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Abstract

Sediment transport load monitoring is important in civil and environmental engineering fields. Monitoring the total load is

difficult, especially because of the cost of the bed load transport measurement. This study proposes estimation models for

the suspended load to total load ratio (Fsus) using dimensionless hydro-morphological variables. Two prominent variable

combinations were identified using the recursive feature elimination procedure of support vector regression (SVR): (1) W/h,

d*, Reh, Frd, and Rew and (2) Reh, Fr, and Frd. The explicit interactions between Fsus and the two combinations were

revealed by two modern symbolic regression methods: multi-gene genetic programming and Operon. The five-variable SVR

model showed the best performance (R2=0.7722). The target dataset was clustered by applying a self-organizing map and

Gaussian mixture model. Through these steps, Reh and Frd are determined as the two most influential variables. Subsequently,

the one-at-a-time sensitivity of the input variables of the empirical models was investigated. By referring to the clustering and

sensitivity analyses, this study provides physical insights into Fsus controlling relationships. For example, Fsus is proportional

to Reh and is inversely related to Frd. The empirical models developed in this study are applicable in practice and easy to

implement in other real-time surrogate suspended-sediment monitoring methods, because they only require basic measurable

hydro-morphological variables, such as velocity, depth, width, and mean bed material grain size.
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Key Points:6

• Empirical models were developed to estimate the ratio of suspended sediment load7

to total load using three different machine-learning models8

• This study provides physical interpretations of the explicit equations of MGGP9
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• The flow Reynolds and densimetric Froude numbers are the two dominant param-11

eters and SVR5 and Operon3 are practically suitable models12
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Abstract13

[Sediment transport load monitoring is important in civil and environmental engineer-14

ing fields. Monitoring the total load is difficult, especially because of the cost of the bed15

load transport measurement. This study proposes estimation models for the suspended16

load to total load ratio (Fsus) using dimensionless hydro-morphological variables. Two17

prominent variable combinations were identified using the recursive feature elimination18

procedure of support vector regression (SVR): (1) W/h, d∗, Reh, Frd, and Rew and (2)19

Reh, Fr, and Frd. The explicit interactions between Fsus and the two combinations were20

revealed by two modern symbolic regression methods: multi-gene genetic programming21

and Operon. The five-variable SVR model showed the best performance (R2 = 0.7722).22

The target dataset was clustered by applying a self-organizing map and Gaussian mix-23

ture model. Through these steps, Reh and Frd are determined as the two most influ-24

ential variables. Subsequently, the one-at-a-time sensitivity of the input variables of the25

empirical models was investigated. By referring to the clustering and sensitivity anal-26

yses, this study provides physical insights into Fsus controlling relationships. For exam-27

ple, Fsus is proportional to Reh and is inversely related to Frd. The empirical models28

developed in this study are applicable in practice and easy to implement in other real-29

time surrogate suspended-sediment monitoring methods, because they only require ba-30

sic measurable hydro-morphological variables, such as velocity, depth, width, and mean31

bed material grain size.]32

1 Introduction33

The interactions between sediment transport, flow, and geological characteristics34

are strongly correlated with channel variation. The alluvial total sediment loads are not35

only crucial to river systems but are also the main source of coastal sediment (Ouillon,36

2018). Therefore, understanding and monitoring sediment transport are of substantial37

interest to civil and environmental engineers. However, it is challenging to monitor the38

total load.39

The total sediment load Qt is regarded as the sum of the suspended Qs and bed40

Qb loads. The conventional sediment monitoring process consists of field sampling and41

sample analysis in a laboratory, which is labor-intensive. In particular, monitoring bed42

loads is costlier than monitoring suspending loads. Alternative methods to monitor sus-43

pended sediment have been proposed that utilize various equipment, such as optical sen-44

sors (Agrawal & Pottsmith, 2000) and hyperspectral cameras (Kwon, Seo, et al., 2022,45

2022), enabling high spatiotemporal resolution monitoring in the simplified monitoring46

process. Technological advances in the monitoring of bed loads are comparatively slower47

than those achieved for suspended loads, owing to the analogous complexity of bed loads.48

Specifically, suspended loads can be easily calibrated with optical features using turbid-49

ity or reflectances, which are readily measured remotely.50

For these reasons, the total loads are estimated using the large weights of the sus-51

pended loads (Turowski et al., 2010). One popular approach is the modified Einstein pro-52

cedure (MEP) (Colby & Hembree, 1954), which estimates the total load using suspended53

sediment transport information and its computer program implementation called the Bu-54

reau of Reclamation Automated MEP (Holmquist-johnson, 2006) is available. However,55

MEP has problems, such as arbitrarily defined terms, physically impossible results (Qs >56

Qt), and Rouse number (Ro) tuning. Thus, because of some improbable results and es-57

timation difficulty in using MEP, it has been revised to the series expansion MEP (SE-58

MEP) for depth-integrating samplers (Shah-Fairbank et al., 2011) and point-integrating59

samplers (Shah-Fairbank & Julien, 2015), respectively. Although analytically driven MEP-60

based methods are theoretically sound, their application range is limited to sand-bed streams61

(Shah-Fairbank & Julien, 2015; C.-Y. Yang & Julien, 2019).62

–2–
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Another solution for the total load estimation is to invert the relationship defined63

by the fraction of suspended load to total load Fsus = Qs/Qt. C.-Y. Yang and Julien64

(2019) investigated a large size of suspended sediment data in South Korean rivers us-65

ing Fsus driven from SEMEP. Despite their plausible logic, the analyzed total loads were66

not from realistic bed load samples but from the SEMEP estimation values, and hence,67

limited. Turowski et al. (2010) furnished a profound investigation of Fsus using the mea-68

sured data from various natural rivers. The new equation for short-term sediment in an-69

other study (Turowski et al., 2010) has the form Qb = AQB
s , where A and B are the70

regression coefficients obtained without hydraulics-related factors . Accordingly, there71

is a need to design a field data-driven empirical model for Fsus that contains physical72

information.73

Fsus can be readily estimated in a monitoring system using simple relationships,74

but a few factors should be considered. In general, the rating curves are fitted and im-75

plemented in real-time monitoring systems in the form Qt = AQB , where Q is the cross-76

sectional flow discharge. In general, simple rating curves are inaccurate in unsteady flows,77

because a hysteresis loop is observed for the sediment load, similar to discharge-depth78

hydrographs (Gellis, 2013). However, the reason for using rating curves is that such hy-79

draulic variables are easier to measure than sediment features. For example, the suspended80

sediment concentration and sample grain size, as required by MEP, are not easy to ob-81

tain in conventional discharge monitoring stations. Recently, the concentration is being82

alternatively measured at real-time discharge monitoring stations equipped with acous-83

tic Doppler current profilers (ADCPs) (Noh et al., 2022). However, measuring the grain84

size distribution of the suspended sediment still depends on water sampling.85

Under these circumstances, our goal is to suggest cost-effective empirical models86

to estimate Fsus and analyze the models. Prior to model derivation, data processing, in-87

cluding dimensional analysis, was conducted. Using recursive feature elimination for sup-88

port vector regression (RFE-SVR), influential dimensionless variables for Fsus were iden-89

tified. According to the SVR result, the two symbolic regression methods, Operon and90

multi-gene genetic programming, were utilized to deduce the relationships between the91

dimensionless variables in explicit forms. Clustering and sensitivity analyses were per-92

formed to unveil the underlying physics of the resultant equations and relevant datasets.93

This study was conducted under the following assumptions or restraints: (1) non-cohesive94

sediments and (2) exclusion of grain size of the suspended sediment.95

2 Dimensional Analysis96

First, to obtain reasonable dimensionless numbers for total sediment transport es-97

timations, dimensionless numbers were deduced based on Buckingham’s Pi theorem. The98

dimensionless variables examined in a previous study (Tayfur et al., 2013) were addition-99

ally referred to and rearranged to avoid duplications. Table 1 compiles the dimension-100

less variables presented in this study, where g is the gravitational acceleration; ρs and101

ρw are the densities of sediment and water, respectively; γs and γw are the specific weights102

of sediment and water, respectively; W is the channel width; h is the channel depth; U103

is the flow velocity; U∗ is the shear velocity; S0 is the channel slope; ws is the falling ve-104

locity of sediment particles; d84, d50, and d16 are the sediment particle sizes of the 84%,105

50%, and 16% of the material by weight, respectively; Rh is the hydraulic radius; ν is106

the kinematic viscosity of water; τ is the shear stress; β is the ratio of the turbulent mix-107

ing coefficient of sediment to the momentum exchange coefficient (assumed to be 1); κ108

is the von Karman coefficient; and Qs and Qb are the suspended- and bed-load sediment109

discharges.110

The selection of appropriate input variables requires extensive sediment transport111

observations and analyses. Table 2 lists the published empirical equations for estimat-112

ing the total loads and the dimensionless parameters of the equations. In the table, Cw113
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Table 1. Dimensionless variables related to sediment transport

