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Abstract

It is well-established that positive feedbacks between permafrost degradation and the release of soil carbon into the atmosphere

impact land-atmosphere feedback mechanisms, disrupt the global carbon cycle, and accelerate climate change. Permafrost

dynamics are relevant to the global community because the distribution of this frozen ground substrate characterizes nearly 23

million square kilometers of the northern latitudes. The widespread distribution of thawing permafrost is causing a cascade

of geophysical and biochemical disturbances with global impact. Current earth system models do not account for permafrost

carbon feedback mechanisms; we are exploring, simulating, and quantifying this limitation with field-scale surveys and numer-

ical modeling, image processing, and machine learning at scale across the tundra and taiga ecosystems (TTE). This research

seeks to identify, interpret, and explain the causal links and feedback sensitivities attributed to permafrost degradation and

terrestrial carbon cycling asymmetry with in situ observations, remote sensing imagery, modeling and reanalysis products, and

a hybridized multimodal deep learning ensemble of recurrent, convolutionally-layered, memory-based networks (GeoCryoAI).

Preliminary metrics obtained from mirroring freeze-thaw dynamics and soil carbon flux across four subdomain in Alaska yield

a root mean square error of 6.3637 and 4.7973, respectively. More specifically, this data-driven modeling ensemble is composed

of a convolutional neural network-filtered (CNN) long short-term memory-encoded (LSTM) recurrent neural network that inte-

grates teacher learning from in situ observations while embedding satellite-based measurements and time series datasets into a

network of activation functions and processing layers. These outputs are then trained within a variational autoencoder frame-

work (VAE) that encodes and imputes proper decoding protocol necessary for generative adversarial training, benchmarking,

and reconstructing synthetic time series data for gap-filling and feature learning. Ongoing work demonstrates the fidelity of

monitoring active layer thickness (ALT) variability as a sensitive, silent-but-pronounced harbinger of change; a unique signal for

characterizing and forecasting permafrost degradation, soil carbon flux, and other biogeochemical drivers facilitating land cover

change and earth system feedbacks. These multimodal approaches to knowledge discovery will not only improve sensitivity

analyses and disentangle the spatial processes and causal links behind drivers of change, but also reconcile disparate estimations

and below-ground uncertainty across the Arctic system.
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Alaska subdomain of interest (ROIs) include the Interior, North Slope, Seward Peninsula, and Yukon-Kuskokwim Delta. Imagery 
attribution: Google SIO, NOAA, US Navy, NGA, GEBCO Landsat/Copernicus IBCAO Data LDEO-Columbia, NSF, NOAA).
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It is well-established that positive feedbacks between permafrost degradation and the release of soil carbon
into the atmosphere impact land-atmosphere feedback mechanisms, disrupt the global carbon cycle, and
accelerate climate change. Permafrost dynamics are relevant to the global community because the
distribution of this frozen ground substrate characterizes nearly 23 million square kilometers of the northern
latitudes. The widespread distribution of thawing permafrost is causing a cascade of geophysical and
biochemical disturbances with global impact. Current earth system models do not account for permafrost
carbon feedback mechanisms; we are exploring, simulating, and quantifying this limitation with field-scale
surveys (i.e., landscape characterization, thermo-erosional features and gullies, active layer depth, and
cryostructures) and numerical modeling, image processing, and machine learning at scale across the tundra
and boreal ecosystems (TTE). This research seeks to identify, interpret, and explain the causal links and
feedback sensitivities attributed to permafrost degradation and terrestrial carbon cycling asymmetry with in
situ observations, remote sensing imagery, forest gap modeling (SIBBORK-TTE), multimodal data
assimilation architecture, and a hybridized deep learning ensemble of recurrent, convolutionally-layered,
memory-based networks (GeoCryoAI). Preliminary metrics obtained from mirroring freeze-thaw dynamics
and soil carbon flux across four subdomain in Alaska yield a root mean square error of 6.3637 and 4.7973,
respectively. More specifically, this data-driven modeling ensemble is composed of a convolutional neural
network-filtered (CNN) long short-term memory-encoded (LSTM) recurrent neural network that integrates
teacher learning from in situ observations while embedding satellite-based measurements and time series
datasets into a network of activation functions and processing layers. These outputs are then trained within a
variational autoencoder framework (VAE) that encodes and imputes proper decoding protocol necessary for
generative adversarial training, benchmarking, and reconstructing synthetic time series data for gap-filling
and feature learning. Ongoing work demonstrates the fidelity of monitoring ALT variability as a sensitive,
silent-but-pronounced harbinger of change; a unique signal for characterizing and forecasting permafrost
degradation, soil carbon flux, and other biogeochemical drivers facilitating land cover change and earth
system feedbacks. These multimodal approaches to knowledge discovery will not only improve sensitivity
analyses and disentangle the spatial processes and causal links behind drivers of change, but also reconcile
disparate estimations and below-ground uncertainty across the Arctic system.
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Across the circumpolar arctic, quantifying the persistent irregularities and expansive impacts characterizing
permafrost degradation remain scientific challenges. These irregularities constitute a spatiotemporal
disruption in the transitional state of permafrost, with abrupt thawing triggers seasonal ground subsidence,
thermokarst and thaw lake formation, and the proliferation of new wetlands, ponds, and intricate hydrologic
networks with potential methane emission hotspots near littoral zones (Olefeldt, D., et al. 2016; Jorgenson,
M.T., et al. 2006; Jorgenson, M.T., et al. 2013; Walter, K.M., et al. 2007; Klapstein, S.J., et al. 2014;
Turetsky, M.R., et al. 2014). Model projections suggest attribution of top-down permafrost degradation and
soil carbon decomposition to carbon-climate feedback patterns will continue for nearly two centuries (Koven,
C.D., et al. 2011; McGuire, A.D., et al. 2018). Permafrost dynamics are relevant to the global community
because this frozen carbon-rich soil matrix characterizes nearly 14 million square kilometers of the global
terrestrial surface, with total soil organic carbon stock estimates near 1.30±0.20 EgC (Hugelius, G. et al.
2014). The permafrost carbon feedback not only qualifies as a climate change catalyst but also quantitatively
amplifies land-atmosphere coupling and localized warming patterns, disrupts carbon cycle partitioning, and
destabilizes feedback thresholds following the Stefan- Boltzmann Law:

𝑅 = 𝜎𝜖𝑇!
To quantify and interpret this feedback, it is important to understand the mechanics behind frost heave-thaw
dynamics, moisture signaling, and terrestrial carbon flux. These components vary in space and time,
presenting sequential problems to investigate within the earth system. This research study explores the
integration of recurrent feedback neural networks throughout the data assimilation process. This architecture
attempts to resolve spatiotemporal disparities and unify multimodal approaches to more accurately capture
real-world dynamics and reflect these abrupt and persistent changes in the arctic (i.e., teacher forcing
harnesses in situ observations and eddy covariance measurements during model training); the hidden state,
loss function, and output of the recurrent system is contextualized following this equation:
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Throughout the model training process, nearly 21 million in situ and flux tower were extracted and tabulated 
from various networks and campaigns. These point-based, transect, and grid sampling protocols and 
replicates across Alaska inform and reinforce teacher forcing, e.g., GTNP, CALM, ABoVE, AmeriFlux, 
NEON. These measurements include covariates such as precipitation, air/surface temperature, soil 
moisture/temperature at depth, active layer thickness, water table depth, and carbon flux observations (e.g., 
methane and carbon dioxide flux/concentration, soil organic carbon). Additional field observations were 
gathered in July 2022 at some of the sites pictured above, including Chandalar Shelf and Eitel Sites (Brooks 
Range), 1002 Area (ANWR), and Eight Mile Lake.

GeoCryoAI is a state-of-the-art deep learning algorithm tailored to assimilate remote sensing information and uncover previously hidden
patterns for permafrost-affected landscapes. This data-driven strategy will identify, interpret, and explain the causal links and feedback
sensitivities attributed to permafrost degradation and terrestrial carbon cycling imbalance with a hybridized deep learning ensemble of
memory-based recurrent networks and a multimodal composite of in situ and tower measurements, remote sensing observations,
reanalysis and modeling outputs, and assimilation that formulates the GeoCryoAI architecture. The architecture seeks to capture abrupt
and persistent changes in subsurface conditions, identify the extent of prolonged respiration patterns into the cold season, disentangle
control factors driving the permafrost carbon feedback, and quantify uncertainty.
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Permafrost Degradation
GeoCryoAI thaw simulations with site-level teacher forcing via in situ and flux tower observations of 
monthly mean active layer thickness, 1969-2022.

Carbon Release
GeoCryoAI methane efflux [CH4] simulations with site-level teacher forcing via in situ and flux tower 
observations of half-hourly median methane concentration, 2011-2019.

GeoCryoAI simulations with site-level teacher forcing via in situ and flux observations of monthly 
maximum active layer thickness (1969-2022) and half-hour carbon flux measurements (2011-2019).  
Preliminary results indicate persistent trends with increasing permafrost degradation and soil carbon 
release, displaying statewide prediction error (RMSE) for permafrost thaw (cm) and carbon efflux 
(µmolCH4mol-1m) at 6.3637 and 4.7973, respectively. Regional analyses and uncertainty quantification is 
forthcoming. This systematic methodology generates cross-cutting deliverables that maximize in situ 
observational data and bridge fine-scale processes with process-based multimodal resolutions, historical 
observations and future projections, and a suite of legacy toolkits and novel computing approaches. These 
high-resolution products may further elucidate subsurface dynamics, permafrost degradation, terrestrial 
carbon cycle disruption, and coupling sensitivities to climate change scenarios. Ongoing investigations 
include quantifying uncertainty with multivariate mutual information and transfer entropy as well as 
synthesizing airborne remote sensing data in preparation for generating circumpolar space-time zero-curtain 
maps informed by upcoming spaceborne missions (NISAR, TRISHNA, LSTM LST, SBG TIR FF).
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