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Abstract

Using imaging spectroscopy (hyperspectral imaging), we sought to assess the effects of image pixel resolution, size of mapping

windows composed of pixels, and number of spectral species assigned to pixels on the capacity to map plant beta diversity

using the biodivMapR algorithm, in support of the planned NASA Surface Biology and Geology (SBG) satellite remote sensing

mission. BiodivMapR classifies pixels as spectral species, then calculates beta diversity as dissimilarity of spectral species among

mapping windows each composed of multiple pixels. We used NEON airborne 1 m resolution hyperspectral images collected at

three sites representing native longleaf pine ecosystems in the southeastern U.S. and aggregated pixels to sizes ranging from 1-90

m for comparative analyses. Plant community composition was groundtruthed. Results show that the capacity to detect plant

beta diversity decreases with fewer pixels per mapping window, such that pixel resolution limits the size of mapping windows

effective for representing beta diversity. Mapping window size in turn limits the spatial resolution of beta diversity maps

composed of mapping windows. Assigning too few pixels per window, as well as assigning too many spectral species per image,

results in overestimation of dissimilarity among locations that have plant species in common. This overestimation undermines

the capacity to contrast mapping window dissimilarity within versus among community types and reduces the information

content of beta diversity maps. These results demonstrate the advantage of maximizing spatial resolution of hyperspectral

imaging instruments on the anticipated NASA SBG satellite mission and similar remote sensing projects.
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Key Points: 12 

• Ability to map plant beta diversity on landscapes using biodivMapR and similar 13 

algorithms depends on having a sufficient number of pixels per mapping window.  14 

• Increasing mapping window size to accommodate sufficient numbers of pixels per 15 

window decreases spatial resolution of beta diversity maps.  16 

• Assigning the appropriate number of spectral species is important for generating a 17 

dissimilarity matrix that appropriately reflects actual plant beta diversity.  18 

  19 



 

 

Abstract 20 

Using imaging spectroscopy (hyperspectral imaging), we sought to assess the effects of image 21 

pixel resolution, size of mapping windows composed of pixels, and number of spectral species 22 

assigned to pixels on the capacity to map plant beta diversity using the biodivMapR algorithm, in 23 

support of the planned NASA Surface Biology and Geology (SBG) satellite remote sensing 24 

mission. BiodivMapR classifies pixels as spectral species, then calculates beta diversity as 25 

dissimilarity of spectral species among mapping windows each composed of multiple pixels. We 26 

used NEON airborne 1 m resolution hyperspectral images collected at three sites representing 27 

native longleaf pine ecosystems in the southeastern U.S. and aggregated pixels to sizes ranging 28 

from 1-90 m for comparative analyses. Plant community composition was groundtruthed. 29 

Results show that the capacity to detect plant beta diversity decreases with fewer pixels per 30 

mapping window, such that pixel resolution limits the size of mapping windows effective for 31 

representing beta diversity. Mapping window size in turn limits the spatial resolution of beta 32 

diversity maps composed of mapping windows. Assigning too few pixels per window, as well as 33 

assigning too many spectral species per image, results in overestimation of dissimilarity among 34 

locations that have plant species in common. This overestimation undermines the capacity to 35 

contrast mapping window dissimilarity within versus among community types and reduces the 36 

information content of beta diversity maps. These results demonstrate the advantage of 37 

maximizing spatial resolution of hyperspectral imaging instruments on the anticipated NASA 38 

SBG satellite mission and similar remote sensing projects.   39 
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Plain Language Summary 43 

Mapping beta diversity, or the differences in species composition among different parts of a 44 

landscape, is an important goal of satellite remote sensing. Different remote sensing products 45 

have different sizes of pixels that make up the image, which can effect how much information 46 

the image displays. NASA is interested in knowing the effects of image pixel size for designing 47 

future satellite missions, including the upcoming Surface Biology and Geology (SBG) mission. 48 

We used remote sensing data taken from aircraft at NEON research sites in the southeastern U.S. 49 

to test how different pixel sizes, ranging from 1-90 m, affect how well beta diversity can be 50 

mapped. We used the program biodivMapR, which creates maps from square "mapping 51 

windows", which each contain multiple pixels that are classified according to their reflectance 52 

data, and which are used to tell how different one mapping window is from the other. We found 53 

that the larger the pixel size, the larger the mapping window has to be to have enough pixels to 54 

map biodiversity well. The tradeoff is that larger mapping windows result in coarser biodiversity 55 

maps. Using 30-45 m pixels, which has been recommended for the SBG mission, relatively large 56 

areas covered by different natural community types can be distinguished, but smaller features 57 

like isolated ponds and narrow streams may not be detected. The study shows the importance of 58 

having image pixel sizes that are as small as possible, in addition to having high quality 59 

information per pixel.     60 

  61 



 

