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Abstract

We devised a new data analysis technique to identify the threat level of solar active regions by processing a combined data

set of magnetic field properties and flaring activity. The data set is composed of two elements: a reduced factorization of

SHARP properties of the active regions, and information about the flaring activity at the time of measurement of the SHARP

parameters. Machine learning is used to reduce the data and to subsequently classify the active regions. For this classification

we used both supervised and unsupervised clustering. The following processing steps are applied to reduce and enhance the

SHARP data: outlier detection, redundancy elimination with common factor analysis, addition of sparsity with autoencoders,

and construction of a balanced data set with under- and over-sampling. Supervised clustering (based on K-nearest neighbors)

produces very good results on the strong X- and M-flares, with TSS scores of respectively 93% and 75%. Unsupervised clustering

(based on K-means and Gaussian Mixture Models) shows that non-flaring and flaring active regions can be distinguished, but

there is not enough information in the data set for the technique to identify clear differences between the different flaring

levels. This work shows that the SHARP database lacks information to accurately make flaring predictions: there is no clear

hyperplane in the SHARP parameter space, even after a detailed cleaning procedure, that can separate active regions with

different flaring activity. We propose instead, for future projects, to complement the magnetic field parameters with additional

information, like images of the active regions.

1



manuscript submitted to Space Weather

Classification of Solar Flares using Data Analysis and1

Clustering of Active Regions2

H. Baeke1, J. Amaya1, G. Lapenta13

1Center for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan4

200B, 3001 Leuven, Belgium5

Key Points:6

• SHARP parameters of solar active regions contain redundant information that can7

be reduced to five parameters using Common Factor Analysis.8

• Unsupervised classification allows to differentiate inactive regions, from C/M flar-9

ing active regions, and extremely active X-flare regions.10

• We detect no clear boundaries in the reduced parameters between different lev-11

els of moderate flaring activity.12
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Abstract13

We devised a new data analysis technique to identify the threat level of solar active re-14

gions by processing a combined data set of magnetic field properties and flaring activ-15

ity. The data set is composed of two elements: a reduced factorization of SHARP prop-16

erties of the active regions, and information about the flaring activity at the time of mea-17

surement of the SHARP parameters. Machine learning is used to reduce the data and18

to subsequently classify the active regions. For this classification we used both super-19

vised and unsupervised clustering. The following processing steps are applied to reduce20

and enhance the SHARP data: outlier detection, redundancy elimination with common21

factor analysis, addition of sparsity with autoencoders, and construction of a balanced22

data set with under- and over-sampling. Supervised clustering (based on K-nearest neigh-23

bors) produces very good results on the strong X- and M-flares, with TSS scores of re-24

spectively 0.93 and 0.75. Unsupervised clustering (based on K-means and Gaussian Mix-25

ture Models) shows that non-flaring and flaring active regions can be distinguished, but26

there is not enough information in the data set for the technique to identify clear dif-27

ferences between the different flaring levels. This work shows that the SHARP database28

lacks information to accurately make flaring predictions: there is no clear hyperplane in29

the SHARP parameter space, even after a detailed cleaning procedure, that can sepa-30

rate active regions with different flaring activity. We propose instead, for future projects,31

to complement the magnetic field parameters with additional information, like images32

of the active regions.33

Plain Language Summary34

One of the main sources of space weather activity are solar active regions. In these35

zones the magnetic activity of the Sun is increased and can produce the two most en-36

ergetic events in the solar system: flares and coronal mass ejections. We investigate the37

magnetic field properties of active regions, and the amount of energy they release. Our38

end goal is to produce an automatic model that can forecast the energy level released39

by a flare from solar active regions, using only their current magnetic field properties.40

For this study, we used machine learning techniques that recognize patterns in data,41

without being explicitly told what to look for. These techniques can sometimes find pat-42

terns that escape the human intuition. The technique classifies different active regions,43

based on their magnetic properties, identifying those that can release large amounts of44

energy in the near future.45
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Our technique is able to discover differences between flaring and non-flaring active46

regions. But the data contains not enough information to predict how strong the energy47

releases will be. Therefore, improvement is still needed since we want to identify the strongest,48

most dangerous energy releases. Future research should incorporate other data types to49

get better results.50

1 Introduction51

Solar flares pose a serious threat to the near-Earth environment. They can produce52

streams of highly energetic particles, which can affect the Earth’s magnetosphere within53

a few hours or minutes (Cinto et al., 2020). These particles pose radiation hazards to54

astronauts and spacecrafts (Mikaelian, 2009). Flares are also associated with radio com-55

munication disruptions (Knipp et al., 2016; Redmon et al., 2018), and the associated high56

energy particles can ionize our atmosphere at low altitudes (Liu et al., 2021). The largest57

flares are often accompanied by coronal mass ejections (CMEs). Kawabata et al. (2018)58

show that CMEs are associated with approximately all events whose X-ray flux is larger59

than 10−3.9Wm−2, which correspond to the X-flares. These CMEs can trigger geomag-60

netic storms, which can disable satellites (Dang et al., 2022) and even knock out elec-61

trical power grids (Pulkkinen et al., 2005). Should such a large storm happen nowadays,62

it would have catastrophic results, causing considerable economic damage. For exam-63

ple, the 1977 New York City blackout cost is estimated at $624 million dollars (Sorkin,64

1982). A similar event today would have an even higher cost. Forecasting solar energetic65

activity is a critical topic in space weather research.66

The differentiation of solar active regions very often involves the use of sunspot clas-67

sifications - Mount Wilson (Hale et al., 1919) and McIntosh (McIntosh, 1990) - which68

are still performed manually. These classes are based on human observations in the vis-69

ible light spectrum. This leads to inference of the subjectivity of the experts. Moreover,70

the visible light spectrum provides very limited information regarding the critical prop-71

erties of solar active regions. Today it is possible to automatize the classification of so-72

lar active regions, reducing the influence of human bias. This will allow to produce fast73

solar flare forecasting systems.74

This work focuses on the development of an unsupervised classification of solar ac-75

tive regions, using machine learning, and on their relation to their (non-)flaring activ-76

ity. The classification is based on the SHARP parameters, extracted from SDO HMI ob-77

servations of the magnetic field of active regions. A detailed processing of the SHARP78

data is performed to achieve the best possible results from unsupervised classification79
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techniques. Therefore, these processing steps are also discussed with care throughout this80

paper.81

There have been multiple previous attempts to build an automated classification82

of active regions. However, most of these studies tried to automate the existing McIn-83

tosh or Mount-Wilson classifications, e.g. (Colak & Qahwaji, 2008; Maloney & Gallagher,84

2018; Nguyen et al., 2006; Smith et al., 2018). These studies applied machine learning85

on solar images, often combined with automatic sunspot detection. The machine learn-86

ing methods used in the literature include neural networks, k-nearest neighbors, Sup-87

port Vector Machines (SVMs), Random Forest and layered learning. In most cases, the88

percentage of correct classifications depends strongly on the specific class and on the amount89

of data available. The results of Colak and Qahwaji (2008) for example show results with90

a percentage of correct classifications between ∼ 40% and ∼ 85%.91

Housseal et al. (2019) performed unsupervised classification of sunspots, however,92

the authors did not use the magnetic field parameters: they used instead HMI magne-93

togram images to look for patterns in the sunspots connected to the active regions.94

Recently, multiple papers have used the SHARP magnetic field parameters to con-95

struct solar flare prediction algorithms based on machine learning, e.g. (Abduallah et96

al., 2020; Bobra & Couvidat, 2015; Chen et al., 2019; Ilonidis et al., 2015; Jiao et al., 2020;97

Jonas et al., 2018; Liu et al., 2017; Ran et al., 2022; Sinha et al., 2022; Sun et al., 2022;98

Wang et al., 2020; Zhang et al., 2022). The methods used include Random Forest, MLPs,99

extreme learning machines, LSTMs, CNNs, SVMs, etc. Ilonidis et al. (2015) used time100

series of the SDO magnetic field data and constructed SVMs to forecast solar flares, which101

yielded a True Skill Score of 91%. Bobra and Couvidat (2015) also used SVMs on SHARP102

data, to distinguish between flare producing active regions and non-flare producing ac-103

tive regions. The authors did not include C-flares, which simplified the distinction be-104

tween flaring and non-flaring active regions. Sun et al. (2022) focused on the prediction105

of M- and X-flares versus flare-quiet instances. They discarded all C-flares and lower from106

their data set. Jiao et al. (2020) took a different approach and applied machine learn-107

ing on the SHARP parameters to identify the flare intensity, a continuous variable, in-108

stead of the discrete solar flare types.109

A number of studies have investigated the importance of each of the SHARP pa-110

rameters for solar flare prediction (Ran et al., 2022; Sinha et al., 2022; Zhang et al., 2022).111

They found that the most influential SHARP parameters are TOTUSJH, TOTUSJZ, MEANPOT,112

TOTPOT, USFLUX and R VALUE. See Table 1 for the physical meaning of these parameters.113
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A new data set has been created by Bobra et al. (2021), called SMARPs. These114

are similar to SHARPs, but constructed from the solar images taken by MDI of SOHO.115

It attempts to extend backwards the SHARP database to the more active Solar Cycle116

23. However, the SMARPs do not include as much information as the SHARPs and the117

data quality is lower (Sun et al., 2022).118

Some studies combined the SHARP magnetic field parameters with features that119

are automatically generated from the solar images with machine learning methods, e.g120

(Chen et al., 2019; Jonas et al., 2018). Chen et al. (2019) compared the results of LSTM121

models trained on the SHARP data and on autoencoder-derived features and found that122

they were very similar. Therefore, the autoencoder-derived features could be a viable al-123

ternative for the SHARP parameters.124

The goal of the present work is to classify the flaring activity of solar active regions,125

based only on the SHARP parameters extracted from the SDO HMI instrument. We ap-126

ply rigorous and comprehensive pre-processing techniques to extract as much useful in-127

formation as possible from the SHARP database. The results will inform us if there is128

enough information in the data to perform flare forecasts. While many of the classifi-129

cation methods used in the literature are based on supervised learning, we use unsuper-130

vised clustering to allow the computer to extract patterns unknown to the human ex-131

perts. We show how the unsupervised classes that we obtain correlate with the flaring132

activity of active regions. In this work we also try to distinguish the different levels of133

flaring activity, whereas most studies are limited to the prediction of binary classes, only134

finding differences between flaring and non-flaring data.135

The paper is structured as follows. Active regions and solar flares are briefly in-136

troduced in section 2. Section 3 discusses the data used, followed by section 4, which ex-137

plains the data processing methods and results. Sections 5 and 6 introduce the cluster-138

ing methods and types of evaluation. The clustering results are shown in section 7, fol-139

lowed by the discussion in section 8. Finally, section 9 summarizes the main conclusions140

of the research results.141

2 Active Regions and Solar Flares142

Solar active regions are large areas on the Sun where the magnetic activity tem-143

porarily and locally increases. The magnetic field there is complex and intense. Mag-144

netic fields in active regions can be a thousand times stronger than the average solar mag-145

netic field of a few Gauss (Sheeley, N.R., 2020). The number of active regions observed146
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in the solar disk varies over the course of the solar cycle and are most common during147

its peak.148

A solar flare is a sudden, intense brightening of a small area on the Sun, lasting min-149

utes to a few hours. Flares occur in the solar corona when magnetic field lines of oppo-150

site polarity are forced together, by the convective motion of their foot-points in the con-151

vection zone, or by travelling coronal pressure waves. This causes magnetic reconnec-152

tion, a sudden transformation of magnetic energy into kinetic and thermal energy. Streams153

of highly energetic particles travel along magnetic field lines, generating high intensity154

electromagnetic radiation on their path and during their interaction with matter. So-155

lar flares typically erupt from solar active regions, because their complex and intense mag-156

netic field is the perfect locus of magnetic reconnection (Priest & Forbes, 2002).157

Flares are classified according to the strength of their soft X-ray emission, as recorded158

by the GOES satellites located in geostationary orbit. The following is a list of the flare159

classes in order of exponentially increasing magnitude: A, B, C, M and X. Strong solar160

flares occur very infrequently, compared to weak solar flares. Therefore, solar flare data161

is by definition largely imbalanced. This always has to be taken into account during the162

processing of the data and the interpretation of the results.163

3 Data Set164

The open source data set of Angryk et al. (2020b) is used for this research. The165

authors developed a data set (henceforth called the Angryk data set), extracted from the166

Space Weather HMI Active Region Patch series (SHARP) (Bobra et al., 2011), integrated167

with information from solar flare catalogs. These SHARP patches and their magnetic168

field parameters are derived from solar photospheric vector magnetograms obtained by169

the Helioseismic and Magnetic Imager (HMI) from the Solar Dynamics Observatory (SDO).170

The HMI instrument provides information on the magnetic field in the solar photosphere.171

