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Abstract

Vegetation turnover time (τ) is a central ecosystem property to quantify the global vegetation carbon dynamics. However,

our understanding of vegetation dynamics is hampered by the lack of long-term observations of the changes in vegetation

biomass. Here we challenge the steady state assumption of τ by using annual changes in vegetation biomass that derived from

remote-sensing observations. We evaluate the changes in magnitude, spatial patterns, and uncertainties in vegetation carbon

turnover times from 1992 to 2016. We found that the forest ecosystem is close to a steady state at global scale, contrasting with

the larger differences between τ under steady state and τ under non-steady state at the grid cell level. The observation that

terrestrial ecosystems are not in a steady state locally is deemed crucial when studying vegetation dynamics and the potential

response of biomass to disturbance and climatic changes.
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Key Points: 17 

● We estimate vegetation carbon turnover times globally in a non-steady state from 1992 to 18 
2016. 19 

● Using the assumption of steady-state for vegetation biomass turnover can cause 20 
substantial biases locally. 21 

● The validity of steady-state assumption increases with spatial scales. 22 
  23 
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Abstract 24 

Vegetation turnover time (τ) is a central ecosystem property to quantify the global vegetation 25 
carbon dynamics. However, our understanding of vegetation dynamics is hampered by the lack 26 
of long-term observations of the changes in vegetation biomass. Here we challenge the steady 27 
state assumption of τ by using annual changes in vegetation biomass that derived from remote-28 
sensing observations. We evaluate the changes in magnitude, spatial patterns, and uncertainties 29 
in vegetation carbon turnover times from 1992 to 2016. We found that the forest ecosystem is 30 
close to a steady state at global scale, contrasting with the larger differences between τ under 31 
steady state and τ under non-steady state at the grid cell level. The observation that terrestrial 32 
ecosystems are not in a steady state locally is deemed crucial when studying vegetation dynamics 33 
and the potential response of biomass to disturbance and climatic changes. 34 

Plain Language Summary 35 

Previous studies relied on the assumption that vegetation carbon turnover does not change with 36 
time. However, this assumption can be substantially violated under the influence of disturbances 37 
such as climate change and land use. We compared the difference of carbon turnover estimations 38 
under different assumptions by using a global observations of vegetation biomass. 39 

  40 

1 Introduction 41 

One of the largest uncertainties in Earth system models is in quantifying how the carbon 42 
uptake by terrestrial ecosystems will respond to changes in climate (Friedlingstein et al. 2006; 43 
Friend et al., 2014). As an emergent ecosystem property that partially determines carbon 44 
sequestration capacity, the vegetation biomass turnover times (τ) have been used as a diagnostic 45 
metric to quantify the feedback between the carbon cycle and climate (Carvalhais et al., 2014; 46 
Thurner et al., 2016). However, there is a large uncertainty in the simulations of vegetation 47 
carbon stock as well as τ across earth system models, indicating different representations of the 48 
response of vegetation to future climate change (Friend et al. 2014). Furthermore, our current 49 
understanding of τ and the dynamic of vegetation is limited due to the lack of long-term 50 
observations of changes in vegetation. As a result, the estimation of τ has relied so far on the 51 
assumption that the vegetation carbon in an ecosystem will eventually reach a steady state 52 
(steady state assumption, hereafter SSA) at which the net change of vegetation biomass becomes 53 
zero (∆Cveg=0), or so small compared to the total biomass that becomes negligible. The SSA has 54 
been shown to be a useful assumption at a large spatial scale. However, at local scales, an 55 
ecosystem is unlikely to maintain a steady state due to the influences from external factors such 56 
as disturbances and climate variability (Ge et al., 2019). It is still unknown whether the SSA can 57 
hold at local spatial domains and how much the difference it can make to the τ estimation if one 58 
neglects the temporal changes in vegetation carbon.   59 

In this study, we used estimates of annual changes in vegetation carbon derived from a 60 
multi-decadal dataset and global estimations of gross primary productivity (GPP) that are driven 61 
by meteorological observations (Besnard et al., 2021; Santoro et al., 2022; Tramontana et al. 62 
2016; Jung et al. 2020), for estimating and comparing τ estimates that are derived from SSA and 63 
non-steady-state assumption (hereafter NSSA), respectively, at local, biome and global scales. 64 
The validity of SSA was evaluated in different spatial domains to better quantify the effect of 65 
spatial scales on the patterns of carbon turnover times.  66 
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2 Data and Methods 67 

In this section, we first introduce the datasets we used to estimate τ including above-68 
ground vegetation biomass, below-ground biomass and gross primary productivity. We 69 
used a forest canopy cover dataset to examine the relationship between the changes in τ 70 
and tree canopy cover. Then the calculations of τ using three methods are introduced next 71 
with detailed explanations. 72 

2.1 The multi-decadal estimates of AGB dataset 73 

Annual AGB estimates were derived from C-band satellite radar signals between 1992 74 
and 2016 with a pixel size of 25 km (Santoro et al., 2022). The very dense time series of 75 
observations by the European Remote Sensing (ERS) WindScatterometer, the MetOp 76 
Advanced SCATterometer (ASCAT), and the Envisat Advanced Synthetic Aperture 77 
Radar (ASAR) were used to maximize the information content of forest structure in the 78 
signal, allowing for AGB estimates of higher accuracy compared to values obtained from 79 
a single observation (Santoro et al., 2022). The annual estimation of AGB is obtained by 80 
synthesizing all daily observations of the radar backscatter at one location in a pixel 81 
(0.25º×0.25º), enabling the inference of a continuous time series of AGB estimation. By 82 
adapting the AGB retrieval method in time and space and computing a weighted average 83 
of individual AGB estimates, the annual AGB estimates were less impacted by data 84 
noise, instantaneous moisture conditions, precipitation, and snow cover (Santoro et al., 85 
2011).  86 