 

1 Introduction 62 

The impact of human activities on the function and and sustainability of earth's biological 63 

and physical systems places high priority on tracking global patterns of biodiversity and 64 

ecosystem change. Given the high cost and limited geographic distribution of field plots for 65 

ecosystem monitoring, remote sensing will play an increasingly important role in systematically 66 

monitoring trends in biodiversity and ecosystem health. Remote sensing approaches depend on 67 

demonstrated links between field-observed data and remotely sensed reflectance data in order to 68 

develop automated systems for ecological interpretation of imagery covering wide geographic 69 

areas (Pereira et al., 2017). The increasing availability of imaging spectroscopy, hereafter 70 

hyperspectral imagery, in which hundreds of reflectance wavelengths are measured for each 71 

pixel, promises a paradigm shift in the capacity to remotely monitor biodiversity (Schimel et al., 72 

2020). However, current application of hyperspectral technology remains limited by spatial and 73 

temporal coverage (Cawse-Nicholson et al., 2021).   74 

In light of these needs, the 2017-2027 Decadal Survey organized by the United States 75 

National Academy of Sciences, Engineering, and Medicine (NASEM, 2018) established surface 76 

biology and geology (SBG) as a designated observable using satellite remote sensing. The SBG 77 

project is anticipated to use hyperspectral visible to shortwave infrared (VSWIR; 380-2500 nm) 78 

imagery in a mission to be lead by the National Air and Space Administration (NASA) (Cawse-79 

Nicholson et al., 2021). To date, the Decadal Survey recommends a VSWIR instrument with 30-80 

45 m pixel resolution, as well as ≤16 day global revisit time and 10 nm spectral resolution in the 81 

380-2500 nm range. During the current formulation phase, it is important to consider tradeoffs 82 

among choices of parameter specifications. One important parameter under consideration is 83 

spatial resolution of imagery, which may have a significant influence on the capability to 84 



 

 

remotely sense spatial distributions of biodiversity (Gamon et al., 2020).  85 

The current study focuses on implications of spatial resolution of imagery on 86 

effectiveness of remotely sensing plant community beta diversity using the algorithm 87 

biodivMapR (Féret and de Boissieu, 2020). Beta diversity refers to spatial variation, or turnover, 88 

of species composition among plant communities at the landscape scale. BiodivMapR also 89 

estimates alpha plant diversity (local diversity) as diversity of spectral species (classified pixels) 90 

within larger mapping windows, which depends on the Spectral Variation Hypothesis (Palmer et 91 

al., 2002; Rocchini et al., 2004), or the assumption that local variation in spectral signatures 92 

among pixels corresponds to plant functional diversity and species diversity (Gamon et al., 93 

2020). However, as the size of pixels increasingly exceeds the size of individual plant species, 94 

this assumption becomes much less certain (Féret and Asner, 2014; Féret and de Boissieu, 2020; 95 

Rocchini et al., 2018). For example, in grasslands where there multiple species per m2, this 96 

relationship appears to break down at pixel sizes larger than about 5 m (Gholidezah et al. 2019; 97 

2021; Gamon et al., 2020). Within the range of spatial resolutions suggested for the SBG mission 98 

(30-45 m), alpha diversity procedures will likely not be effective in herb-dominated plant 99 

communities such as those in the current study, which can have > 20 species per m2 (Glitzenstein 100 

et al., 2003). Remote sensing of beta diversity is less limited by spatial resolution, as pixels 101 

classified as spectral species can represent local community composition instead of individual 102 

species (Rocchini et al., 2018). Thus, the degree of similarity in biodiversity between two areas 103 

of interest can be estimated by the similarity in spectral species composition. BiodivMapR uses 104 

the spectral species concept (Rocchini et al., 2010) to calculate dissimilarity in spectral species 105 

among larger mapping windows containing multiple pixels. In this light, biodivMapR might be 106 

effectively applied for detection of plant beta diversity using ranges of image spatial resolution 107 



 

 

recommended for the SBG mission and currently available from existing hyperspectral satellite 108 

missions (e.g., PRISMA, DESIS).  109 

The capacity to remotely sense beta diversity at spatial resolutions larger than individual 110 

plants depends on the plant community concept, specifically that plant species belonging to 111 

particular assemblages are adapted to certain environmental conditions (Lortie et al., 2004) and 112 

collectively have definable reflectance characteristics (Cavender-Bares et al., 2020). Ability to 113 

map beta diversity also depends on the pixel resolution of available imagery relative to the 114 

spatial scale of plant community turnover (Gamon et al. 2020). Landscapes within the study 115 

region, the southeastern U.S. Coastal Plain, provide a useful scenario for assessing methods of 116 

detecting beta diversity, given their complex spatial arrangements at small spatial scales (Carr et 117 

al. 2010), geologically active karst topography that influences community distribution (Lane and 118 

