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Abstract

This research targets disentangling shallow causes of anthropogenically-induced subsidence in a reclaimed and urbanized coastal

plain. The study area is around the city of Almere, in the South Flevoland polder, the Netherlands, which is among the countries’

fastest subsiding areas. The procedure consists of integrating synthetic Interferometric Synthetic Aperture Radar (InSAR) data

with high-resolution phreatic groundwater and lithoclass models, and a database containing construction details. The two main

parts of the workflow are isolation of the InSAR points of structures without a pile foundation and a data assimilation procedure

by Ensemble Smoothing with Multiple Data Assimilation. The shrinkage of surficial clay beds by phreatic groundwater level

lowering is identified to be the main cause of shallow subsidence in the area, with an average contribution of 6 mm/year.

The history-matched physics-based model predicts that one meter drop in phreatic groundwater level now translates into 10

millimeter of subsidence in the next five years. Also, this study showed that a groundwater deficiency due to severe dry periods

should be considered as an accelerator of subsidence in both the short- and long-term planning. To ensure a robust network to

estimate future subsidence, we advise on a consistent monitoring strategy of the phreatic groundwater level.
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Abstract 18 

This research targets disentangling shallow causes of anthropogenically-induced subsidence in a 19 

reclaimed and urbanized coastal plain. The study area is around the city of Almere, in the South 20 

Flevoland polder, the Netherlands, which is among the countries’ fastest subsiding areas. The 21 

procedure consists of integrating Interferometric Synthetic Aperture Radar (InSAR) data with 22 

high-resolution phreatic groundwater and lithoclass models, and a database containing 23 

construction details. The two main parts of the workflow are isolation of the InSAR points of 24 

structures without a pile foundation and a data assimilation procedure by Ensemble Smoothing 25 

with Multiple Data Assimilation. The shrinkage of surficial clay beds by phreatic groundwater 26 

level lowering is identified to be the main cause of shallow subsidence in the area, with an 27 

average contribution of 6 mm/year. The history-matched physics-based model predicts that one 28 

meter drop in phreatic groundwater level now translates into 10 millimeter of subsidence in the 29 

next five years. Also, this study showed that a groundwater deficiency due to severe dry periods 30 

should be considered as an accelerator of subsidence in both the short- and long-term planning. 31 

To ensure a robust network to estimate future subsidence, we advise on a consistent monitoring 32 

strategy of the phreatic groundwater level. 33 

Plain Language Summary 34 

The city of Almere, in the Netherlands, is part of a polder that was reclaimed in 1968. Land 35 

reclamation is accompanied by lowering of groundwater levels, which can cause land 36 

subsidence. Almere is situated on top of ~9 meters of soft soil layers. These layers were 37 

deposited after the last ice age and consist predominantly of clay and peat. It is important to 38 

understand and quantify the subsidence processes in these Holocene layers, to be able to mitigate 39 

subsidence.  40 

By lowering the groundwater level, the soft soil layers are dried. Clay shrinks when it dries out 41 

and organic material (within peat) oxidizes. Lowering the groundwater level also causes the load 42 

of the layers below to increase, which can result in compaction of the layers (reduction in size by 43 

pressing together). This study targets the behavior of these processes. 44 

Results of our study indicate that the shrinkage of clay is the dominant driver of subsidence in 45 

Almere. One meter lowering in groundwater level now results in approximately one centimeter 46 

subsidence in five years. To improve our understanding of the non-trivial link between 47 

groundwater fluctuations and subsidence, higher spatial-temporal resolution groundwater 48 

monitoring is required. 49 

1 Introduction 50 

Over half a billion people live in coastal plains and deltas threatened by anthropogenically 51 

induced subsidence, and this number is expected to increase in the foreseeable future (Neumann, 52 

2015; Schmidt, 2015). Many anthropogenic subsurface activities in coastal areas and delta plains 53 

result in subsidence, thereby amplifying relative sea-level rise and flood risks, inflicting damage 54 

to infrastructure, and overall, reducing the viability of these low-lying areas (Dinar et al., 2021; 55 

Guo and Jiao, 2007; Syvitski et al., 2009). Examples of subsurface activities are resources 56 

extraction, such as groundwater (Jones et al., 2016) and deep hydrocarbons (Chaussard et al., 57 

2013), and surficial processes related to land use, primarily phreatic groundwater level 58 

management (Koster, Stafleu and Stouthamer, 2018), and sediment deficit (Eslami et al., 2019).  59 
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 60 

Some heavily populated coastal plains and deltas require engineered extension of their surface 61 

area by land reclamation, to accommodate population growth, and increase the surface area of 62 

arable land, e.g. China, Belgium, Japan, Dubai, U.S. and Singapore (e.g. Declerq et al., 2021; Li 63 

et al., 2022; Martín-Antón et al, 2016; Wang et al., 2014). When land is gained along sea or lake 64 

shorelines by drainage of open water, this in essence means exposing waterlogged sediments to 65 

the atmosphere, thereby instigating various subsidence processes, primarily by shrinkage, 66 

compaction, and oxidation of fine grained and organic deposits.  67 

 68 

The dense population of Hong Kong for instance, prompted the government to reclaim land since 69 

the nineteenth century. There, rates of subsidence are around 20 mm/year, resulting in major 70 

damage to the built environment by differential settlements (Sun et al., 2018; Wang et al., 2016). 71 

In Bangladesh, reclamation primarily serves the purpose of gaining arable land, resulting in 72 

subsidence rates up to 10 mm/year in these reclaimed areas. This catalyzes a rise in social 73 

inequality as especially low-income farmers are not able to cover adaptation costs for the 74 

negative effects of these high subsidence rates (Barbour et al., 2002; Steckler et al., 2022). 75 