These observations are bundled in patches for each active region. Magnetic field param-172

eters are extracted from these patches and integrated over the whole area. They give an173

indication of the magnetic activity of the complete patch.174

The Angryk data set contains sixteen SHARP parameters and eight additional pa-175

rameters proposed by Angryk et al. (2020a). These 24 parameters are listed in Table 1.176

The data set also contains parameters BFLARE, CFLARE, MFLARE and XLFARE. These ex-177

press the number of flares of each flare class occurring at the time of measurement of the178

SHARP and therefore indicate the concurrent solar flare activity of that active region.179

For simplicity, in this work, each data point has been assigned to only one of four classes:180
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No-flare, C-flare, M-flare or X-flare. These correspond to the strongest occurring flare181

originating from the active region at that time. The No-flare class signifies the flare-quiet182

instances, but also the weakest, A- and B-class, flares. This because the A- and B-flares183

are hard to distinguish against the background brightness of the Sun (Chen et al., 2019).184

The assignment of flare types to the data points leads to the following ratio: 2 602 509185

No-flares, 6717 C-flares, 680 M-flares and 47 X-flares. The data was collected between186

May 2010 and December 2018. This corresponds with solar cycle 24 (December 2008 -187

December 2019) and includes the solar maximum in April 2014. This solar cycle was an188

unusual quiet one, and the data set contains only few strong flares. The Angryk data189

set is meant to serve as a benchmark data set for testing flare prediction algorithms (Angryk190

et al., 2020a).191

4 Data Processing192

Some pre-processing of the data set was already carried out by Angryk et al. (2020a).193

Further processing includes outlier removal, data transformation and dimensionality re-194

duction. These steps are explained in more detail in the following sections.195

There is a large class imbalance present in the data set, with 2 602 509 No-flares,196

6717 C-flares, 680 M-flares and only 47 X-flares. This class imbalance needs to be taken197

into account when processing the data. To reduce the impact of class imbalance, in this198

work the No-flare class is randomly under-sampled to 50 000 No-flares. This is done by199

randomly selecting 50 000 data points from the 2 602 509 No-flares, without selecting200

the same data point twice.201

The selected number of No-flares is determined after multiple tests of the autoen-202

coding procedure, described in section 4.3.2, the most data-intensive processing step in203

this work. In short, in an autoencoder a compression and decompression of the data set204

is performed, and the active region properties before and after the procedure should be205

exactly the same. We applied the procedure with different sample sizes. For each case206

the error is computed. When the sample size is too small, the error is large. Increasing207

the size of the sample reduces the error. A plot of the sample size versus the error presents208

an optimal inflection point, which in this work corresponds to the selected sample size:209

50 000 data points are sufficient to obtain an accuracy comparable to the full 2 602 509210

data points.211

In section 4.4 we show how we handle additional class imbalances using over- and212

under-sampling techniques.213
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Table 1: Magnetic field parameters from Angryk et al. (2020b). Parameters with * are derived by
Angryk et al. (2020a), the others are contained in SHARP. Units from Liu et al. (2017) and SDO.

Parameters Description Formula

ABSNJZH [10G2/m] Absolute net current helicity Hcabs
∝ |

∑
Bz · Jz|

EPSX* [−10−1] Sum normalized Lorentz force (X) δFx ∝
∑

BxBz∑
B2

EPSY* [−10−1] Sum normalized Lorentz force (Y) δFy ∝ −
∑

ByBz∑
B2

EPSZ* [−10−1] Sum normalized Lorentz force (Z) δFz ∝
∑

(B2
x +B2

y −B2
z )∑

B2

MEANALP [1/Mm] Mean twist parameter αtotal ∝
∑

Jz ·Bz∑
B2

z

MEANGAM [◦] Mean inclination angle γ =
1

N

∑
arctan

(
Bh

Bz

)

MEANGBH [G/Mm] Mean horizontal field gradient ∇Bh =
1

N

∑√(
∂Bh

∂x
+

∂Bh

∂y

)

MEANGBT [G/Mm] Mean total field gradient ∇Btot =
1

N

∑√(
∂B

∂x
+

∂B

∂y

)

MEANGBZ [G/Mm] Mean vertical field gradient ∇Bz =
1

N

∑√(
∂Bz

∂x
+

∂Bz

∂y

)
MEANJZD [mA/m

2
] Mean vertical current density Jz ∝ 1

N

∑(
∂By

∂x
− ∂Bx

∂y

)
MEANJZH [G2/m] Mean current helicity Hc ∝

1

N

∑
Bz · Jz

MEANPOT [103ergs/cm
3
] Mean photospheric excess mag-

netic energy density
ρ ∝ 1

N

∑
(BObs −BPot)2

MEANSHR [◦] Mean shear angle Γ =
1

N

∑
arccos

(
BObs ·BPot

|BObs||BPot|

)
R VALUE* [Mx] Total unsigned flux around high

gradient polarity inversion lines
ϕ =

∑
|Blos| · dA (within R mask)

SAVNCPP [1012A] Summed absolute value of net cur-
rent per polarity

JΣz ∝
∣∣∣∑B+

z JzdA
∣∣∣+ ∣∣∣∑B−

z JzdA
∣∣∣

SHRGT45 [%] Area with shear angle > 45◦
Area with Shear > 45◦

Total Area

TOTBSQ* [1010G2] Total magnitude of Lorentz force F ∝
∑

B2

TOTFX* [−1023dyne] Sum X-component of Lorentz force Fx ∝
∑

BxBzdA

TOTFY* [−1023dyne] Sum Y-component of Lorentz force Fy ∝
∑

ByBzdA

TOTFZ* [−1023dyne] Sum Z-component of Lorentz force Fz ∝
∑(

B2
x +B2

y −B2
z

)
dA

TOTPOT [1023ergs/cm
3
] Total photospheric magnetic en-

ergy density
ρtot ∝

∑(−−−→
BObs −

−−−→
BPot

)2

dA

TOTUSJH [102G2/m] Total unsigned current helicity Hctotal
∝

∑
Bz · Jz

TOTUSJZ [1012A] Total unsigned vertical current Jztotal
=

∑
|Jz|dA

USFLUX [1021Mx] Total unsigned flux ϕ =
∑

|Bz|dA
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4.1 Outlier Removal214

Multiple entries in the data set contain one or more empty properties (NaN val-215

ues). We eliminate from the original data set every entry where at least one of the prop-216

erties was empty. We also perform a detection and elimination of outliers. These were217

identified using the hierarchical clustering algorithm HDBSCAN. This method is able218

to automatically choose the optimal clustering of a cloud of points in an N-dimensional219

space. The points that are detached from the core cloud of points are identified as out-220

liers. A more detailed explanation of HDBSCAN can be found in Campello et al. (2013).221

With this technique 586 outliers were found. About 20% of the outliers come from222

HMI magnetogram images taken during rotation or re-positioning of the SDO spacecraft,223

causing distortions in the data.224

In addition, 36 outliers were identified and removed by hand. Thirty-three of these225

additional outliers were due to the same parameter, MEANPOT. The other three were due226

to the parameter TOTFZ. The fact that they were missed by HDBSCAN is probably due227

to a combination of the standardization and some extreme outliers. The standardiza-228

tion transforms the data to zero mean and to unit variance. If there are a few extreme229

outliers, this will shift the majority of the data to very small values. Because this is not230

the case for the other parameters, there is a difference of ∼ 2−3 orders of magnitude,231

which hinders HDBSCAN to detect all outliers.232

4.2 Data Transformation233

To be able to differentiate groups of points in the parameter space, it is necessary234

to identify high concentrations of points that can be separated by a hyper-plane. An ini-235

tial visual inspection of the distribution function of each one of the parameters can show236

if there are peaks and valleys in the distribution that clearly separate active regions with237

different properties. Some of the parameters have a very small spread of values among238

all the active regions. Unsupervised clustering techniques have difficulties identifying mul-239

tiple clusters in unimodal distributed parameters, since this would only lead to one clus-240

ter. We applied transformations to some of the parameters to perform a rebinning of the241

data distributions. This is one of the procedures known in machine learning as ‘feature242

engineering’. The transformations used are listed in Table 2.243

Figure 1 shows the difference a good transformation can make, and how this can244

improve clustering. After a logarithmic transformation two peaks are visible, while be-245

fore there is only one very large one.246
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Table 2: Data transformations used to expand some very narrow distributions.

Parameter (Table 1) Transformation

TOTUSJH ln(x+ |min(x)|+ 0.01)

TOTBSQ ln(x+ |min(x)|+ 0.01)

TOTPOT ln(x+ |min(x)|+ 0.01)

TOTUSJZ ln(x+ |min(x)|+ 0.01)

ABSNJZH ln(x+ |min(x)|+ 0.01)

SAVNCPP ln(x+ |min(x)|+ 0.01)

USFLUX ln(x+ |min(x)|+ 0.01)

MEANPOT ln(x+ |min(x)|+ 0.0001)

TOTFZ ln(−x+ |max(x)|+ 0.01)

TOTFY ln(|x|)
TOTFX ln(|x|)

Figure 1: Example of two transformations of the parameter TOTUSJH (left). While the
root squared transformation produces a better coverage of the distribution (centre), the
transformation of the bins with the natural logarithm (right) yields a distribution more
useful for clustering.

4.3 Dimensionality Reduction247

High-dimensional data is computationally expensive to process. If possible, it is im-248

portant to reduce the number of dimensions. In addition, clustering methods and other249

techniques based on the calculation of distances in an Eulerian space are subject to the250

‘curse of dimensionality’: in high dimensions every point tends to be equidistant to each251

other point. Moreover, we want to reduce high correlations by removing redundant fea-252

tures. Figure 2 (left) illustrates the presence of correlations between the magnetic field253

parameters. This is not surprising, since they often depend on the same magnetic co-254

–10–
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efficients, e.g. Bz and Jz (see Table 1). These redundant features do not add any rel-255

evant information and may hinder the learning algorithm, possibly causing overfitting256

(Yu & Liu, 2004). To mitigate this problem, we applied Common Factor Analysis (Spearman,257

1904) (CFA) to our data set.258

4.3.1 Common Factor Analysis259

Common Factor Analysis (CFA) is a technique which searches for latent, unobserved260

variables, called factors, from a set of observed variables. The package FactorAnalyzer261

of (Biggs, 2019) is used. The number of factors is determined with the help of Horn’s262

Parallel Analysis (Horn, 1965). Figure 2 (right) shows the resulting factor loadings, a263

measure of how much a factor explains the associated magnetic field parameters. The264

first factor has high explanatory power for multiple magnetic field parameters, which con-265

firms that many of these parameters are inter-correlated. Calculation of the covariance266

of the selected five factors confirms that they show zero covariance with each other.267

Figure 2: Left: Covariance matrix of the data set before applying CFA on it. A lot of the
parameters are strongly correlated with each other. Right: Heatmap of factor loadings of
CFA.

4.3.2 Sparse Autoencoders268

Makhzani and Frey (2014) shows improvement in classification tasks when sparse269

data representations are used. To improve sparsity in our data set, we applied an ad-270

ditional data processing step. Sparse autoencoders are able to transform the data into271
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a higher dimensional space, where it is possible to create hyperplanes that allow to sep-272

arate different clusters of points.273

Sparse autoencoders are a special kind of unsupervised neural networks. For an ex-274

planation on neural networks, we refer the reader to the notes of Ng et al. (2011). The275

underlying mathematics of autoencoders are the same as for neural networks. The spe-276

cial property of autoencoders is that the target values (X̂) are set equal to the input val-277

ues (X) (Hinton & Salakhutdinov, 2006): f : X → X̂, where X ≈ X̂. The model278

learns an approximation of the identity function. This may seem like a trivial task, but279

by placing constraints on the network interesting structures can be discovered.280

In a basic (vanilla) autoencoder, also called encoder-decoder, AE = {f, f ′}, the281

applied constraint consists to limit the number of nodes in an intermediary hidden layer282

to less than the number of input features of the model: the autoencoder functions are283

defined as f : X ∈ Rn → Z ∈ Rm, followed by f ′ : Z ∈ Rm → X̂ ∈ Rn, where284

n > m. A second autoencoder category corresponds to sparse autoencoders (Jiang et285

al., 2015), where the constraint is applied by forcing sparsity in the intermediary hid-286

den layer. In this case the dimension of the hidden layer does not have to be smaller than287

the input layer. This sparsity constraint ensures that only a few hidden nodes are allowed288

to be active at the same time, i.e. most of the hidden nodes will have a value of zero.289

Sparse autoencoders provide an information bottleneck without having to reduce the num-290

ber of nodes. This also means that low dimensional data sets can be projected into a higher291

dimension where sparsity is encouraged, allowing for a better differentiation between dif-292

ferent classes.293

4.3.2.1 Implementation Details The sparse autoencoder is implemented using294

Python, together with libraries Tensorflow (Abadi et al., 2015) and Keras (Chollet et295

al., 2015). Any kind of neural network learns by minimizing a cost, or loss function, ob-296

tained by comparing the output of the model with the expected output. The loss func-297

tion, Eq. 1, consists of two terms: (1) a reconstruction error and (2) a sparsity penalty.298