2.2 Estimation of total vegetation carbon stock 87 

The stock of total vegetation biomass consists of AGB and BGB. Therefore, we 88 
estimated BGB from the AGB time series by scaling with the root-shoot ratio, Rrs: 89 

𝐵𝐺𝐵 = 𝐴𝐺𝐵 × 𝑅!"	(1)	 90 

In this study, we used a spatially explicit global dataset of root-shoot ratio, which was 91 
derived from a machine learning model that is trained on a large number of ground field 92 
measurements of forest root biomass as a function of shoot biomass, tree height, age, 93 
species, topography, land management, edaphic and climate covariates (Huang et al., 94 
2021). 95 

The total vegetation carbon was obtained by summing the carbon in both AGB and BGB 96 
under the assumption that the carbon stock is 47% of the total dry biomass (IPCC, 2006): 97 

𝐶#$% = 𝐴𝐺𝐵	 × (1 + 𝑅!") ∗ 0.47	(2) 98 

2.3 GPP dataset 99 

We used estimations of GPP from the FLUXCOM project in which different machine 100 
learning approaches were applied to upscale global energy and carbon fluxes from eddy 101 
covariance flux measurements (Tramontana et al., 2016; Jung et al., 2020). In this study, 102 
GPP annual estimates driven by meteorological observations and remote sensing 103 
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observations at the spatial resolution of 0.5º and the time period from 1992 to 2016 are 104 
used as carbon influx into the vegetation carbon pool. The dataset was resampled to the 105 
spatial resolution of 0.25º to match the AGB dataset.  106 

 107 

2.4 Forest tree canopy cover change 108 

Tree canopy cover (vegetation that is greater than 5 meters in height) was derived from 109 
the Advanced Very High Resolution Radiometer (AVHRR) remote-sensing 110 
measurements (Song et al., 2018). The version 4 Long Term Data Record (LTDR) was 111 
used to generate the data on tree canopy coverage from 1982 to 2016. Daily LTDR 112 
surface reflectance data were used to compute the normalized difference vegetation index 113 
(NDVI) at each pixel (0.05º×0.05º). Maximum NDVI composition was then used to 114 
obtain adjusted annual phenological metrics, which were used as input to supervised 115 
regression tree models to generate the annual product of tree canopy coverage. 116 

 117 

2.5 Estimation of τ under steady state 118 

Changing Cveg over time is determined by the uptake of carbon and turnover times: 119 

𝑑𝐶#$%
𝑑𝑡 = 𝐺𝑃𝑃 −

𝐶#$%
𝜏 	(3) 120 

Cveg is the vegetation carbon stock. Assuming that the vegetation carbon pool is in a 121 
steady state, i.e., the change in Cveg over time (dCveg/dt) equals zero, then vegetation 122 
carbon turnover times can be calculated as the ratio between vegetation carbon stock and 123 
GPP: 124 

𝜏&&' =
𝐶#$%
𝐺𝑃𝑃		(4) 125 

Here τSSA is calculated pixel-wise by using annual mean Cveg and GPP over the period 126 
of 1992-2016. 127 

 128 

2.6 Estimation of τ under non-steady state 129 

Compared with the estimations of τ under steady-state assumption, the changes in Cveg 130 
over time are considered (dCveg/dt ≠ 0) when estimating τ under non-steady state (τNSSA). 131 
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To derive a robust estimation of τNSSA at each grid cell, we calculated τNSSA using three 132 
different methods to assess the uncertainty built in the τ estimations. 133 

Method 1 134 

We estimate ΔCveg by calculating the annual difference of Cveg between year t and year t 135 
– 1. Then, a τ estimate can be derived for each year by applying GPP and ΔCveg at year t. 136 
Finally, we derive the τ under a non-steady state by averaging over time:  137 

𝜏(&&' =
𝐶#$%,*+,

𝐺𝑃𝑃* − ∆𝐶#$%,*
		(5) 138 

Method 2 139 

In the second method, we estimated the mean ΔCveg using the trend of Cveg in a certain 140 
period to avoid the influence of outliers on the results. In this way, τ can be inferred as: 141 

𝜏(&&' =
𝐶#$%;;;;;;

𝐺𝑃𝑃;;;;;; − ∆𝐶#$%,*!$-.
	(6) 142 

Here the ∆𝐶#$%,*!$-. is inferred by applying a simple linear regression model (least-143 
square robust fitting) between the response variable Cveg and time (Cveg ~ T). The 144 
coefficient of T is, therefore, the average annual ΔCveg over the whole period. Thus, the τ 145 
under a non-steady state can be estimated with the annual mean values of Cveg, GPP, and 146 
ΔCveg.  147 

 148 

Method 3 149 

In the third method, we infer τ from Eq.3 by applying a linear regression model (least-150 
square robust fitting) at each grid cell in which (GPP - ΔCveg) is the target variable while 151 
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Cveg is the predictor, enabling annual turnover time to be inferred from the coefficient of 152 
Cveg (1/ τNSSA):  153 

𝐺𝑃𝑃 − ∆𝐶#$%~
1

𝜏(&&'
∙ 𝐶#$%		(7) 154 

Here ΔCveg is the difference of Cveg between year t and year t - 1. GPP is the carbon input 155 
in year t and Cveg is the total carbon density in year t - 1, respectively. 156 