D'Amico, 2010), strong responses of vegetation to slight elevation changes (Drewa et al. 2002), 119 

and varying coverage and effects of frequent prescribed fire (Robertson et al. 2019), which 120 

contribute to the region being recognized as a global biodiversity hotspot (Noss et al., 2015). 121 

Thus, the ability to differentiate communities for mapping beta diversity will depend on both 122 

image pixel size and dimensions of the mapping windows composed of pixels classified as 123 

spectral species, among which dissimilarity of spectral species is calculated for mapping beta 124 

diversity (Asner and de Boissieu, 2020). Larger mapping windows contain more pixels and 125 

spectral species and thus have more refined capacity to estimate dissimilarity, but at the cost of 126 

spatial resolution of the beta diversity map. Effective mapping of beta diversity may also be 127 

influenced by the specified number of spectral species into which pixels are classified (Féret and 128 

de Boissieu, 2020).  129 

In this study, we use biodivMapR to compare estimates of beta diversity among levels of 130 



 

 

image resolution ranging in pixel size from 1 m to 90 m. Our approach was to use 1 m resolution 131 

imagery from airborne sensors at three National Ecological Observatory Network (NEON; 132 

neonscience.org) sites representing different natural landscapes representative North American 133 

Coastal Plain pine communities. We aggregated pixels to simulate coarser resolution imagery 134 

and ran biodivMapR algorithms to assess its capacity to detect beta diversity using different pixel 135 

resolutions using nearly constant sized mapping windows. We also explored the effects of 136 

mapping window size and the number of assigned spectral species on the ability to distinguish 137 

natural communities. We used field-collected data to confirm the similarity within and 138 

dissimilarity among plant communities with regard to actual plant species composition and to 139 

provide points of reference to estimates by biodivMapR. We use the results to discuss the 140 

implications of spatial resolution requirements of imagery for measuring biodiversity on natural 141 

landscapes using space-based hyperspectral imagery and indicate potential applications and 142 

limitations of such imagery and to provide guidance for development of the anticipated SBG 143 

mission.   144 

2 Materials and Methods 145 

2.1 Study Sites 146 

We used remote sensing and field-collected plant presence and percent cover data 147 

provided by NEON (2022) from sites at three properties representing different longleaf pine 148 

(Pinus palustris) savanna ecosystems within the southeastern U.S. Coastal Plain. The properties 149 

were the Disney Wilderness Preserve (DSNY), Jones Ecological Research Center (JERC), and 150 

Ordway-Swisher Biological Station (OSBS) (Fig. 1). The sites were selected for the availability 151 

of NEON airborne hyperspectral imagery with 1 m resolution acquired annually within a 10 km 152 

x 10 km area centered on the property and the availability of surface vegetation data. Also, the 153 
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(Taxodium ascendens) with evergreen shrubs and shade-tolerant herbs in the understory. 177 

Evergreen wetland forests (syn. baygall; FNAI, 2010) occur in similar though often shallower 178 

physical locations but are dominated by evergreen broadleaf trees, primarily titi (Cyrilla 179 

racemiflora) and sweetbay (Magnolia virginiana). Grass marshes (syn. depression marsh, basin 180 

marsh; FNAI, 2010) are herbaceous wetlands associated with shallow karst depressions with 181 

fluctuating water levels. Scrub is composed of shrub-like trees with sparse herbaceous surface 182 

vegetation in slightly raised areas of nearly pure sand, and they typically burn with crown fires 183 

less frequently than flatwoods (FNAI, 2010). Native pastures are former flatwoods communities 184 

where trees and most woody vegetation were removed but otherwise have similar herbaceous 185 

vegetation and are frequently burned.  186 

2.1.2 Jones Ecological Research Center (JERC) 187 

JERC (31.2205°N, -84.4793°W) is a 12,000 ha private research center. Elevation ranges 188 

from approximately 30-50 m asl. Low to high average monthly temperatures are 10.2°C in 189 

January and 28.4°C in July. The dominant soils are in the Ultisol order (Soil Survey Staff, 2022), 190 

consisting mostly of sand with a clayey subhorizon. Native pine savannas dominating JERC are 191 

specifically upland pine communities (FNAI, 2010). This community type has an open canopy of 192 

mostly longleaf pine and fire-tolerant broadleaf trees (mostly genera Quercus and Carya), 193 

surface vegetation of resprouting broadleaf tree and shrub species, and a diverse herbaceous 194 

community dominated by wiregrass in most areas (Carr et al., 2010). It is dependent on frequent 195 

fire and is typically burned at two-year intervals at JERC. Bottomland forest communities occur 196 

in occasionally flooded areas and have a closed-canopy dominated by mesic broadleaf deciduous 197 

trees with shrubs and sparse shade-tolerant herbaceous plants in the understory (FNAI, 2010). 198 

