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Abstract

Contemporary general circulation models (GCMs) and Earth system models (ESMs) are developed by a large number of

modeling groups globally. They use a wide range of representations of physical processes, allowing for structural (code)

uncertainty to be partially quantified with multi-model ensembles (MMEs). Many models in the MMEs of the Coupled Model

Intercomparison Project (CMIP) have a common development history due to sharing of code and schemes. This makes their

projections statistically dependent and introduces biases in MME statistics. Previous research has focused on model output and

code dependence, and model code genealogy of CMIP models has not been fully analyzed. We present a full reconstruction of

CMIP3, CMIP5 and CMIP6 code genealogy of 167 atmospheric models, GCMs, and ESMs (of which 114 participated in CMIP)

based on the available literature, with a focus on the atmospheric component and atmospheric physics. We identify 12 main

model families. We propose family and code weighting methods designed to reduce the effect of model structural dependence

in MMEs. We analyze weighted effective climate sensitivity (ECS), climate feedbacks, forcing, and global mean near-surface

air temperature, and how they differ by model family. Models in the same family often have similar climate properties. We

show that weighting can partially reconcile differences in ECS and cloud feedbacks between CMIP5 and CMIP6. The results

can help in understanding structural dependence between CMIP models, and the proposed code and family weighting methods

can be used in MME assessments to ameliorate model structural sampling biases.
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Key Points:5

• We reconstruct a code genealogy of 167 climate models with a focus on the atmo-6

spheric component and atmospheric physics.7

• All models originate from 12 main model families, and models in the same fam-8

ily often have similar climate feedbacks and sensitivity.9

• Proposed code and family weighting can partly reconcile differences in means be-10

tween the Coupled Model Intercomparison Project phases.11
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Abstract12

Contemporary general circulation models (GCMs) and Earth system models (ESMs) are13

developed by a large number of modeling groups globally. They use a wide range of rep-14

resentations of physical processes, allowing for structural (code) uncertainty to be par-15

tially quantified with multi-model ensembles (MMEs). Many models in the MMEs of the16

Coupled Model Intercomparison Project (CMIP) have a common development history17

due to sharing of code and schemes. This makes their projections statistically dependent18

and introduces biases in MME statistics. Previous research has focused on model out-19

put and code dependence, and model code genealogy of CMIP models has not been fully20

analyzed. We present a full reconstruction of CMIP3, CMIP5 and CMIP6 code geneal-21

ogy of 167 atmospheric models, GCMs, and ESMs (of which 114 participated in CMIP)22

based on the available literature, with a focus on the atmospheric component and at-23

mospheric physics. We identify 12 main model families. We propose family and code weight-24

ing methods designed to reduce the effect of model structural dependence in MMEs. We25

analyze weighted effective climate sensitivity (ECS), climate feedbacks, forcing, and global26

mean near-surface air temperature, and how they differ by model family. Models in the27

same family often have similar climate properties. We show that weighting can partially28

reconcile differences in ECS and cloud feedbacks between CMIP5 and CMIP6. The re-29

sults can help in understanding structural dependence between CMIP models, and the30

proposed code and family weighting methods can be used in MME assessments to ame-31

liorate model structural sampling biases.32

Plain Language Summary33

Contemporary global climate models are developed by a large number of model-34

ing groups internationally. Commonly, projections from multiple models are used together35

to calculate multi-model means and quantify uncertainty. Because many of the models36

share parts of their computer code, algorithms and parametrization schemes, they are37

not independent. Overrepresented models can cause biases in multi-model means, and38

uncertainty may be underestimated if model dependence is not taken into account. We39

document a full code genealogy of 167 models, of which 114 participated in the Coupled40

Model Intercomparison Project (CMIP) phases 3, 5, and 6, with a focus on the atmo-41

spheric component. We identify 12 main model families. We show that models in the42

same family often have similar estimates of key climate properties. We propose statis-43

tical weighting methods based on the model family and code relationship, and show that44

they can reconcile some of the difference in results between the two most recent CMIP45

phases. The weighting methods or a selection of independent models based on the ge-46

nealogy can be used in model assessment studies to reduce the effects of model depen-47

dence.48

1 Introduction49

General circulation models (GCMs) and Earth system models (ESMs) are currently50

the most sophisticated tools for studying paleontological, historical, present-day, and fu-51

ture climate. The development of GCMs has a long history, interlinked with the devel-52

opment of numerical weather prediction (NWP) models (Lynch, 2008). Intercompari-53

son between climate models dates back to the late 1980s when the Atmospheric Model54

Intercomparison Project (AMIP) started comparing atmospheric models under standard-55

ized conditions and model output (Touzé-Peiffer et al., 2020). This was followed by the56

Coupled Model Intercomparison Project (CMIP) phase 1 and 2 in 1996 and 1997, re-57

spectively, which informed the Third Assessment Report (TAR) of the Intergovernmen-58

tal Panel on Climate Change (IPCC). CMIP3 (Meehl et al., 2007) was the first time that59

model output became openly available to all researchers, and therefore enabled a wide60

research of climate models together as multi-model ensembles (MMEs). However, this61
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came with difficulties because such a multi-model data set was not designed to repre-62

sent structural model uncertainty in an unbiased way (Abramowitz et al., 2019). The63

two most recent CMIP phases are phase 5 (Taylor et al., 2012) and phase 6 (Eyring et64

al., 2016, 2019).65

Modern climate models such as GCMs and ESMs are highly complex software, con-66

sisting of many components, modules, and configuration parameters. Usually, compo-67

nents such as the atmosphere, ocean, land, sea ice, chemistry, biology, and others are cou-68

pled together continuously during a simulation (Alexander & Easterbrook, 2015). These69

components may be divided into subcomponents, modules or schemes representing var-70

ious physical parametrizations, such as radiative transfer in the atmospheric component.71

Components and subcomponents can sometimes be easily replaced with others, or they72

can be turned on or off depending on the configuration. These model parts have been73

shared relatively freely between different models in the same modeling group as well as74

between groups internationally (in the following text we will use the terms “modeling75

group” and “institute”, the latter being common in the context of CMIP, interchange-76

ably). Alexander and Easterbrook (2015) directly analyzed the source code of model com-77

ponents, showing significant sharing of components between models thanks to their highly78

modular nature. Furthermore, parametrizations documented in literature were imple-79

mented in a variety of models, meaning that they use many of the same parametriza-80

tions for certain physical processes. This development approach leads to structural model81

dependence, which could mean that their model output is more similar than what would82

be expected from structurally independent models. Understanding model structural de-83

pendence is further complicated by the fact that only few models have publicly avail-84

able source code. The practice of “forking” code, when a new branch of a code base is85

created under a new name, is common in software development. This is also the case with86

climate models, where different modeling groups base their work on forking of an exist-87

ing model from the same or a different modeling group. This process can be quite opaque88

to the end-users, who might, without access to further context, assume that a different89

model name implies that the model is entirely independent. We can expect that model90