Variables Definitions Variables Definitions

Gs = gρs

gρw
= γs

γw
Specific gravity W

h Channel width depth ratio
U
U∗

≈ U√
gRhS0

≈ U√
ghS0

Friction factor US0
ws

Dimensionless stream power

Gr = 1
2 ( d84

d50
+ d50

d16
) Gradation coefficient σg = ( d84

d16
)1/2 The gradation of the sediment mixture

d∗ = d50[ g(Gs−1)
ν2 ]1/3 Dimensionless particle size Rh

d50
≈ h

d50
Dimensionless hydraulic radius

Red50 = Ud50
ν Particle Reynolds number Reh = Uh

ν Flow Reynolds number
Re∗ = U∗h

ν Shear Reynolds number Red∗ = U∗d50
ν Particle shear Reynolds number

Rew = wsd50
ν Falling particle Reynolds number Fr = U√

gh
Froude number

Frd = U√
g(Gs−1)d50

Particle Froude number Ro = ws

βκU∗
Rouse number

τ∗ = τ
gρw(Gs−1)d50

= U2
∗

g(Gs−1)d50
Shields number Fsus = Qs

Qs+Qb
Suspended-total sediment load fraction

and Cppm denote the total sediment concentration by the sediment weight per total weight114

and parts per million units, respectively.115

In improvemetns of the modified Einstein procedure (Colby & Hembree, 1954; Shah-
Fairbank et al., 2011; Shah-Fairbank & Julien, 2015; C.-Y. Yang & Julien, 2019), U∗/ws

and h/d50 were considered governing factors related to the suspended and total loads.
For example, Shah-Fairbank et al. (2011) demonstrated that U∗/ws and h/d50 are the
major factors determining the ratio of suspended to total sediment discharge and that
U∗/ws is more influential than h/d50.

Fsus(Ro, h, ds) =
0.216 ERo−1

(1−E)Ro−1 {ln( 30h
ds

)J ′
1 + J ′

2}

1 + 0.216 ERo−1

(1−E)Ro−1 {ln( 30h
ds

)J1 + J2}
(1)

In the above equation,

J1 =
∫ 1

E

(1 − z

z
)Rodz (2)

and
J2 =

∫ 1

E

ln z(1 − z

z
)Rodz (3)

where E is the ratio of bed layer thickness to flow depth, which is commonly used in the116

form 2d50/h. For the integration of the measurable area, the corresponding integrals J ′
1117

and J ′
2 can be computed by substituting E with a = zn/h, where zn is the minimum118

height of the suspended sediment sampler nozzle.119

Although a few variables in Table 1 do not appear in Table 2, the following anal-120

yses embrace all possible dimensionless variables on their virtues. For example, W/h sig-121

nificantly influences the suspended to total load ratio (Edwards et al., 1999). W/h is a122

morphologically important factor resulting from stream bank stability, along with sin-123

uosity and S0 (D. L. Rosgen, 1994). Gr is also considered a particle size distribution in-124

dicator because of its apparent contributions (e.g., entrained suspended particle size (Van Rijn,125

1993)).126

3 Data127

The analyses in this study require not only the integrated total sediment loads but128

also the suspended and bed loads with hydraulic variables. The target dataset includes129

data from the United states geological survey (USGS) report on the measurement of sus-130

pended and bed loads in 93 natural rivers (Williams & Rosgen, 1989). The targeted dataset131

is a natural river sediment load monitoring dataset based on field sampling that includes132
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Table 2. Empirical equations for total loads with dimensionless variables

References Formulae Dim.less parameters

Bagnold (1966)
Qt

W = qt = qb + qs = τ0U
Gs−1 (eB + 0.01U

ws
),

where 0.2 < eb < 0.3 C = f( U
ws

)

Engelund and Hansen (1967)

qt√
(Gs−1)d3

50
= 1

C 0.05(t∗)2.5

or
Cw = 0.05( Gs

Gs−1 ) US0√
(Gs−1)gd50

RhS0
d50(Gs−1)

C = f( U
U∗

, Rh

d50
)

Shen and Hung (1972)
log Cppm = [−107, 404.459 + 324, 214.747Sh

−326, 309.589Sh2 + 109, 503.872Sh3]
where, Sh = ( US0.57159

0
w0.31988

s
)0.00750189

C = f( US0
ws

)

Ackers and White (1973)

Cw = cAW 2Gs( d50
Rh

)( U
U∗

)cAW 1( cAW 5
cAW 3

− 1)cAW 4

cAW 5 = U
cAW 1
∗√

(Gs−1)gd50
( U√

32 log(10h/d50) )1−cAW 1

for 1.0 < d∗ ≤ 60.0
cAW 1 = 1.0 − 0.56 log d∗

cAW 2 = 2.86 log d∗ − (log d∗)2 − 3.53
cAW 3 = 0.23√

d∗
+ 0.14

cAW 4 = 9.66
d∗

+ 1.34
for d∗ > 60.0,
cAW 1 = 0, cAW 2 = 0.025, cAW 3 = 0.17,cAW 4 = 1.50

C = f( U
U∗

, Rh

d50
,

U∗√
(Gs−1)gd50

, d∗)

C. T. Yang (1979)

for sand,
Cppm = 5.435 − 0.286 log wsd50

ν − 0.457 log U∗
ws

+(1.799 − 0.409 log wsd50
ν − 0.314 log U∗

ws
) log( US0

ws
− UcS0

ws
)

for 1.2 < U∗d50
ν < 70.0

Uc

ws
= 2.5

log( U∗d50
ν )−0.06

+ 0.66
for 70 ≤ U∗d50

ν ,
Uc

ws
= 2.05

C = f( US0
ws

, U∗
ws

, wsd50
ν , U∗d50

ν , S0)

Karim (1998) qt√
(Gs−1)d3

50
= 0.00139( U√

(Gs−1)d50
)2.97( U∗

ws
)1.47

C = f( U√
(Gs−1)d50

, U∗
ws

)

Molinas and Wu (2001) Cppm = 1430(0.86+
√

Ψ)Ψ1.5

0.016+Ψ
where, Ψ = U3

(Gs−1)ghws(log(h/d50))2

C = f( U
U∗

, U
ws

, h
d50

)

Tayfur et al. (2013)
Cppm = [0.00075( U∗d50

ν )2.5047( 1
d3

∗
)0.2117( Rh

d50
)1.2405

( qt√
(Gs−1)d3

50
)−0.3637( U2

∗
gd50

)0.7975( U√
g(Gs−1)d50

)0.9561]
C = f( U∗d50

ν , d∗, Rh

d50
,

qt√
(Gs−1)d3

50
,

U2
∗

gd50
, U√

g(Gs−1)d50
)

Okcu et al. (2016)

Cppm = 34.45 P 3.239J0.005

L0.066R0.146

where,
P = U√

(Gs−1)gd50

J = exp[(ln S0)3]
L = exp[(ln(h/d50))2]

R = U∗d50
ν

C = f( U√
(Gs−1)d50

, S0, h
d50

, U∗d50
ν )

sample analysis of both suspended and bed loads with hydraulic variable measurements.133

The input variables and calculated dimensionless numbers are summarized in Table 3.134

The kinematic viscosity of water, ν = µ/g, was obtained based on the Vogel equa-
tion (Vogel, 1921), which is calculated as follows:

µ = gν = exp[−3.7188 + 578.919
−137.546 + TK

], (4)

where µ is the dynamic viscosity of water and TK is the temperature in Kelvin. The co-135

efficients from the above equation are obtained from the website of Dortmund Data Bank136

Software and Separation Technology (DDBST GmbH, n.d.).137

The National Institute of Standards and Technology (Maryland, USA) adopts the
model from Wagner and Pruß (2002) for density calculation, but it is known to be ex-
tremely complicated. Thus, all density-related variables were calculated using Equation
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Table 3. Summary of the dataset (Nan rows excluded)

Count Mean Std. Min. Max.

Q (cms) 1,957 2.26×102 5.15×102 7.00×10−3 3.77×103

U (m/s) 1,721 1.05 6.41×10−1 4.70×10−2 3.40
W (m) 1,894 5.70×101 8.95×101 6.40×10−1 5.18×102

H (m) 1,764 1.01 1.18 4.00×10−2 5.80
S0 650 7.39×10−3 2.14×10−2 9.30×10−5 1.88×10−1

u∗ (m/s) 632 1.48×10−1 8.51×10−2 3.02×10−2 6.37×10−1

Temp. (◦C) 1,026 9.92 5.19 5.00×10−1 3.00×101

Cw (mg/l) 1,957 3.31×102 1.39×103 1.00 2.91×104

Qs (kg/s) 1,957 1.81×102 7.68×102 2.50×10−5 1.41×104

Qb (kg/s) 1,928 7.75 2.32×101 3.20×10−7 3.38×102

d16 (mm) 1,487 9.95×10−3 1.39×10−2 1.06×10−4 9.04×10−2

d50 (mm) 1,530 3.77×10−2 4.07×10−2 2.78×10−4 2.16×10−1

d65 (mm) 1,530 5.58×10−2 5.78×10−2 3.26×10−4 2.89×10−1

d84 (mm) 1,530 9.85×10−2 1.02×10−1 4.25×10−4 4.46×10−1

ν (m2/s) 1,957 1.17×10−6 2.00×10−7 8.04×10−7 1.71×10−6

σg 1,487 5.23 4.66 1.46 2.37×101

Gr 1,487 8.09 1.12×101 1.46 5.99×101

Fsus 1,928 7.49×10−1 2.69×10−1 1.82×10−3 1.00
W/h 1,755 4.74×101 5.63×101 3.03 6.32×102