 157 

3 Results 158 

3.1 Comparison of τ under NSSA and SSA at grid cell level and global scale 159 

The τ values (Figure 1) represent the turnover time of the entire forest living vegetation 160 
biomass, averaged over the whole period of the observations. The comparison between 161 
estimates of τNSSA using three different methods and τSSA shows a consistent pattern that 162 
carbon turnover processes are far from a steady state at the grid cell level (Figure S1). 163 
Although there is a high correlation in the global spatial patterns (R2>0.98, bottom off-164 
diagonal plots in Figure 1), differences between τNSSA and τSSA are characterized by high 165 
spatial heterogeneity. Although there are differences in the estimations of τNSSA that derived 166 
from the three methods, the high global correlation and similar patterns of the difference 167 
between τNSSA and τSSA shows high consistency in the estimated τNSSA. Our results show a 168 
high spatial variability of τ values ranging from 0 to 15 years. The longest turnover times 169 
are located in the northern boreal forest ecosystem, where part of the biome has τ values 170 
longer than ten years, whereas carbon in the temperate forest ecosystem turnovers over 171 
much faster where the τ values are mostly under five years. The assumption that vegetation 172 
biomass is in steady state results in an overall bias of τ by 10% (90th percentile), compared 173 
to the τ estimates under a non-steady state at the grid cell level (Figure 1). This finding 174 
indicates that the majority of global forest ecosystems are not in a steady state, although 175 
the degree of deviation from a steady state differs from one region to another. The 176 
discrepancies between τSSA and τNSSA are substantially higher in the boreal forest (4.33%) 177 
ecosystem than in the tropical forest 10.99%) ecosystems indicating that the forests in the 178 
tropics are closer to a steady state, whereas assuming SSA in the boreal forest may cause 179 
large bias (Figure S2). Although the difference can be large at the grid cell level, there is a 180 
high global correlation (r > 0.98) between τSSA and τNSSA at the global scale, indicating an 181 
overall similar spatial pattern with or without considering the changes in annual biomass 182 
at the global scale. Here we show that the forest biomass at the global scale is roughly in a 183 
steady state whereas the SSA is largely violated at the grid cell level, especially in the 184 
northern boreal forest ecosystems where the τ values can be substantially underestimated 185 
or overestimated if assuming SSA.  186 

In line with a previous study in which the SSA-induced biases are assessed at site level (Ge 187 
et al., 2019), we show that SSA causes significant underestimations of τ up to 40% (99th 188 
percentile) in China during the period of 2005-2015 (Figure S3). However, our results show 189 
a high heterogeneity where SSA can also cause overestimation of τ up to -12% (1th 190 
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percentile). Further analysis shows that the pattern also changes across different periods of 191 
time. For instance, there is a contrasting pattern between 2001-2005 and 2009-2013 in 192 
which the former is characterized by overestimation of τ induced by SSA whereas there is 193 
a widespread underestimation of τ in the latter.  194 

 195 

 196 

Figure 1. Comparison of τ under SSA and NSSA. The upper off-diagonal subplots show 197 
the relative difference between each pair of datasets (column/row). The bottom off-198 
diagonal subplots show the density plots and major axis regression line between each pair 199 
of datasets (m: slope, b: intercept, r: correlation coefficient). The ranges of both of the 200 
color bars are between the 1st and the 99th percentiles of the data.  201 

 202 

 3.2 The effect of large-scale disturbances on carbon turnover times  203 

The disturbance from natural causes or anthropogenic activities can make an ecosystem 204 
deviate from a steady state. By estimating carbon turnover times at different periods, we 205 
quantified the degree of deviation if disturbances, e.g., deforestation, happened in a forest 206 
ecosystem. Figure 2 shows that the pervasive deforestation in the 90s primarily affected 207 
the carbon turnover times in the southeast part of the Amazon, which is known as the ‘arc 208 
of deforestation’ (hereafter AOD, Durieux et al., 2003). Our results clearly show τNSSA is 209 
approximately 20% lower than τSSA in the AOD region from 1993 to 1998, indicating 210 
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anthropogenic activity (mostly deforestation) accelerated the carbon turnover rates to a 211 
large extent. Compared with the AOD, forests in the middle of Amazon, where there are 212 
less population and disturbances, are closer to a steady state, as shown by the much less 213 
difference between τNSSA and τSSA. Further analysis shows that tree canopy cover (Figure 214 
2, Row 2) and Cveg (Figure 2, Row 3) changes decreased mainly during the same period of 215 
1993-1998, whereas the changes in GPP does not follow the trend in the arc of 216 
deforestation. These results indicate that the acceleration of turnover times during this 217 
period is directly caused by the large decrease in the vegetation biomass, which is 218 
intimately associated with a decrease in forest cover in this region. On the other hand, our 219 
findings show that the forest ecosystems started to recover during the 1999-2004 period as 220 
the vegetation biomass increased by 10% to 20%, in line with the increased tree canopy 221 
cover in the AOD region. As a result, the carbon turnover times increased by 10% to 30% 222 
during the same period. From 2011 to 2016, the magnitude of changes in τ, Cveg and tree 223 
canopy cover significantly decreased, indicating the forest ecosystems are closer to a steady 224 
state due to less disturbances. These findings indicate that turnover times and the steady 225 
state of the forest ecosystem can be largely affected by anthropogenic activities.    226 

	227 

	228 

	229 

Figure 2. Regional changes in the relative difference between τNSSA and τSSA ((τNSSA - 230 
τSSA)/ τSSA*100) from 1993 to 2016, row 1, forest cover change (%), row 2, vegetation 231 
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biomass change (%), row 3, GPP change (%), row 4 at different time periods in Amazon 232 
region.   233 

 234 

3.3 The effect of spatial scale on the steady-state assumption 235 

We further investigate the effect of spatial scale on the difference between τNSSA and τSSA 236 
in different biomes by gradually changing the spatial scale from 0.25º (grid cell level) to 237 
25º (continental scale) as shown in Figure 3. Here the difference between τNSSA and τSSA at 238 
each spatial scale is quantified by the 10, 50 and 90 percentiles of the relative difference 239 
between τNSSA and τSSA (Q10, Q50, Q90, Figure 4). We find that the difference between τNSSA 240 
and τSSA substantially decreases with increasing spatial scales. The Q10 and Q90 tropical 241 
forests decrease by approximately 5%, whereas it decreases by approximately 10% in 242 
temperate and boreal biomes when the spatial scale increases from grid cell to ecosystem 243 
scale. Globally, the difference between τNSSA and τSSA is approximately 3% at ecosystem 244 
scale, indicating that steady state assumption will cause less errors in estimating carbon 245 
turnover times at larger spatial scales. 246 