code bases which are open source (such as the Community Earth System Model [CESM])91

or licensed widely within international consortia (such as the Integrated Forecasting Sys-92

tem [IFS]/ARPEGE and Hadley Centre Global Environmental Model [HadGEM]) are93

more highly represented in model ensembles due to the ease of sharing code (Sanderson94

et al., 2015b). This is potentially in contrast to the proliferation of code which produces95

the best results, which could otherwise arise if all model code were openly available. As96

discussed below, what constitutes “the best results” may be difficult to quantify and is97

not guaranteed to coincide with the best projections. Guilyardi et al. (2013) initiated98

better model and experiment metadata collection within CMIP5 in order to provide per-99

tinent information to those performing research based on model comparisons.100

Because all models are imperfect representations of reality, they are affected by var-101

ious uncertainties in the model output, which can be broadly categorized as data, pa-102

rameter, and structural uncertainty (Remmers et al., 2020). While data and parameter103

uncertainty can be relatively easily quantified and sampled, structural uncertainty per-104

taining to model code is hard to quantify or sample, and some authors noted that struc-105

tural uncertainty is insufficiently sampled in CMIP MMEs (Knutti et al., 2010). Mod-106

els participating in CMIP are dependent in a number of ways, including being essentially107

the same model with a different configuration, sharing parts of their codes, model com-108

ponents, and schemes, using the same data sets for validation, and implementing sim-109

ilar parametrizations. Some authors have therefore called this MME an “ensemble of op-110

portunity” (Masson & Knutti, 2011; Knutti et al., 2013; Sanderson et al., 2015a; Boé,111

2018), since the inclusion is based on the intent of a modeling group to participate rather112

than objective selection criteria. If model dependence is not taken into account, the cal-113

culation of means, variance, and uncertainty can be biased, and spurious correlations (such114

as in emergent constraints) can arise in an MME (Caldwell et al., 2014; Sanderson et al.,115
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2021). Remmers et al. (2020) investigated whether model code genealogy can be inferred116

from model output [also investigated earlier by Knutti et al. (2013) and discussed be-117

low]. Using a modular modeling framework, they generated a model ensemble of hydro-118

logical models by sampling the model “hypothesis space” and compared its genealogies119

based on model code and model output. They found that it was not possible to infer com-120

plete model code genealogy based on model output because the performance of the in-121

ference was low. It is possible that the same would partially apply to much more com-122

plex models like GCMs and ESMs, and model code relationship needs to be studied in123

order to sample the model hypothesis space. Pennell and Reichler (2011) tried to quan-124

tify the effective number of models in an MME of 24 CMIP3 models based on model out-125

put error similarity, and found this to be about 8. Increasing the number of ensemble126

models did not substantially increase the effective number of models. Sanderson et al.127

(2015b) reached a similar conclusion, and found that the number of independent mod-128

els calculated based on the model output in CMIP5 is much smaller than the total.129

The simplest approach to analyzing an MME is “model democracy”, where each130

model is given an equal weight in statistical calculations. More sophisticated approaches131

proposed to address model dependence include weighting or selecting models. Selecting132

models can be regarded as an extreme form of weighting. Often suggested weighting meth-133

ods are based on model performance (“model meritocracy”), model output or code de-134

pendence, and diversity. The topic of climate model dependence and genealogy has been135

covered in many previous studies, most of which used the dependence of the model out-136

put (Jun et al., 2008a, 2008b; Masson & Knutti, 2011; Knutti et al., 2013; Bishop & Abramowitz,137

2013; Sanderson et al., 2015a; Haughton et al., 2015; Mendlik & Gobiet, 2016), while a138

focus on code dependence has been relatively rare (Alexander & Easterbrook, 2015; Stein-139

schneider et al., 2015). Boé (2018) distinguishes these two approaches as “a posteriori”140

and “a priori”. Knutti et al. (2013) developed a CMIP5 model genealogy based on a hi-141

erarchical clustering of model output. They found that models from the same institute142

were much closer in their model output than other models, and contemplated that out-143

put similarity could be used for model weighting or selection to eliminate biases due to144

near duplicate models. A more simple approach is “institutional democracy”, where one145

model per modeling group is selected, and “component democracy”, where models are146

selected to represent different model components (Abramowitz et al., 2019). Edwards147

(2000b, 2000a, 2011) constructed a partial “family tree” of atmospheric GCMs based on148

their code heritage. Boé (2018) summarized a institute, atmospheric, oceanic, land, and149

sea ice components of CMIP5 models and how they relate to proximity of the model re-150

sults. However, the code dependence of all CMIP3, CMIP5, and CMIP6 models has not151

been analyzed. Partially, such understanding is limited by the availability of the source152

code. This contributes to the treatment of models as “black boxes” by the research com-153

munity. Haughton et al. (2015) compared simple weighting with model performance and154

model output dependence weighting. They found performance weighting improved mean155

relative to observations (as expected) but degraded variance estimation, and dependence156

weighting improved both. Steinschneider et al. (2015) identified close correlations be-157

tween model output of models of the same family even on a regional scale, and showed158

that the clustering of similar models can result in narrowing the MME variance attributable159

to intermodel correlations.160

Reducing the size of an MME to a set of independent models is a relatively sim-161

ple method of avoiding model dependence. Sanderson et al. (2015b) noted that permit-162

ting only one model per institute in an MME could lead to unfairly dismissing models163

which are substantially different, and overestimating independence in cases where code164

is shared between institutes. Weighting models by country can have some merit due to165

the fact that models are sometimes developed with a focus on accuracy over the region166

where the institute is located, and a model might be more extensively validated against167

data from observations in the region. For example, the New Zealand Earth System Model168

(NZESM) (in practice developed alongside HadGEM/UKESM) was developed to reduce169
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Southern Ocean biases (Williams et al., 2016); the Indian Institute of Tropical Meteo-170

rology ESM (IITM ESM) has a special focus on the South Asian monsoon (Krishnan et171

al., 2021); the Australian Community Climate and Earth System Simulator coupled model172

(ACCESS-CM) has a focus on reducing uncertainties over the Australian region (Bi et173

al., 2013); and the Energy Exascale Earth System Model (E3SM) aims to support the174

U.S. energy sector decisions (Golaz et al., 2019). Weighting models by errors relative to175

observations (performance weighting) is complicated by the fact that there can be a de-176

coupling between a climate model’s accuracy in representing present-day and historical177

climate variables and its accuracy in representing the projected change (or trend) of the178

variables under a climate scenario (Jun et al., 2008a; Zelinka, 2022; Kuma et al., 2022).179