 76 

The Netherlands is a prime example of a country that has extended its coastal plains by land 77 

reclamation. In total, the Netherlands has 443 reclaimed former lakes located in its coastal plains, 78 

with a cumulative surface area of 3123.60 km2 (Schultz, 1987). The centuries-long tradition of 79 

reclaiming land, referred to as ‘polder’, can be divided into three main periods of lake drainage. 80 

The first stage comprised the sixteenth to seventeenth century, when many small lakes within the 81 

back-barrier peatlands were drained with windmills. Secondly, in the nineteenth century, larger 82 

lakes in the coastal plain were drained with steam pumping stations. Lastly, in the twentieth 83 

century, Lake IJssel, the countries’ largest lake that was created by the damming of a tidal inlet, 84 

was reclaimed, resulting in the largest polders of all: the Lake IJssel polders (Fig. 1a).  85 

 86 

The focus of this study is on understanding and predicting shallow causes of subsidence in the 87 

reclaimed urbanized South Flevoland Polder (430 km2), which is part of the Lake IJssel polders 88 

(Fig. 1). The polder was created in 1968 by constructing a ring-dike around the water body to be 89 

reclaimed. This enclosed water body was subsequently drained until the water level dropped 90 

below the former lakes’ floor. Subsidence immediately commenced when the waterlogged 91 

deposits experienced aeration for the first time and pore water progressively evaporated (De 92 

Glopper, 1969). Ultimately, the polder has experienced locally one to two meters of subsidence 93 

since its reclamation (Barciela Rial, 2019; De Glopper, 1973; De Glopper  1984; De Lange et al., 94 

2012; De Lange, 2015; Fokker et al., 2019).  95 

 96 

Paradoxically, severe water pumping has been ongoing to this day, as it is required to keep 97 

phreatic water levels low, thereby preventing the polder from flooding due to its low-lying 98 

position relative to adjacent Lake IJssel water level and increasing the load-bearing capacity of 99 

the former lake floor. The area thus continues to subside as waterlogged sediments are 100 

progressively exposed to the atmosphere. Besides flood risks, differential subsidence in the 101 

urbanized areas of the South Flevoland polder causes stress on structures, which results in 102 

damage to the built environment, leading to major costs. This especially accounts for the 103 

‘Regenboogbuurt’, which is a neighborhood that onlaps the thickest sequence of soft soil 104 

deposits in the area (Maas, 2021). Additionally, the severe drought events that have been striking 105 



manuscript submitted to Journal of Geophyiscal Research – Earth Surface 

 

Northwestern Europe during recent summers, pose the threat of accelerated subsidence to the 106 

area by increasing evaporation of pore water from fine grained and organic deposits. To the best 107 

of our knowledge, no study has been reported on the effects of severe drought in South 108 

Flevoland, although Hoogland et al. (2020) showed that subsidence may be slowed down by 109 

proactively saturating shallow peat beds within the area. Understanding, quantifying, and 110 

predicting subsidence, both spatially and temporally in the South Flevoland polder is therefore 111 

from a socio-economic as well as a hazard-prevention point of view of immense importance. 112 

 113 

The artificial lowering of phreatic water levels in the South Flevoland polder results in shrinkage 114 

of clay and oxidation of peat in the unsaturated zone (i.e. above the annually averaged lowest 115 

phreatic groundwater level). Clay shrinks as water that is adsorbed to charged platy clay particles 116 

evaporates and organic matter mixed within the clay oxidizes (Barciela Rial et al., 2020). This 117 

leads to volumetric loss and is largely irreversible. Peat oxidation regards the breakdown of 118 

organic components by microbial activity, is completely irreversible, and results in the emission 119 

of carbon dioxide (Koster et al., 2020). Further, there are subsidence processes in the saturated 120 

zone: the consolidation of clay and peat layers due to an increase in effective stress by lowering 121 

the hydrostatic pressure when phreatic water levels are lowered (De Glopper and Ritzema, 122 

1994). Consolidation and oxidation have been addressed regularly in other areas in the 123 

Netherlands that experience shallow subsidence (e.g. Kooi, 2000; Van Asselen et al., 2009; Van 124 

Asselen et al., 2018). On the contrary, shrinkage of clay in the context of subsidence has been 125 

poorly covered (Fokker et al., 2019). However, in other countries, subsidence by clay shrinkage 126 

is considered as a major issue. In France and Great Britain for example, potential damage to the 127 

built environment inflicted by clay shrinkage as a result of drought and climate change has been 128 

studied in terms of cost per annum in the light of the insurance industry for decades (e.g. Burnol 129 

et al., 2021; Charpentier et al., 2021; Pritchard et al., 2015).  130 

 131 

Most recent studies focus on establishing physics-based subsidence forecasts using input 132 

parameters derived by field- and laboratory measurements (Koster, Stafleu and Stouthamer, 133 

2018; Mayoral et al., 2017; Nusantara et al., 2018; Schothorst, 1982; Van Asselen et al., 2018). 134 

This approach inherently renders the subsidence estimates to be strongly dependent on used 135 

models and input soil parameters. A step forward regards the coupling of the different processes. 136 