As reconstruction error the mean squared error is used. The sparsity penalty is a reg-299

ularization acting on the outputs of individual neural network nodes in the hidden layer.300

It penalizes the activation of the hidden nodes, a
(h)
i ∈ Z, using the L1-norm. In the spar-301

sity term of Eq. 1, λ is the pre-factor that determines the influence of the sparse regu-302

larization.303

L =
1

n

∑
i

(Xi − X̂i)
2 + λ

∑
i

∣∣∣a(h)i

∣∣∣ (1)
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The autoencoder is optimized following the traditional error minimization techniques used304

in classical neural networks. The optimization algorithm that we selected is the Adam (Kingma305

& Ba, 2015) technique. This is an extension to stochastic gradient descent that main-306

tains separate learning rates for each parameter.307

To determine the accuracy of the output the R-squared metric, Eq. 2 is used:308

R2 = 1−
∑N

i=1(Xi − X̂i)
2∑N

i=1(Xi −Xi)2
with Xi =

1

N

N∑
j=1

Xj (2)

To reduce the influence of the class imbalance, different weights have been assigned309

to the data samples corresponding to different flare classes. A weight of respectively 1,310

4, 16 and 64 has been assigned to classes No-flare, C-flare, M-flare and X-flare.311

In the Adam optimization algorithm one of the hyperparameters is the learning rate.312

This hyperparameter influences the speed at which the model converges towards the min-313

imum loss. The optimal learning rate is determined using the method introduced by Smith314

(2017). This method trains a network starting with a low learning rate, which is expo-315

nentially increased throughout the epochs (training cycles). The optimal learning rate316

corresponds to the fastest decrease in loss throughout the training. An additional method317

to determine the optimal learning rate is to run the algorithm for multiple values of the318

learning rate for a limited number of epochs, and to select one with the lowest valida-319

tion loss. In our work, the combination of these two optimization methods yields an op-320

timal learning rate of 0.0005.321

Our data set is split into three sub-groups: 60% training, 20% validation and 20%322

testing data. The split is performed using stratification, which means that in each data323

portion the percentage of each flare type is preserved.324

4.3.2.2 Architecture Optimization To find the optimal autoencoder architecture,325

three parameters need to be optimized: (1) the magnitude λ of the sparsity constraint,326

(2) the number of hidden nodes and (3) the activation function.327

If the sparsity pre-factor is too high, all hidden nodes will tend to produce values328

of zero; if this parameter is too small, no sparsity will be introduced. The optimal value329

of λ is obtained by finding a balance between the level of sparsity and the activity on330

the hidden nodes. The pre-factor needs to be set to ensure that only part of the nodes331

(less than the number of input nodes) are active at the same time, without leaving in-332

active nodes. This balance is found for λ = 0.1.333
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The most adequate architecture is selected by comparing the loss function between334

the training and the validation set. The optimal architecture contains one hidden layer335

with seven hidden nodes and uses SELU (Klambauer et al., 2017) activation function.336

4.3.2.3 Resulting Distributions The resulting optimal sparse autoencoder is used337

to increase the dimensionaliy, generating sparsity in the data set. The R-squared met-338

ric returns a value of 0.9942, indicating that the model is able to nearly perfectly mimic339

the original distributions. A two-dimensional projection of the distribution of each pair340

of parameters in the final data set is shown in Figure 3. This higher dimensional encod-341

ing of the data will be used for clustering in later sections.342

Figure 3: Distributions of the encoded data produced by the hidden layer of the sparse
autoencoder. The autoencoder includes one hidden layer, with seven neurons, and SELU
activation functions. The pre-factor λ for the activity regularization is set to 0.1.

4.4 Data Sampling343

Solar flare data is by definition largely imbalanced, since strong solar flares are scarce,344

affecting the classification results. Machine learning methods tend to favor the dominant345

class, which in our case corresponds to the non-flaring active regions. The four differ-346

ent flare activity classes are either over-sampled or under-sampled to construct a bal-347

anced data set with a similar amount of data points per flare class. A random under-348
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sampling of the No-flares was already presented in section 4, but the imbalance among349

flare classes is still large.350

4.4.1 Random Sampling351

Random sampling can be applied to either under-sample or over-sample data. The352

methods RandomUnderSampler and RandomOverSampler of the package imbalanced-learn353

(Lemâıtre et al., 2017) are used. Random under-sampling picks samples from the ma-354

jority classes without replacement, while over-sampling picks samples from the minor-355

ity classes with replacement. However, random over-sampling of the minority class can356

lead to duplication, which might lead to overfitting. Therefore an alternative over-sampling357

method is used.358

4.4.2 SMOTE Sampling359

The alternative Synthetic Minority Over-sampling TEchnique (SMOTE) (Chawla360

et al., 2002) technique is also included in the imbalanced-learn package. SMOTE does361

not duplicate any samples, but generates new data points by randomly selecting a mi-362

nority class instance (a), and then finding its k nearest neighbors. Subsequently, one of363

those k neighbors (b) is chosen at random and a synthetic example is created at a ran-364

dom point on the line segment between the instance (a) and its selected neighbor (b).365

4.4.3 Resulting Data Set366

It has been shown by Chawla et al. (2002) that the combination of SMOTE and367

under-sampling performs better than plain under-sampling. In our work the majority368

classes, No-flare and C-flare, are randomly under-sampled, while the minority classes,369

M-flare and X-flare, are over-sampled with SMOTE. Every class is sampled to 6000 sam-370

ples, making the data set balanced.371

5 Clustering372

We tested multiple clustering algorithms on the data set to classify the solar ac-373

tive regions based on their processed magnetic field parameters and found common as-374

pects among the corresponding active regions.375

Clustering is a machine learning method which groups data in subgroups that share376

similar properties (in our case, similar reduced magnetic field parameters). A good clus-377

tering method minimizes the intra-cluster distances, while maximizing inter-cluster dis-378

tances (Zhang & Tsai, 2005). The implementation and the way clusters are defined dif-379
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fer from method to method. Every method that is considered here is implemented with380

the scikit-learn package.381

5.1 k-Nearest Neighbors (supervised)382

k-Nearest Neighbors (KNN), explained in e.g. Cunningham and Delany (2007), is383

a supervised and instance-based clustering algorithm. It assumes similar objects exist384

in close proximity to the evaluated data point. The class of a data point is determined385

based on the most frequent class among its k nearest neighbors.386

The optimal number of neighbors k is the one that minimizes the error, the per-387

centage of wrong predictions, while maintaining the ability to make accurate predictions388

on new data. The method minimizes the loss on the validation data, without overfitting389

on the training data. In general, lower k makes the predictions less stable. Increasing390

the number of neighbors makes the predictions more stable due to averaging and there-391

fore more likely to produce reliable results. We selected the optimal k by performing the392

KNN algorithm for a range of k-values, fitting a fourth order polynomial to the corre-393

sponding error values and selecting the k corresponding to the minimum error.394

5.2 K-means (unsupervised)395

K-means (Lloyd, 1982; MacQueen, 1967) is an unsupervised, centroid-based clus-396

tering method and assumes that the clusters are spherical and equally sized. The method397

works best when the clusters are equally dense and not too contaminated by noise or out-398

liers. The clustering is achieved by iteratively assigning each data point to its nearest399

centroid and creating new centroids by computing the mean of each cluster.400

The optimal number of clusters is determined by a scree plot (Cattell, 1966), where401

the ‘knee’ point is associated to the optimum value, and corresponds to the inflection402

point of the curve. The position of this ‘knee’ is determined through the Kneedle algo-403

rithm (Satopaa et al., 2011). The scree plot is configured by computing the error for dif-404

ferent runs for a range of different number of clusters. A line is plotted between the first405

and last point of the curve and the distances between each point and the line are com-406

puted. The point with maximal distance between the two lines marks the maximum of407

curvature, i.e. the elbow.408

5.3 Gaussian Mixture Models (unsupervised)409

Gaussian Mixture Models (GMM) assume that all data points are generated from410

a mixture of Gaussian distributions and identifies for each data point the probabilities411

–16–



manuscript submitted to Space Weather

of belonging to each of the Gaussian distributions. This method allows the detection of412

more elongated clusters. The Gaussian distributions are approximated by the Expectation-413

Maximization method (Dempster et al., 1977). The GMM is a probabilistic method.414

To determine the number of clusters for GMM, several methods can be used. We

chose to use the gradient of the Bayesian Information Criterion (BIC). BIC (Schwarz,

1978) gives an estimation on how accurately the model represents the existing data, with

lower BIC value indicating a better estimation. BIC is defined in Eq. 3, with k the num-

ber of unknown model parameters (mean and variance for each cluster), n the number

of samples and L̂ the maximum likelihood.

BIC = k lnn− 2 ln L̂ (3)

A high number of clusters corresponds to low BIC scores, but the error curve shows an415

inflection point. This point can be found by checking the gradient of BIC. The optimal416

number of clusters is the point where the gradient no longer changes, i.e. when the sec-417

ond derivative is zero (Lavorini, 2018).418

6 Evaluation Methods419

To determine the quality of a clustering method a good evaluation method is es-420

sential. An Area Under the Curve Receiver Operating Characteristics (AUC-ROC) plot421

(Fawcett, 2006) is a good evaluation technique for supervised classification methods, when422

the data is severely imbalanced (Brownlee, 2020).423

ROC curves are in general used in binary classifications, but can be extended to424

multi-class data by using one-vs-rest for each class, which provides one ROC curve per425

class. The macro-average can be computed by taking the average of all ROC curves, treat-426

ing all classes equally.427

The ROC curve is a visual measure of the predictive quality of the model, that vi-428

sualizes the trade-off between sensitivity and specificity. The plot of a ROC curve dis-429

plays the True Positive Rate (TPR), see equation 4, on the y-axis and the False Posi-430

tive Rate (FPR), see equation 5, on the x-axis. These rates are computed for different431

thresholds. The threshold is the lowest probability necessary to be assigned to the pos-432

itive cluster.433

TPR =
TP

TP + FN
(4)
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FPR =
FP

TN + FP
(5)

An AUC score can be computed from the ROC, by computing the area under the434

curve. AUC is a measure of the ability of a classifier to distinguish between classes, where435

e.g. 0.7 means that in 70% of the cases the model is able to distinguish between the pos-436

itive and the negative class (Narkhede, 2018).437

In addition, the True Skill Statistic, also called the Hanssen score (Hanssen & Kuipers,438

1965), will be computed for the supervised clustering, see equation 6. The value of TSS439

lies between -1 and 1, with a higher value indicating a better forecast. This is one of the440

most used evaluation metrics to assess solar flare forecasts.441

TSS =
TP

TP + FN
− FP

FP + TN
=

TP

P
− FP

N
(6)

It is a lot harder to assess whether unsupervised clustering methods perform well,442

because no labels are present. A viable alternative are validation methods that check whether443

there is a high separation between clusters and a high cohesion within the clusters. Ex-444

amples of such metrics are the Calinsky-Harabasz (CH) coefficient (Caliński & Harabasz,445

1974) and the Silhouette coefficient (SC) (Rousseeuw, 1987). The Calinski-Harabasz co-446

efficient is defined as the ratio between the within-cluster dispersion and the between-447

cluster dispersion. This coefficient should be maximized. The Silhouette coefficient is com-448

puted, for each sample, using: (a) the mean inter-cluster distance, and (b) the mean nearest-449

cluster distance. The formula is given in equation 7. The final Silhouette score is found450

by computing the mean over all samples. The best value is 1, the worst is −1 and val-451

ues near 0 indicate that the clusters overlap. If the value is negative it is generally an452

indication that samples are assigned to the wrong cluster, as it is found that a different453

cluster is more similar.454

SC =
b− a

max(a, b)
(7)

7 Results455

Figure 4 shows the mean value and standard deviation of each of the seven reduced456

parameters, for each flare class. In general, the parameters are very similar for all flar-457

ing active regions (C, M and X-flares). X-flare classes present only slight differences with458

respect to the other flaring classes. Parameters H2, H5 and H6 have a larger absolute459

mean value for these stronger flare classes. The mean value of the data without flares460
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(No) is clearly different. It can be expected that flaring active regions will be distinguish-461

able from non-flaring active regions, while distinguishing between the different flare classes462

may be more challenging with the available data.463

Figure 4: Mean and standard deviation of the features resulting from the sparse autoen-
coder, per flare label. The flaring data looks very similar, while the non-flaring data has
distinct parameter values.

