
P
os
te
d
on

20
J
an

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
42
29
60
.0
73
59
87
7/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Development and application of the Branched and Isoprenoid

GDGT Machine learning Classification algorithm (BIGMaC) for

paleoenvironmental reconstruction

Pablo Mart́ınez-Sosa1, Jessica Tierney1, Lina C Perez-Angel2, Ioana Cristina Stefanescu3,
Jingjing Guo4, Frédérique Marie Sophie Anne Kirkels4, Julio Sepúlveda2, Francien
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Abstract

Glycerol dialkyl glycerol tetraethers (GDGTs), including both the archaeal isoprenoid GDGTs (isoGDGTs) and the bacterial

branched GDGTs (brGDGTs), have been used in paleoclimate studies to reconstruct temperature in marine and terrestrial

archives. However, GDGTs are present in many different types of environments, with relative abundances that strongly depend

on the depositional setting. This suggests that GDGT distributions can be used more broadly to infer paleoenvironments in the

geological past. In this study, we analyzed 1153 samples from a variety of modern sedimentary settings for both isoGDGT and

brGDGTs. We used machine learning on the GDGT relative abundances from this dataset to relate the lipid distributions to the

physical and chemical characteristics of the depositional settings. We observe a robust relationship between the depositional

environment and the lipid distribution profiles of our samples. This dataset was used to train and test the Branched and

Isoprenoid GDGT Machine learning Classification algorithm (BIGMaC), which identifies the environment a sample comes

from based on the distribution of GDGTs with high accuracy. We tested the model on the sedimentary record from the

Giraffe kimberlite pipe, an Eocene maar in subantarctic Canada, and found that the BIGMaC reconstruction agrees with

independent stratigraphic information, provides new information about the paleoenvironment of this site, and helps improve

paleotemperature reconstruction. In cases where paleoenvironments are unknown or are changing, BIGMaC can be applied in

concert with other proxies to generate more refined paleoclimatic records.

1



manuscript submitted to Paleoceanography and Paleoclimatology

Development and application of the Branched and1

Isoprenoid GDGT Machine learning Classification2

algorithm (BIGMaC) for paleoenvironmental3

reconstruction4

Pablo Mart́ınez-Sosa15
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Key Points:15

• The distribution of GDGTs is particular to each depositional environment, and16

they also have unique responses to environmental factors.17

• The BIGMaC algorithm captures the correlation between both branched and iso-18

prenoid GDGTs with depositional environments.19

• Our approach can provide paleoclimatological and paleoenvironmental informa-20

tion based only on GDGTs.21
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Abstract22

Glycerol dialkyl glycerol tetraethers (GDGTs), including both the archaeal isoprenoid23

GDGTs (isoGDGTs) and the bacterial branched GDGTs (brGDGTs), have been used24

in paleoclimate studies to reconstruct temperature in marine and terrestrial archives. How-25

ever, GDGTs are present in many different types of environments, with relative abun-26

dances that strongly depend on the depositional setting. This suggests that GDGT dis-27

tributions can be used more broadly to infer paleoenvironments in the geological past.28

In this study, we analyzed 1153 samples from a variety of modern sedimentary settings29

for both isoGDGT and brGDGTs. We used machine learning on the GDGT relative abun-30

dances from this dataset to relate the lipid distributions to the physical and chemical31

characteristics of the depositional settings. We observe a robust relationship between the32

depositional environment and the lipid distribution profiles of our samples. This dataset33

was used to train and test the Branched and Isoprenoid GDGT Machine learning Classification34

algorithm (BIGMaC), which identifies the environment a sample comes from based on35

the distribution of GDGTs with high accuracy. We tested the model on the sedimen-36

tary record from the Giraffe kimberlite pipe, an Eocene maar in subantarctic Canada,37

and found that the BIGMaC reconstruction agrees with independent stratigraphic in-38

formation, provides new information about the paleoenvironment of this site, and helps39

improve paleotemperature reconstruction. In cases where paleoenvironments are unknown40

or are changing, BIGMaC can be applied in concert with other proxies to generate more41

refined paleoclimatic records.42

1 Introduction43

Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane spanning lipids found44

in sediments and soils around the world. There are two main types of these molecules,45

branched and isoprenoid. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are46

characterized by their branched alkyl chains, with a differing number (4 – 6) and posi-47

tion (5-methyl or 6-methyl) of methyl groups and cyclopentane moieties (0 – 2). This48

unique structure defies the classical evolutionary dichotomy of the lipid divide by com-49

bining traits of Bacteria and Archaeal cell membranes (Weijers et al., 2006). Based on50

evidence such as the alkyl chains, the stereochemistry of the glycerol group (Weijers et51

al., 2006), and most importantly, culture studies (Chen et al., 2022; Halamka et al., 2022,52

2021; Sinninghe Damsté et al., 2011), they are considered to have a bacterial source.53

In contrast, isoprenoid glycerol dibiphytanyl glycerol tetraether GDGTs (isoGDGTs)54

are produced by Archaea (Sinninghe Damsté et al., 2002). Their structures contain two55

phytane chains (Langworthy, 1977) and vary in the number of cyclopentane moieties (056

– 8) (De Rosa et al., 1983). Crenarchaeol is a member of this group of particular impor-57

tance as it has been shown to be specifically produced by Thaumarchaeota (Sinninghe Damsté58

et al., 2002). Crenarchaeol contains four cyclopentane rings, one cyclohexane ring, and59

has an identified stereoisomer (Sinninghe Damsté et al., 2002, 2018).60

Both isoprenoid and branched GDGTs are used in paleoclimate studies as their dis-61

tribution follows variables such as temperature and pH, and these molecules are relatively62

stable through the geological record. In marine sediments, the degree of cyclization of63

isoGDGTs is related to overlying water temperature, forming the basis of the TetraEther64

indeX of 86 carbons (TEX86) proxy (Schouten et al., 2002, 2013). Similarly, the methy-65

lation, cyclization, and isomerization of brGDGTs have been shown to respond to tem-66

perature and pH in terrestrial environments, such as peats, soils, lakes, and rivers (Raberg67

et al., 2022; Mart́ınez-Sosa et al., 2020; Dang et al., 2018; De Jonge, Stadnitskaia, et al.,68

2014; Tierney et al., 2010; Weijers, Schouten, et al., 2007). The Methylation index of Branched69

Tetraethers (MBT ′
5Me) proxy isolates the relationship between the methylation of brGDGTs70

and temperature (De Jonge, Hopmans, et al., 2014) and has been widely used for ter-71
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restrial paleoclimate reconstructions (Pancost et al., 2013; Peterse et al., 2012; Weijers,72

Schefuß, et al., 2007).73

Across environments, GDGT distributions broadly reflect the microbial commu-74

nity present. This is, for example, the basis of the Methane Index, which measures the75

contribution of methanotrophic organisms to the isoGDGT pool compared with mem-76

bers of Thaumarchaeota (Zhang et al., 2011). Likewise, the distribution of isoGDGTs77

in marine systems reflects not only sea-surface temperature (captured by the TEX86 in-78

dex) but also the water depth (and potentially, different archaeal communities) from which79

the isoGDGTs derive from (Rattanasriampaipong et al., 2022; Taylor et al., 2013). In80

terrestrial settings, De Jonge et al. (2019) proposed the Community Index for brGDGTs,81

which is based on the inference that brGDGTs are produced by different communities82

of bacteria, each with a unique response to soil temperature. The combined use of some83

of the GDGTs, through the Branched and Isoprenoid Tetraether (BIT) index, has been84

proposed to broadly discriminate between marine and terrestrial environments (Hopmans85

et al., 2004). However, BIT values in soils, lakes, and peats all tend to be high, which86

limits the ability of this index to reliably distinguish between these different types of ter-87

restrial settings.88

Building on these observations, we posit that the full range of archaeal and bac-89

terial GDGTs (isoprenoidal and branched) contains information about their biological90

precursors and the overall composition of the microbial community. This information91

can in turn be used to discriminate between samples formed in terrestrial or marine en-92

vironments, as well as whether terrestrial samples were formed in freshwater, soil, or peat-93

land environments. This would provide an additional tool for the identification of an-94

cient depositional conditions in instances when it is not clear what the environment was,95

and therefore could improve our application of GDGT-based paleotemperature proxies96

by better constraining which environmental setting the lipids are coming from. This re-97

quires characterizing multidimensional, nonlinear relationships between the occurrence98

and distribution of GDGT lipids and their source environment, as well as a framework99

that allows researchers to easily apply these relationships to new unclassified samples.100

To address and incorporate all of these factors, we make use of machine learning,101

which provides a way to model highly dimensional and nonlinear data with complex in-102

teractions and missing values (El Bouchefry & de Souza, 2020). Machine learning has103

previously been used in the Geosciences to discriminate between magma (Ueki et al., 2018)104

as well as water (Engle & Brunner, 2019) sources. Similarly, these tools have also been105

specifically applied to biomarkers and GDGTs (Véquaud et al., 2022; Peaple et al., 2021;106

Zheng et al., 2019). Here, we use a compilation of 1153 globally dispersed samples from107

diverse depositional environments to train a classification algorithm which is capable of108

identifying the environment in which a sample was formed based on the distribution of109

GDGTs. We further demonstrate the application of this algorithm by using it to inter-110

pret the paleoenvironment and the paleotemperature in a Paleogene deposit that records111

a transition from a lacustrine to a peatland environment, as well as the limitations of112

this approach in an application to a peatland dataset that spans the Paleocene-Eocene113

Thermal Maximum (PETM).114

2 Materials and Methods115

2.1 Global Dataset116

We compiled a total of 1153 globally distributed (Fig. 1) samples from different117

depositional environments: coastal, marine, lake, peat, river, and soil. These samples all118

have quantified relative abundances for the full suite of the most commonly used isoGDGTs119

(GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol, and crenarchaeol’) and brGDGTs120

(IIIa, IIIa’, IIIb, IIIb’, IIa, IIa’, IIb, IIb’, IIc, IIc’, Ia, Ib, and Ic) in paleoenvironmen-121
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tal reconstructions, and were all analyzed with the updated High Performance Liquid122

Chromatography-Mass Spectrometry (HPLC-MS) method of Hopmans et al. (2016). From123

the 1153 samples, 475 are peat (Naafs, 2017), 215 are marine and coastal sediments (this124

study), 196 are soil (Guo, Ma, et al., 2022; Dearing Crampton-Flood et al., 2020; Guo125

et al., 2020; Pérez-Angel et al., 2020), 162 are lake sediments (Mart́ınez-Sosa et al., 2021;126

Guo et al., 2020), and 105 are riverbed sediment (Kirkels, Usman, & Peterse, 2022). For127

the Colombian and Inner Mongolia soil samples (Guo, Ma, et al., 2022; Pérez-Angel et128

al., 2020) we include here newly reported isoGDGT values not included in the original129

dataset.130

50°S
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50°N

180° 180°
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e

Marine Lake River Peat Soil

Figure 1. World map showing the distribution of the samples included in this work. Color

code reflects the depositional environment which these samples were collected from. Red asterisk

shows the modern location of the Giraffe pipe.