 247 

Figure 3. Effects of spatial scale on the difference between τSSA and τNSSA. The x-axis 248 
represents the increase of spatial scales from grid cell level (0.25º) to continental level 249 
(25º). The y-axis represents the 10th (absolute value) and 90th relative difference between 250 
τNSSA and τSSA.  251 

 252 

4 Discussion 253 

Our findings imply that the two different assumptions, i.e., SSA and NSSA, should be 254 
applied based on different ecological principles and spatial scales. The common approach 255 
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of defining τ as the ratio between carbon stock and carbon influx based on SSA can be 256 
justified and properly applied when the changes in net carbon flux are negligible relative 257 
to the total carbon stock (Carvalhais et al., 2014). Although disturbances from nature or 258 
human beings could cause non-steady-state behavior, neglecting the changes, in some 259 
cases, only make a little difference to the quantification of the spatial pattern of τ, which 260 
does not hamper the understanding of the dynamics of the terrestrial ecosystem carbon 261 
cycle. However, at a grid cell level, neglecting the changes in vegetation carbon (assuming 262 
vegetation is in a steady state) may result in a large bias. Using three methods, we provide 263 
robust estimations of τ under a non-steady state. The comparisons between τSSA and τNSSA 264 
show high heterogeneity in both space and time. A pioneer study (Ge et al., 2019) showed 265 
large SSA-induced biases on τ estimation in varied ecosystems of China by using the data 266 
at ten FLUXNET sites from 2005 to 2015 which is consistent with our results. However, 267 
we further show that the magnitude and the signs of the SSA-induced biases are 268 
characterized by high spatial heterogeneity and can change in time. This is mainly caused 269 
by the changes in vegetation biomass due to climate change or disturbances (Figure 2).   270 

We have shown substantial heterogeneity in the degree of validity of the steady-state 271 
assumption across space. The comparison between τSSA and τNSSA quantitatively shows that 272 
most global forest ecosystems are far from steady-state, especially in the temperate and 273 
boreal forests. Even at regions of high biomass density such as Amazon Forest where the 274 
changes in vegetation carbon is relatively small, i.e., closer to steady-state, disturbances 275 
such as deforestation or fire could drive the forest ecosystem away from steady-state, as 276 
our results clearly show that the arc of deforestation in Amazon Forest have large difference 277 
between τSSA and τNSSA caused by drastic changes in vegetation biomass (Figure 2). These 278 
results indicate that applying SSA at the grid cell level is likely to cause substantial errors, 279 
potentially leading to misleading conclusions based on poor estimation of carbon turnover 280 
times. 281 

Furthermore, our study quantified the link between spatial scales and the validity of SSA. 282 
Our results imply that SSA is approximately valid at large spatial scales (>15º or 1500km), 283 
at which scale the differences are much lower (~5%) than grid cell level. The current 284 
understanding of the temporal dynamics of the terrestrial carbon cycle nearly all relies on 285 
earth system models in which the carbon turnover rates are retrieved under the SSA, which 286 
results in large discrepancies in carbon pools and turnover among different models (Friend 287 
et al., 2014; Todd-Brown et al., 2013). The estimation of τ under NSSA with observational 288 
long-term biomass data provides insights into better understanding and thus modeling 289 
turnover rate and its spatial patterns.   290 

 291 

5 Implications, Limitations and Conclusions 292 

Although we used different streams of data and methods to account for the uncertainties in 293 
the estimations of carbon turnover, several factors may limit the results of our study. First, 294 
the estimations of AGB by Santoro et al. (2022) is derived at relatively coarse spatial 295 
resolution at 0.25º which makes it impossible to compare with measurements of AGB at 296 
plot level. To overcome the limitation, Santoro et al. relied on gridded datasets including a 297 
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vegetation density map, an independent AGB map, a global land cover map and a model 298 
of global elevation to estimate the unknown model parameters that are necessary to infer 299 
vegetation biomass. Second, the estimated total vegetation carbon stock is calculated by 300 
using a spatial explicit root-shoot ratio of biomass that does not change with time. 301 
Therefore, we assume that the relationship between above- and below-ground biomass 302 
does not have a directional change over long-term in this study. Nevertheless, our findings 303 
suggest that the steady state assumption is robust at a global scale yet becomes much less 304 
realistic at the grid cell level as the difference between regional τSSA and τNSSA can be as 305 
large as 20%. The usage of the steady state assumption would result in a substantial bias 306 
of τ, especially in the northern boreal forest ecosystems and regions with a high degree of 307 
disturbance, either from anthropogenic sources or natural factors. However, at a larger 308 
spatial scale, the differences in τ estimations at SSA and NSSA significantly decrease 309 
because the annual changes in vegetation biomass are small compared with the total 310 
amount of biomass. With the novel long-term observations of vegetation biomass, we 311 
revealed a detailed picture of the spatial distribution of carbon turnover times under 312 
different assumptions and its relationship with spatial scales, which will guide the proper 313 
application of the two assumptions on different conditions. 314 
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Key Points: 17 

● We estimate vegetation carbon turnover times globally in a non-steady state from 1992 to 18 
2016. 19 

● Using the assumption of steady-state for vegetation biomass turnover can cause 20 
substantial biases locally. 21 

● The validity of steady-state assumption increases with spatial scales. 22 
  23 
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Abstract 24 

