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Abstract

Quantifying tectonic stress magnitudes is crucial in understanding crustal deformation processes, fault geomechanics, and vari-

able plate interface slip behaviors in subduction zones. The Hikurangi Subduction Margin (HSM), New Zealand is characterized

by along-strike variation in interface slip behavior, which may be linked to tectonic stress variations within the overriding plate.

This study constrains in-situ stress magnitudes of the shallow (<3km) overriding plate of the HSM to better understand its

tectonics and how they relate to larger scale subduction dynamics. Results reveal σ3: Sv ratios of 0.6-1 at depths above 650-700

m TVD and 0.92-1 below this depth interval along the HSM and SHmax: Sv ratios of 0.95-1.81 in the central HSM, and

0.95-3.12 in the southern HSM. These stress ratios suggest a prevalent thrust to strike-slip (σ1=SHmax) faulting regime across

the central and southern HSM. In the central HSM, the presence of NNE-NE striking reverse faults co-existing with a modern

σ1 aligned ENE-WSW (SHmax) suggests that overtime the stress state here evolved from a contractional to a strike-slip state,

where the compressional direction changes from perpendicular (NW-SE) to subparallel (ENE-WSW) to the Hikurangi margin.

This temporal change in stress state may be explained by forearc rotation, likely combined with development of upper plate

overpressures. In the southern HSM, the modern WNW-ESE/ NW-SE σ1 (SHmax) and pre-existing NNE-NE striking reverse

faults indicate that stress state remains contractional and subparallel (NW-SE) to the Hikurangi margin overtime. This may

reflect the interseismic locked nature of the plate interface.
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Abstract 36 

Quantifying tectonic stress magnitudes is crucial in understanding crustal deformation 37 

processes, fault geomechanics, and variable plate interface slip behaviors in subduction 38 

zones. The Hikurangi Subduction Margin (HSM), New Zealand is characterized by along-39 

strike variation in interface slip behavior, which may be linked to tectonic stress variations 40 

within the overriding plate. This study constrains in-situ stress magnitudes of the shallow 41 

(<3km) overriding plate of the HSM to better understand its tectonics and how they relate to 42 

larger scale subduction dynamics. Results reveal σ3: Sv ratios of 0.6-1 at depths above 650-43 

700 m TVD and 0.92-1 below this depth interval along the HSM and SHmax: Sv ratios of 0.95-44 

1.81 in the central HSM, and 0.95-3.12 in the southern HSM. These stress ratios suggest a 45 

prevalent thrust to strike-slip (σ1=SHmax) faulting regime across the central and southern 46 

HSM. In the central HSM, the presence of NNE-NE striking reverse faults co-existing with a 47 

modern σ1 aligned ENE-WSW (SHmax) suggests that overtime the stress state here evolved 48 

from a contractional to a strike-slip state, where the compressional direction changes from 49 

perpendicular (NW-SE) to subparallel (ENE-WSW) to the Hikurangi margin. This temporal 50 

change in stress state may be explained by forearc rotation, likely combined with 51 

development of upper plate overpressures. In the southern HSM, the modern WNW-ESE/ 52 

NW-SE  σ1 (SHmax) and pre-existing NNE-NE striking reverse faults indicate that stress state 53 

remains contractional and subparallel (NW-SE) to the Hikurangi margin overtime. This may 54 

reflect the interseismic locked nature of the plate interface. 55 

Plain Language Summary 56 

The type of geological faults and their movement are partially controlled by forces generated 57 

from plate movement, known as in-situ stress. This stress state can also be changed overtime 58 

due to the occurrence of earthquakes on such faults. The HSM is New Zealand's largest and 59 

most hazardous plate boundary fault and experiences different types of earthquakes that may 60 

be related to variations in in-situ stress of the plates involved in this subduction boundary. 61 

This study quantifies for the first time the stresses associated with the modern HSM, and 62 

finds that they and their resulting tectonic behavior have changed with geological time in the 63 

central regions. This change is likely related to the effects of other nearby tectonic processes 64 

further inland and to the development of high pore pressures in the overriding plate in this 65 

region. 66 



Key Points 67 

• For the shallow crust (upper 3 km) of the Hikurangi Subduction Margin, σ1 = SHmax.  68 

• σ1 rotates from margin-parallel (NW-SE) to margin-perpendicular (WNW-ESE) in the 69 

central Hikurangi Subduction Margin overtime.   70 

• The shift in the stress state overtime in the central HSM may be driven by forearc rotation 71 

and shallow overpressures in this region.  72 

• σ1 remains perpendicular (NW-SE/WNW-ESE) to the margin overtime in the southern 73 

HSM, may reflect the interseismic locked nature of the plate interface.   74 

1 Introduction 75 

Large magnitude, tsunamigenic earthquakes commonly occur at subduction plate boundaries 76 

and are associated with a wide range of tectonic fault slip behaviors along the subduction 77 

interface including slow slip events (SSEs), low-frequency earthquakes (LFEs), very-low-78 

frequency earthquakes (VLFEs), and episodic tremor and slip (ETS) (Audet et al., 2009; Ito 79 

& Obara, 2006; Kodaira et al., 2004; Liu & Rice, 2007; Ujiie & Kimura, 2014). Earthquake 80 

occurrence such as nucleation of earthquake ruptures and rupture propagations, and a variety 81 

of seismic slip behaviors are, in part, controlled by the interaction between in-situ stresses 82 

(their orientations and magnitudes), the mechanical and geometrical properties of crustal 83 

faults, and pore pressure (Jaeger et al., 2009; Schellart & Rawlinson, 2013; Vavrycuk, 2015). 84 

Furthermore, seismic cycling and slip on faults are known to drive temporal changes in the 85 

stress state on adjacent fault planes and surrounding rocks (Brodsky et al., 2017, 2020; 86 

Hardebeck & Okada, 2018; K. F. Ma et al., 2005; Seeber & Armbruster, 2000; Stein, 1999). 87 

For example, significant principal stress rotations followed the 2011 Mw 9.0 Tohoku 88 

earthquake in Japan, 2010 Mw 8.8 Maule earthquake in Chile; and 2004 Mw 9.2 earthquake in 89 

Sumatra-Andaman are suggested to be related to near-complete stress drops (Hardebeck, 90 

2012). Therefore, quantitative knowledge of stress is an essential step to characterize and 91 

understand the nature and causes of earthquake processes, the mechanical behavior of plate 92 

boundary faults, the origin and controls of diverse fault slip patterns; and to better assess 93 

seismic and tsunamigenic hazards along subduction zones (Huffman & Saffer, 2016; Riedel 94 

et al., 2016; Wu et al., 2019).  95 

The Hikurangi Subduction Margin (HSM), New Zealand displays along-strike variation in 96 

plate interface slip behavior, ranging from episodic SSEs and creep at the northern and 97 



central HSM, to deep interseismic locking beneath the southern North Island (Wallace & 98 

Beavan, 2010) (Figure 1a). Creep and shallow (<15 km depth) SSEs, lasting for 2–3 weeks, 99 

recur every 1 to 2 years offshore the northern and central HSM (Wallace, Beavan, et al., 100 