Allison et al. (2016) for instance, stressed that developing an integrated model with coupled 137 

behavior of the different subsidence processes is critical for reliable subsidence estimates. Only 138 

by considering the behavior of all subsidence processes combined with real observations can the 139 

full impact of subsidence be understood.  140 

 141 

Optimizing the relation between coupled subsidence processes and measured subsidence can 142 

improve subsidence forecasts. A history matching procedure by correlation and/or trial-and-error 143 

is often employed (e.g. Caló et al., 2017; Castellazzi et al., 2016; Teatini et al., 2006). For larger 144 

areas, or areas where multiple subsidence processes are superimposed, a more formal approach is 145 

considered more efficient (e.g. Candela and Koster, 2022; Fokker et al., 2019). A mathematically 146 

driven approach such as data assimilation can cover the entire range of uncertainty of all the 147 

parameters, to seek the optimal solution.  148 

 149 

Data assimilation combines models and observations to obtain the best possible description of 150 

the system (Evensen, 2009; Evensen et al., 2022). This approach is customary practice in a wide 151 
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range of disciplines such as subsurface modelling (Candela et al., 2022; Chang et al., 2010; 152 

Evensen et al., 2022; Fokker et al., 2016; Gazolla et al., 2021), weather predictions (Navon, 153 

2009; Thépaut, 2003) and oceanographic simulations (Carton and Giese 2008; Ghil and 154 

Malanotte-Rizzoli, 1991), but for interpreting shallow causes of subsidence this method has not 155 

yet been applied widely. Peduto et al. (2017; 2020) presented examples of shallow subsidence 156 

studies that apply a form of data assimilation to a geotechnical problem. Their studies show the 157 

benefit of combining multiple datasets. Li et al. (2017) applied data assimilation with an 158 

Ensemble Kalman Filter and showed the strength of data assimilation procedures, although they 159 

did not emphasize the subsidence models in their study.  160 

 161 

Data assimilation procedures have also been applied in studies on polders in the Netherlands 162 

(Fokker et al., 2019; Muntendam-Bos et al., 2009). Fokker et al., 2019 used Ensemble 163 

Smoothing with Multiple Data Assimilation (ES-MDA) for ten distinct locations in the South 164 

Flevoland polder with a few dozens of timesteps over a period from reclamation until recent, 165 

combined with coring for lithological data and phreatic groundwater level measurements. They 166 

focused on the agricultural areas of the South Flevoland polder, over a longer timescale with a 167 

small number of locations. Therefore, their results are not directly applicable to the subsidence in 168 

the urbanized areas of the South Flevoland polder, where the urbanization might have had 169 

inhibitory effect on shrinkage and layers might have undergone more severe compaction in the 170 

past. Additionally, corings of individual locations were used in Fokker et al., 2019, whilst in this 171 

study we introduce an automated procedure including a lithological and groundwater model, 172 

making it possible to apply this methodology to larger areas.  173 

 174 

We here aimed to quantify the subsidence processes within urbanized areas of the South 175 

Flevoland polder in relation to phreatic groundwater level changes and to showcase the added 176 

value of combining large observational data sets with numerical models to improve parameter 177 

estimations for shallow subsidence processes. We deployed data assimilation on a dataset 178 

comprising thousands of locations with hundreds of timesteps derived from satellite 179 

observations, high-resolution 3D models of subsurface lithology and groundwater to quantify the 180 

contribution of the different shallow subsidence processes. We studied multiple subsidence 181 

processes at the same time to understand the full impact of subsidence and to identify the relative 182 

contributions of the different processes. Such information is critical for policymakers and spatial 183 

planners to design strategies to mitigate subsidence in the South Flevoland polder. 184 

 185 

1.2 Study area 186 

The South Flevoland polder is situated in the central Netherlands in the partly reclaimed Lake 187 

IJssel (Fig. 1). The Holocene sequence of the polder is underlain by several hundreds of meters 188 

thick Pleistocene sediments, consisting of a complex of alternating sandy to clayey marine, 189 

fluvial, and (peri-)glacial deposits (Menke et al., 1999; Peeters et al., 2015; TNO, 2022). The 190 

uppermost Pleistocene unit consists of a several meters thick aeolian sand bed, which grades 191 

from ca. -5 to -12 m below NAP (i.e. the Dutch ordinance datum, approximately corresponding 192 

to the mean sea level) in northwestern direction, locally incised by the Eem brook paleo-valley or 193 

elevated by dune formation (Fig. 1). 194 

 195 

During the Holocene, the South Flevoland Polder became part of the landward margin of a 196 

coastal plain. The base of the Holocene sequence consists of a basal peat bed, formed between 197 
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6000- and 7000-year BP under influence of inland groundwater level rise in tandem with post-198 

glacial sea-level changes (Koster et al., 2017; Makaske et al., 2003). These peatlands drowned 199 

and transformed into an open tidal basin under the influence of continuous sea-level rise (Vos, 200 

2015). The tidal basin deposits consist of alternating sand-clay beds, with local erosion of the 201 

underlying basal peat. When around 5500-year BP eustatic sea-level rise decreased, the open 202 

tidal basin was closed off by the formation of a beach-barrier, transforming the area into a 203 

freshwater swamp with large-scale peat formation (Beets and Van der Spek, 2000; Makaske et 204 

al., 2003). In parallel, the area remained connected in the west to the North-Sea by several 205 

smaller tidal inlets, making the Eem brook part of a branched network of freshwater tidal 206 

channels (Vos, 2015). The peatland itself was characterized by a series of open lakes (Menke et 207 

al., 1999). From the north, this lake system was connected to the Waddensea. When the 208 

peatlands deteriorated as a combination of natural and anthropogenic causes, the open sea 209 

connection in the north expanded southwards, thereby gradually drowning the peatlands and 210 

turning the area into a partly enclosed inland sea (Van den Biggelaar et al., 2014). The inland sea 211 

was dammed off and became Lake IJssel in 1932, to protect the surrounding areas against 212 

flooding. After the damming several parts of the newly formed lake were reclaimed from 1939 213 

onwards. The South Flevoland polder is the final area that was reclaimed.  214 

 215 

Almere is a large urban conglomerate in the polder of South Flevoland (Fig. 1), with a 216 

population of ca. 200,000. Almere was founded in 1976, approximately eight years after 217 

reclamation to account for the first years of subsidence, for which it was predicted to be the 218 

highest (up to 70 centimeters in total) (Hoeksma, 2007). Almere has been partly built on top of 219 

the paleo-valley of the Eem brook system, which incised several meters into underlying deposits 220 

of Pleistocene age. Therefore, the thickness of the Holocene sequence underneath Almere 221 

strongly varies, with thicknesses between <1 and 10 meter. The thickest sequence can be found 222 

over the course of the former Eem brook system. Generally, basal peat in the Netherlands, like 223 

underneath Almere, has undergone substantial compression by the overburden, and consequently 224 

has mechanical characteristics that deviate from the younger peat beds (Koster, De Lange et al., 225 