All marine sediment samples were processed at the University of Arizona follow-131

ing the method used in Mart́ınez-Sosa et al. (2021). Briefly, samples were freeze-dried,132

homogenized, and spiked with a C46 internal standard before being extracted with an133

Accelerated Solvent Extraction (ASE) system (run at 1500 psi, 100◦C, with dichloromethane:methanol134

(DCM: MeOH, 9:1)). Total Lipid Extracts (TLEs) were eluted through a deactivated135

SiO2 column with hexane:ethyl acetate (1:2), and dried under a N2 stream. Polar frac-136

tions were redissolved in hexane:isopropanol (99:1), and then passed through a 0.45 µm137

PTFE filter prior to being analyzed by HPLC-MS. GDGTs were analyzed on an Agi-138

lent 1260 Infinity HPLC coupled to an Agilent 6120 single quadrupole mass spectrom-139

eter using two BEH HILIC silica columns (2.1×150 mm, 1.7 µm; Waters) following the140

methodology of Hopmans et al. (2016). We calculated peak areas using the MATLAB141

package ORIGAmI (Fleming & Tierney, 2016) and quantified brGDGTs by comparing142

the obtained peaks with the internal standard (Huguet et al., 2006).143

For all samples in this dataset we calculated the relative abundance of all brGDGTs144

(except IIIc and IIIc’, due to their general low abundance), as well as isoGDGTs 0–3,145

Crenarchaeol, and its isomer. For all the analyses we used the fractional abundance of146

each compound relative to the total sum of GDGTs (branched + isoprenoid). Although147

it is known that the ionization of isoGDGTs and brGDGTs in the MS might be differ-148

ent between laboratories (Schouten et al., 2013), the potential impact of this is minimized149
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in our statistical approach because the data are normalized before applying the machine150

learning techniques (see Section 2.2.1).151

We collected the environmental parameters associated with the samples using the152

data available in the source datasets. For the marine sediments analyzed for this study,153

we obtained mean annual temperature of the top 200m of the water column from the154

World Ocean Atlas 2018 (Locarnini et al., 2018).155

2.2 Machine Learning156

For our machine learning analyses we use two different but complementary approaches.157

We first performed unsupervised machine learning on the dataset (with the samples’ de-158

positional environment unlabeled), which allows for the exploration of complex patterns159

presented by the predictor variables (GDGT abundance). The end product of this sec-160

tion is the identification of the major GDGT-derived clusters. Next, we applied super-161

vised machine learning, where the dataset is split into a training set and a test set, and162

the environment of each sample is assigned to one of the major clusters identified in the163

unsupervised step. The training set is used to map the relationship between the predic-164

tor variables to the response variable (the environment). The test set is then used to eval-165

uate the performance of the mapped relationship.166

For this work, all analyses were performed in R (R Core Team, 2022).167

2.2.1 Unsupervised Machine Learning168

For the unsupervised machine learning analysis we centered and scaled the frac-169

tional abundances of GDGTs across the whole dataset. We tested the optimal number170

of clusters for this dataset using the fviz_nbclust() function of the factoextra pack-171

age (Kassambara & Mundt, 2020) and by performing a silhouette analysis using the pam()172

(Partitioning Around Medoids) method from the cluster package (Maechler et al., 2019).173

Samples were separated into clusters by applying the fuzzy version of the k-means clus-174

tering algorithm using the cmeans() function from the e1071 package (Meyer et al., 2020).175

The best performing number of clusters from the silhouette analysis was used and the176

analysis was iterated a maximum of 100 times.177

Following the cluster analysis and prior to the supervised machine learning, we cu-178

rated the identified groups by hand, reassigning any samples that were incorrectly clas-179

sified to their correct (real-world) environment. This preserves the natural variability180

in the samples that ultimately contributes to some amount of error in the classification181

model.182

2.2.2 Supervised Machine Learning183

For the supervised machine learning we worked in the tidymodels and tidyverse en-184

vironments (Kuhn & Wickham, 2020; Wickham et al., 2019), where we used the frac-185

tional abundances of GDGTs as predictor variables and the curated classification from186

the previous unsupervised step as the response variables. The dataset was split in a 3:1187

ratio, preserving the distribution of sample types, for the training and test sets using the188

function initial_split() from the rsample package (Kuhn et al., 2019). We further189

generated a validation set from the training set with 10 partitions for tuning the hyperparameters—190

parameters whose values control the learning process—using the vfold_cv() function191

from the rsample package.192

We tested the performance of four different classification models (Random Forest,193

XGBoost, K Nearest Neighbour and Naive Bayes) plus a control non-informative (null)194

model. Hyperparameters for each model, except XGBoost, were tested using a regular195

grid through the grid_regular() function from the dials package (Kuhn, 2020a). The196
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hyperparameters for the XGBoost model were selected using a latin hypercube design197

with 30 parameter value combinations using the grid_latin_hypercube() function from198

the dials package. The hyperparameter tuning was run at the University of Arizona High-199

Performance Computing facility. Finally, the best hyperparameter values were selected200

by comparing their ROC-AUC score on the validation set (Table S1).201

We tested the performance of each model with the best hyperparameter combina-202

tion on the validation set and selected the model that produced the best F1 and ROC-203

AUC score. This model was then trained and tested using the last_fit() function from204

the tune package (Kuhn, 2020b).205

2.3 Giraffe Kimberlite Pipe206

We analyzed GDGTs from 83 samples from diamond exploration drill core BHP207

99-01 from the Giraffe kimberlite pipe (paleolatitude ∼ 63◦N) (Wolfe et al., 2017). This208

core is stored at the Geological Survey of Canada core repository (Calgary), and it con-209

tains ≥ 50 vertical-equivalent meters of lacustrine sediment topped with ∼ 32 m of peat.210

The sediments were dated to 37.84±1.99 Ma by glass fission-track dated rhyolitic tephra211

beds (Wolfe et al., 2017). Our dataset spans 83.5 vertical-equivalent meters and includes212

19 samples from the peat section and 64 from the lacustrine section. For each sample,213

between 0.5 and 1 g of sediment was processed to obtain TLEs in the same manner as214

for the marine samples. For these samples, the GDGTs were isolated using a two-layer215

chromatography column filled with a 1:1 mix of LC-NH2 (bottom layer) and 5% deac-216

tivated silica (top layer) gels as the solid phase (Windler et al., 2019). The GDGTs were217

recovered using dichloromethane:isopropanol (2:1) as the solvent. Branched and isoprenoid218

GDGTs were analyzed in all samples using the same HPLC-MS method described for219

the marine samples in section 2.1.220

2.4 Cobham Lignite Bed221

The Cobham lignite bed, Kent, UK (∼ 48◦N palaeolatitude) is composed by a sand222

and mud unit at the base, overlain, in succession, by a charcoal-rich lower laminated lig-223

nite, a charcoal-poor upper laminated lignite, a middle clay layer, and a charcoal-poor224

blocky lignite. The Woolwich Shell Beds overly the Cobham Lignite (Collinson et al.,225

2009). A carbon isotope excursion is present near the top of the charcoal-poor upper lam-226

inated lignite, which is interpreted as being the characteristic excursion from the Pale-227

ocene Eocene Thermal Maximum (PETM, ∼ 56 million years ago). Collinson et al. (2009)228

interpreted the units above this as representing the early part of the PETM. We tested229

our algorithm on the 27 samples obtained from this site previously analyzed by Inglis230

et al. (2019) and publicly available at the PANGAEA data repository (Inglis et al., 2019).231

3 Results232

3.1 Fuzzy K-means Classification233

Our silhouette analysis showed that the global GDGT data is best separated into234

four clusters, which was then used to perform a fuzzy k-means classification. This anal-235

ysis separated the dataset into four groups consisting between 219 and 465 samples each.236

When we compare the composition of each cluster using Principal Component Analy-237

sis (PCA), we observe clear differences between depositional environments (Fig. 2a and238

b, and Table 1). 87% of the peat samples fall within Group 1, while 85% of the lacus-239

trine samples are assigned to Group 2. In turn, 92% of the river samples are assigned240

to Group 3, and 92% of the marine samples are assigned to Group 4 (Fig. 2a and b). Soil241

samples are more spread across the different groups, with the majority assigned to Group242

3 (44%).243
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Figure 2. Samples from the dataset plotted in reduced dimensional space based on the frac-

tional abundance of GDGTs. Plots show the same analysis with samples colored based on the

depositional environment (a), their assigned group based on the fuzzy k-means analysis (b), and

the hand-curated clusters (c), as well as the loadings of the variables (GDGTs) involved in each

principal component (d).

Given the distinctive clustering, we renamed them based on the dominant depo-244

sitional environment (Fig. 2b and c). Group 1 was renamed as Peat-type, Group 2 as Lake-245

type, Group 3 as Soil-type, and finally Group 4 as Marine-type. Samples for which the246

cluster assignment did not match their depositional environment were manually reassigned247

to the appropriate group (Table 1). For example the original dataset from Naafs (2017)248

includes only peats and so all samples from this dataset were reassigned as Peat-type,249

regardless of whether they fell in Group 1 or not. The k-means derived and manually250

curated clusters maintain their core distributions (Table 1). Peat-type and Marine-type251

are very similar in composition and size to Group 1 and 4 respectively. While Group 1,252

with 465 samples, had 87% of the peat samples and 20% of the soil samples; Peat-type,253

with 476 samples, has all of the peat samples and only one lake sample. Similarly, Group254

4, with 225 samples, had 92% of the marine samples, while Marine-type includes all of255
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Table 1. Percentage of each type of sample assigned to each of the four clusters determined by

fuzzy k-means analysis (top) as well as the four manually curated clusters (bottom). At the bot-

tom is the total number of samples from each type, and the last column shows the total number

of samples in each cluster (fuzzy k-means and curated). The highest percentage for each type of

sample in the clusters is indicated in bold.

Lake Marine Peat River Soil Total

Group 1 7.4% 0% 87% 0% 20.4% 465
Group 2 85% 6% 6% 8% 31% 244
Group 3 6% 3% 4.4% 92.4% 44% 219
Group 4 3% 92% 3% 0% 5.1% 225

Peat-type 0.6% 0% 100% 0% 0% 476
Lake-type 97.5% 0% 0% 0% 0% 158
Soil-type 1.2% 0% 0% 100% 100% 303

Marine-type 0.6% 100% 0% 0% 0% 216

Total 162 215 475 105 196

them and has a total of 216 samples. The reduction in size from Group 4 to Marine-type256

is mostly due to the reassignment of lake, peat and soil samples. The largest change ob-257

served is between Group 2 and Lake-type (86 sample difference), and Group 3 and Soil-258

type (84 sample difference). Most of this comes from the reassignment of 60 soil sam-259

ples from Group 2 to Soil-type.260

3.2 Within-Group Analyses261

Once the unsupervised machine learning demonstrated that the dataset can be dif-262

ferentiated into Marine-type, Lake-Type, Soil-type, and Peat-type groups, we analyzed263

the GDGT distribution of each group to assess their influence on the clustering results264

as well as how well they correlated with environmental parameters.265

3.2.1 GDGT Distribution266

Across the entire dataset, we observe that GDGT-1–GDGT-3, Ib, Ic, IIc, IIc’, IIIb,267

and IIIb’ have the smallest proportion (< 0.1 fractional abundance) of all GDGTs (Fig.268

3). There are, however, characteristic patterns associated with the four groups. Marine-269

type samples have a higher proportion of crenarchaeol and GDGT-0 compared with the270

other groups (Fig. 3a). As previously reported (Mart́ınez-Sosa et al., 2021), Lake-type271

samples show a higher proportion of IIIa and lower Ia than both soils and peats (Fig.272

3b and c). While our data also shows that from the terrestrial groups, Soil-type has a273

preference for 6-methyl isomers, in contrast to Lake-type and Peat-type; an analysis of274

the brGDGT distribution of just the Soil-type samples shows that it is the river sam-275

ples that contain a higher proportion of 6-methyl brGDGTs, while soils have a higher276

proportion of 5-methyl isomers (Fig. S1). Additionally, while the proportion of isoGDGTs277

is generally low in the terrestrial groups, Soil-type samples show a higher proportion of278

crenarchaeol than Lake-type and Peat-type samples, but lower than Marine-type (Fig.279

3a).280
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Figure 3. Box plots showing the distribution of the fractional abundance (FA) of all GDGTs

in each of the curated clusters, following the color code of Figure 2. GDGTs separated by

isoGDGTs (a), hexamethylated brGDGTs (b), pentamethylated brGDGTs (c), and tetram-

ethylated brGDGTs (d).