Old-field pine communities are former row crop sites that have been planted with longleaf pine 199 



 

 

and managed with frequent fire similar to the upland pine savannas, such that it contains a subset 200 

of native savanna plant species (Kirkman et al., 2004; Dixon et al., 2021). Cultivated crop sites 201 

are annually tilled and planted mostly with cotton, peanuts, corn, or soybeans and harbor a 202 

variety of agricultural weeds.        203 

2.1.3 Ordway-Swisher Biological Station (OSBS)  204 

OSBS (29.6903°N, -82.0176°W) is a 3,800 ha property owned and managed by the 205 

University of Florida. Elevation of the property ranges from 30-55 m asl, and low and high 206 

average monthly temperatures are 12.6°C in January and 27.6°C in August. The dominant soils 207 

are in the Entisol order (Soil Survey Staff, 2022) consisting mostly of sand. Its native pine 208 

community is specifically sandhill pine (FNAI, 2010) burned at three-year intervals. This 209 

community has an open canopy of mostly longleaf pine and fire-tolerant broadleaf trees and 210 

relatively xeric surface vegetation, though also dominated by wiregrass like the other sites. Open 211 

wetland forests (syn. basin swamps; FNAI, 2010), with an open canopy of mostly pond cypress 212 

and black gum (Nyssa biflora), occur in locations with long hydroperiods and have understory 213 

vegetation consisting of wetland shrubs, ferns, and floating and emergent wetland herbaceous 214 

vegetation. Upland mixed forests (syn. upland hardwood forest; FNAI, 2010) occupy areas that 215 

were previously sandhill pine communities but fire-excluded for decades, resulting in a closed 216 

canopy of oaks and residual pines and sparse understory vegetation. Disturbed areas are sandhill 217 

pine communities with a history of intensive soil disturbance and are characterized by few pine 218 

and broadleaf trees and sparse ruderal forbs and grasses. Bottomland forests and grass marshes at 219 

OSBS are similar to those described for DSNY and JERC, respectively. 220 

2.2 Field Data 221 

We used field data to confirm that locations within areas classified as a particular  222 



 

 

community type have similar plant species composition relative to other community types. We 223 

the plant presence and percent cover datasets provided for each site through the NEON portal 224 

(NEON, 2022), as well as plots that we established and censused on each of the properties, with 225 

the goal of providing multiple plots per common community type. Plots used in the study were 226 

distributed such that each represented an individual natural community feature or management 227 

unit. Both the NEON plots and our additional plots were 20 m x 20 m (400 m2) and were 228 

censused for presence of all vascular plant species during the growing season. The NEON plots 229 

had all been censused within the previous three years. We censused additional plots at DSNY in 230 

late March, OSBS in April, and JERC in May of 2022. We also field-validated our interpretation 231 

of community types at virtual plot locations chosen from aerial photography for selecting points 232 

representing those communities for the biodivMapR analyses, described below. For the dominant 233 

pine community types, total numbers of plots ranged from 20-27 among the three study sites, and 234 

for the other community types numbers of plots ranged from 2-12 (average = 6) (Table 1). 235 

Table 1. Plant community types, numbers of field-measured plots (NEON plant presence and 236 

percent cover plots and our plots combined), and numbers of virtual plot locations remotely 237 

chosen for analysis for the three study sites. DSNY = Disney Wilderness Preserve, JERC = Jones 238 

Ecological Research Center, OSBS = Ordway-Swisher Biological Station.   239 

Site Community Field plots Virtual plots 

DSNY Cypress forest 2 5 

DSNY Evergreen wetland forest 2 6 

DSNY Flatwoods pine savanna 25 8 

DSNY Grass marsh 4 5 

DSNY Pasture 12 4 

DSNY Scrub 4 6 

JERC Bottomland forest 3 5 

JERC Cultivated crops 5 5 



 

 

JERC Old-field pine savanna 3 4 

JERC Upland pine savanna 26 6 

OSBS Bottomland forest 7 4 

OSBS Disturbed 5 6 

OSBS Grass marsh 10 6 

OSBS Open wetland forest 5 5 

OSBS Upland mixed forest 7 6 

OSBS Sandhill pine savanna 13 11 

 240 

For each of the three sites, we ran nonmetric multidimensional scaling (NMS) ordinations 241 

using PC-ORD v. 7 (McCune and Mefford, 2018) to confirm that communities are relatively 242 

definable in terms of plant species composition. We also ran multi-response permutation 243 

procedures (MRPP) based on the Bray-Curtis dissimilarity matrices, which averages the within-244 

community dissimilarity and total dissimilarity to calculate within-community agreement (A) 245 