Vegetation turnover time (τ) is a central ecosystem property to quantify the global vegetation 25 
carbon dynamics. However, our understanding of vegetation dynamics is hampered by the lack 26 
of long-term observations of the changes in vegetation biomass. Here we challenge the steady 27 
state assumption of τ by using annual changes in vegetation biomass that derived from remote-28 
sensing observations. We evaluate the changes in magnitude, spatial patterns, and uncertainties 29 
in vegetation carbon turnover times from 1992 to 2016. We found that the forest ecosystem is 30 
close to a steady state at global scale, contrasting with the larger differences between τ under 31 
steady state and τ under non-steady state at the grid cell level. The observation that terrestrial 32 
ecosystems are not in a steady state locally is deemed crucial when studying vegetation dynamics 33 
and the potential response of biomass to disturbance and climatic changes. 34 

Plain Language Summary 35 

Previous studies relied on the assumption that vegetation carbon turnover does not change with 36 
time. However, this assumption can be substantially violated under the influence of disturbances 37 
such as climate change and land use. We compared the difference of carbon turnover estimations 38 
under different assumptions by using a global observations of vegetation biomass. 39 

  40 

1 Introduction 41 

One of the largest uncertainties in Earth system models is in quantifying how the carbon 42 
uptake by terrestrial ecosystems will respond to changes in climate (Friedlingstein et al. 2006; 43 
Friend et al., 2014). As an emergent ecosystem property that partially determines carbon 44 
sequestration capacity, the vegetation biomass turnover times (τ) have been used as a diagnostic 45 
metric to quantify the feedback between the carbon cycle and climate (Carvalhais et al., 2014; 46 
Thurner et al., 2016). However, there is a large uncertainty in the simulations of vegetation 47 
carbon stock as well as τ across earth system models, indicating different representations of the 48 
response of vegetation to future climate change (Friend et al. 2014). Furthermore, our current 49 
understanding of τ and the dynamic of vegetation is limited due to the lack of long-term 50 
observations of changes in vegetation. As a result, the estimation of τ has relied so far on the 51 
assumption that the vegetation carbon in an ecosystem will eventually reach a steady state 52 
(steady state assumption, hereafter SSA) at which the net change of vegetation biomass becomes 53 
zero (∆Cveg=0), or so small compared to the total biomass that becomes negligible. The SSA has 54 
been shown to be a useful assumption at a large spatial scale. However, at local scales, an 55 
ecosystem is unlikely to maintain a steady state due to the influences from external factors such 56 
as disturbances and climate variability (Ge et al., 2019). It is still unknown whether the SSA can 57 
hold at local spatial domains and how much the difference it can make to the τ estimation if one 58 
neglects the temporal changes in vegetation carbon.   59 

In this study, we used estimates of annual changes in vegetation carbon derived from a 60 
multi-decadal dataset and global estimations of gross primary productivity (GPP) that are driven 61 
by meteorological observations (Besnard et al., 2021; Santoro et al., 2022; Tramontana et al. 62 
2016; Jung et al. 2020), for estimating and comparing τ estimates that are derived from SSA and 63 
non-steady-state assumption (hereafter NSSA), respectively, at local, biome and global scales. 64 
The validity of SSA was evaluated in different spatial domains to better quantify the effect of 65 
spatial scales on the patterns of carbon turnover times.  66 
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2 Data and Methods 67 

In this section, we first introduce the datasets we used to estimate τ including above-68 
ground vegetation biomass, below-ground biomass and gross primary productivity. We 69 
used a forest canopy cover dataset to examine the relationship between the changes in τ 70 
and tree canopy cover. Then the calculations of τ using three methods are introduced next 71 
with detailed explanations. 72 

2.1 The multi-decadal estimates of AGB dataset 73 

Annual AGB estimates were derived from C-band satellite radar signals between 1992 74 
and 2016 with a pixel size of 25 km (Santoro et al., 2022). The very dense time series of 75 
observations by the European Remote Sensing (ERS) WindScatterometer, the MetOp 76 
Advanced SCATterometer (ASCAT), and the Envisat Advanced Synthetic Aperture 77 
Radar (ASAR) were used to maximize the information content of forest structure in the 78 
signal, allowing for AGB estimates of higher accuracy compared to values obtained from 79 
a single observation (Santoro et al., 2022). The annual estimation of AGB is obtained by 80 
synthesizing all daily observations of the radar backscatter at one location in a pixel 81 
(0.25º×0.25º), enabling the inference of a continuous time series of AGB estimation. By 82 
adapting the AGB retrieval method in time and space and computing a weighted average 83 
of individual AGB estimates, the annual AGB estimates were less impacted by data 84 
noise, instantaneous moisture conditions, precipitation, and snow cover (Santoro et al., 85 
2011).  86 

2.2 Estimation of total vegetation carbon stock 87 

The stock of total vegetation biomass consists of AGB and BGB. Therefore, we 88 
estimated BGB from the AGB time series by scaling with the root-shoot ratio, Rrs: 89 

𝐵𝐺𝐵 = 𝐴𝐺𝐵 × 𝑅!"	(1)	 90 

In this study, we used a spatially explicit global dataset of root-shoot ratio, which was 91 
derived from a machine learning model that is trained on a large number of ground field 92 
measurements of forest root biomass as a function of shoot biomass, tree height, age, 93 
species, topography, land management, edaphic and climate covariates (Huang et al., 94 
2021). 95 

The total vegetation carbon was obtained by summing the carbon in both AGB and BGB 96 
under the assumption that the carbon stock is 47% of the total dry biomass (IPCC, 2006): 97 

