The First GECAM Observation Results on Terrestrial Gamma-ray Flashes and Terrestrial Electron Beams

YI ZHAO¹, Jia Cong Liu², Shaolin Xiong³, Wangchen Xue², Qibin Yi², Gaopeng Lu⁴, Wei Xu⁵, Fanchao Lyu⁶, Jianchao Sun², Wenxi Peng², Chao Zheng², Yanqiu Zhang², Ce Cai⁷, Shuo Xiao⁸, Sheng-Lun Xie⁹, Chenwei Wang², Wenjun Tan², Zhenghua An³, gang chen², yanqi du¹⁰, yue huang², min gao², ke gong², dongya guo², jianjian he², bing li², Gang Li¹¹, Xinqiao Li³, xiaobo li², liang jing¹⁰, Xiaohua Liang³, yaqing liu², xiang ma², rui qiao², liming song², xinying song², xilei sun², jin wang², jinzhou wang², Ping Wang¹², Xiangyang Wen¹², hong wu¹⁰, Yanbing Xu³, sheng yang², boxin zhang², Da Li Zhang¹³, fan zhang², peng zhang¹⁴, hongmei zhang², zhen zhang², Xiaoyun Zhao³, shijie zheng², keke zhang¹⁵, xingbo han¹⁵, haiyan wu¹⁶, tai hu¹⁶, hao geng¹⁶, Hongbo Zhang¹⁷, fangjun lu¹³, shuangnan zhang¹³, and heng yu¹

¹Beijing Normal University

²Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences

³Institute of High Energy Physics

 $^4 \rm School$ of Earth and Space Sciences, University of Science and Technology of China $^5 \rm Wuhan$ University

⁶Nanjing Joint Institute for Atmospheric Sciences

⁷College of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University

⁸School of Physics and Electronic Science, Guizhou Normal University

⁹Institute of Astrophysics, Central China Normal University

¹⁰School of Computing and Artificial Intelligence, Southwest Jiaotong University

¹¹IHEP,CAS

¹²institute of high energy physics

¹³Institute of High Energy Physics, Chinese Academy of Sciences

¹⁴College of Electronic and Information Engineering, Tongji University

¹⁵Innovation Academy for Microsatellites of Chinese Academy of Sciences

¹⁶National Space Science Center, Chinese Academy of Sciences

¹⁷Institute of Atmospheric Physics, Chinese Academy of Sciences

December 22, 2022

Abstract

Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a space-borne instrument dedicated to monitoring high-energy transients, thereinto Terrestrial Gamma-ray Flashes (TGFs) and Terrestrial Electron Beams (TEBs). We propose a TGF/TEB search algorithm, with which 147 bright TGFs and 4 TEBs are identified during an effective observation time of \$\sim\$ 9 months. We show that, with gamma-ray and charged particle detectors, GECAM can effectively identify and distinguish TGFs and TEBs, and measure their temporal and spectral properties in detail. Moreover, we find an interesting TEB consisting of two pulses with a separation of \sim 150 ms, which is expected to originate from a lightning process near the geomagnetic footprint. We also find that the GECAM TGF's lightning-association ratio is \sim 80\% in the east Asia region using the GLD360 lightning network, which is significantly higher than previous observations.

The First GECAM Observation Results on Terrestrial Gamma-ray Flashes and Terrestrial Electron Beams

Y. Zhao^{1,2}, J. C. Liu^{2,3}, S. L. Xiong², W. C. Xue^{2,3}, Q. B. Yi^{4,2}, G. P. Lu⁵, W. Xu⁶, F. C. Lyu⁷, J. C. Sun², W. X. Peng², C. Zheng^{2,3}, Y. Q. Zhang^{2,3}, C. Cai⁸, S. Xiao^{9,10}, S. L. Xie¹¹, C. W. Wang^{2,3}, W. J. Tan^{2,3}, Z. H. An², G. Chen², Y. Q. Du^{12,2}, Y. Huang², M. Gao², K. Gong², D. Y. Guo², J. J. He², B. Li², G. Li², X. Q. Li², X. B. Li², J. Liang^{12,2}, X. H. Liang², Y. Q. Liu², X. Ma², R. Qiao², L. M. Song², X. Y. Song², X. L. Sun², J. Wang², J. Z. Wang², P. Wang², X. Y. Wen², H. Wu^{12,2}, Y. B. Xu², S. Yang², B. X. Zhang², D. L. Zhang², F. Zhang², P. Zhang^{13,2}, H. M. Zhang², Z. Zhang², X. Y. Zhao², S. J. Lu², S. N. Zhang², H. Yu¹

 $^1 \rm Department$ of Astronomy, Beijing Normal University, Beijing 100875, Beijing, China $^2 \rm Key$ Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, Beijing, China ³University of Chinese Academy of Sciences, Beijing 100049, Beijing, China ⁴School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China ⁵School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China ⁶Electronic Information School, Wuhan University, Wuhan 430072, Hubei, China ⁷Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210000, Jiangsu China ⁸College of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang, Hebei 050024, China ⁹Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guizhou Normal University, Guiyang 550001, GuiZhou, China ¹⁰School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, GuiZhou, China ¹¹Institute of Astrophysics, Central China Normal University, Wuhan 430079, HuBei, China ¹²School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, SiChuan, China ¹³College of Electronic and Information Engineering, Tongji University, Shanghai 201804, Shanghai, China ¹⁴Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, Shanghai, China ¹⁵National Space Science Center, Chinese Academy of Sciences, Beijing 100190, Beijing, China

36 Key Points:

3

4

6

10

11

12

13 14

15

16 17 18

19

20 21

22

23

24

25

26

27 28 29

30

31

32

33

34

35

37	• GECAM can well classify and distinguish TGF/TEB, and reveal their fine tem-
38	poral and spectral features, e.g. short spikes down to 10 ms.
39	• GECAM discovered an interesting two-peaked TEB which is probably from a light-
40	ning process near the geomagnetic footprint.
41	• TGF-lightning association rate between GECAM and GLD360 in east Asia is found
42	to be $\sim 80\%$, notably higher than previous reports.

Corresponding author: S. L. Xiong, xiongsl@ihep.ac.cn

43 Abstract

44 Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM)

45 is a space-borne instrument dedicated to monitoring high-energy transients, thereinto

⁴⁶ Terrestrial Gamma-ray Flashes (TGFs) and Terrestrial Electron Beams (TEBs). We pro-

⁴⁷ pose a TGF/TEB search algorithm, with which 147 bright TGFs and 4 TEBs are iden-

tified during an effective observation time of ~ 9 months. We show that, with gamma-

⁴⁹ ray and charged particle detectors, GECAM can effectively identify and distinguish TGFs

and TEBs, and measure their temporal and spectral properties in detail. Moreover, we find an interesting TEB consisting of two pulses with a separation of ~ 150 ms, which

is expected to originate from a lightning process near the geomagnetic footprint. We also

find that the GECAM TGF's lightning-association ratio is $\sim 80\%$ in the east Asia re-

⁵⁴ gion using the GLD360 lightning network, which is significantly higher than previous ob-

55 servations.

56 Plain Language Summary

Terrestrial gamma-ray flashes (TGFs) and Terrestrial Electron Beams (TEBs) are 57 one of the most energetic radioactive phenomena in the atmosphere of the Earth. They 58 reflect a natural particle accelerator that can boost electrons up to at least several tens 59 of mega electron volts (MeV). With novel detection technologies, GECAM is a new pow-60 erful instrument to observe TGFs and TEBs, as well as study their properties. For ex-61 ample, it is difficult for most space-borne high-energy instruments to distinguish between 62 TGFs and TEBs. With the joint observation of gamma-ray and charged particle detec-63 tors, GECAM can effectively identify TGFs and TEBs. GECAM can also reveal fine fea-64 tures in the light curves and spectra of these bursts. Interestingly, GECAM discovered 65 the first, as far as we are aware of, TEB which consists of two pulses with a separation 66 time of about 150 ms. Unlike the case in previous TEBs, the second pulse is not the re-67 turn peak but has the same origin as the first one. 68

69 1 Introduction

Terrestrial Gamma-ray Flashes (TGFs) are submillisecond intense bursts of γ -rays 70 with energies up to several tens of MeV (Briggs et al., 2010; Marisaldi et al., 2010, 2019), 71 which was serendipitously discovered by the Burst and Transient Source Experiment (BATSE) 72 aboard Compton Gamma-ray Observatory (CGRO) in 1991 (Fishman et al., 1994). Since 73 then, TGFs have been routinely observed by space-borne instruments, such as BeppoSAX 74 (Ursi et al., 2017), RHESSI (Grefenstette et al., 2009), AGILE (Marisaldi et al., 2010), 75 Fermi/GBM (Roberts et al., 2018) and ASIM (Østgaard et al., 2019) during last three 76 decades. Occasionally, TGFs can also be observed by ground instruments (Dwyer et al., 77 2012), however, the strong absorption of gamma-rays in the air makes the detection very 78 difficult. 79

TGFs observed by these space-borne instruments are widely believed to be produced 80 through the initial upward leader of positive Intracloud (+IC) lightning (Lu et al., 2010, 81 2011). They are the results of relativistic electrons that produce hard X/γ -rays through 82 the bremsstrahlung process. These electrons are accelerated in a very high electric field 83 by the runaway process (Wilson, 1925) and multiplied by many orders of magnitude through 84 the Relativistic Runaway Electron Avalanche process (Gurevich et al., 1992; Dwyer & 85 Smith, 2005). Two main models were proposed to explain the production of TGFs. One 86 is the lightning leader model, which involves the acceleration of free electrons under the 87 localized electric field in front of lightning leader tips (Moss et al., 2006; Dwyer, 2010; 88 Celestin & Pasko, 2011; Celestin et al., 2013). The other one is the relativistic feedback 89 model (RFD) (Dwyer, 2003; Dwyer, 2008, 2012; Liu & Dwyer, 2013), which considers 90 the feedback processes from positrons and photons in a large-scale electric field region. 91

However, the specific mechanism to produce $\sim 10^{17}$ to 10^{19} electrons is still an open question (Chanrion & Neubert, 2010; Xu et al., 2012, 2015; Skeltved et al., 2017).

By interacting with the atmosphere during the propagation, the TGF photons can produce secondary electrons and positrons. Then they will move along the Earth's magnetic field line, forming Terrestrial Electron Beams (TEBs) (Dwyer et al., 2008), which could be observed by some TGF-detecting instruments (Xiong et al., 2012; Lindanger et al., 2020; Sarria et al., 2021).

In this study, the data of Gravitational-wave high-energy Electromagnetic Coun-99 terpart All-sky Monitor (GECAM) (Li et al., 2022) are utilized for TGFs and TEBs re-100 search. GECAM is a space-based instrument dedicated to the observation of gamma-101 ray electromagnetic counterparts of the Gravitational Waves (Goldstein et al., 2017) and 102 Fast Radio Bursts (Lorimer et al., 2007), as well as other high-energy astrophysical and 103 terrestrial transient sources, such as Gamma-ray Bursts (GRBs) (Klebesadel et al., 1973), 104 Soft Gamma-ray Repeaters (SGRs) (Woods & Thompson, 2004), solar flares, TGFs and 105 TEBs. 106

107

¹⁰⁸ 2 Instrument and Search Algorithm

Since the launch in December 2020, GECAM has been operating in low earth orbit (600 km altitude and 29° inclination angle) (Han et al., 2020). GECAM consists of
twin micro-satellites (i.e. GECAM-A and GECAM-B) and each of them comprises 25
Gamma-ray Detectors (GRDs) (An et al., 2022) and 8 Charged Particle Detectors (CPDs)
(Xu et al., 2022). It should be noted that only GECAM-B data are utilized in this study
because GECAM-A has not been able to observe yet (Li et al., 2022).

With LaBr₃ crystals read out by silicon photomultiplier (SiPM) arrays, GRDs can detect high-energy photons in a broad energy range of ~ 15 keV to ~ 5 MeV (Zhang et al., 2022). CPDs are designed to detect the charged particles from ~ 100 keV to ~ 5 MeV. The joint observation of GRDs and CPDs can distinguish between gamma-rays and charged particle bursts, such as TGFs and TEBs (Zhao et al., 2021).

To detect those extremely short and bright bursts, e.g. TGFs and TEBs, a dedicated anti-saturation data acquisition system (DAQ) is designed for GECAM. The data buffer in DAQ can accommodate up to 4092 and 1020 counts for the high-gain and lowgain of each GRD, respectively. Since there are usually several hundred counts registered for a bright TGF, the GECAM DAQ can guarantee to transfer and save almost all TGFs photons that are recorded by detectors (Liu et al., 2021).