3.2.2 GDGT Influence281

To better understand the effect that each compound has on each group, we per-282

formed a Non-Metric Multidimensional Scaling (NMDS) on the fractional abundance of283

GDGTs (Fig. 4). For this analysis, we excluded four outlier samples from the Marine-284

type group: AII72-BC21 (North Atlantic), U (Port Wells, Alaska), CHN752-PC7 (North285

Atlantic), and FISH-1 (Long Island Sound) as they strongly skewed the data. These sam-286

ples had no relation to each other, spatial or otherwise. All NDMS analysis reach con-287

vergence for two dimensions with stress < 0.2.288

The NMDS results show that for the Marine-type set (Fig. 4a and d) the first di-289

mension is driven by a positive relation with isoGDGTs and a negative relation with brGDGTs.290

The second dimension, in turn, is mostly dominated by a negative relation with GDGT-291

0. We also observe a strong relationship (ρ = 0.82, Spearman’s correlation) between292

–9–
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Figure 4. NMDS plots for Marine-type (a and d), Lake-type (b and e), and Peat-type (c and

f). Panels a to c show the samples from each group colored based on mixed layer temperature

(a), or MAAT (b and c), while panels d to f show the contribution of each GDGT to each group.

the second dimension and mixed layer temperature (Fig. 4a). For the Lake-type sam-293

ples (Fig. 4b and e) the first dimension is dominated by a positive relation with the tetram-294

ethylated brGDGTs (Ia, Ib, and Ic) and a negative relation with the rest of the brGDGTs.295

The second dimension is driven by a negative relation with isoGDGTs and cyclic brGDGTs,296

and a positive relation with non-cyclic brGDGTs. The first dimension has a high cor-297

relation (ρ = 0.83) with mean annual air temperature (MAAT) (Fig. 4b), but we find298

no strong correlation (ρ < |0.4|) between the second dimension and any of the environ-299

mental parameters analyzed. Finally, the Peat-type set (Fig. 4c and f) shows a strong300

positive relation between Ia and the first dimension, and a negative relation with most301

of the other brGDGTs, closely following MAAT with a correlation of ρ = 0.80 (Fig. 4c).302

The second dimension has primarily a positive relation with Ia and IIa, while most of303

the other compounds show a negative relation, once again we were unable to find a strong304

correlation between this dimension and any environmental parameter. We do not dis-305

cuss the NMDS results for the Soil-type samples because their spatial distribution is ex-306

tremely limited (Fig. 1) and thus their location dominates the GDGT distributions. We307
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also do not observe any strong relationships between the NMDS dimensions and other308

additional environmental parameters, such as pH, elevation, and depth.309

3.3 Supervised Machine Learning310

The manually-curated labels generated after the unsupervised machine learning phase311

were used for the supervised classification. We tested the performance of all four clas-312

sification algorithms against each other and compared them with the null model using313

both the F1 and ROC-AUC parameters. Our results suggest that overall all methods314

performed significantly better than the noninformative control and relatively similar to315

each other. For the F1 scores, Random Forest performed the best (0.95), followed by XG-316

Boost (0.94), K-Nearest Neighbour (0.91), and Naive Bayes (0.87). In contrast, the null317

model had a score of 0.58. Similarly, for the ROC-AUC parameter we observe that Ran-318

dom Forest, XGBoost, and K-Nearest Neighbour had the same performance (0.99), fol-319

lowed by Naive Bayes (0.96), and the null model had a value of only 0.5. Finally, we ob-320

serve the same result when measuring accuracy, where Random Forest performed the321

best (0.96), followed by XGBoost (0.94), K-Nearest Neighbour (0.92), Naive Bayes (0.88),322

and the null model (0.41). Based on these results we chose the Random Forest algorithm.323

We observe that the performance of this algorithm in the test set is similar to the one324

observed for the training set (0.94 and 0.99 for F1 and ROC-AUC respectively, Fig. 5).325

This result suggests that the algorithm is not overfitting the data.326
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Figure 5. Confusion matrix showing the performance of the BIGMaC Random Forest algo-

rithm in the test dataset. Columns show the true label of the samples and rows the predicted

label. Diagonal cells are color-coded based on Fig. 2.

Finally, we diagnose the importance that each predictor variable has on the trained327

classification algorithm. We observe from this analysis that brGDGT IIa’ and crenar-328

chaeol have the highest importance scores (> 90), followed by IIb’, IIIa’, IIIb, Ia, and329

crenarchaeol’ (> 30). All other variables had importance values < 30. These values were330

calculated using the default values in the ranger package (Wright et al., 2019).331
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The finalized model, named Branched and Isoprenoid GDGT Machine learning332

Classification algorithm (BIGMaC), is available on Github https://github.com/Martoxa/333

BIGMaC as an R object (Mart́ınez-Sosa et al., 2023).334

3.4 Applications335

To demonstrate that the model can be successfully used to analyze changes in de-336

positional environments through time, we test the BIGMaC algorithm on GDGTs mea-337

sured in two different sites: the Eocene-aged post-eruption peat and lacustrine sediments338

recovered from the Giraffe kimberlite pipe in the subarctic; and the Cobham lignite bed,339

dated to the beginning of the PETM.340

3.4.1 Giraffe Kimberlite Pipe341

The lithology of the Giraffe kimberlite pipe core has previously been described, thus342

making it a good test case for the application of our classification algorithm. When we343

apply the BIGMaC algorithm to this core, we observe that the predicted cluster for each344

sample strongly aligns with the corresponding lithological section (Fig. 6). All samples345

from the top peatland section are classified as Peat-type, and all samples from the lacus-346

trine section below 85 m are classified as Lake-type. However, we also identified a sec-347

tion, between 76.5 and 85 m, within the lacustrine facies that is classified as Peat-type.348

Furthermore, the samples immediately above the excursion oscillate between Lake-type349

and Soil-type for at least one meter (Fig. 6).350

To further investigate the results of our classification, the fractional abundance of351

brGDGTs was used to calculate CBT’, which has been shown to be strongly associated352

with pH in peats (Naafs et al., 2017), and mildly correlated to pH in lakes (Mart́ınez-353

Sosa et al., 2021) (Fig. 6b). We observe that in general the peat section has much lower354

CBT’ values (associated with lower pH), than those observed in the lacustrine section.355

While this trend is maintained for most of the core, we observe a marked decrease in CBT’356

values in the section within the lacustrine facies that is classified as Peat-type.357

Based on the BIGMaC classification, we applied either the global soil/peat cali-358

bration (Dearing Crampton-Flood et al., 2020) for samples classified as Peat-type and359

Soil-type, or the global lake calibration (Mart́ınez-Sosa et al., 2021) for samples classi-360

fied as Lake-type. Our compounded temperature reconstruction has a mean temperature361

of 19.1◦C and a standard deviation of 3.2◦C. Overall we observe a stable period with no362

clear trends in temperature. The mean difference in the predicted temperature for the363

entire core between the soil and lake calibrations is 6.7◦C, with the lake calibration con-364

sistently generating higher temperatures. During the Peat-type excursion section the mean365

difference between both calibrations is 5.7◦C.366

3.4.2 Cobham Lignite Bed367

Our application of the BIGMaC algorithm to the Cobham lignite bed shows a marked368

difference in the depositional environment prediction for the pre-PETM and PETM sec-369

tions (Fig. 7). Almost all samples up to 54.15 cm are predicted to be Peat-type, with the370

exception of one sample from the upper laminated lignite unit that is classified as Soil-371

type. In contrast, we observe a wider variation in the sample classification during the PETM,372

where samples are classified as Peat-type (10), Soil-type (3) and Lake-type (1). Besides373

one sample classified as Peat-type from the PETM upper laminated lignite, all other PETM374

samples are located in the blocky lignite unit. The variations in predicted depositional375

environments do not coincide with changes in MBT ′
5Me values, nor are they organized376

in any evident pattern within the unit.377
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Figure 6. Inferred temperature (a) and CBT’ (b) calculated from Giraffe core brGDGTs plot-

ted against vertical-equivalent depth. The temperature reconstruction was generated by applying

the Dearing Crampton-Flood et al. (2020) Bayesian calibration for Peat and Soil-type samples,

and Mart́ınez-Sosa et al. (2021) calibration for Lake-type samples. Palynological estimates of

MAT with their associated error from Wolfe et al. (2017) are shown in red diamonds in (a). Sam-

ples are color-coded based on the predicted groups. White and gray shading indicates peat and

lacustrine sediments in the core, respectively. The acid excursion is shaded in red (b).

4 Discussion378

4.1 Unsupervised Machine Learning379

The fuzzy k-means analysis shows that the compiled global dataset is best described380

by four clusters that are strongly defined by depositional environment (Table 2; Fig. 2).381

The marine samples form the most distinct cluster, which is probably driven by the higher382

abundance of isoGDGTs compared with other environments. The terrestrial environments383

(lakes, rivers, peats and soils) have GDGT distributions more closely related to each other384

but still form distinct clusters (except for rivers which cluster with soils) in agreement385
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Figure 7. Calculated MBT ′
5Me values of the Cobham lignite bed across the site thickness

(cm). Samples are color coded based on the BIGMaC predicted groups. Different units are col-

ored and labeled on the top as: lower laminated lignite (LL, dark green), upper laminated lignite

(UL, light green), clay (C, white), and blocky lignite (BL, purple).

with previous work that has argued for clear differences between GDGTs in soils and lakes386

(Russell et al., 2018; Tierney et al., 2010; Tierney & Russell, 2009).387

While there is some debate regarding the relative influence that soil input and in388

situ production have on the GDGT pool in river organic matter (Kirkels et al., 2020; Zell389

et al., 2013; De Jonge, Stadnitskaia, et al., 2014), our analysis shows that the river sam-390

ples more closely resemble soils rather than peats or lakes. While this could be interpreted391

as soil-derived GDGTs dominating river inputs, our river data come from only two lo-392

cations and primarily from only one system (the Godavari river) so this could be par-393

ticular to that watershed. Notably, within the Godavari River, the membership value394

for the samples, which measures the degree of belonging to each cluster, varies with their395

location and collection season (Fig. 8). Membership to the soil-dominated Group 3 is396

higher in the lower Godavari basin, as well as from the wet (post-monsoon) season (Fig.397

8 c and d). In contrast, membership to the lake-dominated Group 2 is overall higher in398
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the wet season, and in the upper basin year-round (Fig. 8 a and b). These results are399

in line with those presented in Kirkels, Zwart, et al. (2022), where it was noted that GDGTs400

from soils have a stronger influence on the river during the wet season and within the401

lower basin, which experiences higher precipitation. In contrast, in-situ production of402

brGDGTs, characterized by a high proportion of 6-methyl isomers, has a stronger in-403

fluence on samples from the dry season as well as those from the upper basin.404
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Figure 8. Maps for the Godavari River sample locations for the dry (left column) and wet

(right column) seasons. Maps show the sample memberships, calculated through fuzzy k-means

analysis, to the lake-dominated Group 2 (a and b), and to the soil-dominated Group 3 (c and d).

4.2 Manually Curated Clusters405

While our fuzzy k-means clusters show strong patterns that reflect environmentally406

relevant relationships (Fig. 2a), some samples whose depositional environment had been407

unequivocally documented cluster in unrelated groups (i.e. soil samples plotting as peats).408

Since our intention with the supervised machine learning was to test whether GDGT dis-409

tributions can be used to classify the true depositional environment, we manually re-assigned410

any samples that fell within the incorrect group. The manually curated clusters are very411
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similar to the statistical groupings (Fig. 2b) but preserve the “errors” (i.e., soils that look412

like peats) in the dataset, thus guarding against overfitting.413

Soils are highly diverse environments with diffuse boundaries; they are often in con-414

tact with other depositional environments. Furthermore, studies have shown that chem-415

ical properties of soils (i.e. pH, metal concentrations) have great spatial heterogeneity416

even at small scales (Yavitt et al., 2009). This may explain why soil samples are spread417

across most of the fuzzy k-means clusters (Fig. 2). Even given the limited number of lo-418

cations from which the soil samples derive, the diverse nature of soils is potentially in-419

fluencing our results, particularly in transitory environments, such as the transition from420

soil to lacustrine sediments in a lake shore. It is possible that these transitory locations421

require a more in-depth analysis, with the use of more extensive datasets.422

4.3 GDGT Distribution423

The GDGT profiles of the curated clusters show characteristic patterns that reflect424

known qualities of GDGTs in their respective environments. For example, as expected,425

the Marine-type samples have a much higher proportion of isoGDGTs, while the terres-426

trial clusters have a higher proportion of brGDGTs (Fig. 3). As previously described by427

Mart́ınez-Sosa et al. (2021), Lake-type samples have a preference for 5-methyl isomers,428

although some work has suggested that 6-methyl brGDGTs can dominate in lacustrine429

environments with lower oxygen conditions (van Bree et al., 2020). Both Peat-type sam-430

ples and soil samples from the Soil-type cluster also have a higher proportion of 5-methyl431

isomers, but river samples within the the Soil-type cluster show a clear preference for 6-432

methyl brGDGTs (Fig. 3b,c and Fig. 9). In addition, Lake-type samples have a higher433

proportion of IIIa, and a lower proportion of Ia, compared with the other terrestrial en-434

vironments (Fig. 3b,d). Overall, the particular GDGT profiles from these depositional435

environments suggest that each may have a unique microbial community that responds436

to the environment in distinct ways (Raberg et al., 2022; De Jonge et al., 2019; Tierney437