(McCune and Grace, 2002) for comparison to biodivMapR results, described below.   246 

2.3 Airborne Hyperspectral Reflectance Data   247 

Surface reflectance data were acquired by the NEON Imaging Spectrometer (NIS) on the 248 

NEON Airborne Observation Platform (AOP) and accessed through the NEON Data Portal 249 

(data.neonscience.org). The NIS design is based on Next Generation Airborne Visible/Infrared 250 

Imaging Spectrometers (AVIRISng), which was developed under the Next-Generation Imaging 251 

Spectrometer (NGIS) program at NASA's Jet Propulsion Laboratory (JPL). The raw data include 252 

426 bands collected at 1- m spatial resolution in the visible-to-shortwave infrared (VSWIR) 253 

range between 0.38 and 2.5 microns and a spectral sampling of 5 nm (Karpowicz and Kampe, 254 

2015). Images were collected by NEON as flightlines approximately 500 m in width which were 255 

mosaiced for the 10 km x 10 km area and subsequently separated into 1 km2 tiles available for 256 



 

 

download (Karpowicz and Kampe, 2015). We downloaded and mosaiced tiles to cover our area 257 

of interest, with numbers of tiles ranging from 25 to 50 tiles among the three study sites.  258 

Reflectance data used in this study were collected in September, 2021 for all three sites. 259 

Although time since the previous prescribed fire no doubt had some influence on the reflectance 260 

properties of fire-dependent communities, the time between burning in the spring and imaging in 261 

September is sufficient for pine savannas to have considerable recovery by resprouting perennial 262 

vegetation characteristic of these communities (Picotte and Robertson, 2011).  263 

NEON reflectance data were initially converted from at-sensor radiances to surface 264 

reflectance using the ATCOR atmospheric correction (Karpowicz and Kampe, 2015) and then 265 

provided to the community as georectified images in ENVI format using the neonhs R package 266 

(https://www.earthdatascience.org/neonhs/). No additional corrections were performed. For each 267 

site, we mosaiced multiple 1 km x 1 km flightline mosaics provided by NEON to create a 268 

seamless product that included most of the NEON vegetation plots. Finally, we used a python 269 

script from the Space-based Imaging Spectroscopy and Thermal pathfindER (SISTER) resample 270 

repository (https://github.com/EnSpec/sister-resample) to aggregate the NEON mosaics from 271 

their native resolution of 1 m to 5 m, 15 m, 30 m, 40 m, 60 m, and 90 m. These final mosaics, 272 

including the original 1 m resolution mosaic, served as the inputs into the biodivMapR package 273 

(https://jbferet.github.io/biodivMapR/index.html). 274 

R scripts provided through the GitHub page were used to guide the workflow. The first 275 

step masked irrelevant pixels (e.g., non-vegetated, cloudy, shadow) based on a spectral 276 

thresholding of NDVI and the Blue/NIR domains. We used the default thresholds for Blue and 277 

NIR but lowered the Normalized Difference Vegetation Index (NDVI) threshold from the default 278 

of 0.5 to 0.1 to include lightly vegetated areas characteristic of some frequently burned areas. A 279 



 

 

series of processing steps were then applied to the remaining data, including band removal, 280 

continuum removal, and dimensionality reduction using principal component analysis (PCA). 281 

The wavelengths removed from the analysis corresponded to atmospheric water absorption or 282 

otherwise had a high signal to noise ratio (Sousa et al., 2022), specifically 0-400 nm, 895-1005 283 

nm, 1320-1480 nm, 1780-2040 nm, and 2400-3000 nm.  284 

After the data were normalized and transformed, we performed a selection of principal 285 

components that were most relevant to the mapping of biodiversity in our study areas. While 286 

some components highlighted differences in vegetation properties, others showed information 287 

related to sensor characteristics or very high noise level. Therefore, it was important to visualize 288 

each component and follow the published recommendations for component selection (Féret and 289 

de Boissieu, 2020). The next step partitioned the selected components into a predefined number 290 

of clusters (spectral species) by using k-means clustering and assigned a cluster ID to each pixel. 291 

We used either 50 spectral species (default) and then 20 spectral species for comparison, 292 

described below. BiodivMapR then calculates the Bray-Curtis dissimilarity index for each pair of 293 

mapping windows based on abundance of each spectral species, and then uses an ordination 294 

technique to assign three numbers to each pixel as the basis for visualizing maps of beta 295 

diversity. BiodivMapR can also provide a BC matrix including only dissimilarities among points 296 

of interest, which we used for analyses described below.   297 

In our first analysis, the goal was to test for effect of pixel size on the ability of 298 

biodivMapR to distinguish natural community types within each site in terms of dissimilarity in 299 

spectral species in pairwise comparisons among locations within and among communities. For 300 

this analysis, we used similarly size mapping windows (270-300 m) for comparison among pixel 301 

resolutions, such that the number of pixels per mapping window varied by several orders of 302 