2012) (Figure 1a). Deep (>25 km), long-term (>1 year) SSEs occur approximately every ~5 101 

years at the southern HSM (Wallace & Beavan, 2010), down-dip from a portion of the plate 102 

interface that is locked and accumulating stress (Wallace et al., 2009). The physical processes 103 

controlling SSEs are currently debated, with studies suggesting they are linked to the 104 

frictional properties of fault zone materials (e.g., strength and coefficient of friction), low 105 

effective stress linked to high pore pressure, fault heterogeneity, and fault rheology (Ando et 106 

al., 2012; Kodaira et al., 2004; Kurzawski et al., 2018; Saffer & Wallace, 2015). More than 107 

80% of HSM historic earthquakes and  Mw≥ 6 earthquakes occur on upper plate (≤30 km) 108 

faults or at the plate interface (Figure 1a) (Doser & Webb, 2003; Downes, 2006; Grapes & 109 

Downes, 1997; Webb & Anderson, 1998). Earthquakes located within the subducting slab or 110 

at the plate interface have also been known to trigger slope failures or series of smaller 111 

earthquakes hosted on upper plate faults, some of which can be tsunamigenic (Beetham et al., 112 

2018; Lange & Moon, 2004; Power et al., 2008).   113 
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al., 2018; Lawrence, 2018; McNamara et al., 2021). Behboudi et al. (2022) provides a 128 

comprehensive overview of the along-strike and depth related variability in HSM stress 129 

orientations. Borehole-derived SHmax orientations rotate from ENE-WSW (065°/245° ± 10°) 130 

in the central HSM to WNW- ESE (112°/292° ± 20°) and NW- SE (140°/320° ± 22°) in the 131 

southern HSM (Figure 1b). Deep stress orientations are defined by focal mechanism 132 

inversions (Townend et al., 2012), shear wave anisotropy (Illsley‐Kemp et al., 2019), and 133 

gravitational stresses (Evanzia et al., 2017). Earthquake focal mechanism solutions (≤60 km 134 

depth) indicate a regional SHmax orientation of 060°/240° ± 17° and 066°/246° ± 22° in the 135 

central and southern HSM, respectively (Figure 1b) (Behboudi et al., 2022; Townend et al., 136 

2012). 137 

The characterization of  stress magnitudes at the HSM are currently limited to relative stress 138 

magnitudes derived from earthquake focal mechanisms at seismogenic depths (Townend et 139 

al., 2012), and direct measurements of the minimum principal stress magnitudes (σ3), vertical 140 

stress magnitudes (Sv), pore pressures (Pp) at shallow depths (< 3km) (Burgreen-Chan et al., 141 

2016; D. Darby & Ellis, 2001; D. Darby & Funnell, 2001), and stress regime in one borehole 142 

(Tuhara-1A) in  the central HSM (HRT, 2000). Observations of relative stress magnitudes 143 

(≤60 km) by Townend et al. (2012) indicate a predominantly strike-slip and normal faulting 144 

regime along the HSM. Pp measured from repeat formation tests (RFTs) and modular 145 

dynamic tests (MDTs), and inferred from drilling mud weights reveal shallow (<3 km) 146 

overpressures within the upper plate of the central HSM (Burgreen-Chan et al., 2016; D. 147 

Darby & Funnell, 2001). High pore pressure in central and northern HSM are attributed to 148 

disequilibrium compaction of Miocene sediments and porosity reduction due to high 149 

horizontal compressive stresses associated with subduction of Hikurangi Plateau beneath the 150 

continental crust of North Island, New Zealand (Burgreen-Chan et al., 2016; David Darby & 151 

Funnell, 2001). σ3 magnitudes determined from leak-off tests are less than or close to Sv 152 

magnitudes (Burgreen-Chan et al., 2016), suggesting variable normal, strike-slip, and a 153 

reverse faulting regimes along the HSM. 154 

In this study, we apply an indirect approach to constrain the three principal stress magnitudes 155 

along the shallow HSM crust using openly available borehole data. We discuss our findings 156 

in the context of understanding the upper plate tectonics within the HSM forearc. This study, 157 

in combination with stress orientation studies already completed for the HSM, provides a 158 

deeper insight into the variable tectonic behaviors associated with subduction margins, and 159 

will serve as crucial information to assist in future hazard assessments of this region. 160 



2  Geologic setting and background 161 

The HSM at the east coast of North Island, New Zealand is a site of recent significant 162 

scientific investigation into the complexity of subduction dynamics. The HSM is formed by 163 

westward subduction of the oceanic crust of the Hikurangi Plateau beneath the continental 164 

crust of the North Island of New Zealand (Davy, 1992; Davy et al., 2008). The oblique 165 

relative motion of the Australian-Pacific plate increases from ~31 mm/year in the southern to 166 ~48 mm/year in the northern North Island (Figure 1a) (Wallace et al., 2004). Tectonic 167 

deformation across the HSM ranges from subduction-related shortening at the Hikurangi 168 

Trough, strike-slip faulting along the North Island Dextral Fault Belt (NIDFB), and back-arc 169 

extensional tectonics in the Taupo Volcanic Zone (TVZ) at the center of North Island 170 

(Wallace et al., 2004; Figure 1a). The East Coast forearc has rotated at rate of 3°–4°/Myr 171 

relative to the Australian plate, resulting in the TVZ back-arc rifting, strike-slip and/or 172 

normal faulting in the onshore portion of the northern and central HSM, transpressional 173 

faulting in the southern HSM, and a large along-strike variation in convergence rate at the 174 

Hikurangi Trough (Figure 1a) (Fagereng & Ellis, 2009; Nicol et al., 2007; Wallace et al., 175 

2004; Wallace, Fagereng, et al., 2012). The oblique motion of the Australian-Pacific plate is 176 

partitioned into a margin-perpendicular component and a margin-parallel component. The 177 

margin-perpendicular component occurs along the Hikurangi subduction interface and 178 

provides NW-SE shortening mostly accommodated by slip on the subduction interface 179 

(>80%) and active frontal thrusts in the overriding plate (Nicol & Beavan, 2003). The 180 

margin-parallel component is largely accommodated by a combination of right-lateral strike-181 

slip on the North Island Dextral Fault Belt (NIDFB) and clockwise rotation of the North 182 

Island forearc (Beanland & Haines, 1998; Nicol et al., 2007; Wallace et al., 2004).  183 

3 Methodology and Data 184 

3.1 Data Sources and Limits 185 

Data used in this study is sourced from 44 boreholes along the HSM (Figure 1), 41 of them 186 

are located within the onshore forearc and 3 are located offshore the east coast of NZ but 187 

west of the Hikurangi Trough. Data utilised includes wireline logging acquired over the 188 

period 1967-2013 from 0 to a maximum depth of 4350 m below ground level. Wireline data 189 

includes density logs from 26 boreholes, sonic velocity logs from 24 boreholes, and borehole 190 

image logs from 10 boreholes. Data presented here include the analysis of 21 leak-off tests 191 

and 39 formation integrity tests from 30 boreholes spanning a depth range of 3 71.5 to 3610.6 192 



m, mud weight logs from 44 boreholes, and repeat formation test results from 2 boreholes 193 

spanning a depth range of 1335-2700 m. How each of these data are utilised in determining 194 

aspects of the in situ-stress magnitudes across the HSM is detailed below. All depths in this 195 

study is referenced to ground level for onshore boreholes and sea level for offshore 196 

boreholes.  197 

3.2 Vertical stress magnitude (Sv) 198 

Assuming the vertical stress (Sv) is aligned to one of the principal stresses, the Sv magnitude 199 

at any specific subsurface depth can be determined by the integration of rock densities from 200 

the surface to the depth of interest (equation 1): 201 S = ρ gZ + ρ(Z) g dZ ≈ ρ gZ + ρg(Z − Z )       1 

where ρ   is the average seawater density (1.03 g/cm3), g is the gravitational acceleration 202 

constant (~ 9.81 m/s2), Zw is the depth of the water column (m), Z is the depth of interest 203 