H/d50 1,409 3.59×102 1.10×103 5.10×10−1 1.19×104

d∗ 1,530 8.65×102 9.20×102 5.54 4.35×103

ws 1,530 6.27×10−1 3.86×10−1 3.43×10−2 1.76
US0/ws 389 1.03×10−2 1.36×10−2 9.20×10−5 7.61×10−2

U/u∗ 589 9.58 4.57 2.06×10−1 2.04×101

Reh 1,720 1.35×106 2.21×106 6.16×103 1.60×107

Red50 1,366 2.96×104 3.12×104 1.33×102 2.05×105

Red∗ 431 5.66×103 1.02×104 1.05×101 6.07×104

Re∗ 632 1.95×105 2.46×105 4.65×103 1.29×106

Rew 1,530 3.31×104 5.13×104 6.69 2.70×105

Fr 1,720 3.97×10−1 1.48×10−1 3.00×10−2 1.24
Frd 1,366 2.64 2.90 2.90×10−2 2.39×101

U/ws 1,366 3.05 3.85 3.08×10−2 4.66×101

Ro 431 8.57 4.70 8.98×10−1 2.33×101

Shields 431 2.25×10−1 4.35×10−1 9.74×10−3 4.07

(5) (Civan, 2007), which was improved for both brevity and correctness.

ln(1 − ρw

1065) = 1.2538 − −1.4496 ∗ 103

TC + 175 + −1.2971 ∗ 105

(TC + 175)2 (kg/m3), (5)

where TC is the temperature in Celsius.138

When the falling velocity ws and Rouse number Ro are estimated, the median sus-
pended grain size d50ss is considered the characteristic grain size, particularly in the MEP.
To ensure the applicability of the proposed models, we used d50 instead of d50ss. For ex-
ample, in remote sensing using aerial images for suspended sediment concentration, ob-
taining d50ss for every monitoring event may not be reasonable. In the characteristic size
percentile, the median bed material size d50 is used if the particle size percentile for a
dimensionless variable is not explicitly expressed. Similarly, the falling velocity ws was
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calculated using the following equation:

ws = 8ν

d50
[(1 + 0.0139d3

∗)1/2 − 1] (6)

The shear velocity U∗ was calculated using the water surface slope by approximating U∗ ∼139 √
ghS0.140

Equation 6 indicates that the falling velocity of the suspended particles is influenced141

by temperature because d∗ depends on both the viscosity and density of water. If the142

temperature is greater than approximately 4 ◦C, both the density and viscosity decrease143

as the temperature increases. This results in an increase in ρs/ρw and a decrease in the144

viscous drag, which increases the falling velocity. Figure 1 shows the falling velocity changes145

owing to temperature and grain size variations. The y-axes in Figures 1(a) and (b) rep-
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Figure 1. The temperature and grain size effects on the falling velocity: (a) ws vs T; (b) ws

vs ds; (c) ws(T =25)−ws(T =10)
ws(T =25) vs ds

146

resent the dimensionless number ws∗ = ws/
√

(Gs − 1)gds, which is the ratio of the falling147

velocity computed by Equation 6 to the terminal velocity under buoyancy force. Figure148

1(c) shows the acceleration rate of the falling velocity by changing the temperature from149

10 ◦C to 25 ◦C. It must be noted that the falling velocity of the figure may differ from150

that of a real-world phenomenon because the silt or clay particles are likely to floccu-151

late (Julien, 2010).152

As shown in Figures 1(a) and (b), the effect of increasing falling velocity is insignif-153

icant when the grain size is larger than 4 mm. For larger particles (ds >>4 mm), ws∗154

converges to 0.94. For particles smaller than 4 mm (fine gravel, sand, silt, and clay), the155

viscous drag is discernible, accompanying the temperature effect. The temperature ef-156

fect is apparent in the range 10−3 < ds < 4mm. The gap between the orange and blue157

lines is maximized for sand-sized particles. As shown in Figure 1(c), the actual falling158

velocity of particles larger than fine gravel is insensitive to temperature variations. By159

contrast, ws(T =25)−ws(T =10)
ws(T =25) continues to increase as ds decreases. Although the ratio160

of the gravity force to ws appears to be insensitive to the temperature variation for small161

particles, the viscosity change due to temperature affects the actual falling velocity. For162

extremely fine sand, ds ≈ 10−2 mm, the falling velocity changes by approximately 30%.163

Overall, the analysis implied that the temperature effect should be considered for164

sand, silt, and clay particles. The average value of d50 of the dataset is 3.76 mm, and165

the inflection point is observed in Figure 1. Therefore, the dimensionless variables re-166

lated to ρw and ν, such as ws, are computed using Equations 4 and 5, respectively, con-167

sidering the temperature effect.168
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4 Methodology169

4.1 Tools for Empirical Model Development170

In this study, three regression approaches were compared by developing an empir-171

ical model to estimate Fsus. The following subsections present the three different ma-172

chine learning-based regression approaches, namely, SVR, MGGP, and Operon, used in173

the proposed Fsus estimation model.174

4.1.1 Support Vector Regression (SVR)175

SVR is a branch of a support vector machine (SVM) (Drucker et al., 1996). In the176

classification problem, SVM (or support vector classification) separates data classes from177

the decision boundary by maximizing the margin, which is the distance between two par-178

allel hyperplanes expanded from the decision boundary. In contrast, SVR achieves re-179

gression by placing target data points within the fixed-width margin and constructing180

the flattest regression function possible. Figure 2 illustrates a schematic example of two181

SVR fitting cases to help understand the training rule of SVR.182

Figure 2. Schematic examples of the SVR training rule

In the figure, the tube consisting of the two blue dashed lines is the margin, and the width183

between the blue dashed lines is 2ϵ. In particular, soft margin SVR (C-SVR) is an ad-184

vanced SVR model that allows the upper and lower offsets, ξ and ξ∗, respectively, from185

the margin demarcation. As shown in the figure, SVR attempts to include as many data186

points as possible within the margin, as indicated on the right-hand side. In the case of187

a sufficiently large ϵ that includes all data points, SVR flattens the regression curve, as188

shown in the right sub-figure.189

C-SVR is trained by the optimization process of the following primal problem:190

min
w⃗,b

1
2 ||w⃗||2 + C

∑n
i=1 F (ξi) + CSV R

∑n
i=1 F (ξ∗

i )

subject to (w⃗T x⃗i + b) − yi ≤ ϵ + ξi

yi − (w⃗T x⃗i + b) ≤ ϵ + ξ∗
i

ξi, ξ∗
i ≥ 0

for i = 1, 2, ..., n, (7)
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where CSV R is the regularization cost coefficient; F (ξ) is the arbitrary cost function for191

ξ. SVR solves the Lagrangian dual problem in Equation 7. By setting the cost function192

l-1 F (ξ) = ξ, the Lagrangian dual problem can be set as follows:193

max
α,α∗

− 1
2

∑n
i=1

∑n
j=1(αi − α∗

i )(αj − α∗
j )K(x⃗i, x⃗j)

+
∑n

i=1(αi − α∗
i )yi −

∑n
i=1(αiϵ + α∗

i ϵ∗)
subject to

∑n
i=1(αi − α∗

i ) = 0
0 ≤ αi, α∗

i ≤ CSV R

for i, j = 1, ..., n, (8)
(9)

where α and α∗ are Lagrangian multipliers and K(x, x) is the kernel function. The ker-194

nel function maps the dot product xT
i xj to a higher dimension such that SVR is likely195

to find the appropriate predictive function. When no kernel is applied, it is equal to the196

linear kernel, which has the functional form K(xi, xj) = xT
i xj ]. Another popular ker-197

nel is the radial basis function (RBF) kernel, which is defined as:198

K(xi, xj) = exp[−γ||xi − xj ||2], (10)

where γ is the inverse of the influence radius of the samples.199

Notably, the above Lagrangian dual problem is a quadratic programming with re-200

spect to α and α∗, that is, the convex optimization rule is applicable. Furthermore, this201

problem satisfies the Karush-Kuhn-Tucker conditions, which guarantee that the solution202

to the dual problem coincides with that of the primal problem. Thus, SVR always yields203

a unique optimum solution when the target data and parameter combinations are pro-204

vided. The fact that SVR always converges to a unique optimum solution benefits SVR.205

In contrast, neural networks are prone to converge to local optima because of parame-206

ter setting, learning rate, and noise in the data (Smola & Schölkopf, 2004).207

4.1.2 Recursive Feature Elimination for SVM (RFE-SVR)208

The extraction of the governing feature to express the empirical relationship was
performed by recursive feature elimination for SVR (RFE-SVR). RFE-SVR is a feature-
selection technique for the SVM problem suggested by Guyon et al. (2002). In RFE-SVR,
the importance of each feature is updated according to the ranking criterion. For the lin-
ear SVM, the ranking criterion cp is w2

p, which is the p-th weight vector component cor-
responding to the p-th feature. As a generalization of nonlinear kernel applications, the
ranking criterion of the p-th feature cp can be computed as:

cp = 1
2 |

N∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xj , xj)) −
N∑

i,j=1
(αi − α∗

i )(αj − α∗
j )K(x(−p)

j , x
(−p)
j ))|, (11)

where x
(−p)
j is xj without the p-th feature. The update step eliminates the smallest fea-209

ture importance cp. Subsequently, SVM is trained using the input data of the reduced210

features. The training-elimination sequence continues until the features remain in the211

user-defined feature size.212

In general, cross-validation (CV) is accompanied by RFE-SVR. CV provides in-213

formation about the generalized performance of the model with minimized overfitting214

risk. The so-called K-fold CV method divides the entire dataset into K subsets and re-215

peats the model fitting K times. For the i-th model fitting, the i-th subset is regarded216
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as a test set, and the model is fitted to the remaining K-1 subsets. By repeating the train-217

ing for each subset, the average test-set fitness score is considered the CV score. In RFE-218