2018). Due to sea-ingressions that drowned the peatlands, the paleo-valley infill on top of the 226 

basal peat consists of marine clay with sandy infills overlain by organic clay, gyttja and peat, 227 

interfingered with some sand (Menke et al, 1999). 228 

 229 

Subsidence was expected after reclamation (De Glopper, 1969), therefore, regular monitoring 230 

campaigns were conducted, including regular levelling measurements, corings, and soil sampling 231 

(De Glopper, 1984; Van Dooremolen et al., 1996). Within 25 years, the a priori expected 232 

subsidence for the South Flevoland polder was exceeded, in some places by 0.5 m (Van 233 

Dooremolen et al., 1996), resulting in complications for the drainage of the area. Most buildings 234 

have a concrete pile foundation in sandy, less compressible layers of Pleistocene age, and 235 

consequently do not subside in parallel with the overlying Holocene sequence. On the contrary, 236 

public structures, such as (local) roads, squares, sport fields and playgrounds are often lacking a 237 

pile foundation and are constructed immediately on top of the Holocene sequence. The 238 

consequential differential subsidence between structures with and without a concrete pile 239 

foundation inflicts stress on pipeline structures, belowground electrical and network cables, and 240 

the connection from buildings to the roads in general, potentially causing damage. Currently, the 241 
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city of Almere, lying ~4 meters below NAP, must deal with damage to buildings and 242 

infrastructure because of the ongoing differential subsidence (Lambert et al., 2016). 243 

Figure 1 a: Map of the Netherlands showing all the areas that accommodate polders (adjusted from Steenbergen et 244 

al., 2009). b: Map of the area of Almere and its surroundings projected on a map showing the thickness of the 245 

Holocene sequence (TNO, 2022). The thickness decreases towards the south-east. The incised course of the Eem 246 

River, in the northeast of the city Almere is reflected by an increased Holocene thickness. The map is plotted on the 247 

Rijksdriehoek coordinate system. The green dots indicate the locations of the data points included in this study. The 248 

locations of the graphs of Figure 5a-5d are denoted.                  249 

2 Materials and Methods 250 

We used a data assimilation procedure combining the use of InSAR data with 3D lithological 251 

and phreatic groundwater level models. Figure 2 depicts the complete workflow, with the 252 

different colors indicating the different steps. In green, three classes of input data are displayed: 253 

(1) data in the form of previously developed geological and groundwater level models 254 

(paragraph 2.1.3 and 2.1.4.), (2) estimates of input parameters necessary for the forward model, 255 

based on a literature search (paragraphs 2.2), and (3) satellite data for actual surface movement 256 

estimates (paragraph 2.1.1).  257 

 258 

We defined three steps of the subsidence estimation algorithm: 259 

1. The preprocessing the InSAR data to filter the appropriate measurements points 260 

from the full data set (paragraph 2.1). 261 

2. The forward model in which we calculated subsidence for all locations and 262 

timesteps in this study (paragraph 2.2). 263 

3. The data assimilation step, where the subsidence measurements derived from 264 

InSAR were combined with the forward model, to optimize the forward model by 265 

changing the input parameters (paragraphs 2.3).  266 

 267 

Lastly, the output of our analysis is defined into two classes; (1) refined estimated parameters. 268 

As a result of the data assimilation approach, refined estimated parameters are the optimized 269 



manuscript submitted to Journal of Geophyiscal Research – Earth Surface 

 

values for the input parameters, and (2) a subsidence prediction. The outcome of the forward 270 

model is a subsidence prediction for all the locations and timesteps.  271 

 272 

Figure 2: Workflow of the different steps of the methodology divided into: input, working space and output. The 273 

steps of the workflow are explained in corresponding sections. The parameters of the physical models that estimate 274 

subsidence are optimized towards measured relative subsidence from satellite data, with the use of a groundwater 275 

model and a lithological model (GeoTOP). InSAR points measured on top of unfounded objects are separated by a 276 

data selection process (Fig. 3). A prior estimate of the parameters part of the forward model is initially made, 277 

whereafter the forward model and optimization with data assimilation is repeated multiple times. The image of 278 

lithological grid model is adjusted from Van der Meulen et al. (2007). 279 

2.1 Input data 280 

2.1.1 InSAR data 281 

The InSAR data consists of Sentinel-1 images for one ascending and one descending track, 282 

ranging over the period March 2015 until June 2020 and November 2015 until June 2020 283 

respectively. The sampling interval of the data points varies temporarily by the availability of the 284 

6- or 12-days repeat pass (Wegmüller et al., 2015). One of the key issues of InSAR data is loss of 285 

signal coherence, both in space and time. Spatial decorrelation is caused by changes in the 286 

acquisition baseline, resulting in a different phase between two images and causing phase 287 

wrapping errors that reduce the coherence. This implies that spatially decorrelated data is less 288 
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suitable for subsidence research. Temporal decorrelation is caused by atmospheric variability and 289 

changes in the physical and geometric properties of the scatter points, e.g. due to seasonal 290 

changes in vegetation which result in landcover changes (Ferretti et al, 2007; Hanssen, 2001). As 291 

a result, vegetation-rich areas are suboptimal for the analysis of subsidence by satellite imaging 292 