(m), ρ(Z) (g/cm3) is bulk density of the rock as a function of depth, and �̅� (g/cm3) is the 204 

average density of the rock column above Z. For onshore boreholes, Zw is equal to zero.  205 

We utilise 26 density wireline logs to estimate Sv profiles. At times wireline density logs are 206 

not acquired within the top depth intervals of drilled boreholes, the rock density is 207 

extrapolated from the top of a density log to the surface (seafloor for offshore boreholes) to 208 

more accurately determine a complete Sv profile. This study uses several extrapolation 209 

methods: 1) using wireline sonic logs to convert compressional velocity to density values in 210 

boreholes where checkshot data or vertical seismic profile (VSP) surveys are available 211 

(Kereru-1, Hawke Bay-1, Opoutama-1, Whakatu-1, Ngapaeruru-1, Tawatawa-1, and 212 

Titihaoa-1), 2) using average densities from nearby boreholes with similar stratigraphy (e.g. 213 

boreholes Kauhauroa-1, Kauhauroa-2, Kauhauroa-5, Makareao-1, and Tuhara-1A are all 214 

within <20 km of each other), or 3) using standard Gardner’s relationship (Gardner et al., 215 

1974) and/or regional Gardner’s relationship (Table S5 in in Supporting Information S1) to 216 

convert compressional velocity data from sonic wireline logs to density data logs (e.g. Hawke 217 

Bay-1, Rere-1). All density logs used in this study, supplied by the New Zealand Petroleum 218 

and Minerals group (NZPM), have been undergone borehole environmental corrections.  219 

3.3 Minimum principal stress magnitude (σ3) 220 σ  can be measured directly from pressure-time plots produced during leak-off tests (LOTs), 221 

extended leak-off tests (XLOTs), or mini-frac tests (Addis et al., 1998; Bell, 2003; White et 222 



al., 2002; Zoback et al., 2003). In the HSM, LOTs are the most common tests available to 223 

calculate in-situ 𝜎  magnitudes. LOTs are pumping pressure tests conducted in a borehole a 224 

few meters below recently set casing shoes. During constant fluid volume pumping, the 225 

recorded fluid pressure increase stops behaving linearly with time as the injected fluid 226 

pressure surpasses the σ3 confining stress around the borehole and fluid starts to penetrate 227 

into the formation around the borehole (Addis et al., 1998; Bell, 1996). The point when the 228 

fluid pressure-time curve becomes non-linear (leak-off pressure (LOP)) can be read as an 229 

approximation of 𝜎  magnitude. If a LOT is stopped at any point before the LOP is reached 230 

the test is called a formation integrity test (FIT) and fluid pressure has not exceeded 𝜎  231 

magnitude. In this case, the final fluid pressure value recorded during the FIT can be used as 232 

an estimate of the lower boundary of the 𝜎  magnitude (e.g. Makareao-1, Zoback et al., 233 

2003).  234 

In the majority of boreholes studied here the validity and accuracy of LOTs cannot be 235 

assessed as the pressure–time record data is not fully reported, with only the final LOP being 236 

provided in the text reports by drilling companies. Furthermore, pressure–time records are 237 

sometimes estimated by only a few distinct data points, obtained from pressure measurements 238 

on fluctuating gauges or flow rate estimations from counting pump strokes, making it 239 

impossible to determine the specific and accurate LOP values (Zoback, 2007). It is therefore 240 

possible for σ3 to be reported slightly higher or extremely close to Sv when the measurements 241 

are not carefully taken or reported. Further consideration for subduction margins is provided 242 

by Couzens-Schultz and Chan (2010), who demonstrate that in active compressional settings 243 

and seismically active regions, LOTs cause shear failure along pre-existing fractures rather 244 

than generating new tensile fractures, leading to an underestimation of the σ3 magnitude.  245 

We first calculate σ3:Sv  for all boreholes for which LOP measurements are available and then 246 

use the average of these data to extrapolate the σ3 values beyond the depth of measurements. 247 

The FIT:Sv and σ3:Sv =1 are used to define the lower and upper limit of the σ3 profile, 248 

respectively. 249 

3.4 Maximum horizontal stress magnitude (SHmax) 250 

3.3.1 SHmax estimation from borehole failure analysis 251 

When a vertical borehole is drilled into a homogeneous, isotropic, and elastic medium 252 

parallel to one of the three principal stress orientations, the stress at the borehole wall is 253 



redistributed regarding to non-uniform, far-field principal stresses (Jaeger et al., 2009; 254 

Zoback, 2007). Assuming far field principal stresses are vertical and horizontal, the local 255 

principal effective stresses at a vertical borehole wall can be defined (Moos & Zoback, 1990; 256 

Zoback, 2007): 257 

σθθ=SHmax+Shmin-2cos2θ (SHmax-Shmin)-Pp-APRS   2a 

σZZ=Sv-2ϑcos2θ (SHmax-Shmin)- Pp     2b 

σrr=APRS-Pp 2c 

where σ  is the effective hoop stress (acting parallel to the borehole wall), σ  is the 258 

effective vertical stress, σ  is the effective radial stress (acting perpendicular to the borehole 259 

wall), SHmax and Shmin are the maximum and minimum horizontal principal stress magnitudes, 260 ϑ is Poisson’s ratio, APRS is the annulus pressure at the time of borehole failure (or mud 261 

weight pressure), P  is pore pressure, and θ is the angle between the edge of borehole 262 

breakout and the S  orientation (Figure 2a & 2b). 263 



264
265

266

267

268

269

270

271

272

273

274

275

276

277

278

 
Figure 2 

wall as a 

an exam 

shaded  

compres 

showing 

Example 

resistivit 

Abbrevi 

induced  

Where  

formati 

(DITFs 

the prop 

2. (a) Boreh

a function of

mple in whic

region show

ssional stren

g the relation

e of DITFs a

ty image lo

iations: UCS

tensile fractu

local effec

on around 

) and boreh

perties of th

hole schemat

f azimuth (θ
ch SHmax = 5

ws schematic

gth of the f

nship betwee

as they appea

og. Figures 

S = unconfin

ure. 

ctive stress

the boreho

hole breakou

hese boreho

tic showing 

) measured r

0 MPa, Sv =

cally the cir

formation an

en BOs, DIT

ar on a resisti

2c-d are f

ned compres

ses exceed 

ole, borehol

uts (BOs) c

ole failures, 

local princip

relative to SH

= 45 MPa, S

rcumference

nd induce BO

TFs, and the

ivity image l

from resistiv

ssive strengt

the tensile

e failures s

can form, re

e.g. the azi

pal stresses (

Hmax orientati

Shmin = 40 M

e where σθθ

Os. (b) Diag

e horizontal 

log. (d)  Exam

vity image 

th; BO = bo

e or comp

such as dril

espectively 

imuth angle

(σθθ, σzz, and

ion and prese

MPa, and UC

is large en

gram of a bo

principal st

mples of BO

logs of bor

orehole brea

pressive roc

lling induce

(Figure 2a)

e of BOs an

d σrr) at the 

ence of break

CS=45 MPa. 

nough to ex

orehole cros

tress orientat

Os as they app

rehole Kauh

akout; DITF

ck strength

ed tensile f

). Measurem

nd/or DITFs

 
borehole 

kouts for 

 The red 

ceed the 

s-section 

tions. (c) 

pear on a 

hauroa-5. 