SVR incorporated with CV, the algorithm evaluates the CV scores at every feature elim-219

ination step. CV signifies that the model with a certain parameter setting (e.g., input220

variable, hyperparameters of SVM) predicts not only the training set but also other datasets221

as well as the CV score.222

4.1.3 Multi-Gene Genetic Programming (MGGP)223

Genetic programming (GP), introduced by Koza (1992), is a symbolic regression224

technique that exploits the learning rule of the genetic algorithm (GA) in the empiri-225

cal formulation. Unlike SVR, MGGP is a gray-box model because it produces explicit226

estimation equations where the machine finds the final equations (strictly, the regres-227

sion function of SVR can be computed using α and α∗).228

The individuals of the population are the genes in GP, as well as in GA. Every GP229

gene has a tree structure consisting of terminally connected branches. In the tree struc-230

ture, functional operators, such as +, −, ×, ÷,
√

·, comprise a terminal, and the input vari-231

ables are at the branches. Each gene becomes an equation by combining the variables232

according to the adjoint functional terminals, and regression performance measures are233

adopted as an objective function of the GP.234

Because the GA concept is implemented in GP, the two representative GA oper-235

ators, namely, mutation and crossover, are under the user-defined mutation and crossover236

probabilities. These GA operators modify the functional terminals of the population genes237

in every evolution of the selected gene. Mutation reproduces the offspring by changing238

the mathematical operators of the terminals. Two genes are required for the crossover239

operation. The crossover exchanges the terminals of the chosen genes to breed offspring.240

Examples of the two GP operations are illustrated in Figure 3, where the mutation and241

crossover are differentiated using colors.242

Figure 3. Examples of the GP operations
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As a result of repeated evolutions, the population comprises various forms of equations.243

The best-fit equation in the last evolution is selected as the final product.244

Figure 4. Example of MGGP formulation

MGGP is an advanced GP model. MGGP produces equations with multiple genes245

(terms of equations) for each solution (produced equation) to enhance variability with-246

out increasing the depth of the tree. Figure 4 shows an example of the gene expression247

of MGGP [tree depth = 3 and the number of trees = 2]. Additionally, GA operators op-248

erate in the MGGP. In MGGP, mutation and crossover events occur not only at the under-249

gene level but also at the gene-by-gene level. The former and latter operations are called250

high- and low-level operations for differentiation, respectively. For example, the high-251

level crossover exchanges the sub-genes of the two selected gene trees.252

GA operations only formulate the structure of each formula in the population in253

MGGP. The regression coefficients (b0, b1, and b2 in Figure 4) remain unknown. The least254

squares rule determines the regression coefficients. Finally, individuals in the population255

acquire a fully functional structure that can evaluate the target variable.256

However, a simple model is more desirable than a complicated model that consid-257

ers both overfitting and practicability. Thus, Pareto optimal solutions that satisfy both258

fitness and brevity are selected in the final step. In this regard, the MATLAB MGGP259

library genetic programming toolbox for the identification of physical systems (GPTIPS260

), which yields Pareto solutions, as proposed by Searson (2015), is utilized in this study261

for the MGGP model derivation. The other advantage of GPTIPS is that it provides mul-262

tiple independent runs, and thus, the initialization effect decreases (refer to Searson (2015)263

for a more detailed explanation of MGGP).264

4.1.4 Operon265

The main question of the symbolic regression field is how to achieve advanced for-266

mulation by modifying the GP policy proposed by Koza, corresponding to MGGP adopt-267

ing a high-level GA operation. Recently, La Cava et al. (2021) compared the performance268

of cutting-edge symbolic regression methods and black-box machine-learning models us-269

ing several benchmark problems. The benchmark analysis includes the accuracy and equa-270

tion complexity of each symbolic regression method. The benchmark test result indicated271

that Operon (Burlacu et al., 2020) was a Pareto front model that considered accuracy272

and model complexity and was a state-of-the-art method with respect to accuracy (La Cava273

et al., 2021).274
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Burlacu et al. (2020) suggested a new tree initialization algorithm to ensure the275

population diversity and implemented it to Operon. Operon determines the coefficients276

(such as b0) of the symbolic inputs using a local search algorithm based on the nonlin-277

ear least squares method, which is supported by automatic differentiation. The local search278

fine tunes the coefficients of the individual equations, thereby increasing the accuracy279

of the final formulae. In addition, the encoding and offspring generation strategies of Operon280

reinforce strong parallelism and low memory demand.281

4.2 Clustering282

One of the main purposes of clustering analysis is to understand the underlying phys-283

ical structures of inter-variable relationships (Jain, 2010). For this purpose, a cluster-284

ing analysis was performed to inspect the detailed physical properties between Fsus and285

the input variables. The following subsections describe the clustering algorithms used286

in this study:287

4.2.1 Self-Organizing Maps (SOMs)288

Self-organizing maps (SOMs) are simple models that map a data space to a lower-289

dimensional manifold. The primal SOM was introduced by Kohonen (1990).290

The update rule of the primal SOM involves pulling the best matching unit (BMU),
which is the closest grid node, to a randomly selected data point and adjacent nodes.
The batch learning SOM (Kohonen, 2012) learns the dataset in a statistical sense such
that simultaneously updating BMUs for all data points is identical to updating each se-
lected data point at least once. Let mi be the i-th node and xj be the j-th data point;
then, the batch SOM finds the BMU of all data points according to the following equa-
tion:

c(xj) = arg min
i

(d[xj , mi]), (12)

mi =
∑

j λ(c(xj), i), xj)∑
j λ(c(xj), i) , (13)

where, λ(c(xj), i) is the neighborhood function describing the grid node-wise distance291

(e.g., λ(c(xj), i) = exp(c(xj) − i)) and d[xj , mi] is the Euclidian distance between xj292

and mi].293

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.0

0.5

1.0

1.5

2.0

Figure 5. An example of 10 × 10 grid mapping of three Gaussian distributions by a planar
self-organizing map

Figure 5 shows the 10×10 planar rectangular SOM grid mapped on random data294

points generated using three Gaussian distributions. SOM mimics the data distribution295
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using the SOM map as black grids in Figure 5. Each grid point quantizes (summarizes)296

the data.297

As the SOM map nodes are connected in a grid shape, the SOM map resembles298

the links between the quantized points. The advantageous feature of the SOM map is299

depicted in Figure 6. The hexagonal grid contours correspond to the x and y axes in Fig-300

ure 5. The green dot cluster takes the place of the low y and the highest x. The upper301

right side of the SOM map projects the green cluster such that the grid nodes are bright302

and dark in 6 (a) and (b), respectively.303
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Figure 6. Component planes of the planar SOM depicted in Figure 5 for (a) x and (b) y

The mapping quality of the SOM can be checked using the topological error (TE)
(Kiviluoto, 1996) and quantization error (QE) (Kohonen, 2012).

QE = 1
n

n∑
j=1

||xj − wk∗l∗ || (14)

TE = 1
n

n∑
j=1

u(xj), where
{

1, first- and second-winning nodes non-adjacent
0, otherwise

(15)

Here, wk∗l∗ is the winning node corresponding to the j-th data point, xj .304

4.2.2 Gaussian Mixture Model (GMM)305

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.50
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1.25

1.50

Figure 7. GMM mapping example on an arbitrary two-dimensional dataset (K = 3)

In natural cases, many datasets have statistical distributions. The Gaussian mix-
ture model (GMM) assumes the data distribution as a mixture of K multi-variate Gaus-
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sian distributions, which is represented as

N (x|ν, Σ) = 1
(2π)D/2

1
|Σ|1/2 exp(−1

2(x − µ)T Σ−1(x − µ)), (16)

where x denotes the input data point, Σ denotes the covariance matrix, D denotes the
number of dimensions, and µ denotes the mean matrix. Figure 7 depicts how the three
Gaussian distributions are mapped using GMM. By mapping data space into several Gaus-
sian superpositions according to weight, probabilities of the data points for each Gaus-
sian can be calculated. Let τk be the k-th Gaussian weight on the Gaussian mixture and
µk and σk be the mean and covariance matrices, respectively; then, the probability den-
sity function of the trained GMM is calculated using Equation 17.

p(x) =
K∑

k=1
τkN (x|µkΣk) (17)

The probability of certain data can be viewed as the membership of K clusters.306

The most common method used for training the GMM is the expectation-maximization307

(EM) algorithm (Dempster et al., 1977). The EM algorithm repeats the expectation and308

maximization steps until it converges with the log-likelihood objective function. In the309

expectation step, it calculates the membership of the data points in k-th Gaussian dis-310

tribution according to the following equation:311

γ(zk) = p(zk = 1|x) ≡ p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

= τkN (x|µk, Σk)∑K
j=1 τjN (x|µj , Σj)

(18)

This step maximizes the log-likelihood of the Gaussian mixture. Once the γ(zk) values
are obtained, the maximization step updates the parameters µ, Σ, and τ as follows:

Nk =
N∑

n=1
γ(znk) =

N∑
n=1

[
∑

j

τjN (xn|µj , Σj)] (19)

µk = 1
Nk

N∑
n=1

γ(znk)xn (20)

Σk = 1
Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T (21)

τk = Nk

N
(22)

Here, N is the quantity of data.312

A detailed derivation of Equations 18 – 22 can be found in Bishop (2006).313

The fitness of the GMM can be evaluated using model criteria. The Akaike infor-
mation criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz,
1978) are popular examples of GMM fitness measures. AIC and BIC are defined by Equa-
tions (23) and (24), respectively.

