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Abstract: While land use classification and mapping based on visual interpretation of aerial images have been extensively studied over decades, such

overhead imagery can hardly determine land use(s) accurately in complicated urban areas (e.g., a building with different functionalities). Meanwhile, Iimages
taken at the ground level (e.g., street view images) are more fine-grained and informative for mixed land use detection. Considering land use categories are
often used to describe urban images, mixed land use detection can be regarded as the Natural Language for Visual Reasoning (NLVR) problem. As such,
this study develops a vision-language multimodal learning model with street view images for mixed land use detection, which Is based on the contrastive
language-image pre-training (CLIP) model and further improved and tailored by two procedures: 1) prompt tuning on CLIP, which not only learns the visual
features from street view images, but also integrates land use labels to generate textual features and fuses them with the visual ones; and 2) calculating the
Diversity Index (DI) from the fusions of visual and textual features, and using the DI value to estimate the mixed level for each image. Our experiments
demonstrate that simply leveraging the street view image Itself with tailored prompt engineering is effective for mixed land use detection, reaching the degree
of matching from 71% to 84% between the predicted labels and the OpenStreetMap ones. Moreover, a land-use map with mixture information represented as
probabillities of different land-use types Is produced, paving the way for fine-grained land-use mapping in urban areas with heterogeneous functionalities.

€ Traditional measurements and
mapping of mixed land uses degree
rely on laborious field surveys or
visual Interpretation of satellite
Images.

€ 3,398 geotagged Google Street
View Images uniformly sampled from
four main boroughs (Brooklyn, Queens,
Manhattan, and the Bronx) in NYC.

€ >308k OpenStreetMap land-use

€ One common limitation of existing polygons for validation.

methods Is that only a single label Is
recorded for each ground area.

€ This study uses street view
Images that capture more detailed,
representative, and heterogeneous
visual characteristics of land uses.

€ Vision-language multimodal
learning Is leveraged, given land-use
scenarios are to describe the human
use of land.
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*Sorted by the average DI values.

#3 Associations of Land Use Types

100%

] —
I
27.27%
(o) 0,
80% 25.00% .
53.23% 18.18%

60% 78.21%

I I |

63.46% 62.50
% 54 04% 54 55%

40%

20% 32.84%
I 15.38%
0%

residential commercial industrial recreation transportation greenfield

M residential MW commercial Mindustrial ™ recreation Mtransportation M greenfield

(a) Commercial Cluster

T
---------------------------
-------
e T
. "y
. L
,,,,,
. "
ﬁﬁﬁﬁﬁ
"
.....
oy
,
e
.
v
‘e
®

-------------
. 1]
* -

sion 2

TSNE Dimen

b ®
., =
'''''
--------

(b) Greenfield + ™.
Recreation Cluster -,

#4 Mapplng DI Values and Mlxed Land Uses
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5. Conclusions & Future Work

€ Pioneeringly demonstrating the

effectiveness of vision-language
multimodal learning for mixed land use
detection with geo-tagged street view
Images, capturing multiple functionalities

of any grou

nd feature;

€ All datasets globally available, and
methodology applicable to other cities;

€ Providing insights of prompt tuning to

contextualize land use labels:

€ Mapping mixed land uses at a point
level, providing flexibility for different
administrative aggregation (e.g., census
tracts and zoning districts) If needed.

€ Future work: (1) using {land use text,
street view Image} pairwise datasets to
fine-tune the model; and (2) measuring
the area proportion of each land use type
in each location’s buffer zone as another
DI evaluation metric.
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