: drilling 

h of the 

fractures 

ments of 

s and the 



angular width of BOs can be used to determine in-situ principal stress orientations and to 279 

calculate in situ stress magnitudes  present at the time of drilling. 280 

DITFs form on the borehole wall where local effective stress concentrations around the 281 

borehole wall lead to a minimum σ  less than the tensile strength of the rock (σ ≤ 0) 282 

(Aadnoy, 1990), at a borehole azimuth parallel to SHmax (θ=0°/180°) (Figure 2b) (Aadnoy, 283 

1990; Bell, 2003; Bell & Gough, 1979; Brudy & Zoback, 1999). DITFs typically appear as 284 

narrow, conductive (on resistivity image logs) or low amplitude and slower travel time (on 285 

acoustic image logs) pairs, ~180° from each other around the borehole wall circumference 286 

(Figure 2c). DITFs are generally parallel or slightly inclined to the borehole axis in vertical to 287 

semi-vertical boreholes (Brudy & Zoback, 1999; Zoback, 2007). Where DITFs are observed 288 

the magnitude of the far-field SHmax can be constrained using Equation 4 (Zoback, 2007):  289 3S − T − P − APRS − σ∆ ≤ S           3 

where SHmax and Shmin are maximum and minimum horizontal principal stresses respectively, 290 T  is the formation tensile strength, P  is pore pressure, APRS is annulus pressure (or mud 291 

weight), and σ∆  is thermal stress arising from the difference between the drilling mud 292 

temperature and formation temperature. σ  is applied where there is a noticeable difference 293 

between mud and rock temperature, such as geothermal boreholes. The tensile rock strength 294 

in sedimentary rocks is often quite small (a few MPa) and can be assumed to be zero in the 295 

analysis of DITFs (Brudy & Zoback, 1999). In this study, σ is considered negligible. 296 

BOs form as enlargements of the borehole diameter on opposite sides of the borehole wall 297 

where σθθ
 is large enough to exceed the formations compressional strength (Figure 2a) (Bell 298 

& Gough, 1979; Zoback, 2007). The σ  magnitude reaches a maximum at θ=±90° (Figure 299 

2a), which occurs at a borehole azimuth oriented perpendicular to the SHmax direction (Figure 300 

2b). BOs typically appear as a pair of wide, out-of-focus, conductive (in water-based mud; 301 

Figure 2d) or resistive (in oil-based mud) zones on resistivity image logs, or as zones of low 302 

acoustic amplitude and slower travel time on acoustic image logs. BOs are located ~180° 303 

from each other around the circumference of the borehole wall (Figure 2b & 2d). SHmax 304 

magnitudes can be estimated by measuring BO widths (W ) from borehole image logs using 305 

Equation 5 (Barton et al., 1988; Vernik & Zoback, 1992): 306 S = ( ( )) ( )           4



where W  is the angular width of the BO; UCS is unconfined compressive strength of the 307 

formation, P  is pore pressure, APRS is annulus pressure or mud weight, Shmin is the minimum 308 

horizontal principal stress magnitude, and σ  is the thermal stress effect resulting from the 309 

difference between the drilling mud temperature and formation temperature. In this study, 310 σ is considered negligible. 311 

UCS is a key parameter in estimating SHmax magnitude (Equation 4), and can either be 312 

directly measured from laboratory strength tests on core samples, or estimated using 313 

empirical relationships between UCS and other rock properties (Chang et al., 2006). Direct 314 

measurements of rock strength are rare for the HSM. Borehole Waingaromia-2 in the 315 

northern HSM is the only borehole where a laboratory strength test was conducted on 316 

calcareous claystone and mudstone core samples (acquired from 132 and 362 m measured 317 

depth, respectively), providing UCS values of 1.1-1.2 MPa and friction angles of 20.5°-32.1° 318 

(friction coefficient 0.37-0.64) (Indo-Pacific Energy (NZ) Ltd., 2002). However, no 319 

relationship between P-wave slowness (Δtc) and UCS was established because no 320 

geophysical logs were obtained and velocity measurements on core samples are unavailable. 321 

Therefore, in this study, UCS values are indirectly estimated by using empirical relationships 322 

between rock strength and Δtc. Empirical equations have been developed for different rock 323 

types, relating various rock properties to UCS across the world. In this study we utilize a 324 

variety of empirical relationships between UCS and sonic velocity by matching appropriate 325 

equations to dominant lithologies encountered along each studied borehole in an effort to 326 

reduce uncertainty in UCS values and thus SHmax magnitude values. Upper and lower bounds 327 

of the UCS are determined using various published empirical relationships (Chang et al., 328 

2006) to provide a range of possible SHmax magnitudes (Figure 3). Details on the equations 329 

used in individual boreholes to determine the lower and upper limits of UCS can be found in 330 

Table S1, Table S2, and S3 in Supporting Information S1.  331 
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depths where possible overpressures may exist (Dutta et al., 2021; Lee et al., 2022; Y. Z. Ma 348 

& Holditch, 2015; Zoback, 2007). Drilling mud weight logs can provide indirect, continuous 349 

approximations of the Pp along a borehole, and can be used as a proxy of Pp assuming the 350 

mud weights have been chosen to stabilize the borehole during drilling, and if no significant 351 

mud losses or kicks are reported (Van Ruth et al., 2002) . Mud Losses of greater than 25 352 

bbl/hr for water-based mud (Zhang & Yin, 2017) may indicate that annulus pressure 353 

exceeded Pp or/and 𝜎  value, resulting in the loss of fluids into the formation. While kicks 354 

and high fluid influx indicate that Pp is greater than the annulus pressure. In both cases, the 355 

Pp derived from drilling mud weight logs should be corrected to generate a good estimation 356 

of Pp. In this study we use mud weight logs from 44 boreholes to calculate Pp. Minor 357 

seepage (mud losses <22 bbl/hr) is reported for boreholes Kauhauroa-2/5, Makareao-1, 358 

Tuhara-1A, Ngapaeruru-1, Tawatawa-1, and Titihaoa-1, and Ranui-2 in the intervals where 359 

BOs are observed, providing confidence in the use of mud weight logs in those intervals for 360 

Pp determination. A minor mud loss of 28 bbl/hr has been observed at severely fractured 361 

depth interval of 1030-1225 m TVD in borehole Ngapaeruru-1 which was treated by remedial 362 

techniques and procedures easily. Moreover, minor background gas and fluid influx are 363 

reported in boreholes Kahauuroa-5, Makareao-1, Tuhara-1A, Tawatawa-1, and Titihaoa-1, 364 

which were controlled by mud weight such that they never flowed. Since no significant mud 365 

losses or kicks are reported in the depth intervals where BOs are observed, we consider the 366 

annulus pressure records a good proxy of Pp in those depth intervals.   367 

The Pp calculated from mud weight logs in Kauhauroa-5 and Titihaoa-1 boreholes are further 368 

calibrated using direct Pp measurements obtained from RFTs. Formation tests conducted in 369 

17 further HSM boreholes (Awatere-1, Hukarere-1, Kauhauroa-2/3/4B, Kiakia-1A, 370 