𝐶#$% = 𝐴𝐺𝐵	 × (1 + 𝑅!") ∗ 0.47	(2) 98 

2.3 GPP dataset 99 

We used estimations of GPP from the FLUXCOM project in which different machine 100 
learning approaches were applied to upscale global energy and carbon fluxes from eddy 101 
covariance flux measurements (Tramontana et al., 2016; Jung et al., 2020). In this study, 102 
GPP annual estimates driven by meteorological observations and remote sensing 103 
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observations at the spatial resolution of 0.5º and the time period from 1992 to 2016 are 104 
used as carbon influx into the vegetation carbon pool. The dataset was resampled to the 105 
spatial resolution of 0.25º to match the AGB dataset.  106 

 107 

2.4 Forest tree canopy cover change 108 

Tree canopy cover (vegetation that is greater than 5 meters in height) was derived from 109 
the Advanced Very High Resolution Radiometer (AVHRR) remote-sensing 110 
measurements (Song et al., 2018). The version 4 Long Term Data Record (LTDR) was 111 
used to generate the data on tree canopy coverage from 1982 to 2016. Daily LTDR 112 
surface reflectance data were used to compute the normalized difference vegetation index 113 
(NDVI) at each pixel (0.05º×0.05º). Maximum NDVI composition was then used to 114 
obtain adjusted annual phenological metrics, which were used as input to supervised 115 
regression tree models to generate the annual product of tree canopy coverage. 116 

 117 

2.5 Estimation of τ under steady state 118 

Changing Cveg over time is determined by the uptake of carbon and turnover times: 119 

𝑑𝐶#$%
𝑑𝑡 = 𝐺𝑃𝑃 −

𝐶#$%
𝜏 	(3) 120 

Cveg is the vegetation carbon stock. Assuming that the vegetation carbon pool is in a 121 
steady state, i.e., the change in Cveg over time (dCveg/dt) equals zero, then vegetation 122 
carbon turnover times can be calculated as the ratio between vegetation carbon stock and 123 
GPP: 124 

𝜏&&' =
𝐶#$%
𝐺𝑃𝑃		(4) 125 

Here τSSA is calculated pixel-wise by using annual mean Cveg and GPP over the period 126 
of 1992-2016. 127 

 128 

2.6 Estimation of τ under non-steady state 129 

Compared with the estimations of τ under steady-state assumption, the changes in Cveg 130 
over time are considered (dCveg/dt ≠ 0) when estimating τ under non-steady state (τNSSA). 131 
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To derive a robust estimation of τNSSA at each grid cell, we calculated τNSSA using three 132 
different methods to assess the uncertainty built in the τ estimations. 133 

Method 1 134 

We estimate ΔCveg by calculating the annual difference of Cveg between year t and year t 135 
– 1. Then, a τ estimate can be derived for each year by applying GPP and ΔCveg at year t. 136 
Finally, we derive the τ under a non-steady state by averaging over time:  137 

𝜏(&&' =
𝐶#$%,*+,

𝐺𝑃𝑃* − ∆𝐶#$%,*
		(5) 138 

Method 2 139 

In the second method, we estimated the mean ΔCveg using the trend of Cveg in a certain 140 
period to avoid the influence of outliers on the results. In this way, τ can be inferred as: 141 

𝜏(&&' =
𝐶#$%;;;;;;

𝐺𝑃𝑃;;;;;; − ∆𝐶#$%,*!$-.
	(6) 142 

Here the ∆𝐶#$%,*!$-. is inferred by applying a simple linear regression model (least-143 
square robust fitting) between the response variable Cveg and time (Cveg ~ T). The 144 
coefficient of T is, therefore, the average annual ΔCveg over the whole period. Thus, the τ 145 
under a non-steady state can be estimated with the annual mean values of Cveg, GPP, and 146 
ΔCveg.  147 

 148 

Method 3 149 

In the third method, we infer τ from Eq.3 by applying a linear regression model (least-150 
square robust fitting) at each grid cell in which (GPP - ΔCveg) is the target variable while 151 
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Cveg is the predictor, enabling annual turnover time to be inferred from the coefficient of 152 
Cveg (1/ τNSSA):  153 

𝐺𝑃𝑃 − ∆𝐶#$%~
1

𝜏(&&'
∙ 𝐶#$%		(7) 154 

Here ΔCveg is the difference of Cveg between year t and year t - 1. GPP is the carbon input 155 
in year t and Cveg is the total carbon density in year t - 1, respectively. 156 

 157 

3 Results 158 

3.1 Comparison of τ under NSSA and SSA at grid cell level and global scale 159 

The τ values (Figure 1) represent the turnover time of the entire forest living vegetation 160 
biomass, averaged over the whole period of the observations. The comparison between 161 
estimates of τNSSA using three different methods and τSSA shows a consistent pattern that 162 
carbon turnover processes are far from a steady state at the grid cell level (Figure S1). 163 
Although there is a high correlation in the global spatial patterns (R2>0.98, bottom off-164 
diagonal plots in Figure 1), differences between τNSSA and τSSA are characterized by high 165 
spatial heterogeneity. Although there are differences in the estimations of τNSSA that derived 166 
from the three methods, the high global correlation and similar patterns of the difference 167 
between τNSSA and τSSA shows high consistency in the estimated τNSSA. Our results show a 168 
high spatial variability of τ values ranging from 0 to 15 years. The longest turnover times 169 
are located in the northern boreal forest ecosystem, where part of the biome has τ values 170 
longer than ten years, whereas carbon in the temperate forest ecosystem turnovers over 171 
much faster where the τ values are mostly under five years. The assumption that vegetation 172 
biomass is in steady state results in an overall bias of τ by 10% (90th percentile), compared 173 
to the τ estimates under a non-steady state at the grid cell level (Figure 1). This finding 174 
indicates that the majority of global forest ecosystems are not in a steady state, although 175 
the degree of deviation from a steady state differs from one region to another. The 176 
discrepancies between τSSA and τNSSA are substantially higher in the boreal forest (4.33%) 177 
ecosystem than in the tropical forest 10.99%) ecosystems indicating that the forests in the 178 
tropics are closer to a steady state, whereas assuming SSA in the boreal forest may cause 179 
large bias (Figure S2). Although the difference can be large at the grid cell level, there is a 180 
high global correlation (r > 0.98) between τSSA and τNSSA at the global scale, indicating an 181 
overall similar spatial pattern with or without considering the changes in annual biomass 182 
at the global scale. Here we show that the forest biomass at the global scale is roughly in a 183 
steady state whereas the SSA is largely violated at the grid cell level, especially in the 184 
northern boreal forest ecosystems where the τ values can be substantially underestimated 185 
or overestimated if assuming SSA.  186 