& Russell, 2009).438

Each cluster also has a characteristic pattern of GDGT influence, which affects their439

relationship with environmental parameters (Fig. 4). Notably, for Marine-type samples440

the first dimension is dominated by a negative relation with brGDGTs and a positive441

one with isoGDGTs (Fig. 4d) and it is not associated with temperature (Fig. 4a), un-442

like the other groups. While we speculate that this dimension is related to terrestrial in-443

fluence, we did not find a relationship with the distance from the core sites to land or444

water depth, suggesting that it possibly represents a complex response to several envi-445

ronmental influences. The second dimension, which inversely follows GDGT-0, more closely446

follows the mixed layer temperature (Fig. 4a). Although GDGT-0 is traditionally omit-447

ted from the TEX86 calculation because it is a generic isoGDGT produced by many types448

of Archaea (including methanotrophs and methanogens) (Kim et al., 2010; Schouten et449

al., 2002) our analysis shows that it is strongly influenced by temperature. Furthermore,450

the NMDS analysis shows no relation between GDGT-0 and brGDGTs, which suggests451

that GDGT-0 is not influenced by terrestrial sources (Fig. 3 b-d). Our results suggest452

that temperature strongly influences the abundance of this lipid and, unlike previously453

thought (Guo, Yuan, et al., 2022; Kim et al., 2010), other environmental parameters may454

not be as important in open marine settings. This supports the observation of Cramwinckel455

et al. (2018) that, at higher temperatures the ratio of crenarchaeol to GDGT-0 might456

be more sensitive to temperature changes than TEX86.457

The first dimension of the Lake-type cluster follows MAAT (Fig. 4b) and the GDGT458

distribution along this dimension reflects the pattern associated with the MBT ′
5Me in-459

dex, with a positive relationship for Ia, Ib, and Ic, and a negative relationship with the460

remaining brGDGTs. In this first dimension, isoGDGTs do not seem to exert much in-461

fluence. The second dimension seems to capture relative amounts of isoGDGTs vs. brGDGTs,462
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Figure 9. Box plots showing the distribution of the fractional abundance (FA) of all GDGTs

in samples from the Soil-type cluster, following the color code of Figure 1. GDGTs separated by

isoGDGTs (a), hexamethylated brGDGTs (b), pentamethylated brGDGTs (c), and tetramethy-

lated brGDGTs (d).

but again, we were unable to find an environmental parameter that shows a relationship463

with this dimension; for example, lake depth is not associated with this axis of variabil-464

ity (ρ = 0.13). We speculate that this dimension reflects changes in microbial commu-465

nities. These changes could be due to specific niches in the water column associated with466

water chemistry, stratification, and/or nutrient content, as previous work has suggested467

(Sinninghe Damsté et al., 2022; Baxter et al., 2021; Kumar et al., 2019).468

The Peat-type samples show a pattern similar to the lake cluster, with the first di-469

mension following temperature, as shown by temperature increasing along the first axis470

on the NMDS analysis (Fig. 4c). The GDGT distribution in turn, follows to some ex-471

tent the pattern of the MBT ′
5Me index, with Ia, Ib and Ic plotting opposite to the rest472

of the brGDGTs. However, a unique feature of this cluster is that Ib and Ic appear to473

be less important, and less abundant than Ia. This is in line with previous work that has474

noted that there are relatively fewer brGDGTs with cyclopentane rings in peatlands, likely475
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because they are acidic (Naafs et al., 2017; Weijers, Schouten, et al., 2007). The GDGT476

distribution for the second dimension somewhat resembles the pattern for the CBT’ in-477

dex, with Ia and IIa negatively relating to this dimension. However, we found no rela-478

tionship between this dimension and pH. Previous work has suggested that the abun-479

dance of isoGDGTs, particularly 1 – 4, could be related to factors such as water content480

or redox state (Yang et al., 2019); we observe that these GDGTs indeed have a positive481

relationship with the second dimension, suggesting that this could be the environmen-482

tal driver.483

4.4 Supervised Classification484

In general, all of the machine learning algorithms exhibited good performance in485

the training phase, with F1 and ROC-AUC scores above 0.85 and 0.95 respectively. Nev-486

ertheless we chose the Random Forest algorithm since it was the best performing one487

across all parameters, in addition to being widely used in the field of geosciences (Peaple488

et al., 2021; El Bouchefry & de Souza, 2020). This algorithm also performed well in the489

testing phase (0.94 and 0.99, for F1 and ROC-AUC respectively, and Fig. 5), suggest-490

ing that the observed performance is not due to overfitting the training set.491

When we apply the BIGMaC algorithm to the complete dataset, we can investi-492

gate the importance of each GDGT in the model. The importance metric is calculated493

based on how much each GDGT contributes to decreasing the probability of incorrectly494

classifying a sample (Gini impurity) (Greenwell et al., 2020). This analysis shows that495

the two compounds that contribute the most to the classification are IIa’ and crenarchaeol.496

While these compounds have not been substantially linked to any particular environmen-497

tal response in previous work, PCA (Fig. 2d) suggests that they are strongly associated498

with Soil-type and Lake-type (IIa’), as well as Marine-type (crenarchaeol) samples. It is499

possible that the importance of IIa’ is due to its association with Lake-type and Soil-type500

samples but not Peat-type samples, thus helping the classification algorithm split the ter-501

restrial environments. Similarly, the association between crenarchaeol and Marine-type502

helps distinguish this group from the terrestrial environments.503

4.5 Applications504

Our GDGT analysis of the Giraffe core shows a good agreement with its previously505

described stratigraphy (Wolfe et al., 2017; Hamblin et al., 2003), with the sections of the506

core described as peat and lake, respectively, being correctly identified as such by BIG-507

MaC (Fig. 6b). However, BIGMaC also reveals additional information about changes508

in the depositional environment in the lacustrine facies that was not evident in the strati-509

graphic description, which interpreted the environment to be a shallow lacustrine set-510

ting with intermittent wet and dry periods (Hamblin et al., 2003). Between 76.5 and 85511

meters, within the lacustrine section, BIGMaC indicates a transition to a peatland en-512

vironment, followed by a brief transitional period between Soil-type and Lake-type (Fig.513

6b). This predicted feature is corroborated by the CBT’ index, which also suggests a pe-514

riod of acidification in the lake section that matches the Peat-type section (Fig. 6b). Pre-515

vious work reported the presence of acidophilic freshwater diatoms in this section of the516

core, consistent with our interpretation of an acidic depositional environment (Siver et517

al., 2010). While we cannot completely discard the possibility that the lake became acidic518

(rather than transitioning to a peatland), lakes show a muted response of CBT’ to pH519

between a range of 4.3 to 10 (Mart́ınez-Sosa et al., 2021). Given this, the observed change520

in CBT’ in this section (∼1 unit) would require the pH of the lake to be below 4.3, i.e.,521

well beyond the range of the global calibration. Conversely, if we assume the CBT’ val-522

ues were recorded in a peat environment, they are consistent with a pH between 4 and523

5, which is more in line with the conditions expected based on the observed diatoms (Siver524

et al., 2010). It is important to note that the species of diatom in this section, Actinella525
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giraffensis, does not match any extant species, although its closest relative A. parva is526

only known to inhabit freshwater bodies.527

Our temperature reconstruction for the Giraffe pipe with the environmental cor-528

rection for the different sections of the core suggests a relatively stable climate with no529

clear trend (Fig. 6a). The mean temperature of our reconstruction (19◦C) agrees with530

independent studies. A pollen reconstruction on this site (red diamonds in Fig. 6a), sug-531

gests a MAAT of 14.5±1.3◦C, with a warmest month mean temperature of 24.5±0.8◦C532

(Wolfe et al., 2017). In addition, Jahren and Sternberg (2003) estimated a mean annual533

temperature of 13.2±2◦C for the middle Eocene Arctic based on oxygen isotopes mea-534

sured in calcite preserved in fossil Metasequoia. While our estimate is at the upper end535

of both estimates, they fall within the confidence interval of our reconstruction (Fig. 6a).536

Moreover, both the peat/soil and lake calibrations predict mean annual temperatures537

above freezing (MAF) rather than strictly MAAT, so if there were freezing temperatures538

during the winter, the GDGT estimates are expected to be higher. Conversely, if we had539

used only the lakes or soil/peat calibration for the entire core, there would be large tem-540

perature swings of more than 6◦C associated with changes in core lithology. In partic-541

ular, the excursion to Peat-type samples within the lacustrine section would be estimated542

to be 5.7◦C higher without the BIGMaC-based correction.543

While the application of the BIGMaC algorithm in the Giraffe pipe showcases its544

strengths, our analysis of the Cobham lignite illustrates that there are some limitations545

of the approach. Inglis et al. (2019) previously showed that increased precipitation dur-546

ing the PETM in this area caused changes in the hydrology of the site, and that this po-547

tentially caused the brGDGTs to become unreliable as temperature proxies. Namely, while548

several lines of evidence suggest an increase in temperature during the PETM, the tem-549

perature reconstructions based on brGDGTs suggest cooling. We applied BIGMaC to550

this site to investigate whether changes in the depositional settings could explain the dis-551

crepancy. Prior to the PETM, the algorithm consistently suggests that the site is a peat-552

land environment (Fig. 7). In contrast, during the PETM the algorithm struggles to as-553

sign a consistent depositional environment to the blocky lignite unit. Moreover, the PETM554

samples are primarily classified as Peat-type and Soil-type, suggesting that the same tem-555

perature calibration should be used as during the pre-PETM, thus undercutting any po-556

tential correction to the temperature reconstruction from Inglis et al. (2019). Vegeta-557

tion and charcoal records suggest that the Cobham site became waterlogged and may558

have even developed areas of open water during the PETM Inglis et al. (2019). From559

this perspective, the oscillating results from BIGMaC likely point to an unstable, dynam-560

ically changing depositional environment with mixed sources of brGDGTs. Since BIG-561

MaC is categorical classification algorithm, it cannot detect mixed signatures. This un-562

derlines the need to incorporate mixing models in studies where input from different sources563

is expected, and suggests that BIGMaC would benefit from incorporating this capabil-564

ity in future updates.565

5 Conclusions566

Our analyses of 1153 globally distributed samples from soils, lakes, rivers, and ma-567

rine sediments show that the depositional environment from which samples were obtained568

has a significant and measurable impact on the combined distribution of isoprenoid and569

branched GDGTs, which allows us to cluster the samples from our dataset into environ-570

mentally relevant groups. Furthermore, we find that the distribution of GDGTs in each571

cluster is uniquely impacted by the given environment. There is a strong association be-572

tween temperature and the Lake-type and Peat-type groups, with a possible smaller ef-573

fect of pH or conductivity on the latter group. Marine-type samples are also clearly in-574

fluenced by temperature, but also seem to be affected by another environmental factor575

that drives changes in the relative proportion of isoGDGTs and brGDGTs, an observa-576

tion that deserves further study. While our analysis groups soil and river samples together577
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into the Soil-type cluster, river systems seem to have more 6-methyl brGDGTs and their578

GDGT distributions reflect local changes within the catchment.579

We used the dataset presented here to train the Random Forest classification al-580

gorithm BIGMaC, which is capable of identifying the environment in which a sample was581

formed based on the distribution of GDGTs. Our results show that GDGTs IIa’ and cre-582

narchaeol have the strongest influence on separating the different groups identified here,583

possibly due to their association with Marine-type samples. As a demonstration, we ap-584

ply the BIGMaC model to an independent record from the Giraffe kimberlite, which was585

stratigraphically shown to record a transition from a lacustrine environment to peatland.586

Our BIGMaC algorithm is not only able to recreate the observed transition, but further587

suggests an excursion to peatland conditions within the upper lacustrine section of the588

core, which is consistent with independent evidence for more acidic conditions. This re-589

sult is encouraging for the application of our classification algorithm, as it comes from590

a dataset not included in the training or testing sets, thus providing an independent test-591

ing case. Using the BIGMaC results as a guide, we apply brGDGT-derived calibrations592

specific to lakes or soils and peats as needed downcore and obtain a relatively stable tem-593

perature estimate for this area that is in general agreement with the pollen record.594

While our Giraffe pipe results showcase the usefulness of our approach when ap-595

plied to clear changes in depositional environments; the application of BIGMaC in the596

Cobham site shows that this approach may not be suitable in cases where the deposi-597

tional environment is changing rapidly and thereby results in mixed sources of GDGTs.598