Makareao-1, Mangaone-1, Morere-1, Opoutama-1, Ruakituri-1, Takapau-1, Te Hoe-1, 371 

Tuhara-1A/1B, Waitahora-1, and Waitaria-2) are not included in this study due to incomplete 372 

pressure build ups during testing in low-permeability formations, test seal failures, or tests 373 

conducted in formation intervals supercharged to hydrostatic pressure. 374 

3.3.2 SHmax magnitude estimation from frictional limit theory  375 

To constrain SHmax magnitudes that result in the observed BO and DITF occurrences, the 376 

stress state is assumed to be limited by Coulomb frictional sliding on an optimally oriented 377 

and pre-existing fault plane (Zoback, 2007). This means that the maximum effective principal 378 



stress cannot exceed the stress value required to cause slip, defined by the friction coefficient 379 

(𝜇) of adjacent faults, on a critically oriented fault plane (Jaeger et al., 2009; Sibson, 1974): 380 ≤ ((1 + μ ) . + μ)    
 

     5 

where σ  is the maximum principal stress, σ  minimum principal stress, P  is pore pressure, 381 

and μ is coefficient of friction on an optimally oriented, cohesionless, pre-existing fault.  382 

This constraint is typically displayed as a stress polygon, which shows the permissible values 383 

of horizontal principal stress magnitudes for a specific depth, Sv, μ, and P  for normal, strike-384 

slip, and thrust faulting tectonics (Zoback, 2007). Although this method only provides the 385 

upper and lower limits for the SHmax magnitude, it can yield more accurate ranges of 386 

permissible SHmax magnitudes when combined with SHmax magnitude estimates from borehole 387 

failure analysis (Chang et al., 2010; Huffman & Saffer, 2016). 388 

3.5 Tectonic stress regime index (𝐴𝜙) 389 

In order to characterize a stress regime or faulting style with stress magnitude data, we use 390 

the stress regime index (𝐴𝜙, Equation 6a and 6b) described by Simpson (Delvaux et al., 391 

1997): 392 𝐴𝜙=(𝑛+0.5)+(−1)𝑛(R−0.5)          6a  

R = (σ2 – σ3) / (σ1 – σ3) 6b

where n is the number of principal stress components greater than the principal stress whose 393 

axis is closest to the vertical, R is the stress ratio, and σ1 , σ2 , σ3 are the maximum, medium, 394 

and minimum principal stress magnitudes, respectively.  395 𝐴𝜙 values range from 0 to 1 in normal faulting regimes, 1 to 2 in strike-slip regimes, and 2 to 396 

3 in thrust faulting regimes. 397 

4 Results  398 

4.1 Vertical Stress Magnitudes 399 

Sv magnitudes determined from 24 onshore boreholes provide overburden stress gradients 400 

ranging from 20.92 to 26.97 MPa/km, with a mean value of 22.58± 1.23 MPa/km (Figure 4a; 401 

Table S5). Sv magnitudes measured within the 3 offshore boreholes range from 20.9 to 21.7 402 

MPa/km with a mean value of 21.26± 0.4 MPa/km. 403 
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Opoho-1 521.3 9.3 11.7 0.79 
Rere-1 3610.6 77.9 82.3 0.95 

Tuhara-1/1A 590.8 8.4 13.3 0.63
Waitaria-2 102.3 1.9 2.4 0.79 

Southern HSM Ranui-1 357.3 5.2 8.6 0.6 
Tawatawa-1 722.5 12.7 12.7 1 
Titihaoa-1 

 
614.9 

1585.7 
1979.8 

9.5 
30.6 
43.4* 

11 
32.4 
41.3 

0.86 
0.94 
1.05 

a True vertical depth from ground level for onshore boreholes and sea level for offshore 414 
boreholes 415 

b σ3 derived from Leak-off pressure 416 
c Sv vertical stress 417 
* σ3 derived from LOP is greater than Sv 418 

LOP values measured in boreholes Tuhara-1/1A and Ranui-1 (11 m west of Ranui-2) are 419 

remarkably low, such that LOP values are less than the σ3 values estimated by normal 420 

faulting failure with friction coefficients less than 0.6. In borehole Titihoa-1, the σ3 value 421 

(43.4 MPa) derived from an LOT performed at ~1979.8 m TVD is greater than the SV for this 422 

depth (41.3 MPa). In this case, σ3 is considered to be vertical, indicating a thrust/reverse 423 

faulting regime (Zoback, 2007). In borehole Tawatawa-1 two LOTs were performed at 722.5 424 

m TVD. The initial test yielded a LOP of 13.23 MPa, while the second LOT yielded a LOP 425 

of 13.36 MPa (Tap Oil Limited, 2004). Our reassessment of pressure-time curve of the 426 

second LOT (which had more data defining the time-pressure plot) reveals that the formation 427 

breakdown pressure (FBP) was reported rather than LOP, resulting in an overestimation of σ3 428 

making it appear greater than the Sv for this depth. We determine the LOP of the second test 429 

by intersecting the straight line of the linear section with the tangent line of the ascending 430 

section on the pressure-volume curve (Figure 5), and report a σ3 magnitude of 12.7 MPa, 431 

almost equal to Sv (13 MPa).  Assuming σ3 measurements made from the reported LOT data 432 

in the study boreholes are a proxy of σ3 (after correcting σ3 derived from LOP >Sv to σ3=Sv), 433 

a HSM average minimum normalized effective stress ratio of 0.66±0.2 and 0.7±0.3 are 434 

derived for the central and southern HSM respectively (Figure 6). 435 
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Figure 7. Calculated far-field in situ stress magnitudes, referenced to the sea level in borehole (a) 483 

Makareao-1 (b) Kauhauroa-2 (c) Kauhauroa-5 in the central HSM. Abbreviations: ΔtC: P-wave 484 

slowness; UCS = uniaxial compressive strength; BO = breakout; DITF: drilling induced fracture; FIT 485 

= formation integrity test; TF failure: thrust faulting failure; µ: friction coefficient; RFT: repeat 486 

formation test; Sv: vertical stress; Shmin: minimum horizontal stress; SHmax: maximum horizontal stress; 487 

σ3: minimum principal stress; 𝐴𝜙: tectonic stress regime index. 488 

Kauhauroa-2 borehole 489 

A σ3 :Sv ratio of 0.81 is determined from σ3 value calculated using LOT data at 463.8 m TVD 490 

(Table 1). The σ3 values in the deeper part of the borehole are calculated from the average σ3 491 

:Sv ratio of 0.95 along the HSM and are further constrained by the lower limit of σ3 value 492 

determined from an FIT= 30.23 MPa at 1707.3 m TVD. The SHmax:Sv ratio of 0.95-1.71 is 493 

determined for borehole Kauhauroa-2 using the SHmax values calculated from the lower and 494 

upper value of UCS. 495 

The SHmax:Sv ratio of 0.95-1.71 and the σ3 :Sv ratio of 0.95 indicate a dominant stress regime 496 

such that Shmin ≤Sv ≤SHmax (Figure 7b). A 0 ≤ Aϕ ≤ 1.94 is determined from calculated stress 497 

magnitude data in this borehole. Sv, Shmin, and the lower limit of SHmax are nearly equal below 498 

1980 m TVD such that Shmin ≈ SHmax ≈ Sv.  499 

Kauhauroa-5 borehole 500 

A σ3 :Sv ratio of 0.73 is determined from σ3 value calculated using LOT data at 459.2 m TVD 501 