AIC = −2LL + 2Np, (23)

BIC = −2LL + Nplog(n)., (24)

where LL is the log-likelihood of the fitted model and Np is the number of parameters314

of the fitted model. A model with a small AIC and BIC is considered good.315
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4.2.3 SOM-GMM316

The two-stage clustering method is commonly used to apply SOM by incorporat-317

ing an additional clustering approach. In general, a trained SOM network is further di-318

vided using K-means (Li et al., 2018; Noh et al., 2021) or hierarchical clustering meth-319

ods (Alvarez-Guerra et al., 2008; Kim et al., 2020). K-means clustering is a more intu-320

itive and simpler model than other models, but it has certain disadvantages because of321

the assumption that the data points are distributed in spherical clusters. This assump-322

tion can lead to misclassification when non-spherically distributed data are used. More-323

over, K-means is a hard clustering method that assigns one label to one data point; there-324

fore, it is not appropriate to manipulate datasets when data regions of different classes325

overlap (Heil et al., 2019). This hard separation feature renders K-means sensitive to326

noise or outliers (Jain, 2010; Oyelade et al., 2016). A fuzzy c-means clustering (FCM)327

was introduced by Bezdek et al. (1984) as an alternative to overcome the problem of hard328

division by fuzzifying K-means directly. However, FCM is limited to hyperspherical clus-329

tering.330

However, GMM assumes a fuzzy mixture of multi-variate Gaussians with varying331

cross-correlations, which is an advantage of GMM over K means and FCM. From an-332

other perspective, the expectation of K-means can be reproduced when the user sets the333

covariance matrix of GMM to be spherical (i.e., Σk = σkI). These characteristics of334

GMM make it more reliable than K-means in data classification in general. Regime shifts335

of the sediment transport mechanism in natural rivers might not be clearly divided and336

spherically distributed, but rather composed of thin ellipses. The Gaussian shape map-337

ping rule of GMM that allows cross-correlation is advantageous for summarizing the sed-338

iment transport dataset. Therefore, GMM was selected as the secondary clustering method339

in this study. Hereafter, the two-stage clustering algorithm using SOM and GMM is re-340

ferred to as SOM-GMM.341

Two challenges of SOM-GMM must be considered: (1) the prerequisite of the pre-342

defined number of clusters K (and grid size p×q) and (2) local optima followed by ini-343

tialization. Different strategies were applied at each stage to address these challenges.344

For the SOM stage, the grid size was determined according to the relationship p × q =345

5
√

n (Vesanto et al., 2000). The location of each grid point, comprising a two-dimensional346

grid, was initialized by linearly spanning the grid over the two largest principal compo-347

nents following the principal component analysis (PCA) of the target dataset (Kohonen,348

2012, 2013). This PCA-based grid initialization strategy always yields the same train-349

ing results unless the training epochs and dataset change. To optimize the SOM train-350

ing, the training epoch was optimized, minimizing both QE and TE (Equations (14) and351

(15)).352

The final two-stage GMM partitioning result was selected using an iterative method353

that was similar to a method used previously (Noh et al., 2021). The GMM was essen-354

tially trained over the possible number of clusters K. Because GMM is prone to converge355

to the local optimum solution depending on the initial state, it is iteratively retrained356

for each K. For example, the SOM-GMM procedure runs 200 times when the possible357

K values are in the range of 2– 11, and 20 independent iterations are specified. AIC and358

BIC can be computed such that the clustering quality can be evaluated for every iter-359

ation. Finally, the case with the minimum AIC+BIC was selected as the best cluster-360

ing result produced by the SOM-GMM procedure.361
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5 Results362

5.1 GRID-RFE-SVR363

For SVR parameter determination, we tuned the kernels and other parameters, such364

as Csvr, γ, and ϵ. Because the field sediment measurement data are accompanied by noise365

owing to various sources of uncertainties, it is important to allow soft margin SVM and366

reasonably determine noise regulation parameters (Csvr and ϵ) for an acceptable predic-367

tion of Fsus. Considering noise and overfitting, we tuned the parameters by grid search-368

ing using a cross-validation (grid-CV) approach. Table 4 lists the hyperparameter nom-369

inee grid points.370

Sun et al. (2021) investigated SVR using the grid-CV by varying the possible hy-371

perparameter ranges and steps. Their parameter ranges were [2−8, 28] and [2−6, 26], and372

their optimal solutions were: Csvr = 4 16 and γ = 0.004 0.008. Based on these ob-373

servations, the parameter range basis of [2−6, 26] was selected. The upper limit of Csvr374

was extended to 210 because Csvr could reach 900 (Ma et al., 2015). The ϵ-insensitive375

SVR does not impose a fitting penalty on the data points within ϵ. Accordingly, the grid376

range of ϵ is [2−6, 23] that includes the possible maximum value of 10Fsus = 10. Ad-377

ditionally, 0.001 was added.378

Table 4. Tested hyperparameter grid for the GRID-RFE-CV

Hyperparameters Values

ϵ 10−3, {2−i|i = [−6, 3] and i ∈ I}
Csvr {2−i|i = [−6, 10] and i ∈ I}

γ {2−i|i = [−6, 6] and i ∈ I}

In each hyperparameter combination of the grid-CV sequence, RFE-SVR was ad-379

ditionally performed, hereafter referred to as GRID-RFE-CV. In this GRID-RFE-CV380

system, the user can determine the hyperparameter values and input variables of the model381

with a generalized capability, supported by the cross-validation score.382

All the dimensionless variables discussed in Section 2 were nominated to GRID-383

RFE-CV. To check the variable scaling effect of SVR fitting, the target variable Fsus and384

dimensionless input variables were scaled. In addition to Fsus without scaling, the scal-385

ing cases included logarithmic scaling (log(Fsus)).386

Table 5 presents the GRID-RFE-CV results for all the cases. The first and second
numbers of the case names are distinguished by the input variables and Fsus, respectively.
To compare the model performances, three criteria were evaluated, namely, the mean
squared error (MSE), percent bias (PBIAS), and coefficient of determination R2. The
performance criteria in Table 5 can be defined as follows:

MSE =
∑n

i=1(Yi,(obs) − Yi,(est))2

n
, (25)

PBIAS = 100
n

n∑
i=1

Yi,(est) − Yi,(obs)

Yi,(obs)
, (26)

R2 =
∑n

i=1(Yi,(obs) − Yi,(est))2∑n
i=1(Yi,(obs) − Y(obs))2

, (27)

where Yi,(obs) and Yi,(est) are the observed and estimated values, respectively, and Y(obs)387

is the mean observed value. Both MSE and R2 describe the erraticity of the model. The388
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former reflects the scale of the error, whereas the latter focuses on model predictability389

compared to lumped mean prediction. PBIAS is a useful indicator of over or underes-390

timation of signs (+ or -). In addition, PBIAS measures errors corresponding to each391

data, whereas MSE and R2 provide data-lumped error information.392

The performance criteria values define the best variable model from GRID-RFE-393

CV. Once the best model is determined, SVR is refitted to the entire dataset using the394

best parameter and variable settings. In Table 5, the performance of the refitted model395

is denoted by MSE, PBIAS, and R2. R2-CV indicates the corresponding average test396

score in the cross-validation step. The overall ability of the model to predict Fsus and397

generalized predictability can be assessed using the data-driven criteria (MSE, PBIAS,398

and R2) and R2-CV, respectively.399

Table 5. The condition of each case and the best model results from GRID-RFE-CV

Case Fsus Inputs MSE PBIAS R2 R2-CV Best variables

C11 Fsus X 0.022 -0.553 0.730 0.578 W/h,d∗,Reh,Frd,Rew

C12 log(Fsus) X 0.070 0.838 0.753 0.569 W/h,d∗,Reh,Frd,Rew

C13 10Fsus X 0.030 11.719 0.610 0.576 US0/ws,U/u∗,Reh,Rew,Gr
C21 Fsus log(X) 0.024 -0.247 0.709 0.580 Reh,Fr,Frd

C22 log(Fsus) log(X) 0.074 0.756 0.740 0.578 Reh,Fr,Frd

C23 10Fsus log(X) 0.031 14.018 0.600 0.583 H/d50,Reh,Frd

In the cases where the input variables are not scaled, all the performance criteria400

support C11. In particular, the R2-CV of C11 is 0.578, which is the best among C11,401

C12, and C13. Although the R2 score of C12 is superior to C11 and C13, the MSE and402