It is possible that the future integration of a mixing model in the BIGMaC workflow could599

improve its performance in this type of scenario.600

Ultimately, we show that the combined set of branched and isoprenoid GDGTs is601

an effective tool for identifying depositional environments that can be used in combina-602

tion with more established proxies to gain a better understanding of past environments.603
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ninghe Damsté, J. S. (2007). Environmental controls on bacterial tetraether864

membrane lipid distribution in soils. Geochim. Cosmochim. Acta, 71 (3),865

703–713.866

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,867

. . . Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source868

Software, 4 (43), 1686. doi: 10.21105/joss.01686869

Windler, G., Tierney, J. E., DiNezio, P. N., Gibson, K., & Thunell, R. (2019). Shelf870

exposure influence on Indo-Pacific Warm Pool climate for the last 450,000871

years. Earth and Planetary Science Letters, 516 , 66–76.872

Wolfe, A. P., Reyes, A. V., Royer, D. L., Greenwood, D. R., Doria, G., Gagen,873

M. H., . . . Westgate, J. A. (2017). Middle Eocene CO2 and climate recon-874

structed from the sediment fill of a subarctic kimberlite maar. Geology , 45 (7),875

619–622.876

Wright, M. N., Wager, S., & Probst, P. (2019). A fast implementation of random877

forests. R package version 0.11 , 2 , 123–136.878

Yang, H., Xiao, W., S lowakiewicz, M., Ding, W., Ayari, A., Dang, X., & Pei, H.879

(2019). Depth-dependent variation of archaeal ether lipids along soil and peat880

profiles from southern China: Implications for the use of isoprenoidal GDGTs881

as environmental tracers. Organic Geochemistry , 128 , 42–56.882

Yavitt, J., Harms, K., Garcia, M., Wright, S., He, F., & Mirabello, M. (2009). Spa-883

tial heterogeneity of soil chemical properties in a lowland tropical moist forest,884

Panama. Soil Research, 47 (7), 674–687.885

Zell, C., Kim, J.-H., Moreira-Turcq, P., Abril, G., Hopmans, E. C., Bonnet, M.-P.,886
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Key Points:15

• The distribution of GDGTs is particular to each depositional environment, and16

they also have unique responses to environmental factors.17

• The BIGMaC algorithm captures the correlation between both branched and iso-18

prenoid GDGTs with depositional environments.19

• Our approach can provide paleoclimatological and paleoenvironmental informa-20

tion based only on GDGTs.21
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Abstract22

Glycerol dialkyl glycerol tetraethers (GDGTs), including both the archaeal isoprenoid23

GDGTs (isoGDGTs) and the bacterial branched GDGTs (brGDGTs), have been used24

in paleoclimate studies to reconstruct temperature in marine and terrestrial archives. How-25

ever, GDGTs are present in many different types of environments, with relative abun-26

dances that strongly depend on the depositional setting. This suggests that GDGT dis-27

tributions can be used more broadly to infer paleoenvironments in the geological past.28

In this study, we analyzed 1153 samples from a variety of modern sedimentary settings29

for both isoGDGT and brGDGTs. We used machine learning on the GDGT relative abun-30

dances from this dataset to relate the lipid distributions to the physical and chemical31

characteristics of the depositional settings. We observe a robust relationship between the32

depositional environment and the lipid distribution profiles of our samples. This dataset33

was used to train and test the Branched and Isoprenoid GDGT Machine learning Classification34

algorithm (BIGMaC), which identifies the environment a sample comes from based on35

the distribution of GDGTs with high accuracy. We tested the model on the sedimen-36

tary record from the Giraffe kimberlite pipe, an Eocene maar in subantarctic Canada,37

and found that the BIGMaC reconstruction agrees with independent stratigraphic in-38

formation, provides new information about the paleoenvironment of this site, and helps39

improve paleotemperature reconstruction. In cases where paleoenvironments are unknown40

or are changing, BIGMaC can be applied in concert with other proxies to generate more41

refined paleoclimatic records.42

1 Introduction43

Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane spanning lipids found44

in sediments and soils around the world. There are two main types of these molecules,45

branched and isoprenoid. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are46

characterized by their branched alkyl chains, with a differing number (4 – 6) and posi-47

tion (5-methyl or 6-methyl) of methyl groups and cyclopentane moieties (0 – 2). This48

unique structure defies the classical evolutionary dichotomy of the lipid divide by com-49

bining traits of Bacteria and Archaeal cell membranes (Weijers et al., 2006). Based on50

evidence such as the alkyl chains, the stereochemistry of the glycerol group (Weijers et51

al., 2006), and most importantly, culture studies (Chen et al., 2022; Halamka et al., 2022,52

2021; Sinninghe Damsté et al., 2011), they are considered to have a bacterial source.53

In contrast, isoprenoid glycerol dibiphytanyl glycerol tetraether GDGTs (isoGDGTs)54

are produced by Archaea (Sinninghe Damsté et al., 2002). Their structures contain two55

phytane chains (Langworthy, 1977) and vary in the number of cyclopentane moieties (056

– 8) (De Rosa et al., 1983). Crenarchaeol is a member of this group of particular impor-57

tance as it has been shown to be specifically produced by Thaumarchaeota (Sinninghe Damsté58

et al., 2002). Crenarchaeol contains four cyclopentane rings, one cyclohexane ring, and59

has an identified stereoisomer (Sinninghe Damsté et al., 2002, 2018).60

Both isoprenoid and branched GDGTs are used in paleoclimate studies as their dis-61

tribution follows variables such as temperature and pH, and these molecules are relatively62

stable through the geological record. In marine sediments, the degree of cyclization of63

isoGDGTs is related to overlying water temperature, forming the basis of the TetraEther64

indeX of 86 carbons (TEX86) proxy (Schouten et al., 2002, 2013). Similarly, the methy-65

lation, cyclization, and isomerization of brGDGTs have been shown to respond to tem-66

perature and pH in terrestrial environments, such as peats, soils, lakes, and rivers (Raberg67

et al., 2022; Mart́ınez-Sosa et al., 2020; Dang et al., 2018; De Jonge, Stadnitskaia, et al.,68

2014; Tierney et al., 2010; Weijers, Schouten, et al., 2007). The Methylation index of Branched69

Tetraethers (MBT ′
5Me) proxy isolates the relationship between the methylation of brGDGTs70

and temperature (De Jonge, Hopmans, et al., 2014) and has been widely used for ter-71
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restrial paleoclimate reconstructions (Pancost et al., 2013; Peterse et al., 2012; Weijers,72

Schefuß, et al., 2007).73

Across environments, GDGT distributions broadly reflect the microbial commu-74

nity present. This is, for example, the basis of the Methane Index, which measures the75

contribution of methanotrophic organisms to the isoGDGT pool compared with mem-76

bers of Thaumarchaeota (Zhang et al., 2011). Likewise, the distribution of isoGDGTs77

in marine systems reflects not only sea-surface temperature (captured by the TEX86 in-78

dex) but also the water depth (and potentially, different archaeal communities) from which79

the isoGDGTs derive from (Rattanasriampaipong et al., 2022; Taylor et al., 2013). In80

terrestrial settings, De Jonge et al. (2019) proposed the Community Index for brGDGTs,81

which is based on the inference that brGDGTs are produced by different communities82

of bacteria, each with a unique response to soil temperature. The combined use of some83

of the GDGTs, through the Branched and Isoprenoid Tetraether (BIT) index, has been84

proposed to broadly discriminate between marine and terrestrial environments (Hopmans85

et al., 2004). However, BIT values in soils, lakes, and peats all tend to be high, which86

limits the ability of this index to reliably distinguish between these different types of ter-87

restrial settings.88

Building on these observations, we posit that the full range of archaeal and bac-89

terial GDGTs (isoprenoidal and branched) contains information about their biological90

precursors and the overall composition of the microbial community. This information91

can in turn be used to discriminate between samples formed in terrestrial or marine en-92

vironments, as well as whether terrestrial samples were formed in freshwater, soil, or peat-93

land environments. This would provide an additional tool for the identification of an-94

cient depositional conditions in instances when it is not clear what the environment was,95

and therefore could improve our application of GDGT-based paleotemperature proxies96

by better constraining which environmental setting the lipids are coming from. This re-97

quires characterizing multidimensional, nonlinear relationships between the occurrence98

and distribution of GDGT lipids and their source environment, as well as a framework99

that allows researchers to easily apply these relationships to new unclassified samples.100

To address and incorporate all of these factors, we make use of machine learning,101

which provides a way to model highly dimensional and nonlinear data with complex in-102

teractions and missing values (El Bouchefry & de Souza, 2020). Machine learning has103

previously been used in the Geosciences to discriminate between magma (Ueki et al., 2018)104

as well as water (Engle & Brunner, 2019) sources. Similarly, these tools have also been105

specifically applied to biomarkers and GDGTs (Véquaud et al., 2022; Peaple et al., 2021;106

Zheng et al., 2019). Here, we use a compilation of 1153 globally dispersed samples from107

diverse depositional environments to train a classification algorithm which is capable of108

identifying the environment in which a sample was formed based on the distribution of109

GDGTs. We further demonstrate the application of this algorithm by using it to inter-110

pret the paleoenvironment and the paleotemperature in a Paleogene deposit that records111

a transition from a lacustrine to a peatland environment, as well as the limitations of112

this approach in an application to a peatland dataset that spans the Paleocene-Eocene113

Thermal Maximum (PETM).114

2 Materials and Methods115

2.1 Global Dataset116

We compiled a total of 1153 globally distributed (Fig. 1) samples from different117

depositional environments: coastal, marine, lake, peat, river, and soil. These samples all118

have quantified relative abundances for the full suite of the most commonly used isoGDGTs119

(GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol, and crenarchaeol’) and brGDGTs120

(IIIa, IIIa’, IIIb, IIIb’, IIa, IIa’, IIb, IIb’, IIc, IIc’, Ia, Ib, and Ic) in paleoenvironmen-121
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tal reconstructions, and were all analyzed with the updated High Performance Liquid122

Chromatography-Mass Spectrometry (HPLC-MS) method of Hopmans et al. (2016). From123

the 1153 samples, 475 are peat (Naafs, 2017), 215 are marine and coastal sediments (this124

study), 196 are soil (Guo, Ma, et al., 2022; Dearing Crampton-Flood et al., 2020; Guo125

et al., 2020; Pérez-Angel et al., 2020), 162 are lake sediments (Mart́ınez-Sosa et al., 2021;126

Guo et al., 2020), and 105 are riverbed sediment (Kirkels, Usman, & Peterse, 2022). For127

the Colombian and Inner Mongolia soil samples (Guo, Ma, et al., 2022; Pérez-Angel et128

al., 2020) we include here newly reported isoGDGT values not included in the original129

dataset.130

50°S
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50°N

180° 180°
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e

Marine Lake River Peat Soil

Figure 1. World map showing the distribution of the samples included in this work. Color

code reflects the depositional environment which these samples were collected from. Red asterisk

shows the modern location of the Giraffe pipe.

All marine sediment samples were processed at the University of Arizona follow-131

ing the method used in Mart́ınez-Sosa et al. (2021). Briefly, samples were freeze-dried,132

homogenized, and spiked with a C46 internal standard before being extracted with an133

Accelerated Solvent Extraction (ASE) system (run at 1500 psi, 100◦C, with dichloromethane:methanol134

(DCM: MeOH, 9:1)). Total Lipid Extracts (TLEs) were eluted through a deactivated135

SiO2 column with hexane:ethyl acetate (1:2), and dried under a N2 stream. Polar frac-136

tions were redissolved in hexane:isopropanol (99:1), and then passed through a 0.45 µm137

PTFE filter prior to being analyzed by HPLC-MS. GDGTs were analyzed on an Agi-138

lent 1260 Infinity HPLC coupled to an Agilent 6120 single quadrupole mass spectrom-139

eter using two BEH HILIC silica columns (2.1×150 mm, 1.7 µm; Waters) following the140

methodology of Hopmans et al. (2016). We calculated peak areas using the MATLAB141

package ORIGAmI (Fleming & Tierney, 2016) and quantified brGDGTs by comparing142

the obtained peaks with the internal standard (Huguet et al., 2006).143

For all samples in this dataset we calculated the relative abundance of all brGDGTs144

(except IIIc and IIIc’, due to their general low abundance), as well as isoGDGTs 0–3,145

Crenarchaeol, and its isomer. For all the analyses we used the fractional abundance of146

each compound relative to the total sum of GDGTs (branched + isoprenoid). Although147

it is known that the ionization of isoGDGTs and brGDGTs in the MS might be differ-148

ent between laboratories (Schouten et al., 2013), the potential impact of this is minimized149
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in our statistical approach because the data are normalized before applying the machine150

learning techniques (see Section 2.2.1).151

We collected the environmental parameters associated with the samples using the152

data available in the source datasets. For the marine sediments analyzed for this study,153

we obtained mean annual temperature of the top 200m of the water column from the154