For GRD, the dead time is 4 μ s for normal events and > 69 μ s for overflow events (i.e. events with higher energy deposition than the maximum measurable energy). Each GRD detector has two read-out channels: high-gain channel (~ 15 keV to ~ 300 keV) and low-gain channel (~ 300 keV to ~ 5 MeV) (Liu et al., 2021). The design, performance, and other information about GECAM have been reported by Li et al. (2022); An et al. (2022); Xu et al. (2022).

The considerable number of GRD detectors is helpful to locate the source region of TGFs. We have proposed a dedicated localization method for all-sky monitor which can be used for extremely short-duration TGFs (Zhao et al. 2022a). Despite the low counting statistics of TGFs, GECAM can still locate TGFs (Zhao et al. 2022b).

As the main contamination source for TGFs, cosmic-ray events show very similar 136 patterns in data as TGFs, but with an even shorter duration. Thanks to the high time 137 resolution of GECAM, i.e. 100 ns (Xiao et al., 2022), GECAM can effectively distinguish 138 between cosmic-ray events and TGFs. Indeed, a dedicated data product called Simul-139 taneous Events is designed for GECAM. The Simultaneous Events Number (SimEvt-140 Num) is defined as the number of events from different detectors registered in the same 141 300 ns time window (Xiao et al., 2022). As the SimEvtNum increases, the probability 142 of these events caused by cosmic-rays surges. Here a relatively loose criterion (SimEvt-143 Num > 13) is adopted for basic data selection. 144

To unveil TGFs and TEBs in GECAM data, we developed a dedicated burst search 145 algorithm, which is very different from normal burst search for gamma-ray bursts (Cai 146 et al., 2021, 2022), because the TGF and TEB are so weak that only a few counts are 147 registered in each detector, and both GRDs and CPDs are needed in the search. The event-148 by-event (EVT) data of GECAM GRDs and CPDs are used in this study. Only recom-149 mended normal events with SimEvtNum < 13 are utilized. We divide 25 GRDs into four 150 groups considering the neighboring position, and it turns out that there are 6 [7] GRDs 151 for 3 [1] group(s). All 8 CPDs are treated as a single group. 152

Assuming the background follows the Poisson distribution, the probability that the counts are from background fluctuation can be calculated as,

$$P_{\text{group}}(S \ge S'|B) = 1 - \sum_{S=0}^{S=S'-1} \frac{B^S \cdot \exp(-B)}{S!},$$
(1)

where S and S' are observed counts and threshold counts, respectively, for one group in a time window, B is the estimated background for the time window calculated by the average counts over $T_{\text{rela}} \in [-5,-1]$ s and $\in [+1,+5]$ s, where T_{rela} is the relative time with respect to the end time of the time window.

For an individual searching bin, the joint probability of at least N'_{trig} group(s) out of total group number M passing the trigger threshold for a single group P_{group} is,

$$P_{\rm bin}(N_{\rm trig} \ge N_{\rm trig}') = \sum_{N_{\rm trig}=N_{\rm trig}'}^{N_{\rm trig}=M} C_M^{N_{\rm trig}} \cdot (P_{\rm group})^{N_{\rm trig}} \cdot (1 - P_{\rm group})^{M - N_{\rm trig}}.$$
 (2)

In this work, seven time scales are utilized to do searching. The widths of time scales with the corresponding empirical threshold P_{tot} are: 50 μ s (5.0×10⁻²²), 100 μ s (2.0× 10⁻²¹), 250 μ s (1.3×10⁻²⁰), 500 μ s (5.0×10⁻²⁰), 1 ms (2.0×10⁻¹⁹), 2 ms (8.0×10⁻¹⁹), 4 ms (3.2×10⁻¹⁸). All of them are used for TGF search while only the latter four are for TEB search. It should be noted that these empirical criteria are relatively strict so that only intense TGFs or TEBs could be identified.

¹⁶⁷ By setting $P_{\text{tot}} = P_{\text{bin}}$, the group's trigger threshold $(P_{\text{group,GRD}})$ can be obtained ¹⁶⁸ for TGF with GRDs from the following equation (i.e. M = 4, and we set $N'_{\text{trig,GRD}} =$ ¹⁶⁹ 2),

$$P_{\text{tot,GRD}}(N_{\text{trig}} \ge 2) = 6 \cdot P_{\text{group,GRD}}^2 - 8 \cdot P_{\text{group,GRD}}^3 + 3 \cdot P_{\text{group,GRD}}^4, \tag{3}$$

and the trigger threshold from the following equation of TEB with CPDs (M = 1, and we set $N'_{\text{trig,CPD}} = 1$),

$$P_{\rm tot,CPD} = P_{\rm group,CPD}.$$
(4)

According to the empirical threshold above, the trigger threshold for each detector group can be obtained for each searching window, e.g. for 100 μ s, $P_{\text{group,GRD}} = 1.8 \times 10^{-11}$ which corresponds to 6.6 σ in standard Gaussian distribution.

For a candidate to be identified as a TGF/TEB, all criteria below must be met:

175

1. The trigger threshold (Equations 3 and 4) must be satisfied. 176 2. The candidate should not be SGR. It should be noticed that millisecond-duration 177 SGRs can be searched in the time scale of milliseconds with a much softer spec-178 trum than TGFs. 179 3. Should not be caused by instrument effects, which are characterized by that there 180 is significant excess (Poisson significance > 6 σ) registered in 2 to 3 GRDs while 181 no obvious signals (Poisson significance $< 3 \sigma$) for most (i.e. > 21) GRDs. 182 4. For filtering out cosmic-rays, the ratio of the simultaneous event $(R_{\rm sim,7}^{-1})$ should 183 be < 20%. 184

 $^{^{1}}R_{\text{sim},7}$: the total number of simultaneous events registered in > 7 GRDs, divided by the total events number in the searching bin.

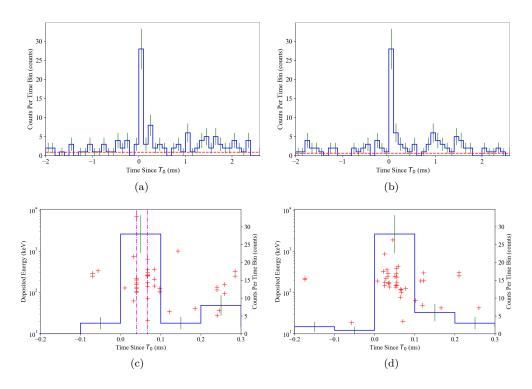


Figure 1. Illustration of distinguishing between cosmic-rays and TGFs by simultaneous events. (a) and (c): the light curve and time-energy scatter plot of a cosmic-ray event. (b) and (d): the light curve and time-energy scatter plot of a TGF. The dot-dashed lines show the time edge of simultaneous events registered in > 7 GRDs within 300 ns. The horizontal and vertical scales are the same for the two events.

For the identification of TEBs, more criteria are needed which will be described in Section 4. To further illustrate the capability of GECAM to identify cosmic-rays, a case is illustrated in Figure 1. The classification of the two excesses can not be distinguished well just according to the light curves. However, the cosmic-ray event (Figure 1a and 1c has $F_{\text{sim},7} = \frac{18}{28} \approx 64\%$, while TGFs have no simultaneous events registered in > 7 GRDs (Figure 1b and 1d).

¹⁹¹ 3 GECAM TGFs

From December 10th, 2020 to August 31st, 2022, the effective observation time of 192 GECAM-B is ~ 274.5 days (~ 0.75 years). As shown in Figure 2, 147 bright TGFs are 193 identified by our search algorithm, corresponding to a discovery rate of $\sim 200 \text{ TGFs/year}$ 194 or 0.54 TGFs/day. The Global Lightning Dataset (GLD360) is utilized to match light-195 ning for GECAM TGFs in the time window of ± 5 ms corrected for the light propaga-196 tion time and within the distance window of 800 km from GECAM nadirs. The GLD360 197 lightning-association ratio is $\frac{34}{42}~\approx~80\%$ in the east Asia region (EAR, 77° E–138° E, 198 13° S-30° N) which is ~ 2.5 times of the results based on the data of the other space-199 borne instruments and the World Wide Lightning Location Network (WWLLN) light-200 ning ($\sim 33\%$) (Roberts et al., 2018; Maiorana et al., 2020). The high lightning-association 201 ratio may be attributed to two factors: (1) the detection efficiency of GLD360 is higher 202 than the other lightning location network at least in EAR (Said et al., 2013; Poelman 203 et al., 2013; Pohjola & Mäkelä, 2013), (2) the current GECAM TGF sample only con-204 tains bright ones, resulting from the very strict searching threshold. The sphere distance 205 between the GECAM nadirs and the associated GLD360 lightning inside the EAR ranges 206 from ~ 50 km to 800 km, which is consistent with previous reports. 207

The statistical distribution of temporal, intensity and energy properties of this GECAM 208 TGF sample are shown in Figure 3. The duration is calculated by the Bayesian Block 209 (BB) algorithm (Scargle et al., 2013). Since the relatively strict threshold, faint TGFs 210 are dropped from the current sample. Therefore, the GECAM TGF discovery rate would 211 increase as we decrease the search threshold in the future. As shown in Figure 3c, TGF 212 events with relatively shorter duration tend to have a harder spectrum and thus more 213 high-energy electrons in the source region, which is in line with previous observations 214 (Briggs et al., 2013). As shown in Figure 3d, the duration and CPD/GRD counts ratio 215 is very effective to classify TGFs and TEBs (see Section 4). 216

In Figure 4, the light curves and time-energy scatter plots are illustrated for three 217 multipeak, three bright, and two short TGFs. The fraction of multipeak TGFs is $\frac{3}{147} \approx$ 218 2%, which is consistent with that observed by the other instruments (Mezentsev et al., 219 2016; Lindanger et al., 2020). Since the upward leader channel of a lightning discharge 220 would generally branch into several channels during propagation, it is widely accepted 221 that the temporal structures may reflect the electric field distribution that the leaders 222 have passed through. This effect is more pronounced in the multipeak or overlapping struc-223 tures of TGFs. 224

It is worth noticing an interesting double-peaked TGF (Figure 4a) which is char-225 acterized by two $\sim 100 \ \mu s$ pulses with very similar temporal and spectral structures. Two 226 possible scenarios may explain this double-peaked TGF. For the first, it could be asso-227 ciated with two leader branches propagating in two distinct localized electric fields, which 228 could be also responsible for the cases shown in Figure 4b to 4c. However, this double-229 peak TGF (Figure 4a) may require coincidences comparing to other TGFs in Figure 4b 230 to 4c, i.e. two intracloud electric fields with similar distribution on the passageway of 231 these upward leader channels. For the second, it could be associated with two succes-232 sive steps of one propagating channel. We note that the time interval between the two 233 pulses of this double-peak TGF is generally consistent with the typical duration of the 234 stepped leader's step, i.e., $\sim 0.1 \text{ ms}$ (Lyu et al., 2016). Meanwhile, the typical length of 235 leader steps during intracloud lightning discharge is from several hundred meters to sev-236 eral kilometers (Stolzenburg et al., 2016). Therefore, the second pulse of this TGF was 237 also likely generated after the initial leader (which resulted in the first pulse) propagated 238 239 forward for one or several more steps.

We also find that the overlapping pulse of a TGF could be as short as $\sim 10 \ \mu s$ (Figure 4f). These fine structures in light curves provide new insights into the specific electric field distribution of lightning discharge. Since the tails of TGFs are usually soft (Nemiroff

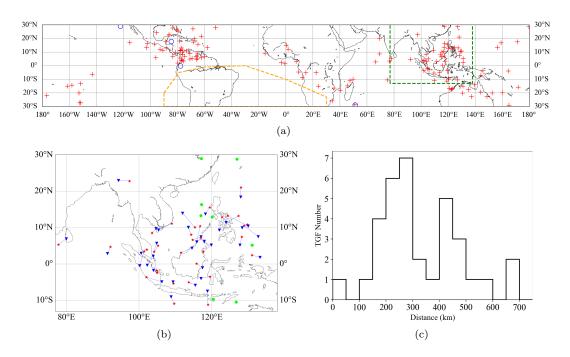


Figure 2. Geographical distribution of GECAM TGFs. (a) GECAM nadirs of 147 TGFs (fuchsia pluses) and 4 TEBs (blue circles). The green and orange dashed lines show the east Asia region (EAR, 77° E–138° E, 13° S–30° N) and South Atlantic Anomaly (SAA), respectively.
(b) The red[lime] markers illustrate the TGFs with[without] associated GLD360 lightning inside the EAR. The blue triangles illustrate the associated lightning within ± 5 ms corrected for the light travel time and within 800 km from GECAM nadirs. (c) The distribution of sphere distance between the GECAM nadirs and their associated GLD360 lightning inside the EAR.