(Table 1). The σ3 values in the deeper part of the borehole are calculated from the average σ3 502 

:Sv ratio of 0.95 along the HSM and are further constrained by the lower limit of σ3 value 503 

calculated from an FIT value of 27.13 MPa at 1276.1 m TVD. The SHmax:Sv ratios of 0.95-504 

1.13 in 1280-1350 m TVD and 0.97-1.54 in 1390-1750 m TVD are determined in this 505 

borehole using the SHmax values calculated from the lower and upper value of UCS.   506 

The analysis of SHmax magnitudes and the σ3 :Sv ratio of 0.95 indicate a dominant Shmin ≈ Sv ≈ 507 

SHmax (SHmax- Shmin<5 MPa) and 0 ≤ Aϕ ≤ 1.13 in the depth interval of 1280-1350 m TVD 508 

(Figure 7c).  Moving along the depth to 1390-1750 m TVD, Shmin ≤ Sv ≤ SHmax and 0.44 ≤ Aϕ 509 

≤ 1.92 are observed. 510 

Further constraints on stress magnitudes are made in this borehole using the presence of 511 

DITFs between 1741-1745 m on FMI borehole image logs (Figure 7c). The presence of 512 

DITFs at 1742.3 m suggests that the SHmax should be above the DITF line (Figure 8), where 513 

the local hoop stress can be tensile (Equation 3), but also inside the stress polygon with 𝜇= 514 
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4.2.2 Southern HSM 535 

Ngapaeruru-1 borehole 536 

The σ3 values in this borehole are calculated from the average σ3 :Sv ratio of 0.95 along the 537 

HSM and are further constrained by the lower limit of σ3 value determined from FIT values 538 

of 8.35 and 16.86 MPa at 501.9 and 962.7 m TVD, respectively. The SHmax:Sv ratio of 0.95-539 

1.75 is determined for borehole Ngapaeruru-1 using the SHmax values calculated from the 540 

lower and upper value of UCS.  541 

The SHmax:Sv ratio of 0.95-1.75 and the σ3 :Sv ratio of 0.95 indicate a dominant stress regime 542 

such that Shmin ≤ Sv ≤ SHmax (Figure 9a). A 0 ≤ Aϕ ≤ 1.94 is determined from calculated stress 543 

magnitude data in this borehole (Figure 9a). The upper limit of SHmax magnitudes from the 544 

upper values of UCS are constrained by the limits provided by slip on pre-existing faults with 545 

μ=0.6.  546 
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Tawatawa-1 borehole 553 

A σ3 :Sv ratio of 1 is determined from σ3 value calculated using LOT data at 722.5 m TVD 554 

(Table 1). The SHmax:Sv ratio of 1-1.82 is determined for borehole Tawatawa-1 using the 555 

SHmax values calculated from the lower and upper value of UCS.  556 

The SHmax:Sv ratio of 1-1.82 and the σ3 :Sv =1 indicate a dominant stress regime such that σ3 = 557 

Sv ≤ SHmax (Figure 9d). The upper limit of SHmax magnitudes from the upper values of UCS 558 

are constrained by the limits provided by slip on pre-existing faults with μ=0.6. Aϕ =2 is 559 

determined from calculated stress magnitude data in this borehole. 560 

Titihaoa-1 borehole  561 

The σ3 :Sv ratios of 0.86, 0.94, and 1.05 are determined from σ3 values calculated using LOT 562 

data at 614, 1585.7, and 1979.8 m TVD in this borehole (Table 1). The σ3 :Sv ratio of 1.05 at 563 

1979.8 m TVD indicate that σ3 = Sv at depth intervals of 2200-2700 m TVD. The SHmax:Sv 564 

ratio of 1.02-1.41 are determined for borehole Titihaoa-1 using the SHmax values calculated 565 

from the lower and upper value of UCS.  566 

The analysis of SHmax magnitudes and σ3 :Sv=1 at depth intervals of 2200-2700 m TVD 567 

indicate a stress regime such that σ3= Sv ≤ SHmax (Figure 9c). The upper limit of SHmax 568 

magnitudes from the upper values of UCS are constrained by the limits provided by slip on 569 

pre-existing faults with μ=0.6. Aϕ = 2 is determined from calculated stress magnitude data in 570 

this borehole. 571 

Ranui-2 borehole 572 

The σ3 profile in this borehole is calculated from the average HSM σ3 :Sv ratio of 0.95 are 573 

further constrained by the lower limit of σ3 value determined from FIT value of 6.35 MPa at 574 

395 m TVD. The SHmax:Sv ratio of 0.95-3.12 are determined for borehole Ranui-2 using the 575 

SHmax values calculated from the lower and upper value of UCS.  576 

The The SHmax:Sv ratio of 0.95-3.12 and the σ3 :Sv ratio of 0.95 indicate a dominant stress 577 

regime such that Shmin ≤ Sv ≤ SHmax (Figure 9b). A 0 ≤ Aϕ ≤ 1.96 is determined from 578 

calculated stress magnitude data in this borehole. 579 

 580 

5 Discussion 581 

5.1 Shallow HSM tectonics  582 

Stress magnitudes calculated from borehole data indicate that the SHmax:Sv ratios ranging 583 

from 0.95-1.81 in the central HSM and 0.95-3.12 in the the southern HSM. Additionally, 584 



σ3:Sv ratios of  0.6-1 are measured at depths above 650-700 m TVD, while  0.92-1 are 585 

measured below this depth interval along the HSM. These stress magnitude results reveal that 586 

across the central and southern HSM, SHmax is dominantly σ1, indicating a thrust to strike-slip 587 

faulting regime. The observed dominant thrust to strike-slip faulting regime is consistent with 588 

observed contractional tectonics in the HSM developed by the subduction of the Hikurangi 589 

Plateau beneath the North Island (Barnes et al., 1998; Nicol & Beavan, 2003), and the strike-590 

slip faulting generated by forearc rotation of the East Coast (Beanland & Haines, 1998; 591 

Litchfield et al., 2014; Nicol et al., 2007; Wallace et al., 2004).  592 

Behboudi et al. (2022) report a dominant ENE-WSW shallow crust SHmax orientation within 593 

the central HSM, and WNW-ESE or NW-SE SHmax orientations for the southern HSM 594 

(Figure 1b). Considering σ1=SHmax along the HSM, observed SHmax orientations suggest the 595 

contemporary maximum compressional stress switches from subparallel (ENE-WSW) to the 596 

Hikurangi margin in the north and central HSM, to roughly perpendicular (WNW-ESE or 597 

NW-SE) to the Hikurangi margin in the southern HSM. Based on our confirmation here that  598 

σ1=SHmax along the HSM, it is likely that contemporary tectonics in the central HSM are 599 

dominantly strike-slip, while in the southern HSM, more contractional tectonics may be 600 

expected.  601 

The NNE/NE striking faults in the central HSM, while currently inactive, express reverse 602 

dip-slip components to them based on seismic survey data (Western Energy New Zealand, 603 

2001). This tectonic slip is at odds with the contemporary fault strike-parallel σ1 (SHmax). We 604 

suggest here that these central HSM faults formed in an initially contractional stress state 605 

such that σ3= Sv, σ1=SHmax oriented NW-SE which would have been consistent with the NW-606 