 

 

magnitude (Table 2). We used reference real color imagery from NEON used to create virtual 303 

plots by placing points within homogeneous areas of a given community type large enough to 304 

contain one mapping window. We took this approach instead of using the locations of the 20 m x 305 

20 m plots with field data because of the spatial mismatch between the plots and the much larger 306 

mapping windows, and so we could choose a more balanced representation of community types 307 

than provided by the field plots (Table 2). However, we confirmed in the field that the virtual 308 

plot locations accurately represented the remotely interpreted community type. The function 309 

‘biodiversity from plots’ was then used to extract the Bray-Curtis dissimilarity matrices 310 

comparing spectral species composition among mapping windows centered on the virtual plot 311 

point locations.  312 

Table 2. Pixel resolution, square mapping window width, and number of pixels per mapping 313 

window used to calculate diversity metrics from NEON imagery.  314 

Pixel 

size (m) 

Window 

size (m) 

Pixels per 

window 

1 270 72,900 

5 270 2,916 

15 270 324 

30 270 81 

40 280 49 

60 300 25 

90 270 9 

 315 

Using the Bray-Curtis dissimilarity matrices, we ran MRPP analyses using the vegan 316 

package and the function mrpp in R (Oksanen et al., 2022) to provide the average within-317 

community dissimilarity and total dissimilarity for each study site and pixel resolution (Table 2) 318 

and using 50 versus 20 spectral species. From these values we calculated within community 319 



 

 

agreement (A) as A = 1 - (average within variance / average total variance) (McCune and Grace, 320 

2002). We also calculated the percentage of total dissimilarities equal to 1 (no spectral species in 321 

common) to assess the method's ability to identify relative dissimilarity as opposed to absolute 322 

dissimilarity. We charted trends in each of these metrics with increasing pixel size to visualize 323 

the effects of image resolution on capacity to discriminate natural communities as reflected in the 324 

A statistic.  325 

In a second analysis, we assessed the effects of changing the sizes of the both pixel size 326 

and mapping windows on ability to discriminate among community types. For this analysis, the 327 

sizes of mapping windows were adjusted according to pixel size to maintain numbers of pixels 328 

per window within the range of 49-81 (Table 3), which is within the 50-400 range recommended 329 

by Féret and de Boissieu (2020). In this analysis we used 20 spectral species, as the first analysis  330 

Table 3. Pixel resolution, square mapping window width, and number of pixels per mapping 331 

window used to calculate diversity metrics from NEON imagery.  332 

Pixel 

size (m) 

Window 

size (m) 

Pixels per 

window 

1 8 64 

5 40 64 

15 120 64 

30 270 81 

40 280 49 

revealed that this number provides higher resolution among community types. We used only 333 

pixel sizes 1 m, 5 m, 15 m, 30 m, and 40 m, as larger pixel resolutions would require mapping 334 

windows with 480 m or greater dimensions, which is larger than the area of any natural 335 

community feature in the study. Similar to the first analysis, we ran MRPP analyses to derive 336 

within community dissimilarity, total dissimilarity, the A statistic, and percentage of 337 



 

 

dissimilarities equal to one, and 338 

values were charted to visualize 339 

trends among pixel sizes.   340 

3. Results 341 

NMS analyses of field 342 

collected data generally confirmed 343 

that community types were well 344 

defined by their plant species 345 

composition, represented by 346 

presence or absence of species, as 347 

visualized using NMS ordination 348 

(Figure 2).  349 

The analysis using varying 350 

pixel resolutions (1-90 m) with 351 

similar sized mapping windows 352 

(270-300 m) showed a fairly strong 353 

decrease in capacity to identify beta 354 

diversity with increasing pixel size 355 

(Figure 3). The average dissimilarity 356 

among plots within community 357 

types increased with coarser pixel 358 

resolution (Figure 3a). Average total 359 

dissimilarity among all plots also 360 



 

 

increased, but more gradually (Figure 3b). 361 

These patterns resulted in a general 362 

decrease in within community agreement (A 363 

= 1 - (within dissimilarity / total 364 

dissimilarity)) with coarser pixel resolution 365 

(Figure 3c). The percentage of pairwise 366 

comparisons with dissimilarity = 1 (no 367 

spectral species in common) increased with 368 

coarser pixel resolution (Figure 3d). These 369 

patterns can also be visualized through 370 

results of NMS analyses reflecting the 371 

Bray-Curtis dissimilarity matrices 372 

comparing spectral species among 373 

communities (Figure 4a-i). Plant 374 

communities generally can be distinguished 375 

in the ordination plots using 1 m pixels 376 

(Figure 4a-c) and 30 m pixels (Figure 4d-f), 377 

but the capacity to distinguish community 378 

types has largely broken down at  90 m 379 

(Figure 4g-i).   380 

The trends were similar between 381 

analyses using 50 spectral species versus 20 382 

spectral species. However, the 20 383 



 