In line with a previous study in which the SSA-induced biases are assessed at site level (Ge 187 
et al., 2019), we show that SSA causes significant underestimations of τ up to 40% (99th 188 
percentile) in China during the period of 2005-2015 (Figure S3). However, our results show 189 
a high heterogeneity where SSA can also cause overestimation of τ up to -12% (1th 190 
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percentile). Further analysis shows that the pattern also changes across different periods of 191 
time. For instance, there is a contrasting pattern between 2001-2005 and 2009-2013 in 192 
which the former is characterized by overestimation of τ induced by SSA whereas there is 193 
a widespread underestimation of τ in the latter.  194 

 195 

 196 

Figure 1. Comparison of τ under SSA and NSSA. The upper off-diagonal subplots show 197 
the relative difference between each pair of datasets (column/row). The bottom off-198 
diagonal subplots show the density plots and major axis regression line between each pair 199 
of datasets (m: slope, b: intercept, r: correlation coefficient). The ranges of both of the 200 
color bars are between the 1st and the 99th percentiles of the data.  201 

 202 

 3.2 The effect of large-scale disturbances on carbon turnover times  203 

The disturbance from natural causes or anthropogenic activities can make an ecosystem 204 
deviate from a steady state. By estimating carbon turnover times at different periods, we 205 
quantified the degree of deviation if disturbances, e.g., deforestation, happened in a forest 206 
ecosystem. Figure 2 shows that the pervasive deforestation in the 90s primarily affected 207 
the carbon turnover times in the southeast part of the Amazon, which is known as the ‘arc 208 
of deforestation’ (hereafter AOD, Durieux et al., 2003). Our results clearly show τNSSA is 209 
approximately 20% lower than τSSA in the AOD region from 1993 to 1998, indicating 210 
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anthropogenic activity (mostly deforestation) accelerated the carbon turnover rates to a 211 
large extent. Compared with the AOD, forests in the middle of Amazon, where there are 212 
less population and disturbances, are closer to a steady state, as shown by the much less 213 
difference between τNSSA and τSSA. Further analysis shows that tree canopy cover (Figure 214 
2, Row 2) and Cveg (Figure 2, Row 3) changes decreased mainly during the same period of 215 
1993-1998, whereas the changes in GPP does not follow the trend in the arc of 216 
deforestation. These results indicate that the acceleration of turnover times during this 217 
period is directly caused by the large decrease in the vegetation biomass, which is 218 
intimately associated with a decrease in forest cover in this region. On the other hand, our 219 
findings show that the forest ecosystems started to recover during the 1999-2004 period as 220 
the vegetation biomass increased by 10% to 20%, in line with the increased tree canopy 221 
cover in the AOD region. As a result, the carbon turnover times increased by 10% to 30% 222 
during the same period. From 2011 to 2016, the magnitude of changes in τ, Cveg and tree 223 
canopy cover significantly decreased, indicating the forest ecosystems are closer to a steady 224 
state due to less disturbances. These findings indicate that turnover times and the steady 225 
state of the forest ecosystem can be largely affected by anthropogenic activities.    226 

	227 

	228 

	229 

Figure 2. Regional changes in the relative difference between τNSSA and τSSA ((τNSSA - 230 
τSSA)/ τSSA*100) from 1993 to 2016, row 1, forest cover change (%), row 2, vegetation 231 
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biomass change (%), row 3, GPP change (%), row 4 at different time periods in Amazon 232 
region.   233 

 234 

3.3 The effect of spatial scale on the steady-state assumption 235 

We further investigate the effect of spatial scale on the difference between τNSSA and τSSA 236 
in different biomes by gradually changing the spatial scale from 0.25º (grid cell level) to 237 
25º (continental scale) as shown in Figure 3. Here the difference between τNSSA and τSSA at 238 
each spatial scale is quantified by the 10, 50 and 90 percentiles of the relative difference 239 
between τNSSA and τSSA (Q10, Q50, Q90, Figure 4). We find that the difference between τNSSA 240 
and τSSA substantially decreases with increasing spatial scales. The Q10 and Q90 tropical 241 
forests decrease by approximately 5%, whereas it decreases by approximately 10% in 242 
temperate and boreal biomes when the spatial scale increases from grid cell to ecosystem 243 
scale. Globally, the difference between τNSSA and τSSA is approximately 3% at ecosystem 244 
scale, indicating that steady state assumption will cause less errors in estimating carbon 245 
turnover times at larger spatial scales. 246 

 247 

Figure 3. Effects of spatial scale on the difference between τSSA and τNSSA. The x-axis 248 
represents the increase of spatial scales from grid cell level (0.25º) to continental level 249 
(25º). The y-axis represents the 10th (absolute value) and 90th relative difference between 250 
τNSSA and τSSA.  251 