(Conroy et al., 2022). Therefore, the focus of this study is on man-made structures, because these 293 

scatter points face less decorrelation issues. 294 

 295 

The ascending and descending tracks were processed and analyzed separately. This yielded two 296 

results of subsidence estimations and associated fits, which were compared for an additional 297 

quality check of the workflow. The line-of-sight movement was projected in the vertical 298 

direction with the use of the incident angle as part of the processing. We assume no significant 299 

horizontal displacements, because of the shallow character of the cause of subsidence.  300 

2.1.2 InSAR processing by TSNE-HDBSCAN 301 

InSAR locations were selected based on two main criteria, forming the first step in the point-302 

selection procedure of Figure 3. We selected PS-InSAR points in the built-up area of Almere 303 

without a pile foundation. Buildings in the area typically have a pile foundation reaching depths 304 

of ca. –7 to  –20 m with respect to NAP, i.e. piles driven in Pleistocene sand beds with load 305 

bearing capacity (Spikker, 2010). Consequently, buildings with a pile foundation are less suitable 306 

to reflect subsidence processes that happen within the Holocene sequence. We therefore focused 307 

on large reflective objects (~>10 reflection points) without pile foundations. These objects range 308 

from large parking lots around shopping centers and business parks, to playgrounds, concrete 309 

sport fields, and artificial grass turfs. 310 

 311 

The next selection criterium was that the structures without foundations had been built at least 10 312 

years before the first InSAR acquisition dates. Therefore, only objects constructed before the 313 

year 2005 were considered. This choice was made to reduce the effect of consolidation due to 314 

construction of the objects without foundations on the subsidence signal. Because no register 315 

exists for the construction date of parking lots, playgrounds and sport fields, the year of 316 

construction of the associated buildings was used. The construction year of all buildings in the 317 

Netherlands are registered in ‘Basisregistratie Adressen en Gebouwen’ (BAG) (Kadaster, 2022), 318 

which was used to verify the construction year of objects in the selected areas. 319 

 320 

Reflection points on top of structures without a pile foundation that meet above stated criteria 321 

were isolated from the ones on top of structures with a pile foundation using a statistical 322 

visualization method. Firstly, data points were separated with time Distributed Stochastic 323 

Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008), subsequently data points 324 

were appointed to a cluster using HDBSCAN (Campello et al., 2014). This two-steps approach 325 

based on unsupervised machine learning enables isolating time series that measure the same 326 

processes. In the case of Almere, no significant subsidence below the level of the pile 327 

foundations was expected. Hence, objects with a pile foundation should show negligible 328 

subsidence, whilst other nearby objects without a foundation were expected to show subsidence. 329 

This would result in differently behaving timeseries for points measured on top of objects with 330 

and without a pile foundation. This step formed the second step in the point selection procedure 331 

of figure 3 332 

 333 
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The practice of dimensionality reduction followed by clustering is common for large input data 334 

and has been applied to SAR datasets (Van de Kerkhof et al., 2020), and for a wide range of 335 

other date types (Fernández Llamas et al., 2019; Harrison et al. 2019; Kahloot and Ekler, 2019). 336 

T-SNE is a dimensionality reduction method that can group similarly behaving timeseries of 337 

height measurements of the different reflection points (Van der Maaten and Hinton, 2008). For 338 

the present study, clustering was conducted with Hierarchical Density-Based Spatial Clustering 339 

of Applications with Noise (HDBSCAN). HDBSCAN provides significant clusters, where the 340 

clusters can vary in density threshold. The method maximizes the stability of the selected 341 

clusters by calculating the optimal solution (Campello et al., 2014).  342 

 343 

To ensure that the selected clusters represent the time series of measurements on top of objects 344 

without a pile foundation, the clusters were verified by checking the time series of all the clusters 345 

and their location in a geographic information system. This is the third procedure of Figure 3. 346 

 347 

The last step in Figure 3 entails the optimization of the selected InSAR points for the subsidence 348 

optimization procedure. InSAR data points in a single lithological grid cell (see section 2.2. 349 

about lithological modelling) were averaged. Reducing the number of points by averaging 350 

reduces the computational time, whilst still incorporating the uncertainty for the InSAR data for 351 

each grid cell. The variance of this average was added to the chosen standard deviation squared 352 

of 0.01 m2, to ensure that the uncertainty of variance in the subsidence measurements was 353 

incorporated. A 0.01 m2 standard deviation for each epoch aims to capture both the uncertainty 354 

in the model and measuring space, as the true standard deviation is unknown. To prevent a 355 

disproportionate weight of the first measurement in time, an average of the first ten 356 

measurements in time was taken as the first time step in our post-processing timeseries data. 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 
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Figure 3: Workflow for selecting InSAR points. Firstly, areas with a significant amount of data points, potentially on 380 

top of structure without a pile foundation are selected. With the BAG register (Kadaster, 2022), the construction date 381 

of the area is verified. The image shows the construction years of the buildings in the example area (image adjusted 382 

from Spaan, 2015)..  The remaining areas follow dimensionality reduction by T-SNE, followed by a clustering 383 

method HDBSCAN. At the second processing step, the average yearly subsidence rate of the selected InSAR points 384 

of the sample area are shown on the left. On the right, the result of the T-SNE dimension reduction is plotted, where 385 

the colors refer to the clusters each point is assigned to. The number of dimensions of the initial data set is equal to 386 

the number of locations. Thirdly, the clusters are visualized as scatter points for each time step and in a geographic 387 

information system, to verify the clusters and select the cluster representing the scatter points on top of unfounded 388 

man-made structures. The clusters from the second time step, in their corresponding colors are plotted spatially on 389 

the left image and over time on the right. Lastly, for each grid cell corresponding to the lithological and groundwater 390 

model, an average of the selected InSAR points within the cell is taken This is depicted in the graph belonging to the 391 

last processing step, where the thick black line represents the average of the InSAR timeseries falling into the grid 392 

cell. To not give a disproportionate high weight to the first measurement of the InSAR series, an average has been 393 

taken of the first 10 timesteps, which forms the first timestep in our post processing time series.  394 
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2.1.3 Lithoclass model 395 