 

384 



 

 

spectral species invariably resulted in 385 

lower dissimilarity among plots, higher 386 

within community agreement, and fewer 387 

pairwise comparisons with dissimilarity = 388 

1, and thus overall higher resolution in 389 

distinguishing plots among community 390 

types (Figure 3a-d).   391 

 Field measured values for 392 

dissimilarity metrics were generally most 393 

similar to remote sensing estimates that 394 

used the finest pixel resolution (Figure 3a-395 

d). Field-measured plots had very few 396 

pairwise comparisons with zero plant 397 

species in common, in sharp contrast to 398 

virtual plot dissimilarities based on 399 

spectral species (Figure 3d).          400 

For our second analysis, which 401 

compared varying pixel resolutions and 402 

mapping window sizes with similar 403 

numbers of pixels per window (49-81), 404 

there were no strong trends evident 405 

(Figure 5a-d). The values were generally 406 

similar to those for intermediate pixel 407 



 

 

408 
resolutions (30-40 m) using the 270-300 m mapping windows (Figure 3a-d). 409 



 

 

Taken together, these results show that the number of pixels per window has the strongest 410 

influence on ability to discern community types using biodivMapR. However, beta diversity 411 

maps generated from varying window sizes with similar numbers of pixels per window show that 412 

increasing window size to incorporate more pixels decreases the spatial resolution of beta 413 

diversity maps, which at some point decreases the capacity to spatially distinguish community 414 

types (Figure 6a-d).  415 

4 Discussion 416 

4.1 Assessment of biodivMapR outputs 417 

Results of our analysis indicate that spatial resolution of imagery has a strong effect on 418 

the capacity to identify beta diversity using the algorithm biodivMapR. The key variable 419 

influencing the ability to detect relative levels of dissimilarity among locations is the number of 420 

pixels per mapping window, where more pixels provide greater resolution. Increasingly coarse 421 

pixel resolution can be compensated by increasing the mapping window size, though at the cost 422 

of decreasing spatial resolution of beta diversity maps built from the windows.  423 

The decreasing capacity to identify beta diversity with fewer pixels per mapping unit 424 

appears to result primarily from overestimation of dissimilarity among mapping windows within 425 

community types, such that there is a loss of distinction between the within-community 426 

dissimilarity and total dissimilarity. This overestimation results from pairwise comparisons 427 

between windows showing increasingly few or zero spectral species in common as pixels per 428 

window decreases, even if comparisons are within the same community type. Where there were 429 

fewer than 50 pixels per mapping window (60-90 m pixels within 270-300 m mapping 430 

windows), more than half of the total dissimilarities were equal to one (Figure 3d). Such absolute 431 

dissimilarities provide limited information, even if between different community types, as they 432 



 

 

suggest that communities within the same landscape have no more species in common than 433 

communities on different continents. In fact, however, all pairwise comparisons among 434 

community types using field data at JERC and OSBS showed at least some generalist species in 435 

common, and only about 6% of comparisons at DSNY had no species in common. We suggest 436 

that using the appropriately sized mapping window relative to image pixel size, particularly with 437 

the goal of minimizing the number of dissimilarities equal to one, is essential for producing the 438 

most meaningful beta diversity maps. The recommendation by Féret and de Boissieu (2020) that 439 

there be a minimum of 50 pixels per mapping window seems appropriate, although, as they point 440 

out, assigning an appropriate number of spectral species is also important.    441 

The strong effect of number of spectral species on detection of beta diversity also relates 442 

to overestimation of dissimilarity in pairwise comparisons among mapping windows. In this 443 

study, reducing the number of spectral species from 50 to 20 considerably improved the capacity 444 

to distinguish community types. This effect may seem counterintuitive, but reducing the number 445 

resulted in there being more spectral species in common among windows within community 446 

types, which more strongly contrasted average dissimilarity among all community types. The 447 

advantage of having fewer spectral species may be a special case where pixels represent local 448 

plant community composition rather than individual plant species. Where two pixels are assigned 449 

different spectral species when in fact they have some species in common, their dissimilarity is 450 

overestimated as 1 (Rocchini et al., 2022). For the studied community types, it is easy to imagine 451 

that variations in the local abundance of potentially high-cover species, such as wiregrass, 452 

longleaf pine, and saw palmetto, might cause different spectral species classifications despite the 453 

overall plant community composition is quite similar (Ostertag and Robertson, 2007). Of course 454 

at some point reduction of spectral species will cause pixels classifications to be overly 455 