World Ocean Atlas 2018 (Locarnini et al., 2018).155

2.2 Machine Learning156

For our machine learning analyses we use two different but complementary approaches.157

We first performed unsupervised machine learning on the dataset (with the samples’ de-158

positional environment unlabeled), which allows for the exploration of complex patterns159

presented by the predictor variables (GDGT abundance). The end product of this sec-160

tion is the identification of the major GDGT-derived clusters. Next, we applied super-161

vised machine learning, where the dataset is split into a training set and a test set, and162

the environment of each sample is assigned to one of the major clusters identified in the163

unsupervised step. The training set is used to map the relationship between the predic-164

tor variables to the response variable (the environment). The test set is then used to eval-165

uate the performance of the mapped relationship.166

For this work, all analyses were performed in R (R Core Team, 2022).167

2.2.1 Unsupervised Machine Learning168

For the unsupervised machine learning analysis we centered and scaled the frac-169

tional abundances of GDGTs across the whole dataset. We tested the optimal number170

of clusters for this dataset using the fviz_nbclust() function of the factoextra pack-171

age (Kassambara & Mundt, 2020) and by performing a silhouette analysis using the pam()172

(Partitioning Around Medoids) method from the cluster package (Maechler et al., 2019).173

Samples were separated into clusters by applying the fuzzy version of the k-means clus-174

tering algorithm using the cmeans() function from the e1071 package (Meyer et al., 2020).175

The best performing number of clusters from the silhouette analysis was used and the176

analysis was iterated a maximum of 100 times.177

Following the cluster analysis and prior to the supervised machine learning, we cu-178

rated the identified groups by hand, reassigning any samples that were incorrectly clas-179

sified to their correct (real-world) environment. This preserves the natural variability180

in the samples that ultimately contributes to some amount of error in the classification181

model.182

2.2.2 Supervised Machine Learning183

For the supervised machine learning we worked in the tidymodels and tidyverse en-184

vironments (Kuhn & Wickham, 2020; Wickham et al., 2019), where we used the frac-185

tional abundances of GDGTs as predictor variables and the curated classification from186

the previous unsupervised step as the response variables. The dataset was split in a 3:1187

ratio, preserving the distribution of sample types, for the training and test sets using the188

function initial_split() from the rsample package (Kuhn et al., 2019). We further189

generated a validation set from the training set with 10 partitions for tuning the hyperparameters—190

parameters whose values control the learning process—using the vfold_cv() function191

from the rsample package.192

We tested the performance of four different classification models (Random Forest,193

XGBoost, K Nearest Neighbour and Naive Bayes) plus a control non-informative (null)194

model. Hyperparameters for each model, except XGBoost, were tested using a regular195

grid through the grid_regular() function from the dials package (Kuhn, 2020a). The196
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hyperparameters for the XGBoost model were selected using a latin hypercube design197

with 30 parameter value combinations using the grid_latin_hypercube() function from198

the dials package. The hyperparameter tuning was run at the University of Arizona High-199

Performance Computing facility. Finally, the best hyperparameter values were selected200

by comparing their ROC-AUC score on the validation set (Table S1).201

We tested the performance of each model with the best hyperparameter combina-202

tion on the validation set and selected the model that produced the best F1 and ROC-203

AUC score. This model was then trained and tested using the last_fit() function from204

the tune package (Kuhn, 2020b).205

2.3 Giraffe Kimberlite Pipe206

We analyzed GDGTs from 83 samples from diamond exploration drill core BHP207

99-01 from the Giraffe kimberlite pipe (paleolatitude ∼ 63◦N) (Wolfe et al., 2017). This208

core is stored at the Geological Survey of Canada core repository (Calgary), and it con-209

tains ≥ 50 vertical-equivalent meters of lacustrine sediment topped with ∼ 32 m of peat.210

The sediments were dated to 37.84±1.99 Ma by glass fission-track dated rhyolitic tephra211

beds (Wolfe et al., 2017). Our dataset spans 83.5 vertical-equivalent meters and includes212

19 samples from the peat section and 64 from the lacustrine section. For each sample,213

between 0.5 and 1 g of sediment was processed to obtain TLEs in the same manner as214

for the marine samples. For these samples, the GDGTs were isolated using a two-layer215

chromatography column filled with a 1:1 mix of LC-NH2 (bottom layer) and 5% deac-216

tivated silica (top layer) gels as the solid phase (Windler et al., 2019). The GDGTs were217

recovered using dichloromethane:isopropanol (2:1) as the solvent. Branched and isoprenoid218

GDGTs were analyzed in all samples using the same HPLC-MS method described for219

the marine samples in section 2.1.220

2.4 Cobham Lignite Bed221

The Cobham lignite bed, Kent, UK (∼ 48◦N palaeolatitude) is composed by a sand222

and mud unit at the base, overlain, in succession, by a charcoal-rich lower laminated lig-223

nite, a charcoal-poor upper laminated lignite, a middle clay layer, and a charcoal-poor224

blocky lignite. The Woolwich Shell Beds overly the Cobham Lignite (Collinson et al.,225

2009). A carbon isotope excursion is present near the top of the charcoal-poor upper lam-226

inated lignite, which is interpreted as being the characteristic excursion from the Pale-227

ocene Eocene Thermal Maximum (PETM, ∼ 56 million years ago). Collinson et al. (2009)228

interpreted the units above this as representing the early part of the PETM. We tested229

our algorithm on the 27 samples obtained from this site previously analyzed by Inglis230

et al. (2019) and publicly available at the PANGAEA data repository (Inglis et al., 2019).231

3 Results232

3.1 Fuzzy K-means Classification233

Our silhouette analysis showed that the global GDGT data is best separated into234

four clusters, which was then used to perform a fuzzy k-means classification. This anal-235

ysis separated the dataset into four groups consisting between 219 and 465 samples each.236

When we compare the composition of each cluster using Principal Component Analy-237

sis (PCA), we observe clear differences between depositional environments (Fig. 2a and238

b, and Table 1). 87% of the peat samples fall within Group 1, while 85% of the lacus-239

trine samples are assigned to Group 2. In turn, 92% of the river samples are assigned240

to Group 3, and 92% of the marine samples are assigned to Group 4 (Fig. 2a and b). Soil241

samples are more spread across the different groups, with the majority assigned to Group242

3 (44%).243
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Figure 2. Samples from the dataset plotted in reduced dimensional space based on the frac-

tional abundance of GDGTs. Plots show the same analysis with samples colored based on the

depositional environment (a), their assigned group based on the fuzzy k-means analysis (b), and

the hand-curated clusters (c), as well as the loadings of the variables (GDGTs) involved in each

principal component (d).

Given the distinctive clustering, we renamed them based on the dominant depo-244

sitional environment (Fig. 2b and c). Group 1 was renamed as Peat-type, Group 2 as Lake-245

type, Group 3 as Soil-type, and finally Group 4 as Marine-type. Samples for which the246

cluster assignment did not match their depositional environment were manually reassigned247

to the appropriate group (Table 1). For example the original dataset from Naafs (2017)248

includes only peats and so all samples from this dataset were reassigned as Peat-type,249

regardless of whether they fell in Group 1 or not. The k-means derived and manually250

curated clusters maintain their core distributions (Table 1). Peat-type and Marine-type251

are very similar in composition and size to Group 1 and 4 respectively. While Group 1,252

with 465 samples, had 87% of the peat samples and 20% of the soil samples; Peat-type,253

with 476 samples, has all of the peat samples and only one lake sample. Similarly, Group254

4, with 225 samples, had 92% of the marine samples, while Marine-type includes all of255
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Table 1. Percentage of each type of sample assigned to each of the four clusters determined by

fuzzy k-means analysis (top) as well as the four manually curated clusters (bottom). At the bot-

tom is the total number of samples from each type, and the last column shows the total number

of samples in each cluster (fuzzy k-means and curated). The highest percentage for each type of

sample in the clusters is indicated in bold.

Lake Marine Peat River Soil Total

Group 1 7.4% 0% 87% 0% 20.4% 465
Group 2 85% 6% 6% 8% 31% 244
Group 3 6% 3% 4.4% 92.4% 44% 219
Group 4 3% 92% 3% 0% 5.1% 225

Peat-type 0.6% 0% 100% 0% 0% 476
Lake-type 97.5% 0% 0% 0% 0% 158
Soil-type 1.2% 0% 0% 100% 100% 303

Marine-type 0.6% 100% 0% 0% 0% 216

Total 162 215 475 105 196

them and has a total of 216 samples. The reduction in size from Group 4 to Marine-type256

is mostly due to the reassignment of lake, peat and soil samples. The largest change ob-257

served is between Group 2 and Lake-type (86 sample difference), and Group 3 and Soil-258

type (84 sample difference). Most of this comes from the reassignment of 60 soil sam-259

ples from Group 2 to Soil-type.260

3.2 Within-Group Analyses261

Once the unsupervised machine learning demonstrated that the dataset can be dif-262

ferentiated into Marine-type, Lake-Type, Soil-type, and Peat-type groups, we analyzed263

the GDGT distribution of each group to assess their influence on the clustering results264

as well as how well they correlated with environmental parameters.265

3.2.1 GDGT Distribution266

Across the entire dataset, we observe that GDGT-1–GDGT-3, Ib, Ic, IIc, IIc’, IIIb,267

and IIIb’ have the smallest proportion (< 0.1 fractional abundance) of all GDGTs (Fig.268

3). There are, however, characteristic patterns associated with the four groups. Marine-269

type samples have a higher proportion of crenarchaeol and GDGT-0 compared with the270

other groups (Fig. 3a). As previously reported (Mart́ınez-Sosa et al., 2021), Lake-type271

samples show a higher proportion of IIIa and lower Ia than both soils and peats (Fig.272

3b and c). While our data also shows that from the terrestrial groups, Soil-type has a273

preference for 6-methyl isomers, in contrast to Lake-type and Peat-type; an analysis of274

the brGDGT distribution of just the Soil-type samples shows that it is the river sam-275

ples that contain a higher proportion of 6-methyl brGDGTs, while soils have a higher276

proportion of 5-methyl isomers (Fig. S1). Additionally, while the proportion of isoGDGTs277

is generally low in the terrestrial groups, Soil-type samples show a higher proportion of278

crenarchaeol than Lake-type and Peat-type samples, but lower than Marine-type (Fig.279

3a).280
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Figure 3. Box plots showing the distribution of the fractional abundance (FA) of all GDGTs

in each of the curated clusters, following the color code of Figure 2. GDGTs separated by

isoGDGTs (a), hexamethylated brGDGTs (b), pentamethylated brGDGTs (c), and tetram-

ethylated brGDGTs (d).