PBIAS of C11 are better than those of C12. In particular, the MSE values of C11 are403

less than one-third of that of C12. R2 of C12 is larger than that of C11 but less gener-404

alized. For the less generalized model, the new out-of-the-data predictability may be poor405

compared to the generalized model. Thus, C11 proves to be the best case among the cases406

without input-variable scaling.407

The logarithmic scale of the input variables produces a similar trend to the scal-408

ing of Fsus. For instance, C21 in Fsus exhibits the lowest PBIAS and MSE for no scal-409

ing, and the log(Fsus) scaling case shows a good R2 score but a lower R2-CV. R2-CV410

of C23 is slightly larger than that of the other cases, but R2 of the refitted model is the411

least satisfactory value among all the tested cases. Therefore, using the C21 model is rea-412

sonable for logarithmic input scaling.413

Considering the four performance measures, deriving the SVR models without Fsus414

scaling is preferable. The surviving input variables differ depending on whether the in-415

put variables are scaled. but they are independent of the Fsus scaling. The effective in-416

put variables are revealed from the frequencies of the surviving variables, as presented417

in Table 5. W/h, d∗, Reh, Frd, and Rew survived when the input variables were not scaled,418

whereas Reh, Fr, and Frd survived for C21, C22, and C23. Notably, Reh and Frd were419

the two most frequent features. Reh survived for all cases, and Frd was excluded for C13.420

The survival frequency clearly shows the contributions of Reh and Frd to Fsus.421

Two different SVR models were derived based on GRID-RFE-CV analysis. The two422

SVR models use five and three surviving variables in C11 and C21, respectively. The names423

of the models are distinguished by the number of input variables, namely, SVR5 and SVR3.424

The optimal hyperparameter settings for the SVR models are set as follows: SVR3 -[kernel:425

RBF, Csvr = 1, γ = 4, ϵ = 0.125], and SVR5 -[kernel: RBF, Csvr = 1, γ = 8, ϵ =426

–17–



manuscript submitted to Water Resources Research

0.0625]. The values are the same as the optimal hyperparameter settings obtained from427

the grid search.428

5.2 Explicit Equations429

Although crucial features for Fsus were identified by RFE-SVR with acceptable ac-430

curacy, the functional relationship remained hidden. The following subsection presents431

how the input variables interact with the help of explicit expressions, aided by symbolic432

regression. Cutting-edge machine-learning methods, MGGP and Operon, were used to433

identify the underlying sediment transport physics in Fsus. The analysis continues with434

clustering and sensitivity analyses.435

5.2.1 MGGP436

Formulation using MGGP requires certain parameter settings. The parameters that437

can be tuned in MGGP consist of formula shape and genetic algorithm parameters. De-438

termining the functional form depends on the mathematical operator used in MGGP.439

In addition to the arithmetic operations, exponential operators (power, tanh, log, and440

exp) were included. A formula can be generated under the function set and formula size441

parameter (maximum gene number and tree depth)using the genetic algorithm param-442

eters. Thus, the population size and generations must be sufficiently large to appropri-443

ately examine the functional structure to obtain reasonable results. However, increas-444

ing the population size and generation is not a solution. Essentially, genetic algorithms445

lose solution diversity, converging individual solutions to a certain form for one sequence.446

Therefore, in this step, the population using the number of runs was reset to 200. How-447

ever, an increase in shuffling within the genetic algorithm operators (crossover, muta-448

tion, and replacement) results in a trade-off between population diversity and disman-449

tling of the population. The determined MGGP parameter settings are presented in Ta-450

ble 6.451

MGGP provides Pareto optimal equations; thus, several optional equations can be452

selected as the final product. In this study, the best models with respect to the test set453

scores were chosen and compared. For the perceptibility of the explicit models, a few terms454

such as AM3 were included as separate expressions. The replaced symbols use A, B, C,455

D, and E with the subscripts denoting the symbolic regression method. For example,456

M3 is the three-variable MGGP model and O5 is the five-variable Operon model.457

The three-variable MGGP model (MGGP3) was derived using Equations (28) –
(29).

Fsus = 0.406 eAM3 − 1.97 e−Reh − 0.779 eF rd
2

+ 0.779 e−Reh
3

+ 1.45 Frd
2 + 1.77 (28)

AM3 = e−6 F rd−3 Reh − Fr2 Reh
3 (29)

Fr appears in only once in Equation (29), with the accompanying Reh. For Fr, Fsus458

decreases with an increase in Fr. In addition, Reh with Fr appears to affect the scal-459

ing of Fr in the last term of Equation (32).460

The MGGP5 model has a more complicated structure than MGGP3. Equations
(30) – (32) are mathematical expressions for MGGP5.

Fsus = 0.365 eAM5 − 0.549 d∗ − 0.0521(eBM5 + Reh +

√
(W

h
)
d∗

) + 0.222 W

h
d∗ + 0.708 (30)

AM5 = e
− tanh(Reh)

Reh+d∗

tanh
(

(e−Rew )Reh d∗
) (31)
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Table 6. MGGP parameter settings

Parameter Settings

Mathematical operators
+, −, ×, ÷,

√,
square, cube, exp, tanh, log, power

Population size 500
Number of generations 500
Runs 200
Maximum number of genes 4
Maximum tree depth 6
Tournament size 15
Elitism 0.15 of population
Crossover events 0.84
High-/low-level crossover 0.2 / 0.8
Mutation events 0.14
Sub-tree mutation 0.9
Replacing input terminalwith another random terminal 0.05

BM5 = 3 e−Reh (32)

In the above formulation, MGGP considers all five surviving variables (W/h, d∗, Reh,461

Frd, and Rew). However, the resultant equation does not contain Frd, which is related462

to the grain size-flow interaction. Instead, d∗ and Rew are included. Notably, compos-463

ite effects of W/h and d∗ are observed.464

5.2.2 Operon465

The low computational cost and accuracy of Operon enable heuristic input param-466

eter tuning with less effort compared to MGGP. Hence, in this study, the input param-467

eters of Operon were determined by a grid search using multiple Operon runs. The test468

parameter grid was identical to that in a previous study (La Cava et al., 2021).469

Operon3 (Equations 33 – 38) requires three variables but is the most complicated
among the explicit formulations proposed in this study.

Fsus = 1.012 (2.616 Reh − 11.552 Fr + AO3 − BO3 + CO3)√
(0.711 Reh − 11.392 Fr + DO3)2 + 1

− 0.009 (33)

AO3 = 20.192 Fr − 1.331√
(7.505 Reh − 0.567 Fr + EO3 − 0.04)2 + 1

(34)

EO3 = 45.229 Frd√
11.916304 F r2

387.893025 Reh
2+1 + 1

(35)

BO3 = (3.364 Fr − 1.587)√
8330.395441 Reh

2 + 1
(36)
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CO3 = (3421.821 Frd + 0.005) (0.075 Reh + 0.004 Fr + 0.005) (37)

DO3 = (0.057 Reh + 0.015) (9.269 Reh + 3739.117 Frd + 31.422) (38)

The five-variable Operon model was produced using the following equations:

Fsus = 0.499 W

h
− AO5 − BO5 + 2.622 (39)

AO5 =
(
2.878 W

h + 1.345 d∗ + 2.235 Frd

)√
5670.843025 Reh

2 + 1
(40)

BO5 =

(
27.784 Reh − 0.657 d∗ − 2.446 Frd + 0.563√

38808.212 Rew
2+1

+ 1.331
)

√
288.388324 Reh

2 + 1
(41)

Operon5 uses five complete variable sets, including Frd, which are not included in MGGP5.470

The empirical equations produced by Operon have a complicated structure but are471

accurate. The formulations of MGGP3 and MGGP5 show dependence on exp[Reh] , re-472

sulting in the potential for computational overhead. However, the equations derived us-473

ing Operon consist of multi-fractional expressions.474

Nonlinear least-squares local optimization coefficient tuning distinguishes Operon475

from the MGGP models. For example, some terms in MGGP models share coefficients476

(the third and fourth terms in Equation (28)). Each term in the Operon model has a477

particular fine-tuned coefficient value. This coefficient tuning increases the predictabil-478

ity but lengthens the equation. The above Operon models were additionally rearranged,479

and the coefficient values were truncated to the sixth decimal place for simplicity.480

5.3 Model Performances481

Table 7 shows the Fsus estimation performance of the derived models. Similar to482

that in Table 5, MSE and PBIAS indicate the scores evaluated using the entire dataset.483

R2-train and R2-test are the training- and test-set scores, respectively, divided by the484

ratio 7:3. Because SVR3 and SVR5 were refitted using the entire dataset, the CV test485

scores were listed.486

Table 7. Performance measure of the empirical equations in estimation of Fsus

MSE PBIAS R2-training R2-test R2-all

SVR3 0.0375 -0.8462 CV-0.3928 0.5352
SVR5 0.0184 0.2783 CV-0.5209 0.7722

MGGP3 0.0587 0.1879 0.2619 0.3046 0.2720
MGGP5 0.0552 -0.5808 0.3273 0.2822 0.3161
Operon3 0.0445 -0.6262 0.4743 0.3723 0.4488
Operon5 0.0458 1.0820 0.4302 0.4076 0.4317