A previously released 3D lithoclasses (classes of different grainsize compositions) voxel model 396 

for the province of Flevoland that covers the entire study area was used as input for numerical 397 

modeling (Fig. 4b) (Gunnink, 2021). The model was initially developed for high-resolution 398 

hydraulic resistance modelling for groundwater flows within the Holocene sequence and had 399 

been constructed based on 31.000 digitalized borehole logs and 4250 Cone Penetration Tests that 400 

had been derived from the freely accessible online data portal of the Geological Survey of the 401 

Netherlands (TNO-GSN, 2022). The boreholes are sufficiently distributed throughout the 402 

province of Flevoland, whereas the Cone Penetration Test are primarily clustered in urbanized 403 

areas and along infrastructural elements.  404 

 405 

The 3D model had been created by interpolation via spatial kriging, following a similar 406 

procedure as explained in Van der Meulen et al. (2013). The voxel x,y,z dimensions are 407 

100x100x0.5 meter and the model ranges from the surface to the top of geological units of 408 

Pleistocene age, thereby encompassing the entire Holocene sequence. The different lithoclasses 409 

(sand, sandy clay, clay, peat, and basal peat – the latter being in a more compressed state than 410 

peat) are described with their probability of occurrence for each voxel, based on 100 realizations 411 

of the interpolation. The highest probability was taken as the truth scenario for this study.  412 

2.1.4  Groundwater model 413 

Changes in groundwater heads form an important explanatory variable for shallow sources of 414 

subsidence. Therefore, time series of this data are needed all over the study area. Unfortunately, 415 

this was only sparsely available at locations with observation wells. Therefore, a model was 416 

developed to estimate the required time series (TNO-GSN, 2022; Zaadnoordijk et al., 2018): 417 

monthly phreatic water level values for grid cells of x,y 100x100 meter (Fig. 4a) from the year 418 

2000 until 2020. The applied method was an interpolation in two steps. The first step was an 419 

interpolation of the groundwater heads within the time series to obtain for all well locations an 420 

observation on the same day (28th) of each month. This yielded interpolated heads including 421 

variances. The second step comprised a spatial (kriging) interpolation, applying a sequential 422 

Gaussian simulation (Deutsch and Journel, 1998, p.170), which yielded for each month a map of 423 

the interpolated heads. Since the observation wells were sparse, their observed heads could not 424 

fully describe the spatial variation in the groundwater heads. Therefore, a trend surface was used 425 

with a spatial interpolation performed on the residuals (observation minus trend surface). To 426 

honor the seasonal fluctuation of the groundwater heads, each month had a separate trend 427 

surface. Herewith, one hundred equiprobable interpolations of phreatic groundwater levels for 428 

each month were created. We used the average of the 100 realizations as the truth scenario for 429 

the phreatic surface model in space and time. 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 
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Figure 4: Left: Map of the South Flevoland polder lithologies according to GeoTOP at 5 meters below NAP. Right: 440 

Map of phreatic surface level in the South Flevoland polder in January 2015. The scale is in cm with respect to 441 

NAP. The polder itself lies ~400 cm below NAP (Dutch ordinance level ~ sea level).  The areas that lie at NAP are 442 

the lake IJssel area and in the left bottom the Dutch mainland.  443 

2.2 Forward model 444 

The different shallow subsidence processes initiated by human-induced phreatic groundwater 445 

level lowering in the South Flevoland polder are described in forward models. These forward 446 

models include physical relations that describe the subsidence processes and thereby, with an 447 

estimate of the parameters, provide an estimate of the subsidence. The groundwater and 448 

lithoclass models are used to describe which lithology is present and to what depth the sediments 449 

are saturated. Previous studies identified oxidation of peat, shrinkage of clay, and compression of 450 

clay and peat as the main subsidence processes in the area (De Lange et al., 2012; Fokker et al., 451 

2019; Lambert et al, 2016; Van Dooremolen et al., 1996).  452 

 453 

Fokker et al. (2019), described a subsidence model with a relation between shrinkage and 454 

equivalent age using linear-strain fits and time series of land levelling subsidence observations in 455 

the South Flevoland polder from 1967 to 2012. They used an exponential relation of clay 456 

shrinkage processes to fit the model to the data. Furthermore, they described that well-457 

established compression functions of consolidation and creep (Den Haan, 1996; Visschendijk 458 

and Trompille, 2009) did not fit with the observed subsidence trend. Given the results of the 459 

study of Fokker et al. (2019), subsidence by compression was expected to be negligible in 460 

comparison to the processes of shrinkage and oxidation for the timing after reclamation and due 461 

to the length of our study period. We have therefore not modelled compression as a separate 462 

process in this study. Note also here that compression by the overburden weight of building 463 

material was assumed to have a negligible effect on the selected InSAR time series, because all 464 
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the locations included in this study have undergone settlement due to loading by construction for 465 

minimal >10 years (cf. CUR, 1992). 466 

2.2.1 Oxidation model 467 

The applied equation for the oxidation model is widely applied to describe peat oxidation in the 468 