Thus, a model’s performance in future climate projections cannot be fully inferred from180

its performance in present-day and historical climate. Performance weighting can also181

favor models which are better tuned to present-day, historical or paleontological obser-182

vations by compensating biases. It is possible that model quality cannot be estimated183

solely from model output due to the fact that some models might represent physics more184

consistently with our knowledge of fundamental physics, yet give inferior output when185

compared to observations if they have fewer compensating biases or are tuned less to rep-186

resent present-day or historical observations. Apart from explicit model weighting or se-187

lection choices, seldomly recognized implicit choices based on values (other than widely188

acknowledged epistemic values such as openness, objectivity, evidence, and impartial-189

ity) influence model development, evaluation, selection, weighting, interpretation, and190

communication of results (Pulkkinen, Undorf, Bender, Wikman-Svahn, et al., 2022; Pulkki-191

nen, Undorf, & Bender, 2022; Lenhard & Winsberg, 2010; Winsberg, 2012; Undorf et192

al., 2022). Knutti (2010) provides a high-level discussion of the topic of model democ-193

racy, uncertainty, weighting, evaluation, calibration and tuning in the context of deci-194

sion making.195

We can define the structure (code) of a model as based on a set of hypotheses about196

reality as well as computational realizations of such hypotheses. A desirable feature of197

an MME would be that models represent samples from the hypothesis space with prob-198

ability equal to our degree of belief that the hypothesis is true (note that this is differ-199

ent from a uniform sampling of the hypothesis space, which would be both impossible200

and undesirable due to its size). However, this is rarely the case with existing MMEs,201

and it is not easily quantifiable. It is generally not desirable that the model output of202

individual models in an MME is the most unique, because one would still want all mod-203

els to converge as closely as possible on the true representation of physical processes. Mod-204

els can be similar in their output because they are convergent on the best representa-205

tion of reality or because of code similarity, and this limits the use of model output as206

a measure of model dependence.207

As a conceptual model (Figure 1), we can consider models in an MME to be sam-208

ples corresponding to representations of a physical reality in a hypothesis space. Here,209

representation is supposed to mean code which produces output for given initial and bound-210

ary conditions, i.e. without considering internal variability. While the true physical rep-211

resentation is unknown and impossible to simulate due to computational constraints, our212

collective belief that a given representation is true can be conceptualized theoretically213

by a probability density function (PDF). Ideally, models in an MME are independent214

samples from this PDF (Figure 1a). In actual MMEs (Figure 1b), however, models are215

dependent and tend to be clustered together for reasons incompatible with the PDF, such216

as the inclusion of several configurations or resolutions of a single model, selective shar-217

ing of code between models for reasons other than meritocracy (such as availability or218

political and organizational decisions), or model output availability. Therefore, if a PDF219

or its statistics are estimated from this MME, they will be biased compared to the ac-220

tual PDF. The aim is then to compensate for this bias with appropriate model weight-221

ing, selection or more sophisticated techniques such as emergent constraints. Even if we222

could estimate the PDF in an unbiased way, the value with the maximum likelihood or223
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Ideal case Realistic case
Models sample the space

according to the PDF
Models sample the PDF

in a biased manner because of clustering

(hypothesis space)(hypothesis space)

True physical representation Model representation by familyModel representation

(a) (b)
U

nnorm
alised probability

1

0

Figure 1. A theoretical illustrative example of model sampling of the model hypothesis space

(model structural uncertainty), representing realizations of physical climate processes (model

structure). The shading indicates a probability density function (PDF) quantifying our collective

belief that a certain representation is true. In an ideal case (a), models are unbiased samples

from this PDF, allowing us to estimate the PDF from a multi-model ensemble (MME). In reality

(b), they form clusters because of structural model dependence (code sharing) as assumed and

discussed in the introduction, sampling the PDF in a biased manner. They might also deviate

from the PDF for a number of other reasons. Weighted sampling is necessary to estimate the

PDF from such an MME. The unknown true physical representation, not coinciding with the

PDF maximum or mean, is indicated by a red dot. For illustrative purposes, the hypothesis space

is visualized in a 2-dimensional space. In reality, this space has a large number of dimensions

and the PDF might not be symmetric. Model marker colors (shapes) in (b) indicate different

hypothetical model families, within which models are structurally related. Note that the PDF

represents model structure and might not correlate with model output PDF.

the mean are unlikely to coincide with the true physical representation, because such a224

PDF only represents our belief that a given physical representation is true, which is lim-225

ited by our knowledge. Note that model dependence itself does not preclude that an es-226

timate of the PDF is unbiased. For example, in the Metropolis algorithm (Metropolis227

et al., 1953), an unbiased estimate of a PDF is generated by sequentially producing a228

chain of samples which are close to each other. After a large enough number of itera-229

tions, an unbiased estimate of the PDF can be inferred from the collection of all sam-230

ples, despite close correlation between adjacent samples in the chain.231

None of the model weighting methods mentioned above are without issues. Per-232

formance weighting can disregard models whose physics representation is relatively far233

from the most likely representation but still plausible, thus artificially narrowing the spread.234

Model dependence weighting based on output or code can disregard models which are235

close to other models but were chosen to be based on this model because of its perceived236

quality, thus preventing such an MME from narrowing down on the true representation237

of climate physics. Dependence weighting based on output can mistakenly identify two238

models as similar when they are in fact independent, or fail to identify models with sig-239

nificant code dependence. Weighting based on diversity can give too much weight to out-240
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liers and too little weight on models more densely clustered around the most likely rep-241

resentation, thus artificially increasing the spread.242

Recently, multiple models participating in CMIP6 (Eyring et al., 2016) predicted243

much higher effective climate sensitivity (ECS) than the assessed range of the IPCC Sixth244

Assessment Report (Masson-Delmotte et al., 2021). This was exacerbated by the fact245

that some models contributed multiple runs, making simple multi-model means poten-246

tially unreliable. Voosen (2022) cautioned that using models which predict too much warm-247

ing compared to the range assessed by the AR6 can produce wrong results, and there-248

fore model democracy should be replaced with model meritocracy. Partly due to the lim-249

itations of the simple multi-model mean, the authors of the AR6 departed from the use250

of multi-model means to quantify ECS and transient climate response (TCR), and in-251

stead used a multi-evidence approach similar to Sherwood et al. (2020), although a sim-252

ple multi-model mean is used in other parts of the report.253

2 Motivation and Objectives254

Code dependence in CMIP models is not well explored, especially when it comes255

to code sharing between modeling groups. This hinders model evaluation studies, which256

sometimes regard the CMIP MME as an opaque set of models [e.g. Meehl et al. (2020);257

Schlund et al. (2020); Zelinka et al. (2020), but also many parts of AR6]. To gain insights258

into the whole MME, we map the code genealogy of all CMIP atmosphere GCMs (AGCMs),259

atmosphere–ocean GCMs (AOGCMs), and ESMs. Much of the information about code260

dependence is available in literature as well as CMIP model metadata and online resources261

of modeling groups, but has not been systematically organized across CMIP phases. When262

determining code relations, our focus is on the atmospheric component and atmospheric263

physics due to the fact that they are currently the main source of model uncertainty in264

estimates of climate sensitivity and cloud feedback due to uncertainties in cloud simu-265

lation. The spread in model ECS is currently dominated by the spread in the cloud feed-266

back (Wang et al., 2021a; Forster et al., 2021; Zelinka et al., 2020). Steinschneider et al.267