243	et al., 1997; Feng et al., 2002), the high-gain channels of GRDs (down to ~ 15 keV) are
244	suitable to detect these tails (see Figure 4d to 4f). Furthermore, thanks to the high time
245	resolution and a large number of GRD detectors provided by GECAM, some short-duration
246	(down to 37 μ s) TGFs are found, as shown in Figure 4g to 4h. There are more than 40
247	counts registered in such a short duration of 37 μ s, indicating an extremely high counts
248	rate of ~ 1.1 million counts/s (see Figure 4g).

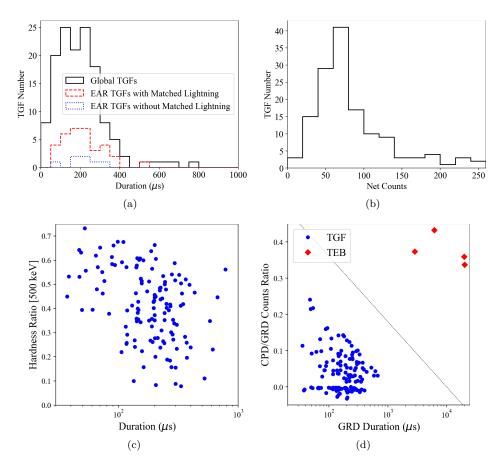


Figure 3. Statistical properties of GECAM TGFs and TEBs. (a) The duration distribution of TGFs. The duration is calculated by the Bayesian Blocks algorithm. The black, red, and blue lines illustrate the duration distribution of total TGFs (147), TGFs with (34), and without (8) associated GLD360 lightning in the EAR, respectively. (b) The distribution of the observed net counts for total TGFs. (c) The scatter plot of the duration of TGF events versus hardness ratio (energy limitation 500 keV). (d) The scatter plot of duration versus CPD/GRD counts ratio for TGFs and TEBs. The dashed line shows a tentative threshold of equation $y = -0.18 \times \log_{10}(x) + 0.72$ for TGF/TEB classification, where x is the duration (μ s) and y is the CPD/GRD counts ratio.

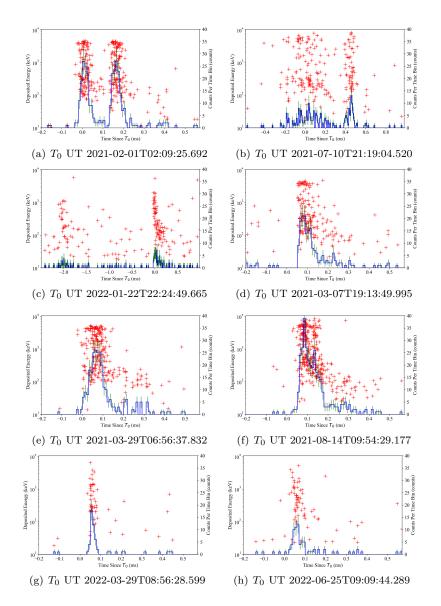


Figure 4. The light curves and time-energy scatters of characteristic GECAM TGFs. (a) to (c): multipeak TGFs. (d) to (f): bright TGFs with > 150 counts in duration. Note the overlapping pulse of (f). (g) to (h): short-duration TGFs (37 μ s and 65 μ s). The black histograms and red crosses show the light curves and time-energy scatters, respectively. The vertical and horizontal for all TGFs are on the same scales except for (b) and (c).

²⁴⁹ 4 GECAM TEBs

The GECAM CPDs are mostly used to detect electrons and positrons in orbit, while it has low detection efficiency to gamma-ray (Xu et al., 2022). To distinguish between TGFs and TEBs, we find a very effective threshold considering the duration and CPD/GRD counts ratio (see Figure 3d).

In this paper, we present four high-confidence TEBs, as shown in Figure 2, Fig-254 ure 3d, and Figure 5. Although TEBs can also produce many counts in GRDs, their du-255 ration and the CPD/GRD counts ratio is remarkably different from TGFs. It is explic-256 itly shown in Figure 3d that the TEBs and TGFs are separated into two groups accord-257 ing to duration and CPD/GRD counts ratio. The CPD/GRD counts ratio for all TGFs 258 is < 0.25 and mostly < 0.15, while that of TEBs reaches ~ 0.35 . It should be noticed 259 that the negative values of the CPD/GRD counts ratio mean no significant signals reg-260 istered in CPDs. The duration of TGFs (< 1 ms) and TEBs (> 2 ms) are also distinc-261 tively different. 262

GECAM-B detected an interesting TEB event with two pulses separated by ~ 150 263 ms (Figure 5a) that occurred over the Southwest Indian Ocean at 18:34:40.552 UTC on 264 September 11th, 2021. Unlike the bright main peak and weak return peak in a typical 265 TEB, these two pulses have similar brightness. Since TEB electrons will travel along the 266 Earth's magnetic field lines, we trace this line using the International Geomagnetic Ref-267 erence Field (IGRF) 13 model (Alken et al., 2021). As shown in Figure 5e and 5f, there 268 is no lightning activity around the GECAM nadir $(51.2^{\circ} \text{ E}, 28.9^{\circ} \text{ S}, 587.7 \text{ km})$ and the 269 southern magnetic footpoint (-31.3° E, 52.8° N, 40 km) within \pm 1 minute of the TEB 270 time and a radius of 1200 km. However, there is a cluster of WWLLN lightning around 271 the northern magnetic footpoint (44.1° E, 45.5° N, 40 km) within 400 km and \pm 10 sec-272 onds. Moreover, the expected round-trip bounce time between the GECAM-B satellite 273 and the southern footpoint is $< \sim 17$ ms for 100 keV electrons, which is an order of mag-274 nitude lower than the observed time interval between the two pulses, strongly disfavor-275 ing the return peak nature of the second pulse. 276

Considering the lack of lightning discharge in the southern part and intense light-277 ning activity in the northern part, as well as the expected time interval for TEB elec-278 trons, bounce from GECAM and the southern footpoint is far less than 150 ms, it is highly 279 likely that the TEB electrons of both pulses originate from TGFs occurred around the 280 northern footpoint in the same lightning discharge process. Even if they are produced 281 by two TGF events, the distance between these two TGFs should not be very far, oth-282 erwise, they would not be detected as TEB at the same location of GECAM-B. As far 283 as we are aware of, this TEB is the first reported event with two pulses that originate 284 from the same geomagnetic footpoint. 285

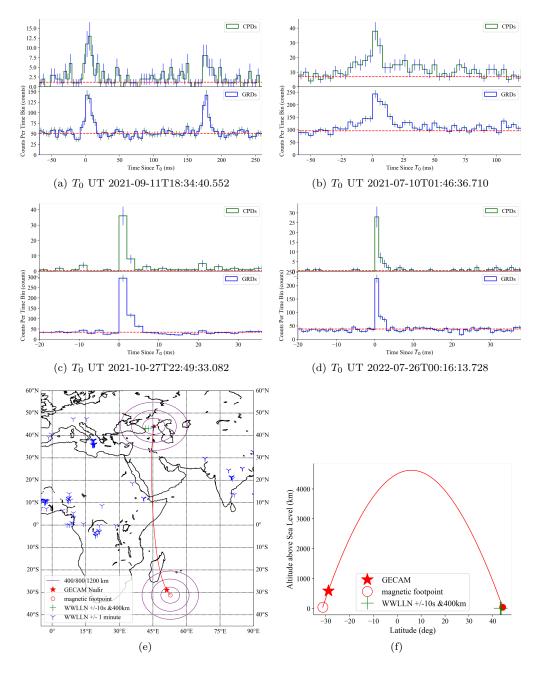


Figure 5. (a) to (d) The light curves of 4 GECAM TEBs. For each TEB, the upper and lower panels show the light curves of CPDs and GRDs, respectively. It should be noted that there are two pulses which episode by ~ 150 ms on subfigure (a). (e) Map of GECAM nadir (red star), WWLLN lightning (blue triangles and green pluses), the traced magnetic field line (red line), and their footpoints (red circles) for the TEBs shown in subfigure (a). (f) The latitude-altitude projected map of the TEBs shown in subfigure (a). The blue triangles illustrate total WWLLN detections within 60 seconds, and green pluses illustrate the WWLLN lightning around the northern magnetic footpoint 400 km within 10 seconds. The solid red circle shows the northern magnetic footpoint.

286 5 Conclusion

With novel designs on detectors and electronics, GECAM is a new powerful instrument to detect and identify TGFs and TEBs, as well as study their properties. Thanks to the high time resolution (100 ns), broad detection energy range (several keV to several MeV), and anti-saturation designs, GECAM can record very bright TGFs and TEBs, and reveal their fine structures in light curves and spectrum, which can help us better understand the production mechanism of TGFs and TEBs.

In this paper, a GECAM TGF/TEB search algorithm is proposed, then 147 bright 293 TGFs and 4 TEBs are identified. The TGF detection rate for GECAM-B is ~ 200 TGFs/year, 294 which will increase if we loose the search threshold. The GECAM-GLD360 lightning-295 association ratio reaches $\sim 80\%$ in the east Asia region, significantly higher than pre-296 vious results obtained with the other space-borne instruments and the WWLLN data. 297 A few interesting structures of TGFs are notable, such as a short spike (down to ~ 10 298 μ s) lying on the decay phase of the main pulse, an interesting double-peak TGF with 299 very similar temporal and spectral distribution, and more than 40 counts are registered 300 in an extremely short duration of $\sim 37 \ \mu s$. 301

For mostly gamma-ray space telescopes, determining a TEB is not straightforward, e.g. through the 511 keV line of the spectrum and the return peak. With the joint observation of GRDs and CPDs, GECAM can directly distinguish between TGFs and TEBs according to the duration distribution and CPD/GRD counts ratio. We find an interesting TEB with two pulses which probably originated from a special lightning discharge process.

308 Acknowledgments

The GECAM (HuaiRou-1) mission is supported by the Strategic Priority Research Pro-309 gram on Space Science of the Chinese Academy of Sciences, China. This work is sup-310 ported by the National Key R&D Program of China (2021YFA0718500). We thank the 311 support from the Strategic Priority Research Program on Space Science, the Chinese Academy 312 of Sciences (Grant No. XDA15360102, XDA15360300, XDA15052700), the National Nat-313 ural Science Foundation of China (Grant No. 12273042, 12173038, 42274205, U1938115, 314 U2038106), the National HEP Data Center (Grant No. E029S2S1) and the open fund 315 of Hubei Luojia Laboratory (Grant No. 220100051). We thank Xi Long (Harvard Uni-316 versity) for the helpful discussions. The GLD360 data used in this paper belong to Vaisala 317 Inc who supports the ASIM project. The authors wish to thank the World Wide Light-318 ning Location Network (http://wwlln.net) as a collaboration of more than 50 universi-319 ties. 320