7.1 Supervised (KNN)464

In our work the hyperparameter selection for KNN was based on the data set be-465

fore the sampling procedure used in section 4.4, to avoid using under-/over-sampled data466

points. Performing the hyperparameter selection on the sampled data yields an optimal467

number of neighbors of one, which leads to unstable results. By applying the hyperpa-468

rameter selection on the data set before sampling, we find an optimal number of neigh-469

bors of ten. To validate this selection method, the KNN clustering is conducted multi-470

ple times, testing the use of one, three, six and ten nearest neighbors. The resulting ROC471

curves are shown in Figure 5. These figures show that when more neighbours are taken472

into account for the clustering, the results improve, producing a higher value for the area-473

under-the-curve. This is the case for the macro-average along the whole data set, as well474

as for the individual flare types. This shows that taking only one neighbor into account475

would not have been optimal. The differences between the results with three, six and476

ten neighbors are not too large.477
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Figure 5: AUC ROC plot of the results of KNN, performed on the sampled data set, for
varying number of neighbors.

Figure 6 shows the normalized confusion matrices for the clustering of KNN. On478

the x-axis the figure shows the predictions and on the y-axis the true classes. On the left479

panel we present the results using one nearest neighbor, and on the right panel the re-480

sult when ten neighbors are considered. The largest difference is observed in the num-481

ber of C-flares that are classified correctly. When more neighbors are taken into account,482

the C-flares are more often misclassified as larger M- and X-flares. On the other hand,483

when more neighbors are taken into account, C-flares are less often misclassified as non-484

flaring. The fact that the C-flares are more often misclassified as stronger flares is not485

necessarily a bad thing. For flare prediction, we are most interested in recognising the486

strongest flares. Therefore, it could be considered better to have a prediction method487

that is more likely to overestimate the strength of a flare, than to underestimate the strength488
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of a flare. However, false warnings will lessen the trust of the industry in flare predic-489

tions, so ideally we want to minimize both the false positives and the false negatives.490

The percentage of true positives for each flare type is higher when only one neigh-491

bor is taken into account versus when ten neighbors are taken into account. While the492

results with one neighbor might look better on this figure, they are unstable and more493

influenced by the artificial data introduced by the sampling.494

Figure 6: Normalized confusion matrices of the results of KNN with (left) only one near-
est neighbor and (right) ten nearest neighbors taken into account.

Focusing on the confusion matrix in the right panel of Fig. 6, the following con-495

clusions can be made: almost all of the X-flares are correctly identified. However, this496

is probably influenced by the over-sampling of the X-flares by a factor of approximately497

160. 87% of the true M-flares are correctly identified. This high percentage is also some-498

what influenced by the over-sampling. When M-flares are misclassified, it is ∼ 37% of499

the time as an X-flare and ∼ 61% of the time as a C-flare. 76% of the non-flaring ac-500

tive regions are correctly classified as well. This is quite a good result, considering that501

this class is largely under-sampled. The non-flaring active regions are most of the time502

mistaken for C-flares. Finally, the C-flares turn out to be hardest to distinguish, with503

only 50% of the active regions correctly identified as C-flares. They are ∼ 58% of the504

time overestimated as M-flares, ∼ 19% of the time as X-flares and ∼ 22% of the time505

underestimated as non-flaring. The flares are mostly mistaken for their neighboring classes,506

in terms of X-ray flux strength. This indicates that the clusters are partly overlapping.507

The TSS has been calculated for each of the flare types separately. A TSS of 0.93508

is found for the X-flares, 0.75 for the M-flares, 0.42 for the C-flares and 0.72 for the non-509

flaring active regions.510
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7.2 Unsupervised (K-means + GMM)511

Unsupervised clustering methods are more useful in practice, since there is not al-512

ways information present about the flaring nature of an active region. These methods513

do not take into account the information about the X-ray flux, but only the reduced mag-514

netic field parameters. For both unsupervised methods used in this work (K-means and515

GMM) the number of clusters needs to be determined using a hyperparameter optimiza-516

tion technique, as described in sections 5.2 and 5.3. For K-means an optimal number of517

four (4) clusters is found, while GMM has an optimal number of three (3) clusters.518

Table 3 shows the Calinski-Harabasz (Caliński & Harabasz, 1974) and Silhouette519

(Rousseeuw, 1987) coefficients, which evaluate the clusters found through K-means and520

GNN. The first one should be maximized, while the latter should be as close to 1 as pos-521

sible. Both coefficients indicate that K-means does a better job at clustering the data.522

However, a relatively low Silhouette score of 0.25 indicates that the clusters are either523

not very well separated or the points within a cluster are distributed relatively far apart.524

The possibility that the clusters are overlapping was already mentioned in the previous525

section.526

Table 3: Evaluation coefficients for K-means and GNN.

K-means GMM

Calinski-Harabasz 7506 1886
Silhouette 0.25 0.12

With unsupervised machine learning methods no confusion matrix can be constructed,527

since no labels are used. However, we have already access to the expected flare classi-528

fication in the data set. These values are not used to train the unsupervised clustering529

algorithms. We used this information to evaluate the accuracy of the automatic unsu-530

pervised classification with respect to the expected flare classes. The resulting visual-531

ization is shown in Figure 7, where for each of the two clustering algorithms the percent-532

age of each flare included in each of the clusters is shown. Normalization is performed533

per flare type.534

Analyzing the clusters of K-means learns us that 66% of the non-flaring active re-535

gions are included in Cluster 3. Cluster 3 also includes 17% of the C-flares, 12% of the536

M-flares and 5% of the X-flares. This cluster can be considered as one with mostly non-537

and weakly-flaring active regions. If an active region is classified in Cluster 3, chances538

are thus relatively low that it is a strong flare. Clusters 1, 2 and 4 contain less non-flaring539
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active regions, respectively 14%, 7% and 12%. They do contain more of the flaring ac-540

tive regions. Cluster 2 contains ∼ 40% of each of the flare types. Cluster 4 contains ∼541

40% of the X-flares and only ∼ 20% of the C- and M-flares. Cluster 1 also contains flar-542

ing active regions, with more C- and M-flares than X-flares. Since all four clusters con-543

tain a significant fraction of all four flare types, there is no way to determine with cer-544

tainty the type of flare, based on this clustering of the active regions. What one could545

conclude from these results is that an active region that is classified in Cluster 3 is most546

likely to be non-flaring or weakly flaring. On the other hand, an active region that is clas-547

sified in Cluster 4 has a higher probability to be an X-flare, since these are most abun-548

dantly present. If an active region is classified in Cluster 2, it is very probable to be flar-549

ing, but nothing can be concluded about the type of flare. Finally, if an active region550

is classified in Cluster 1, it is most probable to produce a C- or M-flare.551

The resulting clusters found with GMM are visualized in Figure 7 on the right. Clus-552

ter 3 contains 52% of the non-flaring active regions and 14 to 18% of the flaring active553

regions. Meanwhile, Cluster 2 contains 34% of the non-flaring active regions and 8 to554

18% of the flaring active regions. Active regions that are classified into Cluster 2 and Clus-555

ter 3 have thus a relatively large probability to be non-flaring. This statement can be556

made stronger when the probabilities to belong to multiple clusters are analysed. If an557

active region has a high probability to belong to both Cluster 2 and Cluster 3, it is highly558

probable to be non-flaring. Cluster 1 contains only 14% of the non-flaring active regions559

and 68 to 78% of each of the flaring active regions. This cluster is thus a good one to560

identify flaring active regions.561

In each of the clusters found with GMM, the percentage of each of the different types562

of flaring active regions is very similar. Therefore, in contrast to K-means, the cluster-563

ing with GMM is not able to distinguish the strength of the flares.564

To get a more quantitative analysis, Figure 8 is a useful addition to 7. They show565

the same data, but in Figure 8 the normalization is performed per cluster. Therefore,566

this visualisation can be used to determine the probability that an active regions is of567

a certain flare type if it belongs to a certain cluster. We clarify this by giving a few ex-568

amples. When an active regions is assigned to Cluster 3 by the K-means algorithm, it569

is with 66% probability non-flaring, with 17% a C-flare and with 12% probability an M-570

flare. An active regions that is assigned to Cluster 2 by K-means will with 94% prob-571

ability (31% + 33% + 30%) be flaring, with approximately equal probability to be a C-572

flare, M-flare or X-flare. If an active region belongs to Cluster 1, found with GMM, there573

is only a 6% chance that it is not flaring. However, when the active region is assigned574
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Figure 7: Clustering results of K-means (left) and GMM (right) on the sampled data set.
The percentage of each flare included in each of the clusters is shown, where normaliza-
tion is performed per flare type.

to Cluster 2 or 3 by GMM, there is respectively a chance of 48% and 53% that there are575

no flares coming out of this active region.576

Figure 8: Clustering results of K-means (left) and GMM (right) on the sampled data set.
The percentage of each flare included in each of the clusters is shown, where normaliza-
tion is performed per cluster.

8 Discussion577

8.1 Data Processing578

In section 4.3.1, we found with Common Factor Analysis that almost all of the in-579

formation included in the 24 magnetic field parameters could be reduced to only five fac-580

tors. This is because a lot of the initial parameters were strongly correlated, and do not581
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add any additional information. It is possible then to construct a smaller data set, with582

only the most useful parameters, containing different distributions for different flare types.583

This redundancy due to intrinsic correlations between the parameters was also mentioned584

previously in Bobra and Couvidat (2015) and Barnes et al. (2016).585

8.2 Active Region Classification586

The supervised clustering method (KNN) has good performance for the M- and587

X-flares, as well as for the non-flaring active regions. The performance on the C-flares588

is less accurate, since they are often confused with M-flares and non-flaring active regions.589

This is probably because their magnetic field parameters are similar to the ones of both590

the non-flaring data and the M-flares, and their distributions tend to overlap.591

With unsupervised clustering (K-means and GMM), non-flaring active regions can592

be distinguished from flaring active regions. To distinguish between the different flar-593

ing active regions is a lot harder. The resulting clusters from K-means show that it is594

possible to make a distinction between an active region producing strong flares from ac-595

tive regions producing weak flares, but there is still a lot of uncertainty in the distinc-596

tion among the different flaring energy levels.597

The difficulty of differentiating between the flare types is inherent to the data it-598

self, as predicted by analysis of Figure 4. The parameters are very similar for all flar-599

ing active regions. Therefore, there is not enough information in the data set for the tech-600

nique to identify clear differences between C-flares, M-flares and X-flares. Integrating601

more information into the analysis could provide a clearer distinction. The vector mag-602

netic field data alone is not fully representative of the activity in the whole active region.603

For example, the maximal difference in magnitude of the magnetic field over the active604

region could provide valuable information. In future research, the magnetic field param-605

eters should be combined with other features, created through good feature engineer-606

ing from the original images, for example through edge detection or with variational au-607

toencoders. More data can be included by taking into account EUV observations, at mul-608

tiple wavelenghts, of the same region.609

An extension to the use of the magnetic field parameters is to study their evolu-610

tion, through time series. The variation of the magnetic field in anticipation of the re-611

lease of a flare will provide valuable information, being probably more significant for strong612

flares than for weak flares. The use of time series can also help to distinguish the nat-613

ural variability of the solar magnetic field from a sudden change in the magnetic field614

due to flare formation.615
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The difficulty of differentiating C-, M- and X-flares is also caused by the arbitrary616

boundaries of the classes, determined by their peak X-ray flux. A C9-flare is very sim-617

ilar to an M1-flare, but they were for this work considered as strictly different classes of618

flares. The difference between background radiation (non-flaring active regions) and weak619

C-flares can be very small as well. The strength of flares is a continuous parameter, but620

was here treated as strictly discrete.621

Rather than trying to cluster C-, M- and X-flares separately, trying to distinguish622

flaring from non-flaring, or weakly flaring from strongly flaring active regions might yield623

more accurate results. But still the problem remains that an artificial boundary needs624

to be set in the continuous domain.625

Strongly flaring active regions could also be identified as regions with parameter626

values significantly larger than the mean or median value. Both Sun et al. (2022) and627

Bobra and Couvidat (2015) tried to identify flaring active regions based on a training628

set containing only active regions that were either non-flaring or strongly flaring. All ac-629

tive regions that produced C-flares were eliminated. This makes it easier to distinguish630

flaring from non-flaring active regions. However, for flare prediction, in real-time data631

the C-flares can not be eliminated and need to be classified correctly as well.632

In future research, it could be useful to only consider flaring data. When both non-633

flaring and flaring data is taken into account, regions with complex and intense magnetic634

fields are compared against completely quiet regions. This might give the impression that635

all flaring active regions have similar properties. It is possible that they do appear more636

distinct when only compared against each other.637

9 Conclusion638

Throughout this work detailed data cleaning and parameter transformation was639

conducted to enhance the quality of the Angryk data set and improve the classification640

results. Supervised clustering, with KNN, is able to distinguish the M- and X-flares, with641

respectively 99% and 87% correctly identified. However, only half of the C-flares are ac-642

curately classified. Unsupervised clustering, with K-means and GMM, identifies clusters643

with mainly non-flaring active regions and clusters with mainly flaring active regions.644