(2015) also identified the atmospheric component as being a particularly important fac-268

tor determining the similarity of climate projections of temperature and precipitation269

between models. However, other model components such as the ocean can also have an270

impact on the feedbacks and climate sensitivity (Gjermundsen et al., 2021). We present271

a model weighting algorithm based on the model code genealogy, and investigate whether272

it makes a difference in multi-model means of ECS, effective radiative forcing (ERF), cli-273

mate feedbacks, and global mean near-surface temperature (GMST) time series. The al-274

gorithm can be used to produce weights for any given subset of CMIP models. In ad-275

dition, we explore more simple weighting methods based on model family, institute, and276

country, and analyze whether model families differ significantly in their predictions from277

other model families and a simple multi-model mean.278

3 Data and Methods279

3.1 Data280

In our analysis we focus on AGCMs, AOGCMs, and ESMs in the last three phases281

of CMIP (3, 5, and 6). The CMIP5 and CMIP6 model output data from the control (pi-282

Control), historical, Shared Socioeconomic Pathway 2-4.5 (ssp245 ), Representative Con-283

centration Pathway 4.5 (rcp45 ), abrupt quadrupling of CO2 (abrupt-4xCO2 ), and 1%284

yr−1 CO2 increase (1pctCO2 ) experiments were acquired from the public archives on the285

Earth System Grid (CMIP5, 2022; CMIP6, 2022). The equivalent data from CMIP3 were286

not analyzed here, but we include all CMIP3 models in the model code genealogy. We287

used historical global temperature data from the Hadley Centre/Climatic Research Unit288

global surface temperature dataset version 5 (HadCRUT5) (Morice et al., 2021) obtained289

from the Met Office Hadley Centre (2022). In order to analyze model code genealogy,290
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we performed a broad literature survey, complemented by CMIP model metadata and291

information available online, particularly modeling groups’ websites. In total, we traced292

the genealogy of 167 models, of which 114 were participating in CMIP, and the rest were293

related to the CMIP models and thus necessary for reconstructing the genealogy. The294

model genealogy information, including related references, is also available in Table S1.295

Along with relations between models, we identified the model institute, the country where296

the institute resides, and the model family (defined by the oldest ancestral model in the297

genealogy). Model parameters such as ECS, TCR, effective radiative forcing (ERF), and298

climate feedbacks were sourced from Zelinka et al. (2020) and the AR6. We use effec-299

tive climate sensitivity calculated by Zelinka (2022), as an approximation of equilibrium300

climate sensitivity.301

3.2 Weighting Methods302

We applied several statistical weighting methods on the CMIP MMEs:303

1. Simple weighting. Every model run is given equal weight. By “model run” we mean304

a model resolution or configuration (as listed in Table S1 in the columns CMIP3/5/6305

names), not multiple simulations performed with the same model but different ini-306

tial conditions.307

2. Family weighting. Model families, defined as a complete branch as shown in Fig-308

ure 2 (discussed later in section 4.1), were given equal weight. This weight was309

further subdivided equally between models within the family.310

3. Institute weighting. Model institutes, as shown in Figure 2 as labels on grey ar-311

eas, were given equal weight. This weight was further subdivided equally between312

models within the institute.313

4. Country weighting. Model host countries, as shown in Figure 2 as labels on grey314

areas, were given equal weight. This weight was further subdivided equally be-315

tween models of the same country.316

5. Code weighting. The oldest ancestor models (marked with a thick outline in Fig-317

ure 2) were given equal weight. This weight was subdivided gradually through branches318

to descendant models. This method is described in detail in Appendix Appendix319

A.320

6. Model weighting. All models are given the same weight. This is different from the321

simple weighting – see the note below.322

Note that in all of the above, if a model supplied multiple runs of different configura-323

tion or resolution, the model weight was further subdivided equally between the runs.324

For clarity, in the following text references to the weighting methods and weighted means325

corresponding to the methods above are italicized.326

3.3 Statistical Significance327

Statistical significance in climate feedbacks, sensitivity, and forcing in section 4.3328

was calculated using a Bayesian simulation with PyMC3 (Salvatier et al., 2016). The dif-329

ference between a simple mean of models within a family and a simple multi-model mean330

was marked as significant if the magnitude difference between the two means was larger331

than zero with 95% probability. The PyMC3 model is provided in the supplementary332

code.333
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4 Results334

4.1 Model Code Genealogy and Model Families335

Figure 2 presents a graph of model code genealogy based on available literature in-336

cluding all CMIP3, CMIP5 and CMIP6 AOGCMs and ESMs, except for some model sub-337

derivatives and configurations, which are grouped under a common model name. The338

model relations were identified with a primary focus on the atmospheric component, and339

in particular atmospheric physics, which is a compromise due to the fact that some mod-340

els inherit multiple components (atmosphere, ocean, cryosphere, chemistry, etc.), or in341

some instances provide their own implementation of atmospheric dynamics while inher-342

iting atmospheric physics from a parent model. Some models comprised multiple model343

runs in CMIP (configurations, resolutions or variations of components), and we grouped344

these together under a single model name. We identified 14 different model families –345

groups of models which share the same oldest ancestor model (marked with a thick out-346

line in Figure 2 and also listed in Table S2). The models come from 38 different insti-347

tutes or institute groups and 15 different countries. Institutes are based on the institute348

attribute of the CMIP data sets (CMIP3, 2022; CMIP5, 2022; CMIP6, 2022) for CMIP349

models and reference publications or online resources for other models, separated by a350

slash if multiple institutes were involved. Country is the country of the main institute351

(defined loosely as the institute credited for most of the models in the group, or where352

the development originated), with the exception of the European community (EC)-Earth353

Consortium models, for which the assumed “country” is Europe. We recognize two kinds354

of model relations: a parent–child relation, when the child model is a code-derivative of355

the parent model with a different name (in the sense of fully or partially inheriting the356

code of the atmospheric component), and a relation between versions of the same model.357

Model counts per model family, country, and institute in each CMIP phase are listed in358

Table S2.359

We make an exception to the rule that a model family is defined by the oldest an-360

cestral model for the ECMWF- and CCM-derived models, for which the model ECMWF361

is a common ancestor. We split this model family into two model families of ECMWF362

and CCM (beginning with CCM0B). This is a subjective choice made for our analysis363

in order to account for the fact that this split happened in early stages of the develop-364

ment in the 1980s (Edwards, 2011), and the separate CCM and ECMWF model fam-365

ilies are much larger and more diverse than the other model families. The model fam-366

ilies used further in our analysis are: ECMWF, CCM, CanAM, CSIRO, IPSL, GEOS,367

INM, UA MCM, GFDL, GFS, MIROC, NICAM, UCLA GCM, and HadAM.368

Some of the identified model families are relatively small, such as CSIRO, GEOS,369

GFS, INM, UA MCM, NICAM, with fewer than four models participating in CMIP, while370

others are much larger, e.g. CCM with 28 models and ECMWF with 23 models in CMIP371

