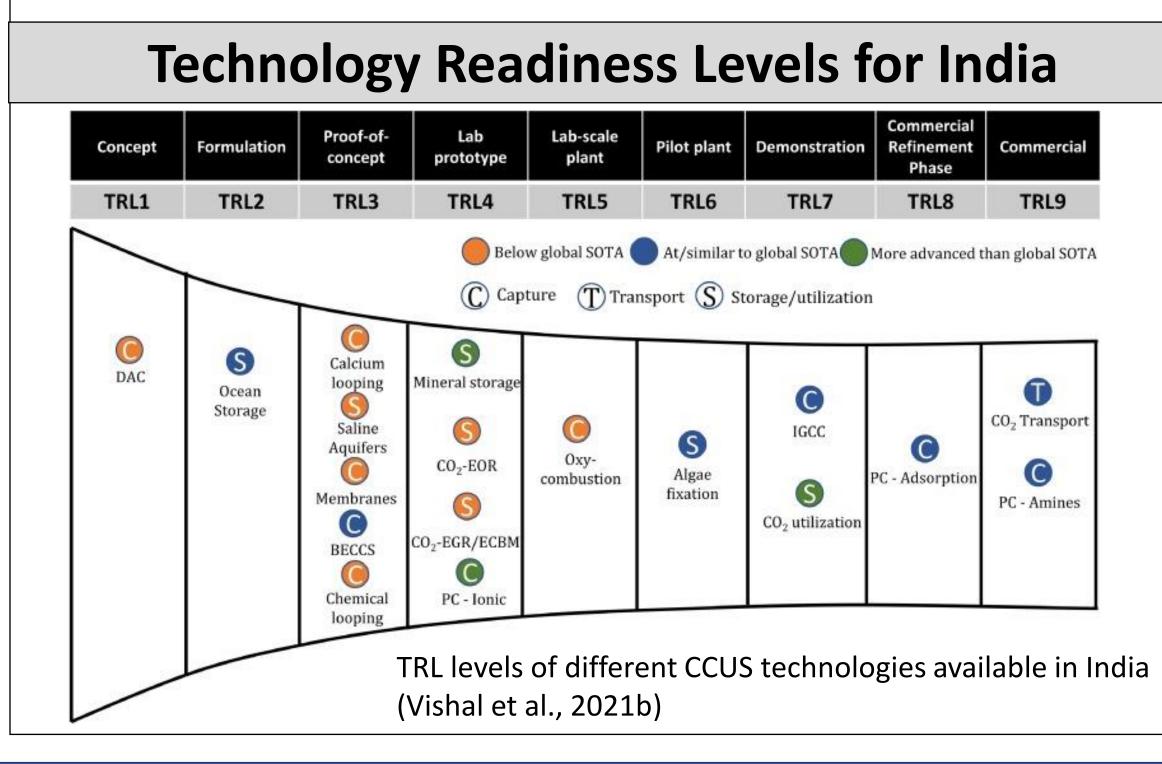

January 24, 2023

Abstract

The Government of India announced its commitment to reach net-zero greenhouse gas emissions by 2070 at the recent COP 26 summit. Modeling projections suggest that meeting this target would likely require substantial amounts of CO_2 capture and storage (CCS) from large-point sources (LPS). Our analysis first reveals the key co-benefits for India in the adoption of CCS, viz. energy security, lower aggregate costs of carbon mitigation, higher resilience and lower stranded assets. For instance, we estimate that stranding of >100 GW and >70 GW of coal- and gas-fired power capacity could be avoided with the presence of CCS in the power sector mix.

This analysis is further supplemented by our recent estimates on CO_2 storage potential estimates in Indian geologic formations. Our results indicate that the storage capacity via enhanced oil recovery (EOR) is 1.2 GtCO₂ after incorporating engineering and geologic constraints. Similarly, the storage capacity in unminable coal fields is estimated to be 3.5-6.3 GtCO₂. Even though the combined storage potential in these formations is constrained, they should be actively considered within policy-making as they predominantly lie within areas of dense areas of LPS, thus creating possibilities of CCS hubs and clusters. In addition, 291 GtCO₂ could be sequestered in saline aquifers and 97-316 GtCO₂ in basalts; though, these values are subject to higher uncertainties. A number of saline aquifers may be characterized as having storage potential equivalent to several years of LPS emissions (>10 GtCO₂) along with high storage feasibility.

Our ongoing analysis attempts a more evolved approach towards source-sink mapping in India by combining the storage potential estimates with geospatial layers of LPS. Large power plants, which emit >20 MtCO₂ annually, and high-purity CO₂ sources such as refineries, are of particular interest. Preliminary source-sink mapping results show substantial clustering opportunities in eastern India, which has active coalbed methane extraction undertaken by five companies, and western India, with large industrial sources interspersed with EOR sites. The results of this analysis will also inform decision-makers on future LPS siting opportunities if a policy thrust on CCS is undertaken for meeting net-zero targets over the next two decades.