However, the clusters contain a mixture of weakly-flaring and strongly-flaring active re-645

gions. There is no clear hyperplane in the SHARP parameter space that can separate646

active regions with different flaring activity. For future projects, additional information647

should be included, like time series, different parameters - indicating e.g. the topology648

of active regions - or images of the active regions.649
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Open Research650

This research uses the open source data set SWAN-SF of Angryk et al. (2020b).651

For more information we would like to refer the reader to the respective paper (Angryk652

et al., 2020a). The data is available for download through: https://dataverse.harvard653

.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EBCFKM.654

The code used to perform all data transformations and generate the clustering re-655

sults is completely written in Python 3.10, and is accessible on Gitlab: https://gitlab656

.com/hanneb/clustering ar sf hbaeke.git (Baeke, 2022).657
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Key Points:6

• SHARP parameters of solar active regions contain redundant information that can7

be reduced to five parameters using Common Factor Analysis.8

• Unsupervised classification allows to differentiate inactive regions, from C/M flar-9

ing active regions, and extremely active X-flare regions.10

• We detect no clear boundaries in the reduced parameters between different lev-11

els of moderate flaring activity.12
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Abstract13

We devised a new data analysis technique to identify the threat level of solar active re-14

gions by processing a combined data set of magnetic field properties and flaring activ-15

ity. The data set is composed of two elements: a reduced factorization of SHARP prop-16

erties of the active regions, and information about the flaring activity at the time of mea-17

surement of the SHARP parameters. Machine learning is used to reduce the data and18

to subsequently classify the active regions. For this classification we used both super-19

vised and unsupervised clustering. The following processing steps are applied to reduce20

and enhance the SHARP data: outlier detection, redundancy elimination with common21

factor analysis, addition of sparsity with autoencoders, and construction of a balanced22

data set with under- and over-sampling. Supervised clustering (based on K-nearest neigh-23

bors) produces very good results on the strong X- and M-flares, with TSS scores of re-24

spectively 0.93 and 0.75. Unsupervised clustering (based on K-means and Gaussian Mix-25

ture Models) shows that non-flaring and flaring active regions can be distinguished, but26

there is not enough information in the data set for the technique to identify clear dif-27

ferences between the different flaring levels. This work shows that the SHARP database28

lacks information to accurately make flaring predictions: there is no clear hyperplane in29

the SHARP parameter space, even after a detailed cleaning procedure, that can sepa-30

rate active regions with different flaring activity. We propose instead, for future projects,31

to complement the magnetic field parameters with additional information, like images32

of the active regions.33

Plain Language Summary34

One of the main sources of space weather activity are solar active regions. In these35

zones the magnetic activity of the Sun is increased and can produce the two most en-36

ergetic events in the solar system: flares and coronal mass ejections. We investigate the37

magnetic field properties of active regions, and the amount of energy they release. Our38

end goal is to produce an automatic model that can forecast the energy level released39

by a flare from solar active regions, using only their current magnetic field properties.40

For this study, we used machine learning techniques that recognize patterns in data,41

without being explicitly told what to look for. These techniques can sometimes find pat-42

terns that escape the human intuition. The technique classifies different active regions,43

based on their magnetic properties, identifying those that can release large amounts of44

energy in the near future.45
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Our technique is able to discover differences between flaring and non-flaring active46

regions. But the data contains not enough information to predict how strong the energy47

releases will be. Therefore, improvement is still needed since we want to identify the strongest,48

most dangerous energy releases. Future research should incorporate other data types to49

get better results.50

1 Introduction51

Solar flares pose a serious threat to the near-Earth environment. They can produce52

streams of highly energetic particles, which can affect the Earth’s magnetosphere within53

a few hours or minutes (Cinto et al., 2020). These particles pose radiation hazards to54

astronauts and spacecrafts (Mikaelian, 2009). Flares are also associated with radio com-55

munication disruptions (Knipp et al., 2016; Redmon et al., 2018), and the associated high56

energy particles can ionize our atmosphere at low altitudes (Liu et al., 2021). The largest57

flares are often accompanied by coronal mass ejections (CMEs). Kawabata et al. (2018)58

show that CMEs are associated with approximately all events whose X-ray flux is larger59

than 10−3.9Wm−2, which correspond to the X-flares. These CMEs can trigger geomag-60

netic storms, which can disable satellites (Dang et al., 2022) and even knock out elec-61

trical power grids (Pulkkinen et al., 2005). Should such a large storm happen nowadays,62

it would have catastrophic results, causing considerable economic damage. For exam-63

ple, the 1977 New York City blackout cost is estimated at $624 million dollars (Sorkin,64

1982). A similar event today would have an even higher cost. Forecasting solar energetic65

activity is a critical topic in space weather research.66

The differentiation of solar active regions very often involves the use of sunspot clas-67

sifications - Mount Wilson (Hale et al., 1919) and McIntosh (McIntosh, 1990) - which68

are still performed manually. These classes are based on human observations in the vis-69

ible light spectrum. This leads to inference of the subjectivity of the experts. Moreover,70

the visible light spectrum provides very limited information regarding the critical prop-71

erties of solar active regions. Today it is possible to automatize the classification of so-72

lar active regions, reducing the influence of human bias. This will allow to produce fast73

solar flare forecasting systems.74

This work focuses on the development of an unsupervised classification of solar ac-75

tive regions, using machine learning, and on their relation to their (non-)flaring activ-76

ity. The classification is based on the SHARP parameters, extracted from SDO HMI ob-77

servations of the magnetic field of active regions. A detailed processing of the SHARP78

data is performed to achieve the best possible results from unsupervised classification79
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techniques. Therefore, these processing steps are also discussed with care throughout this80

paper.81

There have been multiple previous attempts to build an automated classification82

of active regions. However, most of these studies tried to automate the existing McIn-83

tosh or Mount-Wilson classifications, e.g. (Colak & Qahwaji, 2008; Maloney & Gallagher,84

2018; Nguyen et al., 2006; Smith et al., 2018). These studies applied machine learning85

on solar images, often combined with automatic sunspot detection. The machine learn-86

ing methods used in the literature include neural networks, k-nearest neighbors, Sup-87

port Vector Machines (SVMs), Random Forest and layered learning. In most cases, the88

percentage of correct classifications depends strongly on the specific class and on the amount89

of data available. The results of Colak and Qahwaji (2008) for example show results with90

a percentage of correct classifications between ∼ 40% and ∼ 85%.91

Housseal et al. (2019) performed unsupervised classification of sunspots, however,92

the authors did not use the magnetic field parameters: they used instead HMI magne-93

togram images to look for patterns in the sunspots connected to the active regions.94

Recently, multiple papers have used the SHARP magnetic field parameters to con-95

struct solar flare prediction algorithms based on machine learning, e.g. (Abduallah et96

al., 2020; Bobra & Couvidat, 2015; Chen et al., 2019; Ilonidis et al., 2015; Jiao et al., 2020;97

Jonas et al., 2018; Liu et al., 2017; Ran et al., 2022; Sinha et al., 2022; Sun et al., 2022;98

Wang et al., 2020; Zhang et al., 2022). The methods used include Random Forest, MLPs,99

extreme learning machines, LSTMs, CNNs, SVMs, etc. Ilonidis et al. (2015) used time100

series of the SDO magnetic field data and constructed SVMs to forecast solar flares, which101

yielded a True Skill Score of 91%. Bobra and Couvidat (2015) also used SVMs on SHARP102

data, to distinguish between flare producing active regions and non-flare producing ac-103

tive regions. The authors did not include C-flares, which simplified the distinction be-104

tween flaring and non-flaring active regions. Sun et al. (2022) focused on the prediction105

of M- and X-flares versus flare-quiet instances. They discarded all C-flares and lower from106

their data set. Jiao et al. (2020) took a different approach and applied machine learn-107

ing on the SHARP parameters to identify the flare intensity, a continuous variable, in-108

stead of the discrete solar flare types.109

A number of studies have investigated the importance of each of the SHARP pa-110

rameters for solar flare prediction (Ran et al., 2022; Sinha et al., 2022; Zhang et al., 2022).111

They found that the most influential SHARP parameters are TOTUSJH, TOTUSJZ, MEANPOT,112

TOTPOT, USFLUX and R VALUE. See Table 1 for the physical meaning of these parameters.113
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A new data set has been created by Bobra et al. (2021), called SMARPs. These114

are similar to SHARPs, but constructed from the solar images taken by MDI of SOHO.115

It attempts to extend backwards the SHARP database to the more active Solar Cycle116

23. However, the SMARPs do not include as much information as the SHARPs and the117

data quality is lower (Sun et al., 2022).118

Some studies combined the SHARP magnetic field parameters with features that119

are automatically generated from the solar images with machine learning methods, e.g120

(Chen et al., 2019; Jonas et al., 2018). Chen et al. (2019) compared the results of LSTM121

models trained on the SHARP data and on autoencoder-derived features and found that122

they were very similar. Therefore, the autoencoder-derived features could be a viable al-123

ternative for the SHARP parameters.124

The goal of the present work is to classify the flaring activity of solar active regions,125

based only on the SHARP parameters extracted from the SDO HMI instrument. We ap-126

ply rigorous and comprehensive pre-processing techniques to extract as much useful in-127

formation as possible from the SHARP database. The results will inform us if there is128

enough information in the data to perform flare forecasts. While many of the classifi-129

cation methods used in the literature are based on supervised learning, we use unsuper-130

vised clustering to allow the computer to extract patterns unknown to the human ex-131

perts. We show how the unsupervised classes that we obtain correlate with the flaring132

activity of active regions. In this work we also try to distinguish the different levels of133

flaring activity, whereas most studies are limited to the prediction of binary classes, only134

finding differences between flaring and non-flaring data.135

The paper is structured as follows. Active regions and solar flares are briefly in-136

troduced in section 2. Section 3 discusses the data used, followed by section 4, which ex-137

plains the data processing methods and results. Sections 5 and 6 introduce the cluster-138

ing methods and types of evaluation. The clustering results are shown in section 7, fol-139

lowed by the discussion in section 8. Finally, section 9 summarizes the main conclusions140

of the research results.141

2 Active Regions and Solar Flares142

Solar active regions are large areas on the Sun where the magnetic activity tem-143

porarily and locally increases. The magnetic field there is complex and intense. Mag-144

netic fields in active regions can be a thousand times stronger than the average solar mag-145

netic field of a few Gauss (Sheeley, N.R., 2020). The number of active regions observed146
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in the solar disk varies over the course of the solar cycle and are most common during147

its peak.148

A solar flare is a sudden, intense brightening of a small area on the Sun, lasting min-149

utes to a few hours. Flares occur in the solar corona when magnetic field lines of oppo-150

site polarity are forced together, by the convective motion of their foot-points in the con-151

vection zone, or by travelling coronal pressure waves. This causes magnetic reconnec-152

tion, a sudden transformation of magnetic energy into kinetic and thermal energy. Streams153

of highly energetic particles travel along magnetic field lines, generating high intensity154

electromagnetic radiation on their path and during their interaction with matter. So-155

lar flares typically erupt from solar active regions, because their complex and intense mag-156

netic field is the perfect locus of magnetic reconnection (Priest & Forbes, 2002).157

Flares are classified according to the strength of their soft X-ray emission, as recorded158

by the GOES satellites located in geostationary orbit. The following is a list of the flare159

classes in order of exponentially increasing magnitude: A, B, C, M and X. Strong solar160

flares occur very infrequently, compared to weak solar flares. Therefore, solar flare data161

is by definition largely imbalanced. This always has to be taken into account during the162

processing of the data and the interpretation of the results.163

3 Data Set164

The open source data set of Angryk et al. (2020b) is used for this research. The165

authors developed a data set (henceforth called the Angryk data set), extracted from the166

Space Weather HMI Active Region Patch series (SHARP) (Bobra et al., 2011), integrated167

with information from solar flare catalogs. These SHARP patches and their magnetic168

field parameters are derived from solar photospheric vector magnetograms obtained by169

the Helioseismic and Magnetic Imager (HMI) from the Solar Dynamics Observatory (SDO).170

The HMI instrument provides information on the magnetic field in the solar photosphere.171

These observations are bundled in patches for each active region. Magnetic field param-172

eters are extracted from these patches and integrated over the whole area. They give an173

indication of the magnetic activity of the complete patch.174

The Angryk data set contains sixteen SHARP parameters and eight additional pa-175

rameters proposed by Angryk et al. (2020a). These 24 parameters are listed in Table 1.176

The data set also contains parameters BFLARE, CFLARE, MFLARE and XLFARE. These ex-177

press the number of flares of each flare class occurring at the time of measurement of the178

SHARP and therefore indicate the concurrent solar flare activity of that active region.179

For simplicity, in this work, each data point has been assigned to only one of four classes:180
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No-flare, C-flare, M-flare or X-flare. These correspond to the strongest occurring flare181

originating from the active region at that time. The No-flare class signifies the flare-quiet182

instances, but also the weakest, A- and B-class, flares. This because the A- and B-flares183

are hard to distinguish against the background brightness of the Sun (Chen et al., 2019).184