321	References
322	Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., oth-
323	ers (2021). International geomagnetic reference field: the thirteenth generation.
324	Earth, Planets and Space, 73(1), 1–25.
325	An, Z. H., Sun, X. L., Zhang, D. L., Yang, S., Li, X. Q., Wen, X. Y., Zhou, X.
326	(2022). The design and performance of grd onboard the gecam satellite
327	[Journal Article]. Radiation Detection Technology and Methods, $6(1)$, 43-
328	52. Retrieved from https://doi.org/10.1007/s41605-021-00289-y doi:
329	10.1007/s41605-021-00289-y
330	Briggs, M. S., Fishman, G., Connaughton, V., Bhat, P., Paciesas, W., Preece, R.,
331	others (2010). First results on terrestrial gamma ray flashes from the fermi
332	gamma-ray burst monitor. Journal of Geophysical Research: Space Physics,
333	115(A7).
334	Briggs, M. S., Xiong, S., Connaughton, V., Tierney, D., Fitzpatrick, G., Foley, S.,
335	others (2013). Terrestrial gamma-ray flashes in the fermi era: Improved
336	observations and analysis methods. Journal of Geophysical Research: Space
337	Physics, 118(6), 3805-3830.
338	Cai, C., Xiong, S. L., Li, C. K., Liu, C. Z., Zhang, S. N., Li, X. B., Zhou,
339	D. K. (2021, 09). Search for gamma-ray bursts and gravitational wave
340	electromagnetic counterparts with High Energy X-ray Telescope of Insight-
341	HXMT. Monthly Notices of the Royal Astronomical Society, 508(3), 3910-
342	3920. Retrieved from https://doi.org/10.1093/mnras/stab2760 doi: 10.1093/mnras/stab2760
343	Cai, C., Xiong, SL., Xue, WC., Zhao, Y., Xiao, S., Yi, QB., Zhang, F.
344 345	(2022, 10). Burst search method based on likelihood ratio in Poisson statis-
345	tics. Monthly Notices of the Royal Astronomical Society, 518(2), 2005-
340	2014. Retrieved from https://doi.org/10.1093/mnras/stac3075 doi:
348	10.1093/mnras/stac3075
349	Celestin, S., & Pasko, V. P. (2011). Energy and fluxes of thermal runaway electrons
350	produced by exponential growth of streamers during the stepping of lightning
351	leaders and in transient luminous events. Journal of Geophysical Research:
352	Space Physics, 116(A3).
353	Celestin, S., Xu, W., & Pasko, V. (2013). Spectra of x-ray and gamma-ray bursts
354	produced by stepping lightning leaders. In Egu general assembly conference ab-
355	<i>stracts</i> (p. 13065).
356	Chanrion, O., & Neubert, T. (2010). Production of runaway electrons by nega-
357	tive streamer discharges. Journal of Geophysical Research: Space Physics,
358	115(A6).
359	Dwyer, J. (2003). A fundamental limit on electric fields in air. <i>Geophysical Research</i>
360	Letters, $30(20)$.
361	Dwyer, J. (2008). Source mechanisms of terrestrial gamma-ray flashes. Journal of
362	Geophysical Research: Atmospheres, 113(D10).
363	Dwyer, J. (2012). The relativistic feedback discharge model of terrestrial gamma ray
364	flashes. Journal of Geophysical Research: Space Physics, 117(A2).
365	Dwyer, J. R. (2010). Diffusion of relativistic runaway electrons and implications for
366	lightning initiation. Journal of Geophysical Research: Space Physics, 115(A3). Dwyer, J. R., Grefenstette, B. W., & Smith, D. M. (2008). High-energy electron
367	Dwyer, J. R., Grefenstette, B. W., & Smith, D. M. (2008). High-energy electron beams launched into space by thunderstorms. <i>Geophysical Research Letters</i> ,
368	35(2).
369	Dwyer, J. R., Schaal, M. M., Cramer, E., Arabshahi, S., Liu, N., Rassoul, H.,
370 371	Uman, M. A. (2012). Observation of a gamma-ray flash at ground level in
372	association with a cloud-to-ground lightning return stroke. Journal of Geo-
373	physical Research: Space Physics, 117(A10).
374	Dwyer, J. R., & Smith, D. M. (2005). A comparison between monte carlo simu-
375	lations of runaway breakdown and terrestrial gamma-ray flash observations.

376	Geophysical Research Letters, 32(22).
377	Feng, H., Li, T., Wu, M., Zha, M., & Zhu, Q. (2002). Temporal and spectral proper-
378	ties of gamma-ray flashes. Geophysical research letters, $29(3)$, $6-1$.
379	Fishman, G. J., Bhat, P. N., Mallozzi, R., Horack, J. M., Koshut, T., Kouveliotou,
380	C., Christian, H. J. (1994). Discovery of intense gamma-ray flashes of at-
381	mospheric origin. Science, 264(5163), 1313–1316. Retrieved 2022-05-05, from
382	http://www.jstor.org/stable/2884079
383	Goldstein, A., Veres, P., Burns, E., Briggs, M. S., Hamburg, R., Kocevski, D.,
384	Stanbro, M. (2017, oct). An ordinary short gamma-ray burst with extraor-
385	dinary implications: Fermi-gbm detection of grb 170817a. The Astrophysical
386	Journal, 848(2), L14. Retrieved from https://doi.org/10.3847/2041-8213/
387	aa8f41 doi: 10.3847/2041-8213/aa8f41
388	Grefenstette, B. W., Smith, D. M., Hazelton, B., & Lopez, L. (2009). First rhessi
389	terrestrial gamma ray flash catalog. Journal of Geophysical Research: Space
390	Physics, 114(A2).
391	Gurevich, A., Milikh, G., & Roussel-Dupre, R. (1992). Runaway electron mechanism
392	of air breakdown and preconditioning during a thunderstorm. <i>Physics Letters</i>
393	A, 165(5-6), 463-468.
	Han, X., Zhang, K., Huang, J., YU, J., XIONG, S., CHEN, Y., GENG, H. (2020).
395	Gecam satellite system design and technological characteristic [Journal Ar-
396	ticle]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 50(1674-
397	7275), 129507. Retrieved from https://www.sciengine.com/publisher/
398	ScienceChinaPress/journal/SCIENTIASINICAPhysica,Mechanica
399	&Astronomica/50/12/10.1360/SSPMA-2020-0120 doi: https://doi.org/
400	10.1360/SSPMA-2020-0120
401	Klebesadel, R. W., Strong, I. B., & Olson, R. A. (1973). Observations of gamma-ray
402	bursts of cosmic origin. The Astrophysical Journal, 182, L85.
403	Li, et al. (2022). The technology for detection of gamma-ray burst with GECAM
404	satellite. Radiation Detection Technology and Methods. doi: 10.1007/s41605
405	-021-00288-z
406	Lindanger, A., Marisaldi, M., Maiorana, C., Sarria, D., Albrechtsen, K., Østgaard,
407	N., others (2020). The 3rd agile terrestrial gamma ray flash catalog. part i:
408	Association to lightning sferics. Journal of Geophysical Research: Atmospheres,
409	125(11), e2019JD031985.
410	Liu, N., & Dwyer, J. R. (2013). Modeling terrestrial gamma ray flashes produced
411	by relativistic feedback discharges. Journal of Geophysical Research: Space
412	<i>Physics</i> , 118(5), 2359–2376.
413	Liu, Y., Gong, K., Li, X., Wen, X., An, Z., Cai, C., others (2021). The sipm
414	array data acquisition algorithm applied to the gecam satellite payload. arXiv
415	$preprint \ arXiv: 2112.04786.$
416	Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F.
417	(2007). A bright millisecond radio burst of extragalactic origin. Science,
418	318(5851), 777-780.
419	Lu, G., Blakeslee, R. J., Li, J., Smith, D. M., Shao, XM., McCaul, E. W., Cum-
420	mer, S. A. (2010). Lightning mapping observation of a terrestrial gamma-ray
421	flash. Geophysical Research Letters, 37(11).
422	Lu, G., Cummer, S. A., Li, J., Han, F., Smith, D. M., & Grefenstette, B. W. (2011).
423	Characteristics of broadband lightning emissions associated with terrestrial
424	gamma ray flashes. Journal of Geophysical Research: Space Physics, 116(A3).
425	Lyu, F., Cummer, S. A., Lu, G., Zhou, X., & Weinert, J. (2016). Imaging lightning
426	intracloud initial stepped leaders by low-frequency interferometric lightning
427	mapping array. Geophysical Research Letters, $43(10)$, $5516-5523$.
428	Maiorana, C., Marisaldi, M., Lindanger, A., Østgaard, N., Ursi, A., Sarria, D.,
429	others (2020). The 3rd agile terrestrial gamma-ray flashes catalog. part ii:
430	Optimized selection criteria and characteristics of the new sample. Journal of

431	Geophysical Research: Atmospheres, 125(11), e2019JD031986.
432	Marisaldi, M., Fuschino, F., Labanti, C., Galli, M., Longo, F., Del Monte, E., oth-
433	ers (2010). Detection of terrestrial gamma ray flashes up to 40 mev by the
434	agile satellite. Journal of Geophysical Research: Space Physics, 115(A3).
435	Marisaldi, M., Galli, M., Labanti, C., Østgaard, N., Sarria, D., Cummer, S., others
436	(2019). On the high-energy spectral component and fine time structure of
437	terrestrial gamma ray flashes. Journal of Geophysical Research: Atmospheres,
438	124(14), 7484–7497.
439	Mezentsev, A., Østgaard, N., Gjesteland, T., Albrechtsen, K., Lehtinen, N.,
440	Marisaldi, M., Cummer, S. (2016). Radio emissions from double rhessi
441	tgfs. Journal of Geophysical Research: Atmospheres, 121(13), 8006–8022.
442	Moss, G. D., Pasko, V. P., Liu, N., & Veronis, G. (2006). Monte carlo model for
443	analysis of thermal runaway electrons in streamer tips in transient luminous
444	events and streamer zones of lightning leaders. Journal of Geophysical Re-
445	search: Space Physics, 111(A2).
446	Nemiroff, R. J., Bonnell, J. T., & Norris, J. P. (1997). Temporal and spectral char-
447	acteristics of terrestrial gamma flashes. Journal of Geophysical Research: Space
448	<i>Physics</i> , 102(A5), 9659–9665.
449	Østgaard, N., Neubert, T., Reglero, V., Ullaland, K., Yang, S., Genov, G., others
450	(2019). First 10 months of tgf observations by asim. Journal of Geophysical
451	Research: Atmospheres, $124(24)$, $14024-14036$.
452	Poelman, D. R., Schulz, W., & Vergeiner, C. (2013). Performance characteristics of
453	distinct lightning detection networks covering belgium. Journal of Atmospheric
454	and Oceanic Technology, 30(5), 942–951.
455	Pohjola, H., & Mäkelä, A. (2013). The comparison of gld360 and euclid lightning lo-
455	cation systems in europe. Atmospheric research, 123, 117–128.
457	Roberts, O. J., Fitzpatrick, G., Stanbro, M., McBreen, S., Briggs, M. S., Holzworth,
457	R. H., Mailyan, B. G. (2018). The first fermi-gbm terrestrial gamma ray
459	flash catalog. Journal of Geophysical Research: Space Physics, 123(5), 4381-
460	4401. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
461	10.1029/2017JA024837 doi: https://doi.org/10.1029/2017JA024837
462	Said, R., Cohen, M., & Inan, U. (2013). Highly intense lightning over the oceans:
463	Estimated peak currents from global gld360 observations. <i>Journal of Geophysi</i> -
464	cal Research: Atmospheres, $118(13)$, $6905-6915$.
465	Sarria, D., Østgaard, N., Kochkin, P., Lehtinen, N., Mezentsev, A., Marisaldi, M.,
466	others (2021). Constraining spectral models of a terrestrial gamma-ray
467	flash from a terrestrial electron beam observation by the atmosphere-space
468	interactions monitor. Geophysical Research Letters, 48(9), e2021GL093152.
469	Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. (2013, feb). Studies in
470	astronomical time series analysis. vi. bayesian block representations. The As-
471	trophysical Journal, 764(2), 167. Retrieved from https://doi.org/10.1088/
472	0004-637 x/764/2/167 doi: $10.1088/0004-637 x/764/2/167$
473	Skeltved, A. B., Østgaard, N., Mezentsev, A., Lehtinen, N., & Carlson, B. (2017).
474	Constraints to do realistic modeling of the electric field ahead of the tip of
475	a lightning leader. Journal of Geophysical Research: Atmospheres, 122(15),
476	8120-8134.
477	Stolzenburg, M., Marshall, T. C., Karunarathne, S., & Orville, R. E. (2016). Lumi-
478	nosity with intracloud-type lightning initial breakdown pulses and terrestrial
479	gamma-ray flash candidates. Journal of Geophysical Research: Atmospheres,
480	<i>121</i> (18), 10–919.
481	Ursi, A., Guidorzi, C., Marisaldi, M., Sarria, D., & Frontera, F. (2017). Terrestrial
482	gamma-ray flashes in the bepposax data archive. Journal of Atmospheric and
483	Solar-Terrestrial Physics, 156, 50–56.
484	Wilson, C. T. (1925). The acceleration of β -particles in strong electric fields such
485	as those of thunderclouds. In Mathematical proceedings of the cambridge philo-

486	sophical society (Vol. 22, pp. $534-538$).
487	Woods, P., & Thompson, C. (2004). Soft gamma repeaters and anomalous x-ray
488	pulsars: magnetar candidates. arXiv preprint astro-ph/0406133.
489	Xiao, S., Liu, Y., Peng, W., An, Z., Xiong, S., Tuo, Y., others (2022). On-ground
490	and on-orbit time calibrations of gecam. Monthly Notices of the Royal Astro-
491	$nomical \ Society, \ 511(1), \ 964-971.$
492	Xiong, S., Briggs, M., Connaughton, V., Fishman, G., Tierney, D., Fitzpatrick,
493	G., Hutchins, M. (2012). Location prediction of electron tgfs. Journal of
494	Geophysical Research: Space Physics, 117(A2).
495	Xu, W., Celestin, S., & Pasko, V. P. (2012). Source altitudes of terrestrial gamma-
496	ray flashes produced by lightning leaders. Geophysical Research Letters, $39(8)$.
497	Xu, W., Celestin, S., & Pasko, V. P. (2015). Optical emissions associated with
498	terrestrial gamma ray flashes. Journal of Geophysical Research: Space Physics,
499	120(2), 1355-1370.
500	Xu, Y. B., Li, X. Q., Sun, X. L., Yang, S., Wang, H., Peng, W. X., Zhou, X.
501	(2022). The design and performance of charged particle detector onboard the
502	gecam mission [Journal Article]. Radiation Detection Technology and Methods,
503	6(1), 53-62. Retrieved from https://doi.org/10.1007/s41605-021-00298-x
504	doi: 10.1007/s41605-021-00298-x
505	Zhang, et al. (2022). Dedicated sipm array for grd of gecam. Radiation Detection
506	Technology and Methods, $6(1)$, 63–69.
507	Zhao, X., Xiong, S., Wen, X., Li, X., Cai, C., Xiao, S., & Luo, Q. (2021, December).
508	The In-Flight Realtime Trigger and Localization Software of GECAM. arXiv
509	<i>e-prints</i> , arXiv:2112.05101.
510	Zhao, Y., Xue, W., Xiong, S., Luo, Q., YQ, Z., H, Y., SN, Z. (2022, September).
511	On the Localization Methods of High Energy Transients for All-Sky Gamma-
512	Ray Monitors. arXiv e-prints, arXiv:2209.13088.
513	Zhao, Y., Xue, W., Xiong, S., Wang, Y., Liu, J., Luo, Q., Yu, H. (2022, Novem-

⁵¹⁴ ber). GECAM Localization of High Energy Transients and the Systematic Er-⁵¹⁵ ror. *arXiv e-prints*, arXiv:2211.15570.