(here by “model” we mean the main model as in Figure 2 rather than model runs in CMIP).372

In terms of model runs, CCM, ECMWF, and HadAM are particularly numerously rep-373

resented in CMIP6 with 32, 27, and 12 model runs, amounting to about 70% of the en-374

tire CMIP6 MME (Table S2). This means that there is a strongly uneven model rep-375

resentation in CMIP6. The situation was getting more pronounced with successive CMIP376

phases: in CMIP5 and CMIP3 the share of the three most represented model families377

in terms of model runs is smaller at 52% and 50%, respectively. The size of model fam-378

ilies and the diversity of models within a family are clearly influenced by the availabil-379

ity of model code. For example, the IFS/ARPEGE model is widely licensed to partic-380

ipating modeling groups in Europe, and therefore is used as a basis for a multitude of381

different models on the continent. The CCM-derived models have publicly available source382

code, which has been used extensively by many different modeling groups internation-383

ally. Other models with private code are used much more narrowly, such as CanAM, CSIRO,384

IPSL or INM, which are only used by their own modeling group (and possibly a few col-385
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Figure 2. Model code genealogy of models participating in the Coupled Model Intercom-

parison Project (CMIP) phase 3, 5, and 6, including their common ancestor models. Models

are distinguished by their complexity into atmosphere general circulation models (AGCMs),

atmosphere–ocean GCMs (AOGCMs), and Earth system models (ESMs), indicated by color.

Horizontal arrows indicate inheritance between multiple versions of the same model. Vertical

solid arrows indicate inheritance between different models. Vertical dotted arrows indicate in-

heritance from an AGCM to an AOGCM or ESM (this can also mean that the model is used as

a component of the more complex model). The grey shaded boxes indicate an institute and the

main country or region where the development was conducted. Numbers in circles indicate the

CMIP phase. Model boxes with a thick outline indicate the oldest model of the model family.

The genealogy only traces models necessary for placing the CMIP models in the graph and omits

versions not included in CMIP. The genealogy was reconstructed based on available literature,

CMIP metadata, and online resources. Table S1 contains source data corresponding the this

figure including literature references for the model relations.
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laborating organizations). Publicly available or widely licensed models usually have much386

greater participation in CMIP and an outsized impact in the MMEs.387

Relations between model code can often be complex, ranging from a model com-388

ponent shared with an “upstream” project (such as models in the CCM family using the389

Community Atmosphere Model [CAM]) to models taking atmospheric physics implemen-390

tations from a parent model and developing their own atmospheric dynamics. Likewise,391

the ocean, land, sea ice, and biochemistry components are swapped for other components392

in some derived models. This complicates the notion of a model derivative. Because cli-393

mate feedbacks in the atmosphere are currently the largest source of uncertainty in de-394

termining climate sensitivity, it is perhaps the most important model component to use395

as a determinant in model code genealogy. This is a subjective choice, and other choices396

would be possible when constructing a model code genealogy.397

4.2 Climate Feedbacks and Sensitivity398

Here, we evaluate how the proposed code weighting and several simpler types of399

weighting impact the calculation of climate feedbacks and climate sensitivity in the CMIP400

MMEs. Zelinka et al. (2020) analyzed climate feedbacks, ECS, and ERF in CMIP5 and401

CMIP6. We perform the same analysis using their estimates of model quantities (Zelinka,402

2022), but with different methods of weighting. Figure 3 shows results analogous to Fig-403

ure 1 in Zelinka et al. (2020), but as means calculated using the different weighting meth-404

ods relative to the simple multi-model mean. Following Zelinka et al. (2020), the “net405

[feedback] refers to the net radiative feedback computed directly from TOA fluxes, and406

the residual is the difference between the directly calculated net feedback and that es-407

timated by summing kernel-derived components.” The differences in feedbacks between408

the simple mean and the other types of weighting is up to about 150 mWm−2K−1 in mag-409

nitude in CMIP6 and 80 mWm−2K−1 in CMIP5. The different types of weighting of-410

ten do not agree, except for the family and code weighting, which give very similar re-411

sults. If we focus on the weighting methods which we expect to be the most accurate in412

terms of accounting for model code sharing, the code and family weighting, the largest413

difference from the simple mean is in the cloud feedbacks (total, shortwave and longwave),414

with relatively large difference in ECS and ERF. This is perhaps not surprising due to415

the very large spread in model cloud feedbacks in the CMIP MMEs.416

Interestingly, when we quantify the difference in feedback strength between the CMIP6417

and CMIP5 MMEs (Figure 3c), we see that the code weighting reduces the difference in418

cloud feedbacks between the two CMIP phases substantially. The magnitude difference419

is reduced from 77 to -26 mWm−2K−1 for the total cloud feedback, from 145 to -68 mWm−2K−1
420

for the shortwave (SW) cloud feedback, and from -70 to 41 mWm−2K−1 for the long-421

wave (LW) cloud feedback. However, the net and residual feedback magnitude difference422

is increased from 61 to -71 mWm−2K−1 and from 3 to -33 mWm−2K−1, respectively.423

We define the root mean square difference (RMSD) between CMIP6 and CMIP5 calcu-424

lated across the elementary feedbacks (Planck, water vapor (WV), lapse rate (LR), albedo,425

SW cloud, LW cloud) as:426

RMSD =

(
1

n

n∑
i=1

(λi,CMIP6 − λi,CMIP5)
2

)1/2

,

n = 6,

λi = (λPlanck, λWV, λLR, λalbedo, λSWcloud, λLWcloud)i , (1)

where λi are means of individual feedbacks calculated from either CMIP5 (λi,CMIP5) or427

CMIP6 (λi,CMIP6). When the RMSD is calculated from the code weighted feedback means428

compared with simple means, it is reduced by about 40% from 67 to 41 mWm−2K−1.429

Therefore, it is possible that a substantial part of the difference in feedbacks between430

CMIP6 and CMIP5 can be explained by a suitable choice of weighting which takes into431
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Figure 3. Climate feedbacks, effective climate sensitivity (ECS), and effective radiative forc-

ing (ERF2x) in the Coupled Model Intercomparison Project (CMIP) phases 6 (a) and 5 (b)

under different weighting methods (model, institute, country, code, and family) relative to a sim-

ple mean (section 3.2). (c) Difference between the CMIP6 and CMIP5 estimates. The legend in

(c) shows the root mean square difference (RMSD) between the CMIP6 and CMIP5 estimates

(section 4.2). The climate feedbacks are: Planck, water vapor (WV), lapse rate (LR); surface

albedo (Albedo); total cloud feedback (Cloud); shortwave cloud feedback (CloudSW); longwave

cloud feedback (CloudLW); net feedback (Net); residual feedback (Residual). The underlying data

are from Zelinka (2022), described in Zelinka et al. (2020).
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Figure 4. Statistical weights and effective climate sensitivity (ECS) of models in the Coupled