Every proposed model may estimate a value outside of the range [0,1]. Because val-487

ues with Fsus > 1 or negative values are physically incorrect, all estimated values over488

one are corrected to 1. The negative values are adjusted to 10−4 to prevent infinite to-489

tal load values when Qt = Qs/0 = ∞. These physical limitations must be applied to490

practical applications of these models.491

In terms of MSE, the two SVR-driven models were superior to other symbolic re-492

gression models. Operon3 and Operon 5 were next in terms of performance. The MGGP493
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models showed the most significant dispersion compared with the others. The MSE of494

the five-variable model was two times smaller than that of the three-variable model for495

SVR. In contrast, Operon3, with MSE = 0.0445, was slightly superior to Operon5, with496

MSE = 0.0458. SVR5 estimated Fsus accurately with the smallest MSE, 0.0184, which497

was 2 and 2.4 times lesser than that of SVR3 and Operon3, respectively.498

A distinct result of PBIAS is the suitability of MGGP3, which has the smallest ab-499

solute PBIAS. MGGP3 yielded the lowest absolute value of PBIAS, and SVR5 yielded500

the second lowest value. On average, Operon5 overestimated Fsus by a factor of two with501

PBIAS > 1. In contrast, SVR3 (PBIAS=-0.8462) underestimated Fsus, compelling a large502

contribution of bed loads.503

SVR5 showed excellent accuracy in terms of R2-test (0.5209) and R2-all (0.7722).504

R2-all values of SVR3 ranked second, but the value of R2-test (0.3928) for SVR3 was505

slightly lower than that for Operon5 (0.4076). Operon3 was superior in MSE, PBIAS,506

and R2-all to Operon5. Upon comparing Operon3 and Operon5, a high score in R2-training507

and low score in the test set was observed for Operon3, implying a possible over-fitting508

of the training set. The two MGGP-driven models showed low R2 values for all the data509

combinations. MGGP5 predicted the training set better than MGGP3; however, MGGP3510

was more accurate in the test set.511
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(b) Fsus prediction-5 variable models
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Figure 8. Scatter plots for Fsus estimation
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Figure 8 shows the estimation results of the six models as scatter and density plots.512

The figures on the left-hand side are for the three-variable models, and those on the right-513

hand side are for the five-variable models; the symbols represent the derivation meth-514

ods. The black lines are the 1:1 lines of perfect estimations.515

In the scatter plots, almost all markers are under the 1:1 line when Fsus is close516

to 1, while for low values, the markers are over the 1:1 line . All models appear to fit,517

centering approximately on the average of Fsus, 0.749. In addition, the overestimation518

of the lower values establishes the lower limit barriers in cases of Operon3, MGGP3, and519

MGGP5.520

Notably, in Figures 8(a) and (b) the blue dots are aligned in the vicinity of the 1:1521

line. This alignment is derived from the unique characteristic that SVR, which is insen-522

sitive to ϵ, does not charge penalties to ϵ tube within the data points. In other expres-523

sions, the points aligned along the boundary of the ϵ tube represent support vectors. The524

reason why the recognized tube sizes are different in Figures 8(a) and (b) is that the ϵ525

values differ for SVR3 (0.0625) and SVR5 (0.03125).526

Additionally, two density plots were drawn for perceptibility. The two circles in-527

dicate the two density levels for each color, which are the same as those in the scatter528

plots. The closer to the 1:1 line and thinner, the more accurate is the model. Most Fsus529

observations are distributed in the range from 0.75 to 1, and the inner circles cover the530

range. Using the two distinguished circles, the performance at large and low values can531

be resolved.532

As proven above, SVR5 exhibits the best performance among the proposed mod-533

els, with the thinnest inner and outer circles. The left orange lines representing Operon3534

appear at a comparable level to SVR3, which is the best-performing three-variable model.535

Although the outer line of SVR3 is the thinnest between the models on the left-hand side536

for Fsus < 0.75, the three-variable models present underestimation for large values, as537

evidenced by the inner circle. Contrary to the high predictability of Operon3, Operon5538

does not predict well, covering a range similar to that of MGGP5.539

6 Discussion540

6.1 Clustering Analysis541

A clustering analysis was performed to simplify the underlying pattern of the sed-542

iment transport. Prior to applying the clustering algorithm, the correlations between the543

derived dimensionless variables were inspected. Figure 9 presents a correlation heat map544

for the dimensionless variables. For Fsus, which is the key parameter of this study, six545

variables were filtered based on the condition that the absolute values of the Pearson cor-546

relation coefficient were greater than 0.5. The six selected variables that significantly cor-547

relate with Fsus are W/h, US0/ws, U/U∗, H/d50, Reh, and Frd, which are also marked548

in the correlation map. Notably, the variables with a maximum-to-minimum ratio higher549

than 104 were analyzed on a logarithmic scale.550

The data length was 1,346, and the corresponding optimal SOM map size was cal-551

culated as 5
√

1346 = 183.5. Thus, the grid size of the SOM was set as 14 × 13 = 182.552

The test range of the epochs of the SOM and the number of GMM clusters K were [0,1000]553

and [2, 10], respectively.554

The QE-TE test results are shown in Figure 10. Both QE and TE rebounded af-555

ter 300 epochs of the SOM update. To ensure the lowest QE and TE, GMM was per-556

formed after fixing the SOM to 250 epochs.557
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Figure 10. QE and TE epochs for the seven dimensionless variables [Fsus, W/h, d∗, Reh, F r,
F rd, and Rew]

The iterative GMM procedure is illustrated in Figure 11. The figure shows the min-558

imum scores for each cluster. The minimal AIC+BIC value was 5. However, K = 4 was559

selected because the BIC increased when K > 4.560

To analyze the SOM-GMM results, two cluster plots were drawn. Figure 13 shows561

a pair of scatter plots, and Figure 12 shows the corresponding SOM component planes.562

Based on the frequency of the dimensionless variables, it is evident that Reh and
Frd are sufficiently informative to explain Fsus through the following inferences. First,
all of the dimensionless numbers, excluding the slope-related numbers U∗ and S0 with
high uncertainties, can be approximated by combining Reh and Frd. For example, RehFrd =
f(h/

√
d50), such that h/d50 can be expressed in a scaled manner. As shown in Table 2,

Frd is considered as the main input variable, especially in recent studies (Tayfur et al.,
2013; Okcu et al., 2016). With respect to physical inference, these two variables are re-
lated to suspended and bed loads. The Reynolds number is known as the turbulence cri-
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terion. Thus, Reh may contribute to increasing the turbulent diffusion, causing parti-
cles to remain in suspension. The imbalance of the drag force on a single particle and
the friction between the particle and bed materials initiate incipient motions (e.g., slid-
ing, saltating, etc.). Frd is identical to the drag-bed friction balance, which can be ex-
pressed using Equation 42.

Drag force
Friction force =

Cdπr2
pu2

λf N
=

Cdπr2
pu2

λf g(Gs − 1)π 4
3 r3

p

= f( u2

g(Gs − 1)rp
) = f(Fr2

d), (42)

where Cd denotes the drag coefficient, rp denotes the particle radius, up denotes the ef-563

fective velocity of the particle, λf denotes the friction coefficient on the bed, and N is564

the normal force.565

The relevance of Fsus has been emphasized in various studies. Hager (2018) high-566

lighted Frd, also known as a densimetric Froude number, as the main parameter along567

with d50/h in the bed load transport mechanism. In the sewer deposition problem, Frd568

has been considered the target parameter in many studies, and Frd can be a function569

of d50/Rh (Safari & Mehr, 2018). In another aspect, with respect to coastal or ocean en-570
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vironments, similar interpretations have been conveyed by Fischer et al. (2002), regard-571

ing the denominator of Equation (42) as a representation of the buoyancy force.572

In the high Reh region, Fsus converges to 1. In the case of sufficiently strong tur-573

bulence dispersion forces, the bed loads in an unmeasured area of suspended samplers574

are suspended and dispersed to the measurable area, corresponding to the suspended sed-575

iment region. Consequently, the intense suspension allows suspended sediment loads to576

be approximated to the total sediment loads (as shown in Figure 15).577

As observed from the structures of MGGP3 and Operon3, Fr, which is always ac-578

companied by Reh, plays a role in scaling h. Furthermore, Fr2 = U2/(gh) is the ra-579

tio of the flow energy head to the suspended sediment region. For h = hs + hb, where580

hs and hb represent the suspended sediment and bed load regions, respectively, hb is con-581

stant owing to the sampler size, and thus, a variation in h indicates a variation in hs.582

If the flow velocity is fixed, a decrease in Fr implies an increase in hs, which in turn in-583

creases Qs. In terms of fixing the water depth h, laboratory experiments demonstrated584

that the suspended load contribution increases for larger Fr in dune migration domi-585

nated by bed loads (Naqshband et al., 2014). In Figures 15 and 12, the cover range of586

a low Fr decreases in the order of red, blue, and orange clusters for 12 < ln(Reh) <587

14. For the same Reh value, Fsus increases in the same order, thus supporting the above588

inference.589

In both MGGP5 and Operon5 formulations, W/h accompanies d∗. Stewart (1983)590

reported that the fluvial channel, predominantly composed of suspended sediment, pos-591

sessed features, such as silt/clay and steep bench/point bar, owing to a low W/h. In mor-592
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phological transitions, streams with low W/h are likely to be eroded, and excessive de-593

position occurs in streams with high W/h (D. L. Rosgen, 1994; D. Rosgen, 2019). An-594

other report (Edwards et al., 1999) describes the influence of W/h on Fsus and its tem-595

poral change. For fine bed materials, W/h can be reciprocal to Cw. According to a pre-596

vious study (Xu, 2002), W/h can have a positive relation with Cw for low Cw, with the597

assumption that for a coarser grain, the flow is prone to be related to bed load. The low598