The First GECAM Observation Results on Terrestrial Gamma-ray Flashes and Terrestrial Electron Beams

Y. Zhao^{1,2}, J. C. Liu^{2,3}, S. L. Xiong², W. C. Xue^{2,3}, Q. B. Yi^{4,2}, G. P. Lu⁵, W. Xu⁶, F. C. Lyu⁷, J. C. Sun², W. X. Peng², C. Zheng^{2,3}, Y. Q. Zhang^{2,3}, C. Cai⁸, S. Xiao^{9,10}, S. L. Xie¹¹, C. W. Wang^{2,3}, W. J. Tan^{2,3}, Z. H. An², G. Chen², Y. Q. Du^{12,2}, Y. Huang², M. Gao², K. Gong², D. Y. Guo², J. J. He², B. Li², G. Li², X. Q. Li², X. B. Li², J. Liang^{12,2}, X. H. Liang², Y. Q. Liu², X. Ma², R. Qiao², L. M. Song², X. Y. Song², X. L. Sun², J. Wang², J. Z. Wang², P. Wang², X. Y. Wen², H. Wu^{12,2}, Y. B. Xu², S. Yang², B. X. Zhang², D. L. Zhang², F. Zhang², P. Zhang^{13,2}, H. M. Zhang², Z. Zhang², X. Y. Zhao², S. J. Lu², S. N. Zhang², H. Yu¹

 $^1 \rm Department$ of Astronomy, Beijing Normal University, Beijing 100875, Beijing, China $^2 \rm Key$ Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, Beijing, China ³University of Chinese Academy of Sciences, Beijing 100049, Beijing, China ⁴School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China ⁵School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China ⁶Electronic Information School, Wuhan University, Wuhan 430072, Hubei, China ⁷Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210000, Jiangsu China ⁸College of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang, Hebei 050024, China ⁹Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guizhou Normal University, Guiyang 550001, GuiZhou, China ¹⁰School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, GuiZhou, China ¹¹Institute of Astrophysics, Central China Normal University, Wuhan 430079, HuBei, China ¹²School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, SiChuan, China ¹³College of Electronic and Information Engineering, Tongji University, Shanghai 201804, Shanghai, China ¹⁴Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, Shanghai, China ¹⁵National Space Science Center, Chinese Academy of Sciences, Beijing 100190, Beijing, China

36 Key Points:

3

4

6

10

11

12

13 14

15

16 17 18

19

20 21

22

23

24

25

26

27 28 29

30

31

32

33

34

35

37	• GECAM can well classify and distinguish TGF/TEB, and reveal their fine tem-
38	poral and spectral features, e.g. short spikes down to 10 ms.
39	• GECAM discovered an interesting two-peaked TEB which is probably from a light-
40	ning process near the geomagnetic footprint.
41	• TGF-lightning association rate between GECAM and GLD360 in east Asia is found
42	to be $\sim 80\%$, notably higher than previous reports.

Corresponding author: S. L. Xiong, xiongsl@ihep.ac.cn

43 Abstract

44 Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM)

45 is a space-borne instrument dedicated to monitoring high-energy transients, thereinto

⁴⁶ Terrestrial Gamma-ray Flashes (TGFs) and Terrestrial Electron Beams (TEBs). We pro-

⁴⁷ pose a TGF/TEB search algorithm, with which 147 bright TGFs and 4 TEBs are iden-

tified during an effective observation time of ~ 9 months. We show that, with gamma-

⁴⁹ ray and charged particle detectors, GECAM can effectively identify and distinguish TGFs

and TEBs, and measure their temporal and spectral properties in detail. Moreover, we find an interesting TEB consisting of two pulses with a separation of ~ 150 ms, which

is expected to originate from a lightning process near the geomagnetic footprint. We also

find that the GECAM TGF's lightning-association ratio is $\sim 80\%$ in the east Asia re-

⁵⁴ gion using the GLD360 lightning network, which is significantly higher than previous ob-

55 servations.

56 Plain Language Summary

Terrestrial gamma-ray flashes (TGFs) and Terrestrial Electron Beams (TEBs) are 57 one of the most energetic radioactive phenomena in the atmosphere of the Earth. They 58 reflect a natural particle accelerator that can boost electrons up to at least several tens 59 of mega electron volts (MeV). With novel detection technologies, GECAM is a new pow-60 erful instrument to observe TGFs and TEBs, as well as study their properties. For ex-61 ample, it is difficult for most space-borne high-energy instruments to distinguish between 62 TGFs and TEBs. With the joint observation of gamma-ray and charged particle detec-63 tors, GECAM can effectively identify TGFs and TEBs. GECAM can also reveal fine fea-64 tures in the light curves and spectra of these bursts. Interestingly, GECAM discovered 65 the first, as far as we are aware of, TEB which consists of two pulses with a separation 66 time of about 150 ms. Unlike the case in previous TEBs, the second pulse is not the re-67 turn peak but has the same origin as the first one. 68

69 1 Introduction

Terrestrial Gamma-ray Flashes (TGFs) are submillisecond intense bursts of γ -rays 70 with energies up to several tens of MeV (Briggs et al., 2010; Marisaldi et al., 2010, 2019), 71 which was serendipitously discovered by the Burst and Transient Source Experiment (BATSE) 72 aboard Compton Gamma-ray Observatory (CGRO) in 1991 (Fishman et al., 1994). Since 73 then, TGFs have been routinely observed by space-borne instruments, such as BeppoSAX 74 (Ursi et al., 2017), RHESSI (Grefenstette et al., 2009), AGILE (Marisaldi et al., 2010), 75 Fermi/GBM (Roberts et al., 2018) and ASIM (Østgaard et al., 2019) during last three 76 decades. Occasionally, TGFs can also be observed by ground instruments (Dwyer et al., 77 2012), however, the strong absorption of gamma-rays in the air makes the detection very 78 difficult. 79

TGFs observed by these space-borne instruments are widely believed to be produced 80 through the initial upward leader of positive Intracloud (+IC) lightning (Lu et al., 2010, 81 2011). They are the results of relativistic electrons that produce hard X/γ -rays through 82 the bremsstrahlung process. These electrons are accelerated in a very high electric field 83 by the runaway process (Wilson, 1925) and multiplied by many orders of magnitude through 84 the Relativistic Runaway Electron Avalanche process (Gurevich et al., 1992; Dwyer & 85 Smith, 2005). Two main models were proposed to explain the production of TGFs. One 86 is the lightning leader model, which involves the acceleration of free electrons under the 87 localized electric field in front of lightning leader tips (Moss et al., 2006; Dwyer, 2010; 88 Celestin & Pasko, 2011; Celestin et al., 2013). The other one is the relativistic feedback 89 model (RFD) (Dwyer, 2003; Dwyer, 2008, 2012; Liu & Dwyer, 2013), which considers 90 the feedback processes from positrons and photons in a large-scale electric field region. 91

However, the specific mechanism to produce $\sim 10^{17}$ to 10^{19} electrons is still an open question (Chanrion & Neubert, 2010; Xu et al., 2012, 2015; Skeltved et al., 2017).

By interacting with the atmosphere during the propagation, the TGF photons can produce secondary electrons and positrons. Then they will move along the Earth's magnetic field line, forming Terrestrial Electron Beams (TEBs) (Dwyer et al., 2008), which could be observed by some TGF-detecting instruments (Xiong et al., 2012; Lindanger et al., 2020; Sarria et al., 2021).

In this study, the data of Gravitational-wave high-energy Electromagnetic Coun-99 terpart All-sky Monitor (GECAM) (Li et al., 2022) are utilized for TGFs and TEBs re-100 search. GECAM is a space-based instrument dedicated to the observation of gamma-101 ray electromagnetic counterparts of the Gravitational Waves (Goldstein et al., 2017) and 102 Fast Radio Bursts (Lorimer et al., 2007), as well as other high-energy astrophysical and 103 terrestrial transient sources, such as Gamma-ray Bursts (GRBs) (Klebesadel et al., 1973), 104 Soft Gamma-ray Repeaters (SGRs) (Woods & Thompson, 2004), solar flares, TGFs and 105 TEBs. 106

107

¹⁰⁸ 2 Instrument and Search Algorithm

Since the launch in December 2020, GECAM has been operating in low earth orbit (600 km altitude and 29° inclination angle) (Han et al., 2020). GECAM consists of
twin micro-satellites (i.e. GECAM-A and GECAM-B) and each of them comprises 25
Gamma-ray Detectors (GRDs) (An et al., 2022) and 8 Charged Particle Detectors (CPDs)
(Xu et al., 2022). It should be noted that only GECAM-B data are utilized in this study
because GECAM-A has not been able to observe yet (Li et al., 2022).

With LaBr₃ crystals read out by silicon photomultiplier (SiPM) arrays, GRDs can detect high-energy photons in a broad energy range of ~ 15 keV to ~ 5 MeV (Zhang et al., 2022). CPDs are designed to detect the charged particles from ~ 100 keV to ~ 5 MeV. The joint observation of GRDs and CPDs can distinguish between gamma-rays and charged particle bursts, such as TGFs and TEBs (Zhao et al., 2021).

To detect those extremely short and bright bursts, e.g. TGFs and TEBs, a dedicated anti-saturation data acquisition system (DAQ) is designed for GECAM. The data buffer in DAQ can accommodate up to 4092 and 1020 counts for the high-gain and lowgain of each GRD, respectively. Since there are usually several hundred counts registered for a bright TGF, the GECAM DAQ can guarantee to transfer and save almost all TGFs photons that are recorded by detectors (Liu et al., 2021).

For GRD, the dead time is 4 μ s for normal events and > 69 μ s for overflow events (i.e. events with higher energy deposition than the maximum measurable energy). Each GRD detector has two read-out channels: high-gain channel (~ 15 keV to ~ 300 keV) and low-gain channel (~ 300 keV to ~ 5 MeV) (Liu et al., 2021). The design, performance, and other information about GECAM have been reported by Li et al. (2022); An et al. (2022); Xu et al. (2022).

The considerable number of GRD detectors is helpful to locate the source region of TGFs. We have proposed a dedicated localization method for all-sky monitor which can be used for extremely short-duration TGFs (Zhao et al. 2022a). Despite the low counting statistics of TGFs, GECAM can still locate TGFs (Zhao et al. 2022b).