The assignment of flare types to the data points leads to the following ratio: 2 602 509185

No-flares, 6717 C-flares, 680 M-flares and 47 X-flares. The data was collected between186

May 2010 and December 2018. This corresponds with solar cycle 24 (December 2008 -187

December 2019) and includes the solar maximum in April 2014. This solar cycle was an188

unusual quiet one, and the data set contains only few strong flares. The Angryk data189

set is meant to serve as a benchmark data set for testing flare prediction algorithms (Angryk190

et al., 2020a).191

4 Data Processing192

Some pre-processing of the data set was already carried out by Angryk et al. (2020a).193

Further processing includes outlier removal, data transformation and dimensionality re-194

duction. These steps are explained in more detail in the following sections.195

There is a large class imbalance present in the data set, with 2 602 509 No-flares,196

6717 C-flares, 680 M-flares and only 47 X-flares. This class imbalance needs to be taken197

into account when processing the data. To reduce the impact of class imbalance, in this198

work the No-flare class is randomly under-sampled to 50 000 No-flares. This is done by199

randomly selecting 50 000 data points from the 2 602 509 No-flares, without selecting200

the same data point twice.201

The selected number of No-flares is determined after multiple tests of the autoen-202

coding procedure, described in section 4.3.2, the most data-intensive processing step in203

this work. In short, in an autoencoder a compression and decompression of the data set204

is performed, and the active region properties before and after the procedure should be205

exactly the same. We applied the procedure with different sample sizes. For each case206

the error is computed. When the sample size is too small, the error is large. Increasing207

the size of the sample reduces the error. A plot of the sample size versus the error presents208

an optimal inflection point, which in this work corresponds to the selected sample size:209

50 000 data points are sufficient to obtain an accuracy comparable to the full 2 602 509210

data points.211

In section 4.4 we show how we handle additional class imbalances using over- and212

under-sampling techniques.213
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Table 1: Magnetic field parameters from Angryk et al. (2020b). Parameters with * are derived by
Angryk et al. (2020a), the others are contained in SHARP. Units from Liu et al. (2017) and SDO.

Parameters Description Formula

ABSNJZH [10G2/m] Absolute net current helicity Hcabs
∝ |

∑
Bz · Jz|

EPSX* [−10−1] Sum normalized Lorentz force (X) δFx ∝
∑

BxBz∑
B2

EPSY* [−10−1] Sum normalized Lorentz force (Y) δFy ∝ −
∑

ByBz∑
B2

EPSZ* [−10−1] Sum normalized Lorentz force (Z) δFz ∝
∑

(B2
x +B2

y −B2
z )∑

B2

MEANALP [1/Mm] Mean twist parameter αtotal ∝
∑

Jz ·Bz∑
B2

z

MEANGAM [◦] Mean inclination angle γ =
1

N

∑
arctan

(
Bh

Bz

)

MEANGBH [G/Mm] Mean horizontal field gradient ∇Bh =
1

N

∑√(
∂Bh

∂x
+

∂Bh

∂y

)

MEANGBT [G/Mm] Mean total field gradient ∇Btot =
1

N

∑√(
∂B

∂x
+

∂B

∂y

)

MEANGBZ [G/Mm] Mean vertical field gradient ∇Bz =
1

N

∑√(
∂Bz

∂x
+

∂Bz

∂y

)
MEANJZD [mA/m

2
] Mean vertical current density Jz ∝ 1

N

∑(
∂By

∂x
− ∂Bx

∂y

)
MEANJZH [G2/m] Mean current helicity Hc ∝

1

N

∑
Bz · Jz

MEANPOT [103ergs/cm
3
] Mean photospheric excess mag-

netic energy density
ρ ∝ 1

N

∑
(BObs −BPot)2

MEANSHR [◦] Mean shear angle Γ =
1

N

∑
arccos

(
BObs ·BPot

|BObs||BPot|

)
R VALUE* [Mx] Total unsigned flux around high

gradient polarity inversion lines
ϕ =

∑
|Blos| · dA (within R mask)

SAVNCPP [1012A] Summed absolute value of net cur-
rent per polarity

JΣz ∝
∣∣∣∑B+

z JzdA
∣∣∣+ ∣∣∣∑B−

z JzdA
∣∣∣

SHRGT45 [%] Area with shear angle > 45◦
Area with Shear > 45◦

Total Area

TOTBSQ* [1010G2] Total magnitude of Lorentz force F ∝
∑

B2

TOTFX* [−1023dyne] Sum X-component of Lorentz force Fx ∝
∑

BxBzdA

TOTFY* [−1023dyne] Sum Y-component of Lorentz force Fy ∝
∑

ByBzdA

TOTFZ* [−1023dyne] Sum Z-component of Lorentz force Fz ∝
∑(

B2
x +B2

y −B2
z

)
dA

TOTPOT [1023ergs/cm
3
] Total photospheric magnetic en-

ergy density
ρtot ∝

∑(−−−→
BObs −

−−−→
BPot

)2

dA

TOTUSJH [102G2/m] Total unsigned current helicity Hctotal
∝

∑
Bz · Jz

TOTUSJZ [1012A] Total unsigned vertical current Jztotal
=

∑
|Jz|dA

USFLUX [1021Mx] Total unsigned flux ϕ =
∑

|Bz|dA
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4.1 Outlier Removal214

Multiple entries in the data set contain one or more empty properties (NaN val-215

ues). We eliminate from the original data set every entry where at least one of the prop-216

erties was empty. We also perform a detection and elimination of outliers. These were217

identified using the hierarchical clustering algorithm HDBSCAN. This method is able218

to automatically choose the optimal clustering of a cloud of points in an N-dimensional219

space. The points that are detached from the core cloud of points are identified as out-220

liers. A more detailed explanation of HDBSCAN can be found in Campello et al. (2013).221

With this technique 586 outliers were found. About 20% of the outliers come from222

HMI magnetogram images taken during rotation or re-positioning of the SDO spacecraft,223

causing distortions in the data.224

In addition, 36 outliers were identified and removed by hand. Thirty-three of these225

additional outliers were due to the same parameter, MEANPOT. The other three were due226

to the parameter TOTFZ. The fact that they were missed by HDBSCAN is probably due227

to a combination of the standardization and some extreme outliers. The standardiza-228

tion transforms the data to zero mean and to unit variance. If there are a few extreme229

outliers, this will shift the majority of the data to very small values. Because this is not230

the case for the other parameters, there is a difference of ∼ 2−3 orders of magnitude,231

which hinders HDBSCAN to detect all outliers.232

4.2 Data Transformation233

To be able to differentiate groups of points in the parameter space, it is necessary234

to identify high concentrations of points that can be separated by a hyper-plane. An ini-235

tial visual inspection of the distribution function of each one of the parameters can show236

if there are peaks and valleys in the distribution that clearly separate active regions with237

different properties. Some of the parameters have a very small spread of values among238

all the active regions. Unsupervised clustering techniques have difficulties identifying mul-239

tiple clusters in unimodal distributed parameters, since this would only lead to one clus-240

ter. We applied transformations to some of the parameters to perform a rebinning of the241

data distributions. This is one of the procedures known in machine learning as ‘feature242

engineering’. The transformations used are listed in Table 2.243

Figure 1 shows the difference a good transformation can make, and how this can244

improve clustering. After a logarithmic transformation two peaks are visible, while be-245

fore there is only one very large one.246
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Table 2: Data transformations used to expand some very narrow distributions.

Parameter (Table 1) Transformation

TOTUSJH ln(x+ |min(x)|+ 0.01)

TOTBSQ ln(x+ |min(x)|+ 0.01)

TOTPOT ln(x+ |min(x)|+ 0.01)

TOTUSJZ ln(x+ |min(x)|+ 0.01)

ABSNJZH ln(x+ |min(x)|+ 0.01)

SAVNCPP ln(x+ |min(x)|+ 0.01)

USFLUX ln(x+ |min(x)|+ 0.01)

MEANPOT ln(x+ |min(x)|+ 0.0001)

TOTFZ ln(−x+ |max(x)|+ 0.01)

TOTFY ln(|x|)
TOTFX ln(|x|)

Figure 1: Example of two transformations of the parameter TOTUSJH (left). While the
root squared transformation produces a better coverage of the distribution (centre), the
transformation of the bins with the natural logarithm (right) yields a distribution more
useful for clustering.

4.3 Dimensionality Reduction247

High-dimensional data is computationally expensive to process. If possible, it is im-248

portant to reduce the number of dimensions. In addition, clustering methods and other249

techniques based on the calculation of distances in an Eulerian space are subject to the250

‘curse of dimensionality’: in high dimensions every point tends to be equidistant to each251

other point. Moreover, we want to reduce high correlations by removing redundant fea-252

tures. Figure 2 (left) illustrates the presence of correlations between the magnetic field253

parameters. This is not surprising, since they often depend on the same magnetic co-254
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efficients, e.g. Bz and Jz (see Table 1). These redundant features do not add any rel-255

evant information and may hinder the learning algorithm, possibly causing overfitting256

(Yu & Liu, 2004). To mitigate this problem, we applied Common Factor Analysis (Spearman,257

1904) (CFA) to our data set.258

4.3.1 Common Factor Analysis259

Common Factor Analysis (CFA) is a technique which searches for latent, unobserved260

variables, called factors, from a set of observed variables. The package FactorAnalyzer261

of (Biggs, 2019) is used. The number of factors is determined with the help of Horn’s262

Parallel Analysis (Horn, 1965). Figure 2 (right) shows the resulting factor loadings, a263

measure of how much a factor explains the associated magnetic field parameters. The264

first factor has high explanatory power for multiple magnetic field parameters, which con-265

firms that many of these parameters are inter-correlated. Calculation of the covariance266

of the selected five factors confirms that they show zero covariance with each other.267

Figure 2: Left: Covariance matrix of the data set before applying CFA on it. A lot of the
parameters are strongly correlated with each other. Right: Heatmap of factor loadings of
CFA.

4.3.2 Sparse Autoencoders268

Makhzani and Frey (2014) shows improvement in classification tasks when sparse269

data representations are used. To improve sparsity in our data set, we applied an ad-270

ditional data processing step. Sparse autoencoders are able to transform the data into271
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a higher dimensional space, where it is possible to create hyperplanes that allow to sep-272

arate different clusters of points.273

Sparse autoencoders are a special kind of unsupervised neural networks. For an ex-274

planation on neural networks, we refer the reader to the notes of Ng et al. (2011). The275

underlying mathematics of autoencoders are the same as for neural networks. The spe-276

cial property of autoencoders is that the target values (X̂) are set equal to the input val-277

ues (X) (Hinton & Salakhutdinov, 2006): f : X → X̂, where X ≈ X̂. The model278

learns an approximation of the identity function. This may seem like a trivial task, but279

by placing constraints on the network interesting structures can be discovered.280

In a basic (vanilla) autoencoder, also called encoder-decoder, AE = {f, f ′}, the281

applied constraint consists to limit the number of nodes in an intermediary hidden layer282

to less than the number of input features of the model: the autoencoder functions are283

defined as f : X ∈ Rn → Z ∈ Rm, followed by f ′ : Z ∈ Rm → X̂ ∈ Rn, where284

n > m. A second autoencoder category corresponds to sparse autoencoders (Jiang et285

al., 2015), where the constraint is applied by forcing sparsity in the intermediary hid-286

den layer. In this case the dimension of the hidden layer does not have to be smaller than287

the input layer. This sparsity constraint ensures that only a few hidden nodes are allowed288

to be active at the same time, i.e. most of the hidden nodes will have a value of zero.289

Sparse autoencoders provide an information bottleneck without having to reduce the num-290

ber of nodes. This also means that low dimensional data sets can be projected into a higher291

dimension where sparsity is encouraged, allowing for a better differentiation between dif-292

ferent classes.293

4.3.2.1 Implementation Details The sparse autoencoder is implemented using294

Python, together with libraries Tensorflow (Abadi et al., 2015) and Keras (Chollet et295

al., 2015). Any kind of neural network learns by minimizing a cost, or loss function, ob-296

tained by comparing the output of the model with the expected output. The loss func-297

tion, Eq. 1, consists of two terms: (1) a reconstruction error and (2) a sparsity penalty.298

As reconstruction error the mean squared error is used. The sparsity penalty is a reg-299

ularization acting on the outputs of individual neural network nodes in the hidden layer.300

It penalizes the activation of the hidden nodes, a
(h)
i ∈ Z, using the L1-norm. In the spar-301

sity term of Eq. 1, λ is the pre-factor that determines the influence of the sparse regu-302

larization.303

L =
1

n

∑
i

(Xi − X̂i)
2 + λ

∑
i

∣∣∣a(h)i

∣∣∣ (1)
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The autoencoder is optimized following the traditional error minimization techniques used304

in classical neural networks. The optimization algorithm that we selected is the Adam (Kingma305