Netherlands (Fokker et al., 2019; Koster, Stafleu and Stouthamer, 2018; Van den Akker, 2008; 469 

Van Hardeveld et al., 2017; Van der Meulen et al., 2007). It provides a relative annual oxidation 470 

rate for peat above the phreatic groundwater level. Since only organic matter oxidizes, admixed 471 

sediments remain, albeit on average 3 to 4 % of the total volume (Koster, Stafleu and 472 

Stouthamer, 2018). Hence, a residual thickness is considered.  473 

 474 

Firstly, for a unit above the phreatic groundwater level the part susceptible to oxidation needs to 475 

be determined.  476 

ℎ𝑜𝑥,0 = ℎ𝑜𝑥(𝑡 = 0) = (1 − 𝑅𝑜𝑥)ℎ0 (1)  477 

If part of a unit has already been reduced, we have ℎ𝑜𝑥(𝑡) = ℎ(𝑡) −  𝑅𝑟,𝑜𝑥ℎ0. The original 478 

thickness of the unit is unknown, since collection of the data used in this study started ~50 years 479 

after reclamation. Hence, we simply assumed ℎ equals ℎ0 at t=0. This results in a higher residual 480 

height than for completely virgin soil, as the original units are (partly) reduced in thickness 481 

already. The oxidation rate can be calculated as follows: 482 

𝑑ℎ

𝑑𝑡
=

𝑑ℎ𝑜𝑥

𝑑𝑡
=  −𝑉𝑜𝑥 ℎ𝑜𝑥 (2) 483 

Over time 𝛥𝑡 the thickness reduction of a layer can be written as: 484 

𝛥ℎ =  ℎ𝑜𝑥(𝑡) − ℎ𝑜𝑥(𝑡 +  𝛥𝑡) = (1 − 𝑒−𝑉𝑜𝑥𝛥𝑡) ∙  ℎ𝑜𝑥(𝑡)

= (1 − 𝑒−𝑉𝑜𝑥𝛥𝑡) ∙ (ℎ(𝑡) − 𝑅𝑜𝑥ℎ0) (3)
 485 

Incorporating units that are partly aerated, the part susceptible of oxidation is corrected for the 486 

wet part of the voxel:    487 

𝛥ℎ𝑜𝑥 = (1 −  𝑒−𝑉𝑜𝑥𝛥𝑡)(ℎ(𝑡) −  ℎ𝑤𝑒𝑡 − 𝑅𝑜𝑥 [ℎ0 − ℎ𝑤𝑒𝑡]) (4) 488 

In which 𝑉𝑜𝑥  is the shrinkage rate and 𝑅𝑜𝑥 the residual height. 489 

2.2.2 Shrinkage model 490 

Time-dependent shrinkage models have not been documented for the Netherlands yet. Typically, 491 

shrinkage is expressed as a function of clay mineral content, organic matter, and calcareous 492 

admixture (e.g. Barciela Rial, 2019; De Glopper, 1969). To overcome this, Fokker et al. (2019) 493 

designed a simple shrinkage relation, inspired by Equation 4, which enabled good matches 494 

between the subsidence model and the observed subsidence. This relation assumes that the 495 

shrinkage rate is proportional to the volume sensitive to shrinkage. A lithology-dependent 496 

residual height was assumed to indicate an asymptotic value to which the shrinkage can lead.  497 

 498 

The process of clay swelling has been ignored in this study. Furthermore, seasonal swelling 499 

effects of clay by a relative increase in precipitation during autumn and winter were not observed 500 

in the InSAR data. Most likely, if present, a swelling capacity is suppressed in the urbanized area 501 
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by structure overburden. In general, the South Flevoland polder is subjected to net groundwater 502 

level lowering; this is reflected in net subsidence, visible as a decreasing trend without a large 503 

swelling effect in the InSAR data. Furthermore, previous studies reported that the clay beds in 504 

our study area have a relatively high irreversible character regarding shrinkage (Bronswijk et al., 505 

1990; Kim et al., 1993).  506 

 507 

The equation for shrinkage (Eq. 5): 508 

Δℎ𝑠ℎ = (1 − 𝑒−𝑉𝑠ℎ𝛥𝑡)(ℎ(𝑡) −  ℎ𝑤𝑒𝑡 − 𝑅𝑠ℎ  [ℎ0 −  ℎ𝑤𝑒𝑡]) (5) 509 

In which 𝑉𝑠ℎ  is the shrinkage rate and 𝑅𝑠ℎ the residual height.   510 

2.2.3 The prior estimated parameters 511 

The parameters aimed to optimize are the shrinkage and oxidation rate and their respective 512 

residual heights (see first column of table 2). The prior estimated values take into account the 513 

results of Fokker et al., (2019). The rates were lowered, because a significant amount of time 514 

(~50 years) has passed since reclamation (and the start of the study of Fokker et al., 2019), 515 

decreasing the void ratio of deposits and increasing the stiffness. Additionally, there is a potential 516 

inhibitory effect of shrinkage and oxidation rate in the urbanized area, compared to the 517 

agricultural area of Fokker et al. (2019). 518 

 519 

The rates of shrinkage and oxidation are closely related to the associated residual heights. Due to 520 

the brief period of the surface elevation data (~4-5 years), the exponential relation between 521 

relative residual height and reduction (shrinkage or oxidation) rate cannot be established 522 

absolutely: an increase in subsidence rates can have the same effect on total subsidence as a 523 

reduction in residual height. As a result, the contribution of relative residual height and reduction 524 

cannot be distinguished. If one of the two parameters increases, the other should increase as well, 525 

to reach the same value for total subsidence. From Equations 1 and 2 we can derive: 526 