Model Intercomparison Project (CMIP) phases 6 (a) and 5 (b) under the code weighting. The

model weights are normalized so that the maximum value is 1.0. The models are classified by

their family, indicated by symbols. The shaded bars show a simple mean of model weights in the

corresponding range of ECS. The dashed lines show the same as the bars, but multiplied by the

number of models in the ECS range and normalized to sum to one.

account model code dependence. When the RMSD is calculated for family weighting (not432

shown in the plot), the RMSD is almost the same as code weighting at 42 mWm−2K−1.433

But it is less for the model weighting (reduced to 60 mWm−2K−1), and a slight increase434

in RMSD is seen for institute (increased to 95 mWm−2K−1) and country (increased to435

79 mWm−2K−1) weighting. This could mean that only the code, family, and to a lesser436

extent model weighting can explain some of the feedback difference between CMIP6 and437

CMIP5. The result is consistent with the expectation that the code weighting is more438

suitable than the other types of weighting, which are less strongly related to the model439

code genealogy.440

For ECS and ERF, the differences between weighting methods are also substan-441

tial – up to about 0.3 K for ECS and 80 mWm−2 for ERF2x in magnitude (Figure 3a,442

b). In comparison, the difference in simple mean between CMIP6 and CMIP5 is 0.47 K443

in ECS and 114 mWm−2 in ERF2x, and the standard deviation is 0.73 K and 1.06 K in444

ECS (CMIP5 and CMIP6, resp.) and 390 mWm−2 and 490 mWm−2 in ERF2x (CMIP5445

and CMIP6, resp.). The difference in ensemble mean ECS between CMIP6 and CMIP5446

becomes much smaller with code weighting, falling from 0.47 K (simple mean) to 0.20447

K (code weighting), but the difference in ERF2x is increased from 114 to 226 mWm−2.448

Thus, it is possible that a weighting method which accounts for model code dependency449

can explain some of the difference in ECS between CMIP5 and CMIP6 due to an over-450

representation of models with high ECS in the CMIP6 ensemble.451

Figure 4 shows model ECS and the statistical weights of models under the code weight-452

ing. It can be seen that in CMIP6, the model weight is the highest for the lowest ECS453

range and progressively lower with increasing ECS (except for the highest ECS range),454

due to the fact that models with higher ECS are generally populated by the large model455

families HadAM, CCM, and to a lesser extent IPSL and ECMWF, while models with456

lower ECS come from more diverse families. Because of how the code weighting algorithm457
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works, models in larger families generally have lower per-model weight. In CMIP5 model458

weights are more even across the ECS range than in CMIP6. Partly, the higher simple459

mean of ECS in CMIP6 is also the result of ECS above 5 K being populated by mod-460

els, whereas in CMIP5 there are no models in this range. Thus, the higher simple mean461

ECS in CMIP6 can be attributed mostly to the HadGEM and CCM model families, and462

their effect is reduced under the code weighting by smaller per-model weight given to mod-463

els in large model families. Figure 4 also shows the weights multiplied by the number464

of models in each ECS range (dashed lines). While the two most extreme ECS ranges465

in CMIP6 (below 2 K and above 5.5 K) have relatively large per-model weights, the num-466

ber of models in these ranges is small (two), and they have little overall effect on the code-467

weighted ECS mean.468

4.3 Climate Feedbacks and Sensitivity by Model Family469

We analyzed climate feedbacks and sensitivity by model family (Figure 5). Because470

model family weighting showed results similar to code weighting (section 4.2), it should471

be a good proxy for code weighting, while allowing us to separate the values into (po-472

tentially clustered) groups. Some model families tend to have similar values of climate473

feedbacks. This is most apparent in the cloud feedbacks, where differences between mod-474

els are generally large. The HadAM family of models tend to be closely clustered in all475

climate feedbacks, despite the comparatively large size of the model family (6 models in476

the CMIP6 plot). Their total cloud and SW cloud feedback is consistently larger than477

the mean and their LW cloud feedback is consistently smaller than the mean (in this sec-478

tion we refer to simple mean as “mean”). The ECMWF family of models (14 models in479

the CMIP6 plot) have consistently below-mean SW cloud feedback, mostly below-mean480

total cloud feedback and almost consistently above-mean LW cloud feedback. The CCM481

family is the largest (17 models in the CMIP6 plot) and also the most varied, showing482

a large spread between its models in CMIP6, but a small spread in CMIP5. Despite this,483

they have some characteristic properties, such as in mostly above-mean total and SW484

cloud feedback and below-mean LW cloud feedback in CMIP6; mostly below-mean to-485

tal cloud feedback, but also above-mean lapse rate and surface albedo, and below-mean486

water vapor feedback in CMIP5. In CMIP6, the UCLA GCM family of models (5 mod-487

els in the CMIP6 plot) have consistently below-mean total and SW cloud feedback, and488

mostly above-mean LW cloud feedback.489

In terms of ECS, the CCM and ECMWF families of models show a large and rel-490

atively even spread around the multi-model mean. In this case, the code or family weight-491

ing is unlikely to make a significant difference in terms of the influence of the family on492

the overall MME mean. In CMIP6, the HadAM, and IPSL family of models are all more493

sensitive than the mean, and the UCLA GCM family of models are all less sensitive than494

the mean. ECS in of the HadAM family is significantly above-mean, and ECS of the UCLA495

GCM family is significantly below-mean (at 95% confidence).496

In summary, some relatively large families of models show consistent properties when497

it comes to climate feedbacks and ECS, while others show a large spread. This suggests498

that models in some families have substantial interdependence which translates into clus-499

tering of climate feedbacks and ECS. The CCM and ECMWF families are quite diverse,500

but despite this they show common characteristics in some climate feedbacks.501

4.4 Global Mean Near-surface Temperature Time Series502

To analyze the impact of the code and model family weighting methods on MME503

statistics, we examine the case of GMST in the historical, SSP2-4.5, abrupt-4xCO2, and504

1pctCO2 CMIP6 experiments and the historical, RCP4.5, abrupt-4xCO2, and 1pctCO2505

CMIP5 experiments. Figures 6 and 7 show GMST time series in the CMIP6 and CMIP5506

experiments (respectively), grouped by model family, as well as family and code weighted507
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Figure 5. Climate feedbacks, effective climate sensitivity (ECS), and effective radiative forc-

ing (ERF2x) arranged by model family in the Coupled Model Intercomparison Project (CMIP)

phases 5 (b, d) and 6 (a, c). Model family is identified by the oldest ancestor model. In the leg-

end, numbers in parentheses are the number of models in the family present in the plot. Model

families whose simple mean is significantly different (with 95% confidence) from the simple multi-

model mean are marked with an asterisk (“*”). The underlying data are from Zelinka (2022),

described in Zelinka et al. (2020).
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Figure 6. Time series of global mean near-surface temperature in CMIP6 experiments by

model family and the simple multi-model, code, and family mean (section 3.2). The model fam-

ily time series are a simple mean of models in the family. The time series are smoothed with a