SE component of Pacific-Australian plate motion. Overtime, this stress state changed from 607 

this contractional state to the modern strike-slip/contractional/contractional-oblique stress 608 

state (σ3:Sv=0.92-1, σ1=SHmax oriented ENE-WSW).  609 

This switch in σ1 orientation overtime and along HSM strike may be explained by (a) long-610 

term clockwise rotation of the Hikurangi forearc (b) clockwise rotation of the Hikurangi 611 

forearc in conjunction with high shallow crust overpressures and/or mechanical property 612 

variations, and/or (c) along-strike variation in slip behavior in the HSM. 613 

Clockwise rotation of the forearc, which accommodates the margin-parallel component of 614 

oblique Pacific-Australian plate motion, drives strike-slip and/or normal faulting within the 615 

onshore portion of the northern and central HSM, and transpressional faulting in the southern 616 



HSM (Figure 5, Fagereng & Ellis, 2009; Nicol et al., 2007; Wallace et al., 2004; Wallace, 617 

Fagereng, & Ellis, 2012). Behboudi et al. (2022) suggest that this forearc rotation is likely 618 

responsible for generating strike-slip stress state with ENE-WSW SHmax = σ1 in the central 619 

HSM, and contemporary contractional stress state with WNW-ESE/ NW-SE SHmax = σ1 in the 620 

southern HSM. However, our stress magnitude results of  σ3 : Sv = 0.92-1  and σ1 = SHmax 621 

leave a possibility for both strike-slip and contractional stress states to occur across both the 622 

central and southern HSM due to poorly constrained UCS values used in this study, a 623 

limitation of the study that could be restricted by laboratory rock strength testing of both 624 

onshore and offshore HSM lithologies. 625 

The northern and central HSM have high Pp based on borehole data (Burgreen-Chan et al., 626 

2016; D. Darby & Funnell, 2001), magnetotellurics (Heise et al., 2019), and seismic 627 

tomography (Bassett et al., 2014; Eberhart-Phillips et al., 2017). Overpressure reduces the 628 

effective normal stress on fault planes, meaning that the existing NNE/NE striking faults in 629 

this region will be able to slip at lower shear stresses. Therefore, as the result of this 630 

overpressure, these faults could be less stable, allowing the hangingwall of upper plate faults 631 

to move more easily in response to NE-SW forces raised from forearc rotation. In this 632 

scenario, forces raised from forearc rotation were able to alter stress state overtime from σ3 : 633 

Sv = 1 and σ1 = SHmax with NW-SE SHmax orientation, compatible with NW-SE component of 634 

Pacific-Australian plate motion and old geological structures, to σ3 : Sv = 0.92-1 and σ1 = 635 

SHmax with ENE-WSW SHmax orientation. Similar shallow, high overpressures are not 636 

observed in the hangingwalls of upper plate faults in the onshore of the southern HSM. 637 

Therefore it is possible that the NE-SW forces resulted from forearc rotation alone are 638 

insufficient to exceed the fault shear resistance and change the orientation of σ1 away from 639 

the NW-SE component of Pacific-Australian plate motion, however they may have been high 640 

enough to play a role in reducing σ3 magnitudes to the point that they become <=Sv, 641 

resulting in a more transtensional tectonic regime overtime. 642 

The mechanical properties of fault gauges and formations hosting faults (friction coefficient 643 

and rock strength) can play a role in controlling upper plate tectonic stresses (Mantovani et 644 

al., 2000; Marotta et al., 2002). Reiter (2021) investigated the impact of physical and elastic 645 

parameter contrasts on SHmax orientation and proposed that contrasts in Young’s modulus can 646 

introduce SHmax rotations up to 78°, with larger stress rotations occurring within the softer 647 

lithologies. Behboudi et al. (2022) proposed that basement uplift in the southern HSM may 648 

introduce lateral geomechanical heterogeneities and variations in rock and sediment physical 649 
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studies suggest that SSEs can release the amount of energy equivalent to a Mw 6.5–8 672 

earthquakes (Dixon et al., 2014; Wallace, Beavan, et al., 2012). In the central HSM the 673 

recurring SSEs and frequent earthquakes may release energy overtime such that the normal to 674 

shear stress ratio on pre-existing faults has changed in a way that make it easier to slip in 675 

response to forces deriving from long-term forearc rotation. While stress accumulation due to 676 

locked nature of the southern HSM, don’t allow the normal to shear stress ratio change 677 

considerably on the existing NNE/NE striking compressional faults and make it difficult for 678 

the hanging wall of these faults to slip in response to forearc rotation forces; therefore stress 679 

state has not changed overtime in the southern HSM. However, the static stress drop of SSEs 680 

is estimated to range 0.01–1.0 MPa (Gao et al., 2012). Given that the contemporary σ3: 681 

Sv≈0.95 and Sv-σ3  ranges between 0-3 MPa (for depths less than 3 km), these SSEs should 682 

have existed in the central HSM for more than 20 years such that they were able to release 683 

energy in order of 3 MPa (for depths less than 3 km) to change the initial σ3 : Sv = 1 to the 684 

contemporary σ3 : Sv = 0.92-1 and reorient the SHmax orientation from NW-SE to ENE-WSW 685 

in this region. However, further research and modeling are required to determine and quantify 686 

the initial stress state and whether the amount of stress released during SSEs in the central 687 

HSM was sufficient to support such a theory. 688 

5.2 Extensional tectonics within the HSM forearc 689 

There are locales in the central and southern HSM where stress magnitude determination 690 

suggests a normal faulting regime (σ3:Sv < 1 and 0 ≤ Aϕ ≤ 1). Also σ3:Sv < 1 where σ3 691 

calculated from LOT data is observed for 13 tests conducted at depth intervals anywhere 692 

from ≈102 to 3611 m TVD in northern and central HSM boreholes (Table 1), and from 3 693 

tests at depth intervals of ≈ 357-1586 m TVD in southern HSM boreholes (Table 1). Several 694 

factors can result in localized normal faulting regime at subduction margins including 1) 695 

uncertainties in calculated UCS values and/or  σ  magnitudes used to determine stress states 696 

in this study, 2) the presence of local, active normal faults, and 3) fluctuations in stress 697 

magnitudes modulated by seismic cycles.  698 

5.2.1. Uncertainties in calculated UCS values and 𝛔𝟑 magnitudes 699 

Estimations of SHmax magnitudes are highly sensitive to the UCS values used, particularly 700 

when UCS is determined from empirical relationships not constrained by laboratory testing 701 

(Zoback, 2007). Due to lack of direct UCS data in this region, and a lack of empirical 702 

relationships for the formations of this region to determine UCS from other rock properties, 703 



this study relied on the use or a range of empirical relationships developed elsewhere to 704 

generate a low and high limit for UCS at the HSM. These UCS ranges were then used to 705 

generate the lowest and highest limits of SHmax magnitude. When the lowest limit of UCS is 706 

used it can result in a potentially extensional stress state such that Shmin ≈SHmax≤Sv. As such, 707 

the uncertainty in calculated UCS values, and the resulting potential errors it can introduce 708 

into a stress model for the HSM, highlight the importance of dedicated laboratory tests for 709 

developing robust empirical relationships for UCS in the HSM region, and subduction 710 

regions like this, where stress is a critical geological consideration for hazard and resource 711 

management. 712 

Inaccuracy involved in LOT measurements (section 3.3) along with the lack of detail reported 713 

on LOT results introduces an unknown level of uncertainty on estimated σ3 magnitudes, and 714 

hence on estimated σ3:Sv ratios using this data. Additionally, lack of LOT data along each 715 

borehole necessitates the estimation of σ3 profiles from the average σ3:Sv = 0.95, which also 716 

carries uncertainty. As a result, we recognize the potential impact this has on calculations of 717 