3.2.2 GDGT Influence281

To better understand the effect that each compound has on each group, we per-282

formed a Non-Metric Multidimensional Scaling (NMDS) on the fractional abundance of283

GDGTs (Fig. 4). For this analysis, we excluded four outlier samples from the Marine-284

type group: AII72-BC21 (North Atlantic), U (Port Wells, Alaska), CHN752-PC7 (North285

Atlantic), and FISH-1 (Long Island Sound) as they strongly skewed the data. These sam-286

ples had no relation to each other, spatial or otherwise. All NDMS analysis reach con-287

vergence for two dimensions with stress < 0.2.288

The NMDS results show that for the Marine-type set (Fig. 4a and d) the first di-289

mension is driven by a positive relation with isoGDGTs and a negative relation with brGDGTs.290

The second dimension, in turn, is mostly dominated by a negative relation with GDGT-291

0. We also observe a strong relationship (ρ = 0.82, Spearman’s correlation) between292
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Figure 4. NMDS plots for Marine-type (a and d), Lake-type (b and e), and Peat-type (c and

f). Panels a to c show the samples from each group colored based on mixed layer temperature

(a), or MAAT (b and c), while panels d to f show the contribution of each GDGT to each group.

the second dimension and mixed layer temperature (Fig. 4a). For the Lake-type sam-293

ples (Fig. 4b and e) the first dimension is dominated by a positive relation with the tetram-294

ethylated brGDGTs (Ia, Ib, and Ic) and a negative relation with the rest of the brGDGTs.295

The second dimension is driven by a negative relation with isoGDGTs and cyclic brGDGTs,296

and a positive relation with non-cyclic brGDGTs. The first dimension has a high cor-297

relation (ρ = 0.83) with mean annual air temperature (MAAT) (Fig. 4b), but we find298

no strong correlation (ρ < |0.4|) between the second dimension and any of the environ-299

mental parameters analyzed. Finally, the Peat-type set (Fig. 4c and f) shows a strong300

positive relation between Ia and the first dimension, and a negative relation with most301

of the other brGDGTs, closely following MAAT with a correlation of ρ = 0.80 (Fig. 4c).302

The second dimension has primarily a positive relation with Ia and IIa, while most of303

the other compounds show a negative relation, once again we were unable to find a strong304

correlation between this dimension and any environmental parameter. We do not dis-305

cuss the NMDS results for the Soil-type samples because their spatial distribution is ex-306

tremely limited (Fig. 1) and thus their location dominates the GDGT distributions. We307
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also do not observe any strong relationships between the NMDS dimensions and other308

additional environmental parameters, such as pH, elevation, and depth.309

3.3 Supervised Machine Learning310

The manually-curated labels generated after the unsupervised machine learning phase311

were used for the supervised classification. We tested the performance of all four clas-312

sification algorithms against each other and compared them with the null model using313

both the F1 and ROC-AUC parameters. Our results suggest that overall all methods314

performed significantly better than the noninformative control and relatively similar to315

each other. For the F1 scores, Random Forest performed the best (0.95), followed by XG-316

Boost (0.94), K-Nearest Neighbour (0.91), and Naive Bayes (0.87). In contrast, the null317

model had a score of 0.58. Similarly, for the ROC-AUC parameter we observe that Ran-318

dom Forest, XGBoost, and K-Nearest Neighbour had the same performance (0.99), fol-319

lowed by Naive Bayes (0.96), and the null model had a value of only 0.5. Finally, we ob-320

serve the same result when measuring accuracy, where Random Forest performed the321

best (0.96), followed by XGBoost (0.94), K-Nearest Neighbour (0.92), Naive Bayes (0.88),322

and the null model (0.41). Based on these results we chose the Random Forest algorithm.323

We observe that the performance of this algorithm in the test set is similar to the one324

observed for the training set (0.94 and 0.99 for F1 and ROC-AUC respectively, Fig. 5).325

This result suggests that the algorithm is not overfitting the data.326
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Figure 5. Confusion matrix showing the performance of the BIGMaC Random Forest algo-

rithm in the test dataset. Columns show the true label of the samples and rows the predicted

label. Diagonal cells are color-coded based on Fig. 2.

Finally, we diagnose the importance that each predictor variable has on the trained327

classification algorithm. We observe from this analysis that brGDGT IIa’ and crenar-328

chaeol have the highest importance scores (> 90), followed by IIb’, IIIa’, IIIb, Ia, and329

crenarchaeol’ (> 30). All other variables had importance values < 30. These values were330

calculated using the default values in the ranger package (Wright et al., 2019).331
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The finalized model, named Branched and Isoprenoid GDGT Machine learning332

Classification algorithm (BIGMaC), is available on Github https://github.com/Martoxa/333

BIGMaC as an R object (Mart́ınez-Sosa et al., 2023).334

3.4 Applications335

To demonstrate that the model can be successfully used to analyze changes in de-336

positional environments through time, we test the BIGMaC algorithm on GDGTs mea-337

sured in two different sites: the Eocene-aged post-eruption peat and lacustrine sediments338

recovered from the Giraffe kimberlite pipe in the subarctic; and the Cobham lignite bed,339

dated to the beginning of the PETM.340

3.4.1 Giraffe Kimberlite Pipe341

The lithology of the Giraffe kimberlite pipe core has previously been described, thus342

making it a good test case for the application of our classification algorithm. When we343

apply the BIGMaC algorithm to this core, we observe that the predicted cluster for each344

sample strongly aligns with the corresponding lithological section (Fig. 6). All samples345

from the top peatland section are classified as Peat-type, and all samples from the lacus-346

trine section below 85 m are classified as Lake-type. However, we also identified a sec-347

tion, between 76.5 and 85 m, within the lacustrine facies that is classified as Peat-type.348

Furthermore, the samples immediately above the excursion oscillate between Lake-type349

and Soil-type for at least one meter (Fig. 6).350

To further investigate the results of our classification, the fractional abundance of351

brGDGTs was used to calculate CBT’, which has been shown to be strongly associated352

with pH in peats (Naafs et al., 2017), and mildly correlated to pH in lakes (Mart́ınez-353

Sosa et al., 2021) (Fig. 6b). We observe that in general the peat section has much lower354

CBT’ values (associated with lower pH), than those observed in the lacustrine section.355

While this trend is maintained for most of the core, we observe a marked decrease in CBT’356

values in the section within the lacustrine facies that is classified as Peat-type.357

Based on the BIGMaC classification, we applied either the global soil/peat cali-358

bration (Dearing Crampton-Flood et al., 2020) for samples classified as Peat-type and359

Soil-type, or the global lake calibration (Mart́ınez-Sosa et al., 2021) for samples classi-360

fied as Lake-type. Our compounded temperature reconstruction has a mean temperature361

of 19.1◦C and a standard deviation of 3.2◦C. Overall we observe a stable period with no362

clear trends in temperature. The mean difference in the predicted temperature for the363

entire core between the soil and lake calibrations is 6.7◦C, with the lake calibration con-364

sistently generating higher temperatures. During the Peat-type excursion section the mean365

difference between both calibrations is 5.7◦C.366

3.4.2 Cobham Lignite Bed367

Our application of the BIGMaC algorithm to the Cobham lignite bed shows a marked368

difference in the depositional environment prediction for the pre-PETM and PETM sec-369

tions (Fig. 7). Almost all samples up to 54.15 cm are predicted to be Peat-type, with the370

exception of one sample from the upper laminated lignite unit that is classified as Soil-371

type. In contrast, we observe a wider variation in the sample classification during the PETM,372

where samples are classified as Peat-type (10), Soil-type (3) and Lake-type (1). Besides373

one sample classified as Peat-type from the PETM upper laminated lignite, all other PETM374

samples are located in the blocky lignite unit. The variations in predicted depositional375

environments do not coincide with changes in MBT ′
5Me values, nor are they organized376

in any evident pattern within the unit.377
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Figure 6. Inferred temperature (a) and CBT’ (b) calculated from Giraffe core brGDGTs plot-

ted against vertical-equivalent depth. The temperature reconstruction was generated by applying

the Dearing Crampton-Flood et al. (2020) Bayesian calibration for Peat and Soil-type samples,

and Mart́ınez-Sosa et al. (2021) calibration for Lake-type samples. Palynological estimates of

MAT with their associated error from Wolfe et al. (2017) are shown in red diamonds in (a). Sam-

ples are color-coded based on the predicted groups. White and gray shading indicates peat and

lacustrine sediments in the core, respectively. The acid excursion is shaded in red (b).

4 Discussion378

4.1 Unsupervised Machine Learning379

The fuzzy k-means analysis shows that the compiled global dataset is best described380

by four clusters that are strongly defined by depositional environment (Table 2; Fig. 2).381

The marine samples form the most distinct cluster, which is probably driven by the higher382

abundance of isoGDGTs compared with other environments. The terrestrial environments383

(lakes, rivers, peats and soils) have GDGT distributions more closely related to each other384

but still form distinct clusters (except for rivers which cluster with soils) in agreement385

–13–



manuscript submitted to Paleoceanography and Paleoclimatology

Pre−PETM PETM

LL UL C BL

0.6

0.7

0.8

0.9

0 50 100 150 200
Thickness (cm)

M
B

T
'5

M
e

Prediction

Lake−type

Peat−type

Soil−type

Figure 7. Calculated MBT ′
5Me values of the Cobham lignite bed across the site thickness

(cm). Samples are color coded based on the BIGMaC predicted groups. Different units are col-

ored and labeled on the top as: lower laminated lignite (LL, dark green), upper laminated lignite

(UL, light green), clay (C, white), and blocky lignite (BL, purple).

with previous work that has argued for clear differences between GDGTs in soils and lakes386

(Russell et al., 2018; Tierney et al., 2010; Tierney & Russell, 2009).387

While there is some debate regarding the relative influence that soil input and in388

situ production have on the GDGT pool in river organic matter (Kirkels et al., 2020; Zell389

et al., 2013; De Jonge, Stadnitskaia, et al., 2014), our analysis shows that the river sam-390

ples more closely resemble soils rather than peats or lakes. While this could be interpreted391

as soil-derived GDGTs dominating river inputs, our river data come from only two lo-392

cations and primarily from only one system (the Godavari river) so this could be par-393

ticular to that watershed. Notably, within the Godavari River, the membership value394

for the samples, which measures the degree of belonging to each cluster, varies with their395

location and collection season (Fig. 8). Membership to the soil-dominated Group 3 is396

higher in the lower Godavari basin, as well as from the wet (post-monsoon) season (Fig.397

8 c and d). In contrast, membership to the lake-dominated Group 2 is overall higher in398
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the wet season, and in the upper basin year-round (Fig. 8 a and b). These results are399

in line with those presented in Kirkels, Zwart, et al. (2022), where it was noted that GDGTs400

from soils have a stronger influence on the river during the wet season and within the401

lower basin, which experiences higher precipitation. In contrast, in-situ production of402

brGDGTs, characterized by a high proportion of 6-methyl isomers, has a stronger in-403

fluence on samples from the dry season as well as those from the upper basin.404
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Figure 8. Maps for the Godavari River sample locations for the dry (left column) and wet

(right column) seasons. Maps show the sample memberships, calculated through fuzzy k-means

analysis, to the lake-dominated Group 2 (a and b), and to the soil-dominated Group 3 (c and d).

4.2 Manually Curated Clusters405

While our fuzzy k-means clusters show strong patterns that reflect environmentally406

relevant relationships (Fig. 2a), some samples whose depositional environment had been407

unequivocally documented cluster in unrelated groups (i.e. soil samples plotting as peats).408

Since our intention with the supervised machine learning was to test whether GDGT dis-409

tributions can be used to classify the true depositional environment, we manually re-assigned410

any samples that fell within the incorrect group. The manually curated clusters are very411
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similar to the statistical groupings (Fig. 2b) but preserve the “errors” (i.e., soils that look412

like peats) in the dataset, thus guarding against overfitting.413

Soils are highly diverse environments with diffuse boundaries; they are often in con-414

tact with other depositional environments. Furthermore, studies have shown that chem-415

ical properties of soils (i.e. pH, metal concentrations) have great spatial heterogeneity416

even at small scales (Yavitt et al., 2009). This may explain why soil samples are spread417

across most of the fuzzy k-means clusters (Fig. 2). Even given the limited number of lo-418

cations from which the soil samples derive, the diverse nature of soils is potentially in-419

fluencing our results, particularly in transitory environments, such as the transition from420

soil to lacustrine sediments in a lake shore. It is possible that these transitory locations421

require a more in-depth analysis, with the use of more extensive datasets.422

4.3 GDGT Distribution423

The GDGT profiles of the curated clusters show characteristic patterns that reflect424

known qualities of GDGTs in their respective environments. For example, as expected,425

the Marine-type samples have a much higher proportion of isoGDGTs, while the terres-426

trial clusters have a higher proportion of brGDGTs (Fig. 3). As previously described by427

Mart́ınez-Sosa et al. (2021), Lake-type samples have a preference for 5-methyl isomers,428

although some work has suggested that 6-methyl brGDGTs can dominate in lacustrine429

environments with lower oxygen conditions (van Bree et al., 2020). Both Peat-type sam-430

ples and soil samples from the Soil-type cluster also have a higher proportion of 5-methyl431

isomers, but river samples within the the Soil-type cluster show a clear preference for 6-432

methyl brGDGTs (Fig. 3b,c and Fig. 9). In addition, Lake-type samples have a higher433

proportion of IIIa, and a lower proportion of Ia, compared with the other terrestrial en-434

vironments (Fig. 3b,d). Overall, the particular GDGT profiles from these depositional435

environments suggest that each may have a unique microbial community that responds436

to the environment in distinct ways (Raberg et al., 2022; De Jonge et al., 2019; Tierney437