Gaussian kernel with a standard deviation of 7 years. The first and the last 14 years of the time

series are not shown to avoid artifacts caused by the smoothing. The values are relative to the

mean of the first 30 years of the individual time series in (a) and (b), and relative to the mean

of the whole individual time series of the piControl experiment in (c) and (d). Shaded areas are

confidence bands representing the 68th percentile range. The vertical divider in the historical +

SSP2-4.5 plot separates the time ranges of the two experiments. In the legend, the number in the

parentheses is the number of models in the family. All CMIP5 and CMIP6 models with necessary

data available on the Earth System Grid were included in the plots.
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Figure 7. The same as Figure 6 but for CMIP5, and the RCP4.5 experiment instead of SSP2-

4.5.
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time series. Included are all models which provided the necessary data. While some model508

families have many members in this analysis, such as CCM (7 to 22 members, depend-509

ing on the experiment and CMIP phase), ECMWF (3 to 16 members), HadAM (2 to 6510

members), and UCLA GCM (1 to 5 members), other families have less than 4 members,511

and therefore it is harder (or impossible) to assess model spread in the smaller families.512

The larger families such as CCM and ECMWF exhibit a large spread and a middle-of-513

the-range family mean, although the spread of the ECMWF family in the CMIP5 ex-514

periments historical + RCP4.5 (combined experiments), abrupt-4xCO2, and 1pctCO2515

is relatively narrow. The other larger family HadAM has a relatively small spread in most516

experiments, consistent with the results of section 4.3. Notably, in the CMIP6 histor-517

ical experiment, HadAM is the coldest of all model families, but becomes the second and518

third warmest in the rest of the CMIP6 experiments by the end of the simulation. The519

UCLA GCM family of models have consistently relatively low GMST in the CMIP6 abrupt-520

4xCO2 and 1pctCO2 experiments, despite the relatively large size of the group (here 4521

to 5 members). Model families like MIROC, INM, and CanAM (each containing 2 mem-522

bers in the CMIP6 plots, except for CanAM in abrupt-4xCO2 with only member) have523

almost no spread in the CMIP6 experiments, suggesting that the two models in each of524

these model families are very similar.525

The family and code weighted GMST time series tend to nearly overlap in all cases,526

which points to a high degree of outcome similarity between the two types of weighting527

also noted in the preceding sections. Interestingly, the family and code weighted mean528

is warmer than the simple multi-model mean in the CMIP6 historical experiment (in the529

CMIP5 historical experiment it is slightly colder by the end of the simulation) and also530

more consistent with observations, whereas in the 1pctCO2 and abrupt-4xCO2 exper-531

iments it is colder than the simple mean (in both CMIP6 and CMIP5). When CMIP6532

is compared with CMIP5, model families tend to exhibit similar cold or warm propen-533

sity, such as INM, GFDL, UCLA GCM being relatively cold in the non-historical exper-534

iments, and CanAM, HadAM, IPSL being relatively warm. This suggests that model fam-535

ilies tend to maintain their climate sensitivity inclination across model generations.536

5 Discussion and Conclusions537

We mapped the code genealogy of 167 models in and related to CMIP3, CMIP5,538

and CMIP6 with a focus on the atmospheric component and the atmospheric physics.539

We showed that all models can be grouped into 14 model families based on code inher-540

itance, although large amounts of code may have been replaced in some models, and there-541

fore they are only weakly related to other models in the same family. In addition, we mapped542

the institute and country of origin of the models. Some model families, such as CCM,543

ECMWF, and HadAM, are particularly large. The CCM-derived models were extensively544

forked internationally, most likely due to the open availability of the code. The IFS/ARPEGE545

(licensed) code was the basis for many European models. The HadGEM code was shared546

internationally within a consortium. Together, these three large model families domi-547

nate CMIP6, accounting for 70% of all model runs, an increase from about 50% repre-548

sented by the three largest model families in CMIP3 and CMIP5. Based on the code ge-549

nealogy, we developed a code weighting method, the aim of which was to more fairly weigh550

code-related models than a simple multi-model mean, thus mitigating structural model551

dependence in MMEs. We showed that when applied on CMIP5 and CMIP6, the code552

and family weighting produced substantial differences in the climate feedbacks, sensitiv-553

ity, and forcing, especially the cloud feedbacks (total, shortwave and longwave), ECS,554

and ERF2x relative to the difference in simple mean between CMIP6 and CMIP5 and555

relative to the standard deviation of the quantities in CMIP5 and CMIP6. The code and556

family weighting methods produce very similar results. The code and family weighting557

seem to be able to reconcile some of the difference between CMIP6 and CMIP5 (about558

40% RMSD reduction in climate feedbacks, and about 60% RMSD reduction in ECS un-559
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der the code weighting). This suggests that increased contributions from many code-related560

models in CMIP6 compared to CMIP5 were able to substantially affect the simple multi-561

model mean. Applying these methods to analyze climate feedbacks, sensitivity, and forc-562

ing by model family revealed that models in some families gave narrowly similar results563

(HadAM and UCLA GCM), and others in some cases had relatively wide spread but con-564

sistently above- or below-mean values (ECMWF and CSM). This suggests that code sim-565

ilarity in some cases translates to similarities in climate properties, but in other cases566

there is a large spread despite model similarity. Lastly, we analyzed GMST time series567

in four CMIP6 and CMIP5 experiments, and showed that models in some larger fam-568

ilies (HadAM, and in some cases ECMWF) have similar GMST. The family and code569

weighting showed very similar results – more warming than the simple mean (and closer570

to observations) in the CMIP6 historical experiment and less warming in the CMIP6 1pctCO2571

and abrupt-4xCO2 experiments. This suggests that these methods can partially balance572

the effect of the over-representation of model families with multiple similar models, like573

HadAM. Model families tend to exhibit tendencies toward greater or lower warming than574

the MME mean in response to increased CO2 across the CMIP generations.575

We did not make an attempt to quantify model code independence from their par-576

ent models, because there is not enough publicly available information on the source code.577

Even if the source code were available, an objective quantification of code independence578

would require a sophisticated new method of code analysis. Some models have code bases579

which are more independent from their parent models than others. As a result, some model580

families might have members which are almost code-independent from the rest of the fam-581

ily.582

We do not argue against the use of simple multi-model means, or model output and583

performance weighting methods in general, but see the presented weighting methods as584

complementary to the established methods. Simple means will likely continue to rep-585

resent a useful default option (as used, for example, in parts of AR6), but other weight-586

ing methods may be increasingly important due to model duplication in MMEs. It is pos-587

sible that weighting methods based on model structure can capture these interdepen-588

dencies better than methods based on model output. We suggest the family weighting,589

or a similar technique based on selecting a number of “independent” model branches from590

the model code genealogy, as a useful and easily implemented method of weighting for591