As the main contamination source for TGFs, cosmic-ray events show very similar 136 patterns in data as TGFs, but with an even shorter duration. Thanks to the high time 137 resolution of GECAM, i.e. 100 ns (Xiao et al., 2022), GECAM can effectively distinguish 138 between cosmic-ray events and TGFs. Indeed, a dedicated data product called Simul-139 taneous Events is designed for GECAM. The Simultaneous Events Number (SimEvt-140 Num) is defined as the number of events from different detectors registered in the same 141 300 ns time window (Xiao et al., 2022). As the SimEvtNum increases, the probability 142 of these events caused by cosmic-rays surges. Here a relatively loose criterion (SimEvt-143 Num > 13) is adopted for basic data selection. 144

To unveil TGFs and TEBs in GECAM data, we developed a dedicated burst search 145 algorithm, which is very different from normal burst search for gamma-ray bursts (Cai 146 et al., 2021, 2022), because the TGF and TEB are so weak that only a few counts are 147 registered in each detector, and both GRDs and CPDs are needed in the search. The event-148 by-event (EVT) data of GECAM GRDs and CPDs are used in this study. Only recom-149 mended normal events with SimEvtNum < 13 are utilized. We divide 25 GRDs into four 150 groups considering the neighboring position, and it turns out that there are 6 [7] GRDs 151 for 3 [1] group(s). All 8 CPDs are treated as a single group. 152

Assuming the background follows the Poisson distribution, the probability that the counts are from background fluctuation can be calculated as,

$$P_{\text{group}}(S \ge S'|B) = 1 - \sum_{S=0}^{S=S'-1} \frac{B^S \cdot \exp(-B)}{S!},$$
(1)

where S and S' are observed counts and threshold counts, respectively, for one group in a time window, B is the estimated background for the time window calculated by the average counts over $T_{\text{rela}} \in [-5,-1]$ s and $\in [+1,+5]$ s, where T_{rela} is the relative time with respect to the end time of the time window.

For an individual searching bin, the joint probability of at least N'_{trig} group(s) out of total group number M passing the trigger threshold for a single group P_{group} is,

$$P_{\rm bin}(N_{\rm trig} \ge N_{\rm trig}') = \sum_{N_{\rm trig}=N_{\rm trig}'}^{N_{\rm trig}=M} C_M^{N_{\rm trig}} \cdot (P_{\rm group})^{N_{\rm trig}} \cdot (1 - P_{\rm group})^{M - N_{\rm trig}}.$$
 (2)

In this work, seven time scales are utilized to do searching. The widths of time scales with the corresponding empirical threshold P_{tot} are: 50 μ s (5.0×10⁻²²), 100 μ s (2.0× 10⁻²¹), 250 μ s (1.3×10⁻²⁰), 500 μ s (5.0×10⁻²⁰), 1 ms (2.0×10⁻¹⁹), 2 ms (8.0×10⁻¹⁹), 4 ms (3.2×10⁻¹⁸). All of them are used for TGF search while only the latter four are for TEB search. It should be noted that these empirical criteria are relatively strict so that only intense TGFs or TEBs could be identified.

¹⁶⁷ By setting $P_{\text{tot}} = P_{\text{bin}}$, the group's trigger threshold $(P_{\text{group,GRD}})$ can be obtained ¹⁶⁸ for TGF with GRDs from the following equation (i.e. M = 4, and we set $N'_{\text{trig,GRD}} =$ ¹⁶⁹ 2),

$$P_{\text{tot,GRD}}(N_{\text{trig}} \ge 2) = 6 \cdot P_{\text{group,GRD}}^2 - 8 \cdot P_{\text{group,GRD}}^3 + 3 \cdot P_{\text{group,GRD}}^4, \tag{3}$$

and the trigger threshold from the following equation of TEB with CPDs (M = 1, and we set $N'_{\text{trig,CPD}} = 1$),

$$P_{\rm tot,CPD} = P_{\rm group,CPD}.$$
(4)

According to the empirical threshold above, the trigger threshold for each detector group can be obtained for each searching window, e.g. for 100 μ s, $P_{\text{group,GRD}} = 1.8 \times 10^{-11}$ which corresponds to 6.6 σ in standard Gaussian distribution.

For a candidate to be identified as a TGF/TEB, all criteria below must be met:

175

1. The trigger threshold (Equations 3 and 4) must be satisfied. 176 2. The candidate should not be SGR. It should be noticed that millisecond-duration 177 SGRs can be searched in the time scale of milliseconds with a much softer spec-178 trum than TGFs. 179 3. Should not be caused by instrument effects, which are characterized by that there 180 is significant excess (Poisson significance > 6 σ) registered in 2 to 3 GRDs while 181 no obvious signals (Poisson significance $< 3 \sigma$) for most (i.e. > 21) GRDs. 182 4. For filtering out cosmic-rays, the ratio of the simultaneous event $(R_{\rm sim,7}^{-1})$ should 183 be < 20%. 184

 $^{^{1}}R_{\text{sim},7}$: the total number of simultaneous events registered in > 7 GRDs, divided by the total events number in the searching bin.

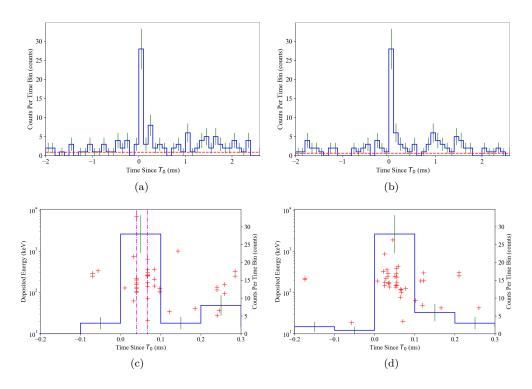


Figure 1. Illustration of distinguishing between cosmic-rays and TGFs by simultaneous events. (a) and (c): the light curve and time-energy scatter plot of a cosmic-ray event. (b) and (d): the light curve and time-energy scatter plot of a TGF. The dot-dashed lines show the time edge of simultaneous events registered in > 7 GRDs within 300 ns. The horizontal and vertical scales are the same for the two events.

For the identification of TEBs, more criteria are needed which will be described in Section 4. To further illustrate the capability of GECAM to identify cosmic-rays, a case is illustrated in Figure 1. The classification of the two excesses can not be distinguished well just according to the light curves. However, the cosmic-ray event (Figure 1a and 1c has $F_{\text{sim},7} = \frac{18}{28} \approx 64\%$, while TGFs have no simultaneous events registered in > 7 GRDs (Figure 1b and 1d).

¹⁹¹ 3 GECAM TGFs

From December 10th, 2020 to August 31st, 2022, the effective observation time of 192 GECAM-B is ~ 274.5 days (~ 0.75 years). As shown in Figure 2, 147 bright TGFs are 193 identified by our search algorithm, corresponding to a discovery rate of $\sim 200 \text{ TGFs/year}$ 194 or 0.54 TGFs/day. The Global Lightning Dataset (GLD360) is utilized to match light-195 ning for GECAM TGFs in the time window of ± 5 ms corrected for the light propaga-196 tion time and within the distance window of 800 km from GECAM nadirs. The GLD360 197 lightning-association ratio is $\frac{34}{42}~\approx~80\%$ in the east Asia region (EAR, 77° E–138° E, 198 13° S-30° N) which is ~ 2.5 times of the results based on the data of the other space-199 borne instruments and the World Wide Lightning Location Network (WWLLN) light-200 ning ($\sim 33\%$) (Roberts et al., 2018; Maiorana et al., 2020). The high lightning-association 201 ratio may be attributed to two factors: (1) the detection efficiency of GLD360 is higher 202 than the other lightning location network at least in EAR (Said et al., 2013; Poelman 203 et al., 2013; Pohjola & Mäkelä, 2013), (2) the current GECAM TGF sample only con-204 tains bright ones, resulting from the very strict searching threshold. The sphere distance 205 between the GECAM nadirs and the associated GLD360 lightning inside the EAR ranges 206 from ~ 50 km to 800 km, which is consistent with previous reports. 207

The statistical distribution of temporal, intensity and energy properties of this GECAM 208 TGF sample are shown in Figure 3. The duration is calculated by the Bayesian Block 209 (BB) algorithm (Scargle et al., 2013). Since the relatively strict threshold, faint TGFs 210 are dropped from the current sample. Therefore, the GECAM TGF discovery rate would 211 increase as we decrease the search threshold in the future. As shown in Figure 3c, TGF 212 events with relatively shorter duration tend to have a harder spectrum and thus more 213 high-energy electrons in the source region, which is in line with previous observations 214 (Briggs et al., 2013). As shown in Figure 3d, the duration and CPD/GRD counts ratio 215 is very effective to classify TGFs and TEBs (see Section 4). 216

In Figure 4, the light curves and time-energy scatter plots are illustrated for three 217 multipeak, three bright, and two short TGFs. The fraction of multipeak TGFs is $\frac{3}{147} \approx$ 218 2%, which is consistent with that observed by the other instruments (Mezentsev et al., 219 2016; Lindanger et al., 2020). Since the upward leader channel of a lightning discharge 220 would generally branch into several channels during propagation, it is widely accepted 221 that the temporal structures may reflect the electric field distribution that the leaders 222 have passed through. This effect is more pronounced in the multipeak or overlapping struc-223 tures of TGFs. 224

It is worth noticing an interesting double-peaked TGF (Figure 4a) which is char-225 acterized by two $\sim 100 \ \mu s$ pulses with very similar temporal and spectral structures. Two 226 possible scenarios may explain this double-peaked TGF. For the first, it could be asso-227 ciated with two leader branches propagating in two distinct localized electric fields, which 228 could be also responsible for the cases shown in Figure 4b to 4c. However, this double-229 peak TGF (Figure 4a) may require coincidences comparing to other TGFs in Figure 4b 230 to 4c, i.e. two intracloud electric fields with similar distribution on the passageway of 231 these upward leader channels. For the second, it could be associated with two succes-232 sive steps of one propagating channel. We note that the time interval between the two 233 pulses of this double-peak TGF is generally consistent with the typical duration of the 234 stepped leader's step, i.e., $\sim 0.1 \text{ ms}$ (Lyu et al., 2016). Meanwhile, the typical length of 235 leader steps during intracloud lightning discharge is from several hundred meters to sev-236 eral kilometers (Stolzenburg et al., 2016). Therefore, the second pulse of this TGF was 237 also likely generated after the initial leader (which resulted in the first pulse) propagated 238 239 forward for one or several more steps.

We also find that the overlapping pulse of a TGF could be as short as $\sim 10 \ \mu s$ (Figure 4f). These fine structures in light curves provide new insights into the specific electric field distribution of lightning discharge. Since the tails of TGFs are usually soft (Nemiroff

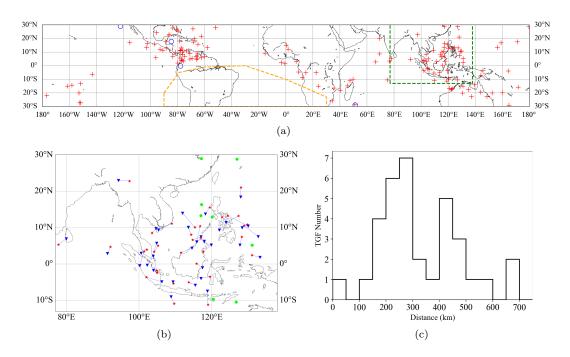


Figure 2. Geographical distribution of GECAM TGFs. (a) GECAM nadirs of 147 TGFs (fuchsia pluses) and 4 TEBs (blue circles). The green and orange dashed lines show the east Asia region (EAR, 77° E–138° E, 13° S–30° N) and South Atlantic Anomaly (SAA), respectively.
(b) The red[lime] markers illustrate the TGFs with[without] associated GLD360 lightning inside the EAR. The blue triangles illustrate the associated lightning within ± 5 ms corrected for the light travel time and within 800 km from GECAM nadirs. (c) The distribution of sphere distance between the GECAM nadirs and their associated GLD360 lightning inside the EAR.

243	et al., 1997; Feng et al., 2002), the high-gain channels of GRDs (down to ~ 15 keV) are
244	suitable to detect these tails (see Figure 4d to 4f). Furthermore, thanks to the high time
245	resolution and a large number of GRD detectors provided by GECAM, some short-duration
246	(down to 37 μ s) TGFs are found, as shown in Figure 4g to 4h. There are more than 40
247	counts registered in such a short duration of 37 μ s, indicating an extremely high counts
248	rate of ~ 1.1 million counts/s (see Figure 4g).

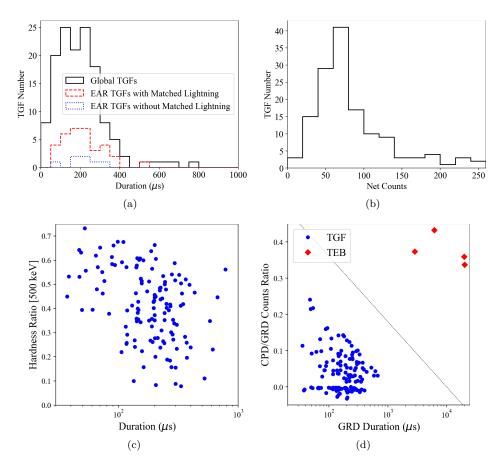


Figure 3. Statistical properties of GECAM TGFs and TEBs. (a) The duration distribution of TGFs. The duration is calculated by the Bayesian Blocks algorithm. The black, red, and blue lines illustrate the duration distribution of total TGFs (147), TGFs with (34), and without (8) associated GLD360 lightning in the EAR, respectively. (b) The distribution of the observed net counts for total TGFs. (c) The scatter plot of the duration of TGF events versus hardness ratio (energy limitation 500 keV). (d) The scatter plot of duration versus CPD/GRD counts ratio for TGFs and TEBs. The dashed line shows a tentative threshold of equation $y = -0.18 \times \log_{10}(x) + 0.72$ for TGF/TEB classification, where x is the duration (μ s) and y is the CPD/GRD counts ratio.