& Russell, 2009).438

Each cluster also has a characteristic pattern of GDGT influence, which affects their439

relationship with environmental parameters (Fig. 4). Notably, for Marine-type samples440

the first dimension is dominated by a negative relation with brGDGTs and a positive441

one with isoGDGTs (Fig. 4d) and it is not associated with temperature (Fig. 4a), un-442

like the other groups. While we speculate that this dimension is related to terrestrial in-443

fluence, we did not find a relationship with the distance from the core sites to land or444

water depth, suggesting that it possibly represents a complex response to several envi-445

ronmental influences. The second dimension, which inversely follows GDGT-0, more closely446

follows the mixed layer temperature (Fig. 4a). Although GDGT-0 is traditionally omit-447

ted from the TEX86 calculation because it is a generic isoGDGT produced by many types448

of Archaea (including methanotrophs and methanogens) (Kim et al., 2010; Schouten et449

al., 2002) our analysis shows that it is strongly influenced by temperature. Furthermore,450

the NMDS analysis shows no relation between GDGT-0 and brGDGTs, which suggests451

that GDGT-0 is not influenced by terrestrial sources (Fig. 3 b-d). Our results suggest452

that temperature strongly influences the abundance of this lipid and, unlike previously453

thought (Guo, Yuan, et al., 2022; Kim et al., 2010), other environmental parameters may454

not be as important in open marine settings. This supports the observation of Cramwinckel455

et al. (2018) that, at higher temperatures the ratio of crenarchaeol to GDGT-0 might456

be more sensitive to temperature changes than TEX86.457

The first dimension of the Lake-type cluster follows MAAT (Fig. 4b) and the GDGT458

distribution along this dimension reflects the pattern associated with the MBT ′
5Me in-459

dex, with a positive relationship for Ia, Ib, and Ic, and a negative relationship with the460

remaining brGDGTs. In this first dimension, isoGDGTs do not seem to exert much in-461

fluence. The second dimension seems to capture relative amounts of isoGDGTs vs. brGDGTs,462
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Figure 9. Box plots showing the distribution of the fractional abundance (FA) of all GDGTs

in samples from the Soil-type cluster, following the color code of Figure 1. GDGTs separated by

isoGDGTs (a), hexamethylated brGDGTs (b), pentamethylated brGDGTs (c), and tetramethy-

lated brGDGTs (d).

but again, we were unable to find an environmental parameter that shows a relationship463

with this dimension; for example, lake depth is not associated with this axis of variabil-464

ity (ρ = 0.13). We speculate that this dimension reflects changes in microbial commu-465

nities. These changes could be due to specific niches in the water column associated with466

water chemistry, stratification, and/or nutrient content, as previous work has suggested467

(Sinninghe Damsté et al., 2022; Baxter et al., 2021; Kumar et al., 2019).468

The Peat-type samples show a pattern similar to the lake cluster, with the first di-469

mension following temperature, as shown by temperature increasing along the first axis470

on the NMDS analysis (Fig. 4c). The GDGT distribution in turn, follows to some ex-471

tent the pattern of the MBT ′
5Me index, with Ia, Ib and Ic plotting opposite to the rest472

of the brGDGTs. However, a unique feature of this cluster is that Ib and Ic appear to473

be less important, and less abundant than Ia. This is in line with previous work that has474

noted that there are relatively fewer brGDGTs with cyclopentane rings in peatlands, likely475
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because they are acidic (Naafs et al., 2017; Weijers, Schouten, et al., 2007). The GDGT476

distribution for the second dimension somewhat resembles the pattern for the CBT’ in-477

dex, with Ia and IIa negatively relating to this dimension. However, we found no rela-478

tionship between this dimension and pH. Previous work has suggested that the abun-479

dance of isoGDGTs, particularly 1 – 4, could be related to factors such as water content480

or redox state (Yang et al., 2019); we observe that these GDGTs indeed have a positive481

relationship with the second dimension, suggesting that this could be the environmen-482

tal driver.483

4.4 Supervised Classification484

In general, all of the machine learning algorithms exhibited good performance in485

the training phase, with F1 and ROC-AUC scores above 0.85 and 0.95 respectively. Nev-486

ertheless we chose the Random Forest algorithm since it was the best performing one487

across all parameters, in addition to being widely used in the field of geosciences (Peaple488

et al., 2021; El Bouchefry & de Souza, 2020). This algorithm also performed well in the489

testing phase (0.94 and 0.99, for F1 and ROC-AUC respectively, and Fig. 5), suggest-490

ing that the observed performance is not due to overfitting the training set.491

When we apply the BIGMaC algorithm to the complete dataset, we can investi-492

gate the importance of each GDGT in the model. The importance metric is calculated493

based on how much each GDGT contributes to decreasing the probability of incorrectly494

classifying a sample (Gini impurity) (Greenwell et al., 2020). This analysis shows that495

the two compounds that contribute the most to the classification are IIa’ and crenarchaeol.496

While these compounds have not been substantially linked to any particular environmen-497

tal response in previous work, PCA (Fig. 2d) suggests that they are strongly associated498

with Soil-type and Lake-type (IIa’), as well as Marine-type (crenarchaeol) samples. It is499

possible that the importance of IIa’ is due to its association with Lake-type and Soil-type500

samples but not Peat-type samples, thus helping the classification algorithm split the ter-501

restrial environments. Similarly, the association between crenarchaeol and Marine-type502

helps distinguish this group from the terrestrial environments.503

4.5 Applications504

Our GDGT analysis of the Giraffe core shows a good agreement with its previously505

described stratigraphy (Wolfe et al., 2017; Hamblin et al., 2003), with the sections of the506

core described as peat and lake, respectively, being correctly identified as such by BIG-507

MaC (Fig. 6b). However, BIGMaC also reveals additional information about changes508

in the depositional environment in the lacustrine facies that was not evident in the strati-509

graphic description, which interpreted the environment to be a shallow lacustrine set-510

ting with intermittent wet and dry periods (Hamblin et al., 2003). Between 76.5 and 85511

meters, within the lacustrine section, BIGMaC indicates a transition to a peatland en-512

vironment, followed by a brief transitional period between Soil-type and Lake-type (Fig.513

6b). This predicted feature is corroborated by the CBT’ index, which also suggests a pe-514

riod of acidification in the lake section that matches the Peat-type section (Fig. 6b). Pre-515

vious work reported the presence of acidophilic freshwater diatoms in this section of the516

core, consistent with our interpretation of an acidic depositional environment (Siver et517

al., 2010). While we cannot completely discard the possibility that the lake became acidic518

(rather than transitioning to a peatland), lakes show a muted response of CBT’ to pH519

between a range of 4.3 to 10 (Mart́ınez-Sosa et al., 2021). Given this, the observed change520

in CBT’ in this section (∼1 unit) would require the pH of the lake to be below 4.3, i.e.,521

well beyond the range of the global calibration. Conversely, if we assume the CBT’ val-522

ues were recorded in a peat environment, they are consistent with a pH between 4 and523

5, which is more in line with the conditions expected based on the observed diatoms (Siver524

et al., 2010). It is important to note that the species of diatom in this section, Actinella525
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giraffensis, does not match any extant species, although its closest relative A. parva is526

only known to inhabit freshwater bodies.527

Our temperature reconstruction for the Giraffe pipe with the environmental cor-528

rection for the different sections of the core suggests a relatively stable climate with no529

clear trend (Fig. 6a). The mean temperature of our reconstruction (19◦C) agrees with530

independent studies. A pollen reconstruction on this site (red diamonds in Fig. 6a), sug-531

gests a MAAT of 14.5±1.3◦C, with a warmest month mean temperature of 24.5±0.8◦C532

(Wolfe et al., 2017). In addition, Jahren and Sternberg (2003) estimated a mean annual533

temperature of 13.2±2◦C for the middle Eocene Arctic based on oxygen isotopes mea-534

sured in calcite preserved in fossil Metasequoia. While our estimate is at the upper end535

of both estimates, they fall within the confidence interval of our reconstruction (Fig. 6a).536

Moreover, both the peat/soil and lake calibrations predict mean annual temperatures537

above freezing (MAF) rather than strictly MAAT, so if there were freezing temperatures538

during the winter, the GDGT estimates are expected to be higher. Conversely, if we had539

used only the lakes or soil/peat calibration for the entire core, there would be large tem-540

perature swings of more than 6◦C associated with changes in core lithology. In partic-541

ular, the excursion to Peat-type samples within the lacustrine section would be estimated542

to be 5.7◦C higher without the BIGMaC-based correction.543

While the application of the BIGMaC algorithm in the Giraffe pipe showcases its544

strengths, our analysis of the Cobham lignite illustrates that there are some limitations545

of the approach. Inglis et al. (2019) previously showed that increased precipitation dur-546

ing the PETM in this area caused changes in the hydrology of the site, and that this po-547

tentially caused the brGDGTs to become unreliable as temperature proxies. Namely, while548

several lines of evidence suggest an increase in temperature during the PETM, the tem-549

perature reconstructions based on brGDGTs suggest cooling. We applied BIGMaC to550

this site to investigate whether changes in the depositional settings could explain the dis-551

crepancy. Prior to the PETM, the algorithm consistently suggests that the site is a peat-552

land environment (Fig. 7). In contrast, during the PETM the algorithm struggles to as-553

sign a consistent depositional environment to the blocky lignite unit. Moreover, the PETM554

samples are primarily classified as Peat-type and Soil-type, suggesting that the same tem-555

perature calibration should be used as during the pre-PETM, thus undercutting any po-556

tential correction to the temperature reconstruction from Inglis et al. (2019). Vegeta-557

tion and charcoal records suggest that the Cobham site became waterlogged and may558

have even developed areas of open water during the PETM Inglis et al. (2019). From559

this perspective, the oscillating results from BIGMaC likely point to an unstable, dynam-560

ically changing depositional environment with mixed sources of brGDGTs. Since BIG-561

MaC is categorical classification algorithm, it cannot detect mixed signatures. This un-562

derlines the need to incorporate mixing models in studies where input from different sources563

is expected, and suggests that BIGMaC would benefit from incorporating this capabil-564

ity in future updates.565

5 Conclusions566

Our analyses of 1153 globally distributed samples from soils, lakes, rivers, and ma-567

rine sediments show that the depositional environment from which samples were obtained568

has a significant and measurable impact on the combined distribution of isoprenoid and569

branched GDGTs, which allows us to cluster the samples from our dataset into environ-570

mentally relevant groups. Furthermore, we find that the distribution of GDGTs in each571

cluster is uniquely impacted by the given environment. There is a strong association be-572

tween temperature and the Lake-type and Peat-type groups, with a possible smaller ef-573

fect of pH or conductivity on the latter group. Marine-type samples are also clearly in-574

fluenced by temperature, but also seem to be affected by another environmental factor575

that drives changes in the relative proportion of isoGDGTs and brGDGTs, an observa-576

tion that deserves further study. While our analysis groups soil and river samples together577
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into the Soil-type cluster, river systems seem to have more 6-methyl brGDGTs and their578

GDGT distributions reflect local changes within the catchment.579

We used the dataset presented here to train the Random Forest classification al-580

gorithm BIGMaC, which is capable of identifying the environment in which a sample was581

formed based on the distribution of GDGTs. Our results show that GDGTs IIa’ and cre-582

narchaeol have the strongest influence on separating the different groups identified here,583

possibly due to their association with Marine-type samples. As a demonstration, we ap-584

ply the BIGMaC model to an independent record from the Giraffe kimberlite, which was585

stratigraphically shown to record a transition from a lacustrine environment to peatland.586

Our BIGMaC algorithm is not only able to recreate the observed transition, but further587

suggests an excursion to peatland conditions within the upper lacustrine section of the588

core, which is consistent with independent evidence for more acidic conditions. This re-589

sult is encouraging for the application of our classification algorithm, as it comes from590

a dataset not included in the training or testing sets, thus providing an independent test-591

ing case. Using the BIGMaC results as a guide, we apply brGDGT-derived calibrations592

specific to lakes or soils and peats as needed downcore and obtain a relatively stable tem-593

perature estimate for this area that is in general agreement with the pollen record.594

While our Giraffe pipe results showcase the usefulness of our approach when ap-595

plied to clear changes in depositional environments; the application of BIGMaC in the596

Cobham site shows that this approach may not be suitable in cases where the deposi-597

tional environment is changing rapidly and thereby results in mixed sources of GDGTs.598

It is possible that the future integration of a mixing model in the BIGMaC workflow could599

improve its performance in this type of scenario.600

Ultimately, we show that the combined set of branched and isoprenoid GDGTs is601

an effective tool for identifying depositional environments that can be used in combina-602

tion with more established proxies to gain a better understanding of past environments.603
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Coleman, J. M., . . . Sinninghe Damsté, J. S. (2006). Membrane lipids of860

mesophilic anaerobic bacteria thriving in peats have typical archaeal traits.861

Environmental Microbiology , 8 (4), 648–657.862

Weijers, J. W., Schouten, S., van den Donker, J. C., Hopmans, E. C., & Sin-863
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