 

 

homogenized and will not effectively represent degree of dissimilarity among communities. 456 

Currently the appropriate number of spectral species must be determined by trial and error with 457 

validation data, but eventually better guidelines might be determined based on the spatial 458 

resolution of imagery relative to the spatial scale of plant community complexity.  459 

4.2 Implications for the SBG mission 460 

Our results indicate the importance of maximizing the spatial resolution of imagery for 461 

the most effective mapping and monitoring of biodiversity. Using biodivMapR or similar 462 

algorithms, the spatial resolution of imagery will determine the minimum size of mapping 463 

windows with enough pixels to produce meaningful maps, which in turn limits the spatial 464 

resolution of those maps. The implications of mapping window size depend on the spatial 465 

distribution of natural community types representing plant beta diversity on a given landscape. In 466 

the southeastern U.S. Coastal Plain, pixel resolutions ≥ 30 m, such as those recommended for the 467 

SBG mission, corresponding to mapping windows > 270 m in order to contain > 50 pixels, 468 

would be insufficient for identifying the contribution to beta diversity by certain community 469 

types, such as isolated ephemeral ponds and narrow riparian features. However, coarser 470 

resolution data might still identify beta diversity among larger ecological features, such areas 471 

dominated by native pine communities, scrub, cypress forests, and native pastures (Figure 6).  472 

Our study provides some context for assessing tradeoffs in investment among image 473 

spatial resolution, spectral resolution, signal-to-noise ratio, and flyover return interval. Although 474 

our focus was on spatial resolution, the ability for biodivMapR to distinguish natural community 475 

types as well as it did even with much coarser spatial resolution than those generally 476 

recommended for remote sensing of biodiversity (Gamon et al., 2020) presumably benefited 477 

from the immense spectral resolution afforded by hyperspectral imagery (Thorpe et al., 2013). 478 



 

 

Flights for the NEON project were chosen on clear days, whereas utility of satellite remote 479 

sensing data is limited by cloudiness, underscoring the importance of sufficiently frequent 480 

returns to collect cloud-free data in regions where clear days are limited. Data acquisition at a 481 

frequency sufficient to account for seasonal effects and plant phenological changes and to 482 

monitor changes in land use and ecological status over time is also critical. For example, 483 

analyses in this study were simplified by having full coverages of the areas of interest within a 484 

few days and at the height of the growing season. However, within these limits, our analysis 485 

underscores the need to maximize the spatial resolution of imagery for effective mapping of 486 

plant beta diversity.         487 

 488 

5 Conclusions 489 

Using the algorithm biodivMapR with hyperspectral remote sensing imagery, we show 490 

that the capacity to detect plant beta diversity as represented by plant community types decreases 491 

with number of pixels per mapping window. It follows that pixel resolution places a lower limit 492 

on size of mapping windows that are effective for distinguishing community types, which in turn 493 

limits the spatial resolution beta diversity maps composed of mapping windows. When image 494 

pixel size is much larger than individual plants, the effect of having too few pixels per window, 495 

as well as assignment of too many spectral species per image, has the effect of overestimating 496 

dissimilarity among locations that in fact may have many plant species in common. This 497 

overestimation undermines the capacity to contrast mapping window dissimilarity within versus 498 

among community types and thus reduces the information content of beta diversity maps. These 499 

results demonstrate the advantage of maximizing spatial resolution of hyperspectral imaging 500 

instruments on the anticipated NASA Surface Biology and Geology satellite mission and similar 501 



 

 

remote sensing projects.   502 
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https://www.wildblueberrymedia.net/store/pc-ord-7-single-user-license-regular-new-user.  517 
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provided in the manuscript by Asner and de Boissieu (2020). Data command were those 522 

described in the manuscript text.  523 
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Data sources are described as follows: 525 

NEON hyperspectral remote sensing data as described in the manuscript was accessed by 526 

logging into the NEON data portal (https://data.neonscience.org/home), where the user can 527 

browse to or search for the section called Spectrometer orthorectified surface directional 528 

reflectance - mosaic, where available data are listed by date for each NEON site.  529 

NEON plant presence and percent cover as described in the manuscript was accessed by 530 

logging into the NEON data portal (https://data.neonscience.org/home), where the user can 531 

browse to or search for the section called Plant presence and percent cover, where data for each 532 

site are displayed for download.   533 

The Bray-Curtis dissimilarity matrices for all analyses presented, and the shapefiles of field 534 

plot and virtual plot locations to which the matrices pertain, have been submitted for open access 535 

storage in Pangaea (pangaea.de). The data submission is pending review.  536 
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