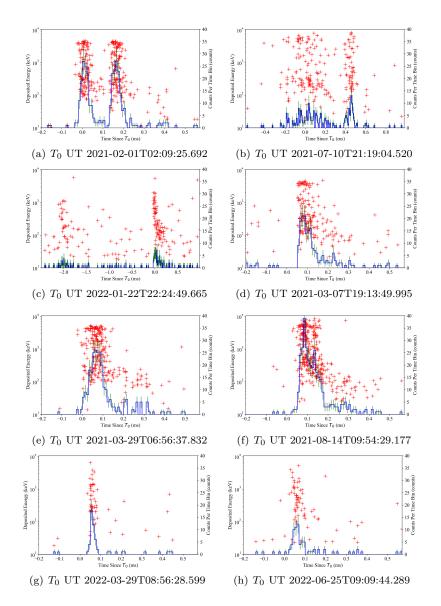


Figure 4. The light curves and time-energy scatters of characteristic GECAM TGFs. (a) to (c): multipeak TGFs. (d) to (f): bright TGFs with > 150 counts in duration. Note the overlapping pulse of (f). (g) to (h): short-duration TGFs (37 μ s and 65 μ s). The black histograms and red crosses show the light curves and time-energy scatters, respectively. The vertical and horizontal for all TGFs are on the same scales except for (b) and (c).

²⁴⁹ 4 GECAM TEBs

The GECAM CPDs are mostly used to detect electrons and positrons in orbit, while it has low detection efficiency to gamma-ray (Xu et al., 2022). To distinguish between TGFs and TEBs, we find a very effective threshold considering the duration and CPD/GRD counts ratio (see Figure 3d).

In this paper, we present four high-confidence TEBs, as shown in Figure 2, Fig-254 ure 3d, and Figure 5. Although TEBs can also produce many counts in GRDs, their du-255 ration and the CPD/GRD counts ratio is remarkably different from TGFs. It is explic-256 itly shown in Figure 3d that the TEBs and TGFs are separated into two groups accord-257 ing to duration and CPD/GRD counts ratio. The CPD/GRD counts ratio for all TGFs 258 is < 0.25 and mostly < 0.15, while that of TEBs reaches ~ 0.35 . It should be noticed 259 that the negative values of the CPD/GRD counts ratio mean no significant signals reg-260 istered in CPDs. The duration of TGFs (< 1 ms) and TEBs (> 2 ms) are also distinc-261 tively different. 262

GECAM-B detected an interesting TEB event with two pulses separated by ~ 150 263 ms (Figure 5a) that occurred over the Southwest Indian Ocean at 18:34:40.552 UTC on 264 September 11th, 2021. Unlike the bright main peak and weak return peak in a typical 265 TEB, these two pulses have similar brightness. Since TEB electrons will travel along the 266 Earth's magnetic field lines, we trace this line using the International Geomagnetic Ref-267 erence Field (IGRF) 13 model (Alken et al., 2021). As shown in Figure 5e and 5f, there 268 is no lightning activity around the GECAM nadir $(51.2^{\circ} \text{ E}, 28.9^{\circ} \text{ S}, 587.7 \text{ km})$ and the 269 southern magnetic footpoint (-31.3° E, 52.8° N, 40 km) within \pm 1 minute of the TEB 270 time and a radius of 1200 km. However, there is a cluster of WWLLN lightning around 271 the northern magnetic footpoint (44.1° E, 45.5° N, 40 km) within 400 km and \pm 10 sec-272 onds. Moreover, the expected round-trip bounce time between the GECAM-B satellite 273 and the southern footpoint is $< \sim 17$ ms for 100 keV electrons, which is an order of mag-274 nitude lower than the observed time interval between the two pulses, strongly disfavor-275 ing the return peak nature of the second pulse. 276

Considering the lack of lightning discharge in the southern part and intense light-277 ning activity in the northern part, as well as the expected time interval for TEB elec-278 trons, bounce from GECAM and the southern footpoint is far less than 150 ms, it is highly 279 likely that the TEB electrons of both pulses originate from TGFs occurred around the 280 northern footpoint in the same lightning discharge process. Even if they are produced 281 by two TGF events, the distance between these two TGFs should not be very far, oth-282 erwise, they would not be detected as TEB at the same location of GECAM-B. As far 283 as we are aware of, this TEB is the first reported event with two pulses that originate 284 from the same geomagnetic footpoint. 285

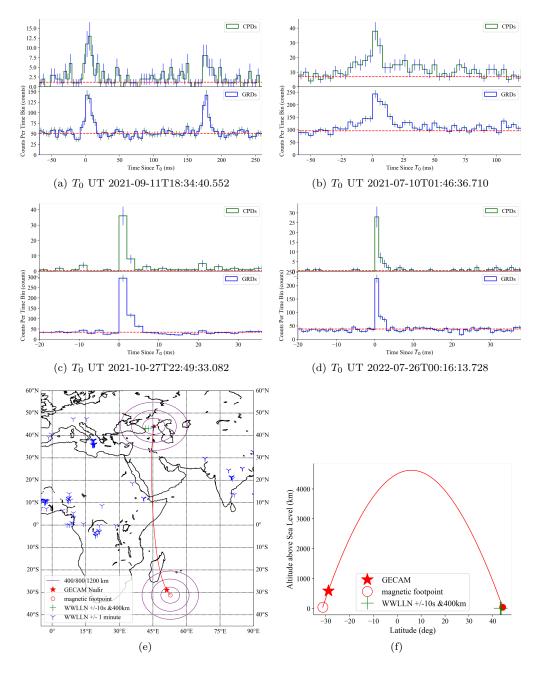


Figure 5. (a) to (d) The light curves of 4 GECAM TEBs. For each TEB, the upper and lower panels show the light curves of CPDs and GRDs, respectively. It should be noted that there are two pulses which episode by ~ 150 ms on subfigure (a). (e) Map of GECAM nadir (red star), WWLLN lightning (blue triangles and green pluses), the traced magnetic field line (red line), and their footpoints (red circles) for the TEBs shown in subfigure (a). (f) The latitude-altitude projected map of the TEBs shown in subfigure (a). The blue triangles illustrate total WWLLN detections within 60 seconds, and green pluses illustrate the WWLLN lightning around the northern magnetic footpoint 400 km within 10 seconds. The solid red circle shows the northern magnetic footpoint.

286 5 Conclusion

With novel designs on detectors and electronics, GECAM is a new powerful instrument to detect and identify TGFs and TEBs, as well as study their properties. Thanks to the high time resolution (100 ns), broad detection energy range (several keV to several MeV), and anti-saturation designs, GECAM can record very bright TGFs and TEBs, and reveal their fine structures in light curves and spectrum, which can help us better understand the production mechanism of TGFs and TEBs.

In this paper, a GECAM TGF/TEB search algorithm is proposed, then 147 bright 293 TGFs and 4 TEBs are identified. The TGF detection rate for GECAM-B is ~ 200 TGFs/year, 294 which will increase if we loose the search threshold. The GECAM-GLD360 lightning-295 association ratio reaches $\sim 80\%$ in the east Asia region, significantly higher than pre-296 vious results obtained with the other space-borne instruments and the WWLLN data. 297 A few interesting structures of TGFs are notable, such as a short spike (down to ~ 10 298 μ s) lying on the decay phase of the main pulse, an interesting double-peak TGF with 299 very similar temporal and spectral distribution, and more than 40 counts are registered 300 in an extremely short duration of $\sim 37 \ \mu s$. 301

For mostly gamma-ray space telescopes, determining a TEB is not straightforward, e.g. through the 511 keV line of the spectrum and the return peak. With the joint observation of GRDs and CPDs, GECAM can directly distinguish between TGFs and TEBs according to the duration distribution and CPD/GRD counts ratio. We find an interesting TEB with two pulses which probably originated from a special lightning discharge process.

308 Acknowledgments

The GECAM (HuaiRou-1) mission is supported by the Strategic Priority Research Pro-309 gram on Space Science of the Chinese Academy of Sciences, China. This work is sup-310 ported by the National Key R&D Program of China (2021YFA0718500). We thank the 311 support from the Strategic Priority Research Program on Space Science, the Chinese Academy 312 of Sciences (Grant No. XDA15360102, XDA15360300, XDA15052700), the National Nat-313 ural Science Foundation of China (Grant No. 12273042, 12173038, 42274205, U1938115, 314 U2038106), the National HEP Data Center (Grant No. E029S2S1) and the open fund 315 of Hubei Luojia Laboratory (Grant No. 220100051). We thank Xi Long (Harvard Uni-316 versity) for the helpful discussions. The GLD360 data used in this paper belong to Vaisala 317 Inc who supports the ASIM project. The authors wish to thank the World Wide Light-318 ning Location Network (http://wwlln.net) as a collaboration of more than 50 universi-319 ties. 320

321	References
322	Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., oth-
323	ers (2021). International geomagnetic reference field: the thirteenth generation.
324	Earth, Planets and Space, 73(1), 1–25.
325	An, Z. H., Sun, X. L., Zhang, D. L., Yang, S., Li, X. Q., Wen, X. Y., Zhou, X.
326	(2022). The design and performance of grd onboard the gecam satellite
327	[Journal Article]. Radiation Detection Technology and Methods, $6(1)$, 43-
328	52. Retrieved from https://doi.org/10.1007/s41605-021-00289-y doi:
329	10.1007/s41605-021-00289-y
330	Briggs, M. S., Fishman, G., Connaughton, V., Bhat, P., Paciesas, W., Preece, R.,
331	others (2010). First results on terrestrial gamma ray flashes from the fermi
332	gamma-ray burst monitor. Journal of Geophysical Research: Space Physics,
333	115(A7).
334	Briggs, M. S., Xiong, S., Connaughton, V., Tierney, D., Fitzpatrick, G., Foley, S.,
335	others (2013). Terrestrial gamma-ray flashes in the fermi era: Improved
336	observations and analysis methods. Journal of Geophysical Research: Space
337	Physics, 118(6), 3805-3830.
338	Cai, C., Xiong, S. L., Li, C. K., Liu, C. Z., Zhang, S. N., Li, X. B., Zhou,
339	D. K. (2021, 09). Search for gamma-ray bursts and gravitational wave
340	electromagnetic counterparts with High Energy X-ray Telescope of Insight-
341	HXMT. Monthly Notices of the Royal Astronomical Society, 508(3), 3910-
342	3920. Retrieved from https://doi.org/10.1093/mnras/stab2760 doi: 10.1093/mnras/stab2760
343	Cai, C., Xiong, SL., Xue, WC., Zhao, Y., Xiao, S., Yi, QB., Zhang, F.
344 345	(2022, 10). Burst search method based on likelihood ratio in Poisson statis-
345	tics. Monthly Notices of the Royal Astronomical Society, 518(2), 2005-
340	2014. Retrieved from https://doi.org/10.1093/mnras/stac3075 doi:
348	10.1093/mnras/stac3075
349	Celestin, S., & Pasko, V. P. (2011). Energy and fluxes of thermal runaway electrons
350	produced by exponential growth of streamers during the stepping of lightning
351	leaders and in transient luminous events. Journal of Geophysical Research:
352	Space Physics, 116(A3).
353	Celestin, S., Xu, W., & Pasko, V. (2013). Spectra of x-ray and gamma-ray bursts
354	produced by stepping lightning leaders. In Egu general assembly conference ab-
355	<i>stracts</i> (p. 13065).
356	Chanrion, O., & Neubert, T. (2010). Production of runaway electrons by nega-
357	tive streamer discharges. Journal of Geophysical Research: Space Physics,
358	115(A6).
359	Dwyer, J. (2003). A fundamental limit on electric fields in air. <i>Geophysical Research</i>
360	Letters, $30(20)$.
361	Dwyer, J. (2008). Source mechanisms of terrestrial gamma-ray flashes. Journal of
362	Geophysical Research: Atmospheres, 113(D10).
363	Dwyer, J. (2012). The relativistic feedback discharge model of terrestrial gamma ray
364	flashes. Journal of Geophysical Research: Space Physics, 117(A2).
365	Dwyer, J. R. (2010). Diffusion of relativistic runaway electrons and implications for
366	lightning initiation. Journal of Geophysical Research: Space Physics, 115(A3). Dwyer, J. R., Grefenstette, B. W., & Smith, D. M. (2008). High-energy electron
367	
368	beams launched into space by thunderstorms. Geophysical Research Letters, $35(2)$.
369	Dwyer, J. R., Schaal, M. M., Cramer, E., Arabshahi, S., Liu, N., Rassoul, H.,
370 371	Uman, M. A. (2012). Observation of a gamma-ray flash at ground level in
372	association with a cloud-to-ground lightning return stroke. Journal of Geo-
373	physical Research: Space Physics, 117(A10).
374	Dwyer, J. R., & Smith, D. M. (2005). A comparison between monte carlo simu-
375	lations of runaway breakdown and terrestrial gamma-ray flash observations.