 252 

4 Discussion 253 

Our findings imply that the two different assumptions, i.e., SSA and NSSA, should be 254 
applied based on different ecological principles and spatial scales. The common approach 255 
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of defining τ as the ratio between carbon stock and carbon influx based on SSA can be 256 
justified and properly applied when the changes in net carbon flux are negligible relative 257 
to the total carbon stock (Carvalhais et al., 2014). Although disturbances from nature or 258 
human beings could cause non-steady-state behavior, neglecting the changes, in some 259 
cases, only make a little difference to the quantification of the spatial pattern of τ, which 260 
does not hamper the understanding of the dynamics of the terrestrial ecosystem carbon 261 
cycle. However, at a grid cell level, neglecting the changes in vegetation carbon (assuming 262 
vegetation is in a steady state) may result in a large bias. Using three methods, we provide 263 
robust estimations of τ under a non-steady state. The comparisons between τSSA and τNSSA 264 
show high heterogeneity in both space and time. A pioneer study (Ge et al., 2019) showed 265 
large SSA-induced biases on τ estimation in varied ecosystems of China by using the data 266 
at ten FLUXNET sites from 2005 to 2015 which is consistent with our results. However, 267 
we further show that the magnitude and the signs of the SSA-induced biases are 268 
characterized by high spatial heterogeneity and can change in time. This is mainly caused 269 
by the changes in vegetation biomass due to climate change or disturbances (Figure 2).   270 

We have shown substantial heterogeneity in the degree of validity of the steady-state 271 
assumption across space. The comparison between τSSA and τNSSA quantitatively shows that 272 
most global forest ecosystems are far from steady-state, especially in the temperate and 273 
boreal forests. Even at regions of high biomass density such as Amazon Forest where the 274 
changes in vegetation carbon is relatively small, i.e., closer to steady-state, disturbances 275 
such as deforestation or fire could drive the forest ecosystem away from steady-state, as 276 
our results clearly show that the arc of deforestation in Amazon Forest have large difference 277 
between τSSA and τNSSA caused by drastic changes in vegetation biomass (Figure 2). These 278 
results indicate that applying SSA at the grid cell level is likely to cause substantial errors, 279 
potentially leading to misleading conclusions based on poor estimation of carbon turnover 280 
times. 281 

Furthermore, our study quantified the link between spatial scales and the validity of SSA. 282 
Our results imply that SSA is approximately valid at large spatial scales (>15º or 1500km), 283 
at which scale the differences are much lower (~5%) than grid cell level. The current 284 
understanding of the temporal dynamics of the terrestrial carbon cycle nearly all relies on 285 
earth system models in which the carbon turnover rates are retrieved under the SSA, which 286 
results in large discrepancies in carbon pools and turnover among different models (Friend 287 
et al., 2014; Todd-Brown et al., 2013). The estimation of τ under NSSA with observational 288 
long-term biomass data provides insights into better understanding and thus modeling 289 
turnover rate and its spatial patterns.   290 

 291 

5 Implications, Limitations and Conclusions 292 

Although we used different streams of data and methods to account for the uncertainties in 293 
the estimations of carbon turnover, several factors may limit the results of our study. First, 294 
the estimations of AGB by Santoro et al. (2022) is derived at relatively coarse spatial 295 
resolution at 0.25º which makes it impossible to compare with measurements of AGB at 296 
plot level. To overcome the limitation, Santoro et al. relied on gridded datasets including a 297 
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vegetation density map, an independent AGB map, a global land cover map and a model 298 
of global elevation to estimate the unknown model parameters that are necessary to infer 299 
vegetation biomass. Second, the estimated total vegetation carbon stock is calculated by 300 
using a spatial explicit root-shoot ratio of biomass that does not change with time. 301 
Therefore, we assume that the relationship between above- and below-ground biomass 302 
does not have a directional change over long-term in this study. Nevertheless, our findings 303 
suggest that the steady state assumption is robust at a global scale yet becomes much less 304 
realistic at the grid cell level as the difference between regional τSSA and τNSSA can be as 305 
large as 20%. The usage of the steady state assumption would result in a substantial bias 306 
of τ, especially in the northern boreal forest ecosystems and regions with a high degree of 307 
disturbance, either from anthropogenic sources or natural factors. However, at a larger 308 
spatial scale, the differences in τ estimations at SSA and NSSA significantly decrease 309 
because the annual changes in vegetation biomass are small compared with the total 310 
amount of biomass. With the novel long-term observations of vegetation biomass, we 311 
revealed a detailed picture of the spatial distribution of carbon turnover times under 312 
different assumptions and its relationship with spatial scales, which will guide the proper 313 
application of the two assumptions on different conditions. 314 
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Figure S1. Comparison of τ under SSA and NSSA using different methods. The upper 
off-diagonal subplots show the relative difference between each pair of datasets 
(column/row). The bottom off-diagonal subplots show the density plots and major 
axis regression line between each pair of datasets (m: slope, b: intercept, r: 
correlation. 
 

 



Figure S2. Spatial distribution of the relative difference (in percent) between τNSSA 
and τSSA. The histograms show the probability distribution of τNSSA - τSSA (in years) in 
tropical forest, temperature forest and boreal forest. The τNSSA shown here was 
estimated using Method 1. The estimations using Method 2 and Method 3 are 
shown in Figure S5 and Figure S6 in the Supplementary Information.    
 
 
Table S1. Statistics of carbon turnover estimations at different biomes (associated 
with Figure S2). 
 

SSA_TAU NSSA_TAU CORR DIFF_25 DIFF_75 MEAN 
4.09 4.02 1.00 -4.49 3.53 4.01 
3.09 3.10 0.99 -8.47 12.40 10.44 
5.04 4.97 0.97 -13.32 7.52 10.42 
2.66 2.60 0.99 -11.97 8.46 10.21 

 
 
 
 

 

Figure S3. Regional changes in the relative difference between τNSSA and τSSA ((τNSSA - 
τSSA)/ τSSA*100), row 1, forest cover change (%), row 2, vegetation biomass change 
(%), row 3, GPP change (%), row 4 at different time periods in Southern China.   
 
 

 