MME studies, especially if there is an expectation that model duplication is affecting the592

results.593

The presented model code genealogy (Figure 2) can be further extended as more594

models become available in future CMIP phases. We provide the Scalable Vector Graph-595

ics (SVG) source of this figure so that it can be extended in the future, and all related596

code and data are in the supplementary code under an open source license.597

Our results can facilitate MME assessments, which depend on the knowledge of model598

code relations. They provide a complementary approach to the model output dependence599

methods presented in previous studies. We have shown that as expected, code-related600

models tend to have related climate characteristics, which may help to explain some of601

the difference between CMIP5 and CMIP6. Certain model families stand out in terms602

of ECS or climate feedbacks, which can help in understanding model differences. This603

is especially important given that the model spread in ECS and some climate feedbacks604

have increased in CMIP6 relative to CMIP5. A useful method of accounting for depen-605

dencies among models is weighting model families equally, which has the benefit of be-606

ing simpler to achieve than code weighting. This can be readily employed in MME as-607

sessments if a more fair model weighting is desired.608
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Appendix A Model Code Weight Calculation609

Statistical weights in model code weighting are calculated using the model code ge-610

nealogy in Figure 2. The weights are calculated for a set of models of interest, i.e. those611

models or their runs (configuration or resolution) which are present in an MME.612

Definitions:613

1. Node is a single model (AGCM, AOGCM or ESM). It can comprise multiple model614

runs (configurations or resolutions) submitted to CMIP. Nodes can have one or615

more parent and child nodes.616

2. Model run is a specific model configuration or resolution submitted to CMIP. Some617

models only have one run in CMIP.618

3. Group is a set of nodes with the same model name but different version numbers.619

In Figure 2, these are connected with horizontal arrows. Group ancestors are all620

node ancestors of all nodes in the group.621

4. Root nodes are nodes which do not have have any ancestors. These are the top-622

level nodes marked with a thick outline in Figure 2.623

5. Root groups are groups which contain a root node.624

6. Active nodes and active model runs are those which are included in the set of mod-625

els of interest, i.e. models for which weights are to be calculated.626

7. Active groups are groups which contain at least one active node.627

8. Child node and child group is a direct descendant of its parent node or parent group.628

9. Descendant of a node or group is a direct or indirect (more than one level deep)629

descendant of the node or group.630

Algorithm steps (note that the definition of x and n varies by step):631

1. Groups and nodes which are not active and have no active descendants are removed632

from the tree.633

2. All nodes and groups are assigned a weight of zero.634

3. All root groups are given the same weight equal to 1/n, where n is the number635

of root groups.636

4. For all groups which have already inherited weight from all of their ancestors (or637

have no ancestors) and are not marked as done, their child groups inherit weight.638

If the parent group is active, each child group’s weight is incremented by 1/(n+639

1), where n is the number of child groups, and the parent group’s weight is set to640

1/(n+1). If the parent group is not active, each child group’s weight is incremented641

by 1/n, and the parent group’s weight is set to zero. The parent group is marked642

as done.643

5. If all groups are marked as done, continue with Step 6. Otherwise, go back to Step644

4.645

6. Within each group, active nodes are given weight equal to x/n, where x is the weight646

of the group and n is the number of active nodes in the group.647

7. For each node, active model runs of the node are given weight equal to x/n, where648

x is the weight of the node and n is the number of active model runs.649

Open Research Section650

Our data processing and visualization code, as well as the associated data are avail-651

able publicly on GitHub (Kuma, 2022a) and Zenodo (Kuma, 2022b). The version used652

in our analysis is 1.0.0. The software is licensed under an open source license (MIT), the653

project internal data files and the output data files are in the public domain (Creative654

Commons license CC0, https://creativecommons.org/publicdomain/zero/1.0/), and655
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the model code genealogy graph images and output plots are licensed under the Creative656

Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons657

.org/licenses/by/4.0/). CMIP5 and CMIP6 model output is publicly available on the658

Earth System Grid Federation websites (CMIP5, 2022; CMIP6, 2022). The input data659

for model ECS and climate feedbacks are available publicly from Zelinka (2022). The660

HadCRUT5 data are available publicly from the Met Office Hadley Centre (2022).661
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Table S1. [Table located in the file models.csv included in the supporting information.]

Table listing all models in the model code genealogy including their model family, institute,

country (or region), type (atmosphere general circulation model [AGCM], atmosphere–ocean

general circulation model [AOGCM] or Earth System Model [ESM]), their parent and predecessor

models, names of their model runs in the Coupled Model Intercomparison Project (CMIP) phase

3, 5 and 6, and citations supporting their relation to other models. The data in this table have

one-to-one correspondence to models in Fig. 2, and therefore can be used for analysing the graph

in Fig. 2 analytically.
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Table S2. Table of counts of model runs (configurations or resolutions) per model family,

country (or region) and institute present in CMIP3 (C3), CMIP5 (C5) and CMIP6 (C6).

Family Country Institute
Name C3 C5 C6 Name C3 C5 C6 Name C3 C5 C6
CCM 3 17 32 Australia 2 4 2 AS RCEC 0 0 3
CSIRO 2 2 0 Canada 2 3 2 AWI 0 0 4
CanAM 2 3 2 China 1 7 11 BCC 0 2 3
ECMWF 5 9 27 Europe 0 2 12 BCCR 1 0 0
GEOS 0 2 0 France 2 5 7 BNU 0 1 0
GFDL 2 7 6 Germany 3 3 10 CAMS 0 0 1
GFS 0 1 1 India 0 0 1 CCCma 2 3 2
HadAM 2 7 12 Italy 0 4 4 CCSR/NIES/FRCGC/

MIROC
2 5 6

INM 1 1 3 Japan 3 9 9 CMCC 0 4 4
IPSL 1 3 4 Norway 1 2 4 CNRM/CERFACS 1 2 3
MIROC 2 4 3 Russia 1 1 3 CSIRO/QCCCE/UNSW/

BOM/ARCCSS
2 4 2

NICAM 0 1 3 South Korea 0 0 3 DOE 0 0 3
UA MCM 0 0 1 Taiwan 0 0 3 EC-Earth Consortium/

ICHEC
0 2 9

UCLA GCM 4 8 9 UK 2 5 9 ECMWF 0 0 3
USA 7 20 23 ECMWF/CNRM 0 0 0

FIO/QLNM 0 1 1
IITM CCCR 0 0 1
INM 1 1 3
IPSL 1 3 4
KIOST 0 0 1
LASG/IAP/CESS 1 3 4
MIUB 1 0 0
MPI-M/HAMMOZ 2 3 6
MRI 1 4 3
NASA GFDL 2 7 5
NASA GISS 3 4 6
NASA GMAO 0 1 0
NASA GSFC 0 1 0
NCAR/NSF/DOE 2 6 8
NCC 0 2 4
NCEP 0 1 0
NIMS/KMA 0 0 1
NUIST 0 0 1
SNU 0 0 1
THU 0 0 1
UA 0 0 1
UCLA 0 0 0
UKMO/MOHC/
KMA NIMR

2 5 9
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