& Ba, 2015) technique. This is an extension to stochastic gradient descent that main-306

tains separate learning rates for each parameter.307

To determine the accuracy of the output the R-squared metric, Eq. 2 is used:308

R2 = 1−
∑N

i=1(Xi − X̂i)
2∑N

i=1(Xi −Xi)2
with Xi =

1

N

N∑
j=1

Xj (2)

To reduce the influence of the class imbalance, different weights have been assigned309

to the data samples corresponding to different flare classes. A weight of respectively 1,310

4, 16 and 64 has been assigned to classes No-flare, C-flare, M-flare and X-flare.311

In the Adam optimization algorithm one of the hyperparameters is the learning rate.312

This hyperparameter influences the speed at which the model converges towards the min-313

imum loss. The optimal learning rate is determined using the method introduced by Smith314

(2017). This method trains a network starting with a low learning rate, which is expo-315

nentially increased throughout the epochs (training cycles). The optimal learning rate316

corresponds to the fastest decrease in loss throughout the training. An additional method317

to determine the optimal learning rate is to run the algorithm for multiple values of the318

learning rate for a limited number of epochs, and to select one with the lowest valida-319

tion loss. In our work, the combination of these two optimization methods yields an op-320

timal learning rate of 0.0005.321

Our data set is split into three sub-groups: 60% training, 20% validation and 20%322

testing data. The split is performed using stratification, which means that in each data323

portion the percentage of each flare type is preserved.324

4.3.2.2 Architecture Optimization To find the optimal autoencoder architecture,325

three parameters need to be optimized: (1) the magnitude λ of the sparsity constraint,326

(2) the number of hidden nodes and (3) the activation function.327

If the sparsity pre-factor is too high, all hidden nodes will tend to produce values328

of zero; if this parameter is too small, no sparsity will be introduced. The optimal value329

of λ is obtained by finding a balance between the level of sparsity and the activity on330

the hidden nodes. The pre-factor needs to be set to ensure that only part of the nodes331

(less than the number of input nodes) are active at the same time, without leaving in-332

active nodes. This balance is found for λ = 0.1.333
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The most adequate architecture is selected by comparing the loss function between334

the training and the validation set. The optimal architecture contains one hidden layer335

with seven hidden nodes and uses SELU (Klambauer et al., 2017) activation function.336

4.3.2.3 Resulting Distributions The resulting optimal sparse autoencoder is used337

to increase the dimensionaliy, generating sparsity in the data set. The R-squared met-338

ric returns a value of 0.9942, indicating that the model is able to nearly perfectly mimic339

the original distributions. A two-dimensional projection of the distribution of each pair340

of parameters in the final data set is shown in Figure 3. This higher dimensional encod-341

ing of the data will be used for clustering in later sections.342

Figure 3: Distributions of the encoded data produced by the hidden layer of the sparse
autoencoder. The autoencoder includes one hidden layer, with seven neurons, and SELU
activation functions. The pre-factor λ for the activity regularization is set to 0.1.

4.4 Data Sampling343

Solar flare data is by definition largely imbalanced, since strong solar flares are scarce,344

affecting the classification results. Machine learning methods tend to favor the dominant345

class, which in our case corresponds to the non-flaring active regions. The four differ-346

ent flare activity classes are either over-sampled or under-sampled to construct a bal-347

anced data set with a similar amount of data points per flare class. A random under-348
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sampling of the No-flares was already presented in section 4, but the imbalance among349

flare classes is still large.350

4.4.1 Random Sampling351

Random sampling can be applied to either under-sample or over-sample data. The352

methods RandomUnderSampler and RandomOverSampler of the package imbalanced-learn353

(Lemâıtre et al., 2017) are used. Random under-sampling picks samples from the ma-354

jority classes without replacement, while over-sampling picks samples from the minor-355

ity classes with replacement. However, random over-sampling of the minority class can356

lead to duplication, which might lead to overfitting. Therefore an alternative over-sampling357

method is used.358

4.4.2 SMOTE Sampling359

The alternative Synthetic Minority Over-sampling TEchnique (SMOTE) (Chawla360

et al., 2002) technique is also included in the imbalanced-learn package. SMOTE does361

not duplicate any samples, but generates new data points by randomly selecting a mi-362

nority class instance (a), and then finding its k nearest neighbors. Subsequently, one of363

those k neighbors (b) is chosen at random and a synthetic example is created at a ran-364

dom point on the line segment between the instance (a) and its selected neighbor (b).365

4.4.3 Resulting Data Set366

It has been shown by Chawla et al. (2002) that the combination of SMOTE and367

under-sampling performs better than plain under-sampling. In our work the majority368

classes, No-flare and C-flare, are randomly under-sampled, while the minority classes,369

M-flare and X-flare, are over-sampled with SMOTE. Every class is sampled to 6000 sam-370

ples, making the data set balanced.371

5 Clustering372

We tested multiple clustering algorithms on the data set to classify the solar ac-373

tive regions based on their processed magnetic field parameters and found common as-374

pects among the corresponding active regions.375

Clustering is a machine learning method which groups data in subgroups that share376

similar properties (in our case, similar reduced magnetic field parameters). A good clus-377

tering method minimizes the intra-cluster distances, while maximizing inter-cluster dis-378

tances (Zhang & Tsai, 2005). The implementation and the way clusters are defined dif-379
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fer from method to method. Every method that is considered here is implemented with380

the scikit-learn package.381

5.1 k-Nearest Neighbors (supervised)382

k-Nearest Neighbors (KNN), explained in e.g. Cunningham and Delany (2007), is383

a supervised and instance-based clustering algorithm. It assumes similar objects exist384

in close proximity to the evaluated data point. The class of a data point is determined385

based on the most frequent class among its k nearest neighbors.386

The optimal number of neighbors k is the one that minimizes the error, the per-387

centage of wrong predictions, while maintaining the ability to make accurate predictions388

on new data. The method minimizes the loss on the validation data, without overfitting389

on the training data. In general, lower k makes the predictions less stable. Increasing390

the number of neighbors makes the predictions more stable due to averaging and there-391

fore more likely to produce reliable results. We selected the optimal k by performing the392

KNN algorithm for a range of k-values, fitting a fourth order polynomial to the corre-393

sponding error values and selecting the k corresponding to the minimum error.394

5.2 K-means (unsupervised)395

K-means (Lloyd, 1982; MacQueen, 1967) is an unsupervised, centroid-based clus-396

tering method and assumes that the clusters are spherical and equally sized. The method397

works best when the clusters are equally dense and not too contaminated by noise or out-398

liers. The clustering is achieved by iteratively assigning each data point to its nearest399

centroid and creating new centroids by computing the mean of each cluster.400

The optimal number of clusters is determined by a scree plot (Cattell, 1966), where401

the ‘knee’ point is associated to the optimum value, and corresponds to the inflection402

point of the curve. The position of this ‘knee’ is determined through the Kneedle algo-403

rithm (Satopaa et al., 2011). The scree plot is configured by computing the error for dif-404

ferent runs for a range of different number of clusters. A line is plotted between the first405

and last point of the curve and the distances between each point and the line are com-406

puted. The point with maximal distance between the two lines marks the maximum of407

curvature, i.e. the elbow.408

5.3 Gaussian Mixture Models (unsupervised)409

Gaussian Mixture Models (GMM) assume that all data points are generated from410

a mixture of Gaussian distributions and identifies for each data point the probabilities411
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of belonging to each of the Gaussian distributions. This method allows the detection of412

more elongated clusters. The Gaussian distributions are approximated by the Expectation-413

Maximization method (Dempster et al., 1977). The GMM is a probabilistic method.414

To determine the number of clusters for GMM, several methods can be used. We

chose to use the gradient of the Bayesian Information Criterion (BIC). BIC (Schwarz,

1978) gives an estimation on how accurately the model represents the existing data, with

lower BIC value indicating a better estimation. BIC is defined in Eq. 3, with k the num-

ber of unknown model parameters (mean and variance for each cluster), n the number

of samples and L̂ the maximum likelihood.

BIC = k lnn− 2 ln L̂ (3)

A high number of clusters corresponds to low BIC scores, but the error curve shows an415

inflection point. This point can be found by checking the gradient of BIC. The optimal416

number of clusters is the point where the gradient no longer changes, i.e. when the sec-417

ond derivative is zero (Lavorini, 2018).418

6 Evaluation Methods419

To determine the quality of a clustering method a good evaluation method is es-420

sential. An Area Under the Curve Receiver Operating Characteristics (AUC-ROC) plot421

(Fawcett, 2006) is a good evaluation technique for supervised classification methods, when422

the data is severely imbalanced (Brownlee, 2020).423

ROC curves are in general used in binary classifications, but can be extended to424

multi-class data by using one-vs-rest for each class, which provides one ROC curve per425

class. The macro-average can be computed by taking the average of all ROC curves, treat-426

ing all classes equally.427

The ROC curve is a visual measure of the predictive quality of the model, that vi-428

sualizes the trade-off between sensitivity and specificity. The plot of a ROC curve dis-429

plays the True Positive Rate (TPR), see equation 4, on the y-axis and the False Posi-430

tive Rate (FPR), see equation 5, on the x-axis. These rates are computed for different431

thresholds. The threshold is the lowest probability necessary to be assigned to the pos-432

itive cluster.433

TPR =
TP

TP + FN
(4)
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FPR =
FP

TN + FP
(5)

An AUC score can be computed from the ROC, by computing the area under the434

curve. AUC is a measure of the ability of a classifier to distinguish between classes, where435

e.g. 0.7 means that in 70% of the cases the model is able to distinguish between the pos-436

itive and the negative class (Narkhede, 2018).437

In addition, the True Skill Statistic, also called the Hanssen score (Hanssen & Kuipers,438

1965), will be computed for the supervised clustering, see equation 6. The value of TSS439

lies between -1 and 1, with a higher value indicating a better forecast. This is one of the440

most used evaluation metrics to assess solar flare forecasts.441

TSS =
TP

TP + FN
− FP

FP + TN
=

TP

P
− FP

N
(6)

It is a lot harder to assess whether unsupervised clustering methods perform well,442

because no labels are present. A viable alternative are validation methods that check whether443

there is a high separation between clusters and a high cohesion within the clusters. Ex-444

amples of such metrics are the Calinsky-Harabasz (CH) coefficient (Caliński & Harabasz,445

1974) and the Silhouette coefficient (SC) (Rousseeuw, 1987). The Calinski-Harabasz co-446

efficient is defined as the ratio between the within-cluster dispersion and the between-447

cluster dispersion. This coefficient should be maximized. The Silhouette coefficient is com-448

puted, for each sample, using: (a) the mean inter-cluster distance, and (b) the mean nearest-449

cluster distance. The formula is given in equation 7. The final Silhouette score is found450

by computing the mean over all samples. The best value is 1, the worst is −1 and val-451

ues near 0 indicate that the clusters overlap. If the value is negative it is generally an452

indication that samples are assigned to the wrong cluster, as it is found that a different453

cluster is more similar.454

SC =
b− a

max(a, b)
(7)

7 Results455

Figure 4 shows the mean value and standard deviation of each of the seven reduced456

parameters, for each flare class. In general, the parameters are very similar for all flar-457

ing active regions (C, M and X-flares). X-flare classes present only slight differences with458

respect to the other flaring classes. Parameters H2, H5 and H6 have a larger absolute459

mean value for these stronger flare classes. The mean value of the data without flares460
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(No) is clearly different. It can be expected that flaring active regions will be distinguish-461

able from non-flaring active regions, while distinguishing between the different flare classes462

may be more challenging with the available data.463

Figure 4: Mean and standard deviation of the features resulting from the sparse autoen-
coder, per flare label. The flaring data looks very similar, while the non-flaring data has
distinct parameter values.

7.1 Supervised (KNN)464

In our work the hyperparameter selection for KNN was based on the data set be-465

fore the sampling procedure used in section 4.4, to avoid using under-/over-sampled data466

points. Performing the hyperparameter selection on the sampled data yields an optimal467

number of neighbors of one, which leads to unstable results. By applying the hyperpa-468

rameter selection on the data set before sampling, we find an optimal number of neigh-469

bors of ten. To validate this selection method, the KNN clustering is conducted multi-470

ple times, testing the use of one, three, six and ten nearest neighbors. The resulting ROC471

curves are shown in Figure 5. These figures show that when more neighbours are taken472

into account for the clustering, the results improve, producing a higher value for the area-473

under-the-curve. This is the case for the macro-average along the whole data set, as well474

as for the individual flare types. This shows that taking only one neighbor into account475

would not have been optimal. The differences between the results with three, six and476

ten neighbors are not too large.477
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Figure 5: AUC ROC plot of the results of KNN, performed on the sampled data set, for
varying number of neighbors.