376	Geophysical Research Letters, 32(22).
377	Feng, H., Li, T., Wu, M., Zha, M., & Zhu, Q. (2002). Temporal and spectral proper-
378	ties of gamma-ray flashes. Geophysical research letters, $29(3)$, $6-1$.
379	Fishman, G. J., Bhat, P. N., Mallozzi, R., Horack, J. M., Koshut, T., Kouveliotou,
380	C., Christian, H. J. (1994). Discovery of intense gamma-ray flashes of at-
381	mospheric origin. Science, 264(5163), 1313–1316. Retrieved 2022-05-05, from
382	http://www.jstor.org/stable/2884079
383	Goldstein, A., Veres, P., Burns, E., Briggs, M. S., Hamburg, R., Kocevski, D.,
384	Stanbro, M. (2017, oct). An ordinary short gamma-ray burst with extraor-
385	dinary implications: Fermi-gbm detection of grb 170817a. The Astrophysical
386	Journal, 848(2), L14. Retrieved from https://doi.org/10.3847/2041-8213/
387	aa8f41 doi: 10.3847/2041-8213/aa8f41
388	Grefenstette, B. W., Smith, D. M., Hazelton, B., & Lopez, L. (2009). First rhessi
389	terrestrial gamma ray flash catalog. Journal of Geophysical Research: Space
390	Physics, 114(A2).
391	Gurevich, A., Milikh, G., & Roussel-Dupre, R. (1992). Runaway electron mechanism
392	of air breakdown and preconditioning during a thunderstorm. <i>Physics Letters</i>
393	A, 165(5-6), 463-468.
	Han, X., Zhang, K., Huang, J., YU, J., XIONG, S., CHEN, Y., GENG, H. (2020).
395	Gecam satellite system design and technological characteristic [Journal Ar-
396	ticle]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 50(1674-
397	7275), 129507. Retrieved from https://www.sciengine.com/publisher/
398	ScienceChinaPress/journal/SCIENTIASINICAPhysica,Mechanica
399	&Astronomica/50/12/10.1360/SSPMA-2020-0120 doi: https://doi.org/
400	10.1360/SSPMA-2020-0120
401	Klebesadel, R. W., Strong, I. B., & Olson, R. A. (1973). Observations of gamma-ray
402	bursts of cosmic origin. The Astrophysical Journal, 182, L85.
403	Li, et al. (2022). The technology for detection of gamma-ray burst with GECAM
404	satellite. Radiation Detection Technology and Methods. doi: 10.1007/s41605
405	-021-00288-z
406	Lindanger, A., Marisaldi, M., Maiorana, C., Sarria, D., Albrechtsen, K., Østgaard,
407	N., others (2020). The 3rd agile terrestrial gamma ray flash catalog. part i:
408	Association to lightning sferics. Journal of Geophysical Research: Atmospheres,
409	125(11), e2019JD031985.
410	Liu, N., & Dwyer, J. R. (2013). Modeling terrestrial gamma ray flashes produced
411	by relativistic feedback discharges. Journal of Geophysical Research: Space
412	<i>Physics</i> , 118(5), 2359–2376.
413	Liu, Y., Gong, K., Li, X., Wen, X., An, Z., Cai, C., others (2021). The sipm
414	array data acquisition algorithm applied to the gecam satellite payload. arXiv
415	$preprint \ arXiv: 2112.04786.$
416	Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F.
417	(2007). A bright millisecond radio burst of extragalactic origin. Science,
418	318(5851), 777-780.
419	Lu, G., Blakeslee, R. J., Li, J., Smith, D. M., Shao, XM., McCaul, E. W., Cum-
420	mer, S. A. (2010). Lightning mapping observation of a terrestrial gamma-ray
421	flash. Geophysical Research Letters, 37(11).
422	Lu, G., Cummer, S. A., Li, J., Han, F., Smith, D. M., & Grefenstette, B. W. (2011).
423	Characteristics of broadband lightning emissions associated with terrestrial
424	gamma ray flashes. Journal of Geophysical Research: Space Physics, 116(A3).
425	Lyu, F., Cummer, S. A., Lu, G., Zhou, X., & Weinert, J. (2016). Imaging lightning
426	intracloud initial stepped leaders by low-frequency interferometric lightning
427	mapping array. Geophysical Research Letters, $43(10)$, $5516-5523$.
428	Maiorana, C., Marisaldi, M., Lindanger, A., Østgaard, N., Ursi, A., Sarria, D.,
429	others (2020). The 3rd agile terrestrial gamma-ray flashes catalog. part ii:
430	Optimized selection criteria and characteristics of the new sample. Journal of

431	Geophysical Research: Atmospheres, 125(11), e2019JD031986.
432	Marisaldi, M., Fuschino, F., Labanti, C., Galli, M., Longo, F., Del Monte, E., oth-
433	ers (2010). Detection of terrestrial gamma ray flashes up to 40 mev by the
434	agile satellite. Journal of Geophysical Research: Space Physics, 115(A3).
435	Marisaldi, M., Galli, M., Labanti, C., Østgaard, N., Sarria, D., Cummer, S., others
436	(2019). On the high-energy spectral component and fine time structure of
437	terrestrial gamma ray flashes. Journal of Geophysical Research: Atmospheres,
438	124(14), 7484–7497.
439	Mezentsev, A., Østgaard, N., Gjesteland, T., Albrechtsen, K., Lehtinen, N.,
440	Marisaldi, M., Cummer, S. (2016). Radio emissions from double rhessi
441	tgfs. Journal of Geophysical Research: Atmospheres, 121(13), 8006–8022.
442	Moss, G. D., Pasko, V. P., Liu, N., & Veronis, G. (2006). Monte carlo model for
443	analysis of thermal runaway electrons in streamer tips in transient luminous
444	events and streamer zones of lightning leaders. Journal of Geophysical Re-
445	search: Space Physics, 111(A2).
446	Nemiroff, R. J., Bonnell, J. T., & Norris, J. P. (1997). Temporal and spectral char-
447	acteristics of terrestrial gamma flashes. Journal of Geophysical Research: Space
448	<i>Physics</i> , 102(A5), 9659–9665.
449	Østgaard, N., Neubert, T., Reglero, V., Ullaland, K., Yang, S., Genov, G., others
450	(2019). First 10 months of tgf observations by asim. Journal of Geophysical
451	Research: Atmospheres, $124(24)$, $14024-14036$.
452	Poelman, D. R., Schulz, W., & Vergeiner, C. (2013). Performance characteristics of
453	distinct lightning detection networks covering belgium. Journal of Atmospheric
454	and Oceanic Technology, 30(5), 942–951.
455	Pohjola, H., & Mäkelä, A. (2013). The comparison of gld360 and euclid lightning lo-
455	cation systems in europe. Atmospheric research, 123, 117–128.
457	Roberts, O. J., Fitzpatrick, G., Stanbro, M., McBreen, S., Briggs, M. S., Holzworth,
457	R. H., Mailyan, B. G. (2018). The first fermi-gbm terrestrial gamma ray
459	flash catalog. Journal of Geophysical Research: Space Physics, 123(5), 4381-
460	4401. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
461	10.1029/2017JA024837 doi: https://doi.org/10.1029/2017JA024837
462	Said, R., Cohen, M., & Inan, U. (2013). Highly intense lightning over the oceans:
463	Estimated peak currents from global gld360 observations. <i>Journal of Geophysi</i> -
464	cal Research: Atmospheres, $118(13)$, $6905-6915$.
465	Sarria, D., Østgaard, N., Kochkin, P., Lehtinen, N., Mezentsev, A., Marisaldi, M.,
466	others (2021). Constraining spectral models of a terrestrial gamma-ray
467	flash from a terrestrial electron beam observation by the atmosphere-space
468	interactions monitor. Geophysical Research Letters, 48(9), e2021GL093152.
469	Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. (2013, feb). Studies in
470	astronomical time series analysis. vi. bayesian block representations. The As-
471	trophysical Journal, 764(2), 167. Retrieved from https://doi.org/10.1088/
472	0004-637 x/764/2/167 doi: $10.1088/0004-637 x/764/2/167$
473	Skeltved, A. B., Østgaard, N., Mezentsev, A., Lehtinen, N., & Carlson, B. (2017).
474	Constraints to do realistic modeling of the electric field ahead of the tip of
475	a lightning leader. Journal of Geophysical Research: Atmospheres, 122(15),
476	8120-8134.
477	Stolzenburg, M., Marshall, T. C., Karunarathne, S., & Orville, R. E. (2016). Lumi-
478	nosity with intracloud-type lightning initial breakdown pulses and terrestrial
479	gamma-ray flash candidates. Journal of Geophysical Research: Atmospheres,
480	<i>121</i> (18), 10–919.
481	Ursi, A., Guidorzi, C., Marisaldi, M., Sarria, D., & Frontera, F. (2017). Terrestrial
482	gamma-ray flashes in the bepposax data archive. Journal of Atmospheric and
483	Solar-Terrestrial Physics, 156, 50–56.
484	Wilson, C. T. (1925). The acceleration of β -particles in strong electric fields such
485	as those of thunderclouds. In Mathematical proceedings of the cambridge philo-

486	sophical society (Vol. 22, pp. $534-538$).
487	Woods, P., & Thompson, C. (2004). Soft gamma repeaters and anomalous x-ray
488	pulsars: magnetar candidates. arXiv preprint astro-ph/0406133.
489	Xiao, S., Liu, Y., Peng, W., An, Z., Xiong, S., Tuo, Y., others (2022). On-ground
490	and on-orbit time calibrations of gecam. Monthly Notices of the Royal Astro-
491	$nomical \ Society, \ 511(1), \ 964-971.$
492	Xiong, S., Briggs, M., Connaughton, V., Fishman, G., Tierney, D., Fitzpatrick,
493	G., Hutchins, M. (2012). Location prediction of electron tgfs. Journal of
494	Geophysical Research: Space Physics, 117(A2).
495	Xu, W., Celestin, S., & Pasko, V. P. (2012). Source altitudes of terrestrial gamma-
496	ray flashes produced by lightning leaders. Geophysical Research Letters, $39(8)$.
497	Xu, W., Celestin, S., & Pasko, V. P. (2015). Optical emissions associated with
498	terrestrial gamma ray flashes. Journal of Geophysical Research: Space Physics,
499	120(2), 1355-1370.
500	Xu, Y. B., Li, X. Q., Sun, X. L., Yang, S., Wang, H., Peng, W. X., Zhou, X.
501	(2022). The design and performance of charged particle detector onboard the
502	gecam mission [Journal Article]. Radiation Detection Technology and Methods,
503	6(1), 53-62. Retrieved from https://doi.org/10.1007/s41605-021-00298-x
504	doi: 10.1007/s41605-021-00298-x
505	Zhang, et al. (2022). Dedicated sipm array for grd of gecam. Radiation Detection
506	Technology and Methods, $6(1)$, 63–69.
507	Zhao, X., Xiong, S., Wen, X., Li, X., Cai, C., Xiao, S., & Luo, Q. (2021, December).
508	The In-Flight Realtime Trigger and Localization Software of GECAM. arXiv
509	<i>e-prints</i> , arXiv:2112.05101.
510	Zhao, Y., Xue, W., Xiong, S., Luo, Q., YQ, Z., H, Y., SN, Z. (2022, September).
511	On the Localization Methods of High Energy Transients for All-Sky Gamma-
512	Ray Monitors. arXiv e-prints, arXiv:2209.13088.
513	Zhao, Y., Xue, W., Xiong, S., Wang, Y., Liu, J., Luo, Q., Yu, H. (2022, Novem-

⁵¹⁴ ber). GECAM Localization of High Energy Transients and the Systematic Er-⁵¹⁵ ror. *arXiv e-prints*, arXiv:2211.15570.