W/h coverage is smaller in the order of red, blue, orange, and green clusters for ln(Reh) <599

12.5. Fsus decreases in the order of the red, blue, and orange clusters. However, Fsus for600

the green cluster is the largest, despite the high W/h and d∗. As shown in the upper two601

rows of Figures 12 (b) and 12(c), the green cluster is characterized by a high Reh. For602

large total loads, the Qt fraction becomes dominant, as depicted by the linearly increas-603

ing lower bound in the 1×4 plot in Figure 13. This suspended sediment-dominant flow604

of the green cluster was due to the excessively large Reh. The nonlinear relation between605

W/h and d∗ in MGGP5 and Operon5 is valid for the calibration of the regime shift. The606

same interpretation can be applied to Rew because its correlation to d∗ is 1 and curved607

for low Rew (the orange cluster).608

6.2 Sensitivity Analysis609

This section presents the sensitivity of the models developed in this study obtained610

by changing the input variables. The sensitivity analysis was conducted on Operon3 and611

SVR5, the best explicit and implicit models, respectively. In addition, a sensitivity anal-612

ysis was conducted on SVR3 to inspect the effect of a nonlinear complexity increase.613

Figure 14 presents the one-at-a-time (OAT) sensitivity analysis results. The up-
per plots are spyder plots indicating the change in Fsus owing to a 50% variation in the
input variables. The sensitivity index (SI) defined by Equation 43 is computed for quan-
titative comparison.

SI = max(Fsus) − min(Fsus)
max(Fsus) (43)

For perceptibility, three-dimensional surface plots were drawn using the two influential614

variables Frd and Reh.615

The most sensitive variable in the case of Operon3 is Reh (SI = 0.4024) in a pos-616

itive relationship. Frd is reciprocal to Fsus and only half as influential as Reh. Fr is the617

most insensitive variable with an SI value of 0.149 and an exponential-like increment.618

The effect of Reh is prominent (SI = 0.5306). Fsus diminishes after a change of 120%.619

The increasing and decreasing behavior was observed for both Frd and Fr, but the fluc-620

tuation in Fr was exceptional. The fluctuation observed in Operon3 indicates a nonlin-621

ear relationship between the three variables.622

In SVR5, the curves of Reh and W/h resemble those in SVR3. The SI associated623

with W/h was the largest at 0.217. However, it was twice smaller than the maximum624

SI values obtained in the spyder plots of Operon3 and SVR3. This indicates the tuning625

effect of the two additional variables. d∗ and Rew demonstrated similar trends when in-626

creasing. For a negative change in d∗, Fsus drastically decreased with the local maximum627

point. Rew, which represents the falling velocity, was negatively related to Fsus.628

The proportionality of Reh is clearly illustrated in the bottom row of Figure 14.629

For Operon3 and SVR3, the sensitivity of Frd is as high as Reh is small. The surfaces630

of SVR3 and SVR5 have local maximum points. However, Fsus increases correspond-631

ing to Frd, as shown in Figure 14(f). This growth may be because SVR5 expresses the632

grain-size effect using not only Frd but also d∗ and Rew.633
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Figure 14. Spyder and three-dimensional surface plots for the three proposed algebraic equa-
tions: (a,d) tanh-type; (b,e) MGGP1; (c,f) MGGP2.

6.3 Qt Estimation Using Fsus634

Overall, the analysis showed that SVR5 was the best model for estimating accu-635

racy. In practical use, Operon3 shows promise considering its explicit expression. How-636

ever, the underestimation of PBIAS amplifies Qt in Operon3. By contrast, SVR5 is likely637

to underrate Qt. Based on these characteristics, SVR5 is considered suitable for users638

who want to determine Fsus correctly. Operon3 can be appropriately used for conser-639

vative river channel designs.640

The practical use of Fsus involves the estimation of the total load Qt using the fol-
lowing relationship:

Qt = Qs + Qb = Qs

Fsus
(44)

Figure 15 shows the relationships between Fsus, Qt, Qs, and Qb. Figure 15(b) shows641

that Qs is distributed along the 1:1 line. In the physical sense, Qs should be the lower642

limit of Qt. For a highly tractive flow, water sweeps the bed material, resulting in rapid643

bed load transport. If the flow is sufficiently rapid to convey bed materials, there is also644

a high possibility of suspended sediment-governed flows that develop suspension. Thus,645

Qs can be approximated as Qt even though a large amount of Qb is transported. How-646

ever, Qb contributes more to a low Qs, as shown in the relationship between Fsus and647

Qs.648

Because Qs dominates over Qt, R2 is equal to 0.999, where the R2 value of Qb is649

-0.027. However, estimating Fsus using only Qs is not recommended because the R2 eval-650

uation yields a value of -8.753×106. Despite the high R2, estimating Qt using Fsus is ad-651

vantageous over using only Qs in a conservative design because an estimation using Fsus652

always yields Qt > Qs with R2 over 0.999.653
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Figure 15. Scatter plots for Fsus, Qt, Qs, and Qb

MEP interprets that the nonlinear relationship between the Rouse number Ro and654

d50 governs Fsus. The Einstein integral contains the velocity profile information from655

the turbulent velocity profile, causing the ratio of suspended load to total load to vary656

with ds, h, and Ro (C.-Y. Yang & Julien, 2019). u∗ in Ro alternatively depends on g,657

h, and S0. An issue arises when our equations do not contain u∗ and dss, which are key658

factors for Ro. In contrast, Lara (1966) proved that Ro could be estimated using Ro =659

AwB
ss. We believe that Ro can be implicitly applied as a nonlinear expression of the ex-660

plicit equations obtained in this study.661

Moreover, excluding u∗ is beneficial for minimizing uncertainty. In other words, the662

strict measurement of the slopes for u∗ is challenging because natural streams have var-663

ious bedforms and platforms.664

Essentially, MEPs assume sand-bed streams. In this context, Shah-Fairbank et al.665

(2011) observed that applying different schemes for Ro regimes was favorable because666

of the applicability of MEP. The suggested empirical models are widely applicable us-667

ing a previously published dataset (Williams & Rosgen, 1989), which covers bed mate-668

rial sizes ranging from sand (0.28 mm) to cobbles (216 mm).669
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Recently, river-monitoring techniques have been developed. The empirical mod-670

els designed in this study can be implemented in recently developed flow-suspended sediment-671

monitoring techniques to estimate Qt because the required input variables can be ob-672

tained by these techniques. For example, at the river scale, drone-based remote-sensing673

techniques have been applied to suspended sediment concentrations (Kwon, Shin, et al.,674

2022; Kwon, Seo, et al., 2022), bathymetry, and flows (Legleiter & Harrison, 2019; Legleiter675

& Kinzel, 2021; Eltner et al., 2020). ADCPs can be utilized for the simultaneous mea-676

surement of flow and suspended sediment (Son et al., 2021; Noh et al., 2022). For bed677

grain-size estimation, one method is to use image-processing software packages, such as678

pyDGS (Buscombe, 2013) and Basegrain (Detert & Weitbrecht, 2012); however, sieving679

is the only reliable method that can be used for sand or finer grains (Harvey et al., 2022).680

If sieving is the only option, it is advantageous to create a dictionary of the mean size681

of bed material on the probable areas before applying the above methods. If the afore-682

mentioned monitoring technologies can be combined and applied appropriately, safety683

and cost minimization can be achieved.684

7 Concluding Remarks685

This study proposes estimation models based on machine learning for the estima-686

tion Fsus, which is defined as the ratio of the suspended load to the total sediment load.687

Six models were developed using SVR, representing the black-box method and two state-688

of-the-art symbolic regression models, namely, MGGP and Operon. Prior to the formu-689

lation, the hydromorphic variables were non-dimensionalized. The two-stage clustering690

algorithm SOM-GMM was used to analyze the Fsus reaction by changing the dimension-691

less hydromorphic variables. In addition, an OAT sensitivity analysis was conducted.692

The input variable selection and parameter tuning of the machine-learning meth-693

ods were based on GRID-RFE-CV. From the feature elimination step, two distinguished694

parameter combinations were observed: 1)W/h, d∗, Reh, Frd, and Rew, and 2) Reh, Fr,695

and Frd. For estimation accuracy, each machine-learning method was trained using two696

optimal variable combinations, producing six models. The performance criteria suggest697

that SVR5 outperforms all other models, and Operon3 is the most accurate explicit model.698

In the analysis of the empirical equations and clustering results, Reh and Frd frequently699

appear to be influential.700

The models proposed in this study require the basic hydraulic features U , W , h,701

and d50, excluding the u∗ related variables, that are generally adopted for sediment load702

estimation. Subsequently, Qs and the aforementioned basic hydraulic features are nec-703

essary to estimate Qt. For application to rivers with different characteristics from those704

of US streams, it is recommended to train the models using a specific environment be-705

cause the dataset exploited in this study consists of US streams.706
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