SHmax magnitudes here, as well as on any interpretations of regional stress state and tectonics. 718 

To investigate the potential effect of σ3 uncertainties on SHmax calculations, we use both the 719 

lower and upper limits of σ3 values calculated from σ3:Sv = 0.92-1, BO widths, and the lower 720 

and upper boundary of UCS values. This analysis reveals that the σ3 magnitude uncertainties 721 

at the scale explored here have little influence on SHmax magnitude calculations (±3.5 Mpa) 722 

and hence do not change our findings about the stress regime and tectonics within the HSM 723 

(blue areas in Figure 3; Figure 7b,c; Figure 9a,b).  724 

5.2.2 Presence of active normal faults 725 

Extensional structures are common within the overriding plate of many subduction margins 726 

(Loveless et al., 2010; Moore et al., 2013). Normal faults in subduction zones are often 727 

attributed to gravitational instabilities associated with subduction erosions and subsidence, 728 

density imbalances produced by forearc uplifts, strain releases during earthquake cycles, and  729 

flexural rigidity of the subduction interface (Barnes & Nicol, 2004; Collot et al., 1996; 730 

Loveless et al., 2005; Park et al., 2002; Sacks et al., 2013). Within the HSM, localized 731 

extensional stresses within the overriding plate are suggested to result from processes such as 732 

slab rollback, forearc rotation (Nicol et al., 2007; Wallace et al., 2004), subduction erosion 733 

and related subsidence, gravitational collapse due to forearc uplift, and growth of bending-734 



moment faults (Barnes & Nicol, 2004; Chanier et al., 1999; Upton et al., 2003; Walcott, 735 

1987; Wallace, Fagereng, et al., 2012).  736 

The σ3 magnitude of 8.4 MPa measured from LOP in borehole Tuhara-1/1A (590.8 m TVD; 737 

Table 1) is lower than σ3 values of 8.95 MPa estimated from normal faulting failure with a 738 

friction coefficient of 0.6 (Equation 7). This lower σ3 magnitude may indicate there are active 739 

normal faults at this depth along this borehole. In addition, borehole Tuhara-1A is located 740 

within the Tuhara anticline structure, formed by contractional stresses resulting from two 741 

blind thrust faults beneath the structure (Western Energy New Zealand, 1999). Our stress 742 

magnitudes and HRT’s (2000) analysis suggests that the Tuhara structure currently 743 

experiences a dominant strike-slip faulting regime (Shmin ≤ Sv ≤ SHmax; 1 ≤ Aϕ ≤ 2) along the 744 

majority of the borehole, interspersed with intervals of normal faulting regime (Shmin ≤ SHmax 745 

≤ Sv; 0 ≤ Aϕ < 1) mainly within the  1700-1820 m and 2100-2145 m TVD depth interval 746 

(Figure 3). A prominent feature of the Tuhara structure, as indicated by seismic reflection 747 

profiles, is observation of relatively short steep east- and west-dipping normal faults 748 

throughout Pliocene and Miocene successions (Western Energy New Zealand, 1999; Barnes 749 

et al., 2002). Accordingly, we relate the appearance of normal stress states in our data to the 750 

normal structures that develop as part of the larger compressional structural architecture of 751 

this borehole site, and not due to the previously discussed uncertainties in the calculated UCS 752 

and/or σ3 magnitude values. This could particularly be the case where both the calculated 753 

lower and upper limit of SHmax magnitudes are less than SV  (for example at 1700-1820 mTVD 754 

in Tuhara-1A; Figure 3). 755 

5.2.3. Stress field fluctuations modulated by seismic cycling 756 

Fluctuations in stress magnitudes can be caused by seismic cycling. It has been reported that 757 

earthquake events generate stress drops of 0.01 to 100 MPa, depending on the rheology, 758 

roughness of fault, geometry of slip area, and heterogeneous stress fields (Allmann & 759 

Shearer, 2009; Baltay et al., 2011; Candela et al., 2011; Cocco et al., 2016; Oth et al., 2010). 760 

The observation of localized normal faulting regimes in the HSM may be related to seismic 761 

cycling in the region. The normal faulting regimes observed along central HSM boreholes 762 

Kauhauroa-2 (1980-2075 m TVD), Kauhauroa-5 (1330-1345 m TVD), and Tuhara-1A (1700-763 

1820 m TVD) occur where SHmax and Sv  are very similar and are greater than Shmin (Figure 3, 764 

Figure 7b & 7c). In such stress state scenarios, a post-seismic stress drop of only a few MPa 765 

after great earthquakes or frequent moderate earthquakes in the HSM region could perturb the 766 



delicately balanced stress magnitudes surrounding these boreholes, switching σ1= SHmax to 767 

σ1=Sv i.e. from a reverse/strike-slip to a normal stress state, accompanied by small rotations 768 

in the SHmax orientation.  769 

6 Conclusions 770 

This work represents the first comprehensive determination of the in-situ stress state of the 771 

HSM margin using available borehole data. We found a σ3:Sv = 0.6-1 at depths above 650-772 

700 m TVD, while  σ3:Sv = 0.92-1 below this depth interval along the HSM. Stress 773 

magnitudes calculated from borehole data indicate that the SHmax:Sv ratios ranging from 0.95-774 

1.81 in the central HSM and 0.95-3.12 in the the southern HSM. These principal stress 775 

magnitude results indicate a σ1=SHmax and a thrust to strike-slip faulting regime across the 776 

both central and southern HSM. The pre-existing NNE/NE striking reverse faults along the 777 

both central and southern HSM infer that stress regime was initially in a contractional state 778 

such that σ3: Sv =1, σ1=SHmax, and a dominant NW-SE SHmax, consistent with NW-SE 779 

component of Pacific-Australian plate motion. Taking contemporary stress state of σ1=SHmax 780 

and ENE-WSW SHmax orientation and initial stress state into account in the central HSM, 781 

these observations suggest that the compressional regime has shifted from subparallel to 782 

perpendicular to the NW-SE Hikurangi convergence direction overtime in this region. 783 

Variation of the central HSM stress state overtime may result from forces arising from 784 

Hikurangi forearc rotation either by itself or facilitated by the upper plate, shallow, high 785 

overpressures in the central HSM. Along-strike variation in slip behavior may also play a role 786 

by releasing stress overtime due to SSEs and frequent earthquakes, hence changing the stress 787 

state in the central HSM, while in the southern HSM, the modern WNW-ESE/ NW-SE  σ1 788 

(SHmax) remains subparallel to NW-SE Hikurangi convergence direction overtime, may reflect 789 

the interseismic locked nature of the plate interface. Finally, stress determination highlights 790 

localized normal stress states within the HSM forearc interpreted to be due to processes such 791 

as the presence of localized active normal faults or fluctuations in stress magnitudes 792 

modulated by seismic cycles. The determination of HSM in-situ stresses in this study will 793 

provide an invaluable tool for improving our understanding of the stability of upper plate 794 

faults and will facilitate more quantitative efforts to assess the seismic hazard potential of the 795 

HSM that will support of disaster risk reduction plans.  796 
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