Figure 6 shows the normalized confusion matrices for the clustering of KNN. On478

the x-axis the figure shows the predictions and on the y-axis the true classes. On the left479

panel we present the results using one nearest neighbor, and on the right panel the re-480

sult when ten neighbors are considered. The largest difference is observed in the num-481

ber of C-flares that are classified correctly. When more neighbors are taken into account,482

the C-flares are more often misclassified as larger M- and X-flares. On the other hand,483

when more neighbors are taken into account, C-flares are less often misclassified as non-484

flaring. The fact that the C-flares are more often misclassified as stronger flares is not485

necessarily a bad thing. For flare prediction, we are most interested in recognising the486

strongest flares. Therefore, it could be considered better to have a prediction method487

that is more likely to overestimate the strength of a flare, than to underestimate the strength488
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of a flare. However, false warnings will lessen the trust of the industry in flare predic-489

tions, so ideally we want to minimize both the false positives and the false negatives.490

The percentage of true positives for each flare type is higher when only one neigh-491

bor is taken into account versus when ten neighbors are taken into account. While the492

results with one neighbor might look better on this figure, they are unstable and more493

influenced by the artificial data introduced by the sampling.494

Figure 6: Normalized confusion matrices of the results of KNN with (left) only one near-
est neighbor and (right) ten nearest neighbors taken into account.

Focusing on the confusion matrix in the right panel of Fig. 6, the following con-495

clusions can be made: almost all of the X-flares are correctly identified. However, this496

is probably influenced by the over-sampling of the X-flares by a factor of approximately497

160. 87% of the true M-flares are correctly identified. This high percentage is also some-498

what influenced by the over-sampling. When M-flares are misclassified, it is ∼ 37% of499

the time as an X-flare and ∼ 61% of the time as a C-flare. 76% of the non-flaring ac-500

tive regions are correctly classified as well. This is quite a good result, considering that501

this class is largely under-sampled. The non-flaring active regions are most of the time502

mistaken for C-flares. Finally, the C-flares turn out to be hardest to distinguish, with503

only 50% of the active regions correctly identified as C-flares. They are ∼ 58% of the504

time overestimated as M-flares, ∼ 19% of the time as X-flares and ∼ 22% of the time505

underestimated as non-flaring. The flares are mostly mistaken for their neighboring classes,506

in terms of X-ray flux strength. This indicates that the clusters are partly overlapping.507

The TSS has been calculated for each of the flare types separately. A TSS of 0.93508

is found for the X-flares, 0.75 for the M-flares, 0.42 for the C-flares and 0.72 for the non-509

flaring active regions.510
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7.2 Unsupervised (K-means + GMM)511

Unsupervised clustering methods are more useful in practice, since there is not al-512

ways information present about the flaring nature of an active region. These methods513

do not take into account the information about the X-ray flux, but only the reduced mag-514

netic field parameters. For both unsupervised methods used in this work (K-means and515

GMM) the number of clusters needs to be determined using a hyperparameter optimiza-516

tion technique, as described in sections 5.2 and 5.3. For K-means an optimal number of517

four (4) clusters is found, while GMM has an optimal number of three (3) clusters.518

Table 3 shows the Calinski-Harabasz (Caliński & Harabasz, 1974) and Silhouette519

(Rousseeuw, 1987) coefficients, which evaluate the clusters found through K-means and520

GNN. The first one should be maximized, while the latter should be as close to 1 as pos-521

sible. Both coefficients indicate that K-means does a better job at clustering the data.522

However, a relatively low Silhouette score of 0.25 indicates that the clusters are either523

not very well separated or the points within a cluster are distributed relatively far apart.524

The possibility that the clusters are overlapping was already mentioned in the previous525

section.526

Table 3: Evaluation coefficients for K-means and GNN.

K-means GMM

Calinski-Harabasz 7506 1886
Silhouette 0.25 0.12

With unsupervised machine learning methods no confusion matrix can be constructed,527

since no labels are used. However, we have already access to the expected flare classi-528

fication in the data set. These values are not used to train the unsupervised clustering529

algorithms. We used this information to evaluate the accuracy of the automatic unsu-530

pervised classification with respect to the expected flare classes. The resulting visual-531

ization is shown in Figure 7, where for each of the two clustering algorithms the percent-532

age of each flare included in each of the clusters is shown. Normalization is performed533

per flare type.534

Analyzing the clusters of K-means learns us that 66% of the non-flaring active re-535

gions are included in Cluster 3. Cluster 3 also includes 17% of the C-flares, 12% of the536

M-flares and 5% of the X-flares. This cluster can be considered as one with mostly non-537

and weakly-flaring active regions. If an active region is classified in Cluster 3, chances538

are thus relatively low that it is a strong flare. Clusters 1, 2 and 4 contain less non-flaring539

–22–



manuscript submitted to Space Weather

active regions, respectively 14%, 7% and 12%. They do contain more of the flaring ac-540

tive regions. Cluster 2 contains ∼ 40% of each of the flare types. Cluster 4 contains ∼541

40% of the X-flares and only ∼ 20% of the C- and M-flares. Cluster 1 also contains flar-542

ing active regions, with more C- and M-flares than X-flares. Since all four clusters con-543

tain a significant fraction of all four flare types, there is no way to determine with cer-544

tainty the type of flare, based on this clustering of the active regions. What one could545

conclude from these results is that an active region that is classified in Cluster 3 is most546

likely to be non-flaring or weakly flaring. On the other hand, an active region that is clas-547

sified in Cluster 4 has a higher probability to be an X-flare, since these are most abun-548

dantly present. If an active region is classified in Cluster 2, it is very probable to be flar-549

ing, but nothing can be concluded about the type of flare. Finally, if an active region550

is classified in Cluster 1, it is most probable to produce a C- or M-flare.551

The resulting clusters found with GMM are visualized in Figure 7 on the right. Clus-552

ter 3 contains 52% of the non-flaring active regions and 14 to 18% of the flaring active553

regions. Meanwhile, Cluster 2 contains 34% of the non-flaring active regions and 8 to554

18% of the flaring active regions. Active regions that are classified into Cluster 2 and Clus-555

ter 3 have thus a relatively large probability to be non-flaring. This statement can be556

made stronger when the probabilities to belong to multiple clusters are analysed. If an557

active region has a high probability to belong to both Cluster 2 and Cluster 3, it is highly558

probable to be non-flaring. Cluster 1 contains only 14% of the non-flaring active regions559

and 68 to 78% of each of the flaring active regions. This cluster is thus a good one to560

identify flaring active regions.561

In each of the clusters found with GMM, the percentage of each of the different types562

of flaring active regions is very similar. Therefore, in contrast to K-means, the cluster-563

ing with GMM is not able to distinguish the strength of the flares.564

To get a more quantitative analysis, Figure 8 is a useful addition to 7. They show565

the same data, but in Figure 8 the normalization is performed per cluster. Therefore,566

this visualisation can be used to determine the probability that an active regions is of567

a certain flare type if it belongs to a certain cluster. We clarify this by giving a few ex-568

amples. When an active regions is assigned to Cluster 3 by the K-means algorithm, it569

is with 66% probability non-flaring, with 17% a C-flare and with 12% probability an M-570

flare. An active regions that is assigned to Cluster 2 by K-means will with 94% prob-571

ability (31% + 33% + 30%) be flaring, with approximately equal probability to be a C-572

flare, M-flare or X-flare. If an active region belongs to Cluster 1, found with GMM, there573

is only a 6% chance that it is not flaring. However, when the active region is assigned574
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Figure 7: Clustering results of K-means (left) and GMM (right) on the sampled data set.
The percentage of each flare included in each of the clusters is shown, where normaliza-
tion is performed per flare type.

to Cluster 2 or 3 by GMM, there is respectively a chance of 48% and 53% that there are575

no flares coming out of this active region.576

Figure 8: Clustering results of K-means (left) and GMM (right) on the sampled data set.
The percentage of each flare included in each of the clusters is shown, where normaliza-
tion is performed per cluster.

8 Discussion577

8.1 Data Processing578

In section 4.3.1, we found with Common Factor Analysis that almost all of the in-579

formation included in the 24 magnetic field parameters could be reduced to only five fac-580

tors. This is because a lot of the initial parameters were strongly correlated, and do not581
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add any additional information. It is possible then to construct a smaller data set, with582

only the most useful parameters, containing different distributions for different flare types.583

This redundancy due to intrinsic correlations between the parameters was also mentioned584

previously in Bobra and Couvidat (2015) and Barnes et al. (2016).585

8.2 Active Region Classification586

The supervised clustering method (KNN) has good performance for the M- and587

X-flares, as well as for the non-flaring active regions. The performance on the C-flares588

is less accurate, since they are often confused with M-flares and non-flaring active regions.589

This is probably because their magnetic field parameters are similar to the ones of both590

the non-flaring data and the M-flares, and their distributions tend to overlap.591

With unsupervised clustering (K-means and GMM), non-flaring active regions can592

be distinguished from flaring active regions. To distinguish between the different flar-593

ing active regions is a lot harder. The resulting clusters from K-means show that it is594

possible to make a distinction between an active region producing strong flares from ac-595

tive regions producing weak flares, but there is still a lot of uncertainty in the distinc-596

tion among the different flaring energy levels.597

The difficulty of differentiating between the flare types is inherent to the data it-598

self, as predicted by analysis of Figure 4. The parameters are very similar for all flar-599

ing active regions. Therefore, there is not enough information in the data set for the tech-600

nique to identify clear differences between C-flares, M-flares and X-flares. Integrating601

more information into the analysis could provide a clearer distinction. The vector mag-602

netic field data alone is not fully representative of the activity in the whole active region.603

For example, the maximal difference in magnitude of the magnetic field over the active604

region could provide valuable information. In future research, the magnetic field param-605

eters should be combined with other features, created through good feature engineer-606

ing from the original images, for example through edge detection or with variational au-607

toencoders. More data can be included by taking into account EUV observations, at mul-608

tiple wavelenghts, of the same region.609

An extension to the use of the magnetic field parameters is to study their evolu-610

tion, through time series. The variation of the magnetic field in anticipation of the re-611

lease of a flare will provide valuable information, being probably more significant for strong612

flares than for weak flares. The use of time series can also help to distinguish the nat-613

ural variability of the solar magnetic field from a sudden change in the magnetic field614

due to flare formation.615
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The difficulty of differentiating C-, M- and X-flares is also caused by the arbitrary616

boundaries of the classes, determined by their peak X-ray flux. A C9-flare is very sim-617

ilar to an M1-flare, but they were for this work considered as strictly different classes of618

flares. The difference between background radiation (non-flaring active regions) and weak619

C-flares can be very small as well. The strength of flares is a continuous parameter, but620

was here treated as strictly discrete.621

Rather than trying to cluster C-, M- and X-flares separately, trying to distinguish622

flaring from non-flaring, or weakly flaring from strongly flaring active regions might yield623

more accurate results. But still the problem remains that an artificial boundary needs624

to be set in the continuous domain.625

Strongly flaring active regions could also be identified as regions with parameter626

values significantly larger than the mean or median value. Both Sun et al. (2022) and627

Bobra and Couvidat (2015) tried to identify flaring active regions based on a training628

set containing only active regions that were either non-flaring or strongly flaring. All ac-629

tive regions that produced C-flares were eliminated. This makes it easier to distinguish630

flaring from non-flaring active regions. However, for flare prediction, in real-time data631

the C-flares can not be eliminated and need to be classified correctly as well.632

In future research, it could be useful to only consider flaring data. When both non-633

flaring and flaring data is taken into account, regions with complex and intense magnetic634

fields are compared against completely quiet regions. This might give the impression that635

all flaring active regions have similar properties. It is possible that they do appear more636

distinct when only compared against each other.637

9 Conclusion638

Throughout this work detailed data cleaning and parameter transformation was639

conducted to enhance the quality of the Angryk data set and improve the classification640

results. Supervised clustering, with KNN, is able to distinguish the M- and X-flares, with641

respectively 99% and 87% correctly identified. However, only half of the C-flares are ac-642

curately classified. Unsupervised clustering, with K-means and GMM, identifies clusters643

with mainly non-flaring active regions and clusters with mainly flaring active regions.644

However, the clusters contain a mixture of weakly-flaring and strongly-flaring active re-645

gions. There is no clear hyperplane in the SHARP parameter space that can separate646

active regions with different flaring activity. For future projects, additional information647

should be included, like time series, different parameters - indicating e.g. the topology648

of active regions - or images of the active regions.649
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Open Research650

This research uses the open source data set SWAN-SF of Angryk et al. (2020b).651

For more information we would like to refer the reader to the respective paper (Angryk652

et al., 2020a). The data is available for download through: https://dataverse.harvard653

.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EBCFKM.654

The code used to perform all data transformations and generate the clustering re-655

sults is completely written in Python 3.10, and is accessible on Gitlab: https://gitlab656

.com/hanneb/clustering ar sf hbaeke.git (Baeke, 2022).657
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