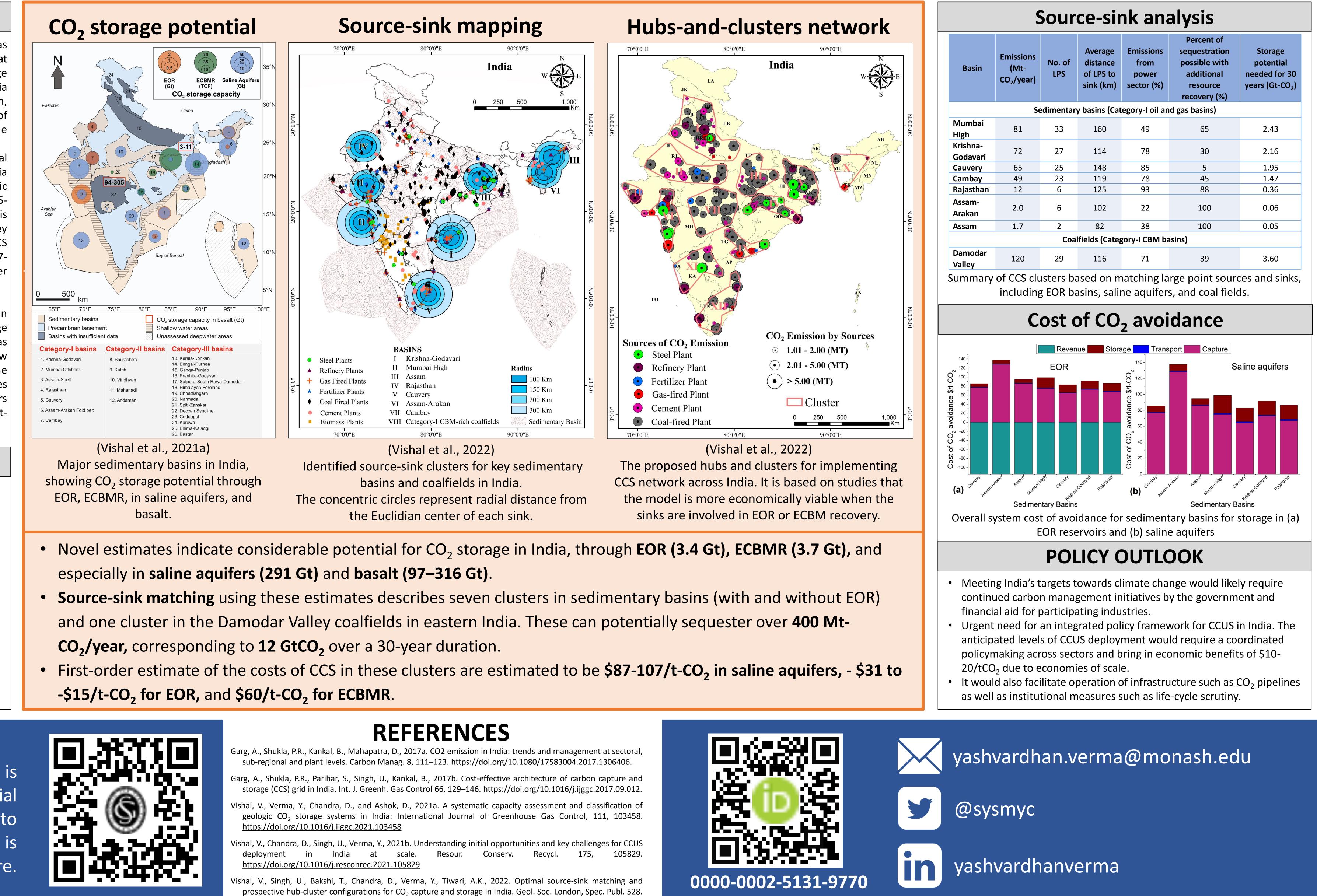

1. Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai, India; 3. IITB Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India

ABSTRACT

The Government of India announced its commitment to reach net-zero greenhouse gas emissions by 2070 at the recent COP 26 summit. Modeling projections suggest that meeting this target would likely require substantial amounts of CO₂ capture and storage (CCS) from large-point sources (LPS). Our analysis first reveals the key co-benefits for India in the adoption of CCS, viz. energy security, lower aggregate costs of carbon mitigation higher resilience and lower stranded assets. For instance, we estimate that stranding of >100 GW and >70 GW of coal- and gas-fired power capacity could be avoided with the presence of CCS in the power sector mix.

This analysis is further supplemented by our recent estimates on CO₂ storage potential estimates in Indian geologic formations. Our results indicate that the storage capacity via enhanced oil recovery (EOR) is 1.2 GtCO₂ after incorporating engineering and geologic constraints. Similarly, the storage capacity in unminable coal fields is estimated to be 3.5 6.3 GtCO₂. Even though the combined storage potential in these formations is constrained, they should be actively considered within policy-making as they predominantly lie within areas of dense areas of LPS, thus creating possibilities of CCS hubs and clusters. In addition, 291 GtCO₂ could be sequestered in saline aquifers and 97-316 GtCO₂ in basalts; though, these values are subject to higher uncertainties. A number of saline aquifers may be characterized as having storage potential equivalent to several years of LPS emissions (>10 GtCO₂) along with high storage feasibility.

Our ongoing analysis attempts a more evolved approach towards source-sink mapping in India by combining the storage potential estimates with geospatial layers of LPS. Large power plants, which emit >20 MtCO₂ annually, and high-purity CO₂ sources such as refineries, are of particular interest. Preliminary source-sink mapping results show substantial clustering opportunities in eastern India, which has active coalbed methane extraction undertaken by five companies, and western India, with large industrial sources interspersed with EOR sites. The results of this analysis will also inform decision-makers on future LPS siting opportunities if a policy thrust on CCS is undertaken for meeting netzero targets over the next two decades.



CONCLUSION

The overall cost for CCS in saline aquifers in India is substantially higher than global averages. Financial revenues from EOR and ECBMR are necessary to jumpstart CCS in India. A robust policy framework is also needed to advance CCUS infrastructure.

Evaluating CCS readiness in India: CO₂ storage potential, source-sink mapping and policy outlook

Yashvardhan Verma^{1,2,3}, Vikram Vishal¹

- https://doi.org/10.1144/SP528-2022-76