𝑑ℎ

𝑑𝑡
=  ℎ0𝑣  (1 − 𝑅)ℯ−𝑣𝑡 (6) 527 

Therefore, if a certain height reduction rate is acting it can be the result of different combinations 528 

of 𝑣 and 𝑅, as long as the right-hand side of Eq. (10) gives the same number. The exponential in 529 

this equation can be neglected because the compaction (order of mm) is very small with respect 530 

to the layer thickness (order of m). Different combinations with the same value of 𝐶 = 𝑣(1 − 𝑅), 531 

or 𝑅 = 1 −
𝐶

𝑣
 therefore, give equally good fits, with no time dependence in the expression. This 532 

equation was hence fitted to the posterior result of the residual height and rate of oxidation and 533 

shrinkage for the different lithologies, utilizing an automated least squares polynomial fit.  534 

2.3 ES-MDA 535 

Parameters have been estimated with Ensemble Smoother with Multiple Data Assimilation (ES-536 

MDA) (Emerick and Reynolds, 2016; Evensen et al., 2022). Earlier accounts for the method to 537 

estimate parameters for shallow subsidence can be found in Fokker et al. (2019); the method has 538 

also been applied to estimate the parameters for deep subsidence processes (gas production) (e.g. 539 

Fokker et al., 2016; Gazolla et al., 2021).  540 

 541 

An ensemble refers to a collection of members that are the result of a Monte Carlo analysis. 542 

Members are single realizations of the model with specific values for the different parameters. 543 

ES-MDA is thus based on a parameter description of the properties that describe the physical 544 
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processes in the subsurface. A forward model takes the parameters and calculates the subsidence 545 

in space and time for each member of the ensemble. The ES-MDA algorithm minimizes the 546 

mismatch between the measured data and the estimated subsidence values by changing the 547 

parameters of the ensemble members in an organized manner. The multiple data assimilation 548 

notion of ES-MDA indicates that the assimilation process is repeated several times. The newly 549 

estimated parameters are taken to create a new ensemble of members, with each step increasing 550 

the confidence in the parameters. 551 

 552 

ES-MDA can be mathematically described as follows. The parameters collected form the vector 553 

m. The subsidence data is put into a vector d, this vector has the length of the number of data 554 

points in the area multiplied by the time steps taken at each location. Operation of the forward 555 

model is indicated by G(m); it calculates the subsidence as a function of time for each individual 556 

location, based on the parameters in m. We want to estimate the vector m for which G(m) has 557 

the smallest misfit with the data d. To do so, for a single member, as set of prior parameters is 558 

created (m0), with covariance in a matrix Cm. Another covariance matrix is created for the data 559 

(Cd). Following Tarantola (2005), the least square solution is acquired by maximizing J in the 560 

following function: 561 

𝐽 = exp (−
1

2
[𝒎 − 𝒎𝟎]𝑇 𝑪𝑚

−1 [𝒎 −  𝒎𝟎] −  
1

2
 [𝒅 − 𝑮(𝒎)]𝑇𝑪𝑑

−1[𝒅 − 𝑮(𝒎)]) (7) 562 

In the ensemble procedure, the values of the members are derived from a prior estimate with a 563 

standard deviation of the parameters. An ensemble consists of Ne vectors of m; M = (m1, m2, 564 

…,mNe). Similarly, an ensemble of data vectors is created by adding random noise to the data 565 

following the uncertainty of the data points: D = (d1, d2, …,dNe). 566 

 567 

To solve the least square solution for the entire ensemble at once, GM replaces G(m) in equation 568 

5. GM is the result of the parameters of all ensemble members operating in the forward model 569 

and is the collection of realizations of surface elevations through time. GM’ is defined as the 570 

difference between GM and the average of GM. M’ is the difference with the prior mean for 571 

each ensemble member: M’ = M – m0. The covariance matrix is defined as: Cm = M’M’T/(Ne-1). 572 

The new set of parameters for the ensemble is given by: 573 

 574 

�̂� = 𝑴 + 𝑴′[𝑮𝑴′]𝑇(𝑮𝑴′[𝑮𝑴′]𝑇 + (𝑁𝑒 − 1)𝑪𝑑)−1(𝑫 − 𝑮𝑴) 575 

                  = 𝑴 + 𝑴′([𝑮𝑴′]𝑇𝑪𝑑
−1𝑮𝑴′ + (𝑁𝑒 − 1)𝐈)

−1
[𝑮𝑴′]𝑇𝑪𝑑

−1(𝑫 − 𝑮𝑴) (8) 576 

Depending on the number of parameters versus number of data points one of the two equivalent 577 

expressions might be more appropriate to use. �̂� is the estimated ensemble of parameters. 578 

 579 

The ensemble smoother technique with a new estimate of parameters can be applied repetitively 580 

to obtain a better estimate of parameters in the case of non-linear forward models (Emerick and 581 

Reynolds, 2013). The set of parameters is updated with each subsequent step. The data remains 582 

the same over the entire procedure. To compensate for the effect of multiple applications with 583 

the same data, the covariance of the data is increased with each step of the optimization. This is 584 

done with a factor 𝛼𝑖, where the following condition is met: ∑
1

𝛼𝑖

𝑛𝐼
𝑖=1 = 1. 𝑛𝐼 is the number of 585 

assimilation steps (Fokker et al., 2019). We used a factor 𝛼𝑖   that decreases every step with a 586 

factor q to ensure increasing influence of subsequent assimilations.  587 

 588 

𝛼𝑖 =  𝛼0 ∙  𝑞𝑖 (9) 589 
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With 𝑖 being the assimilation step. The above summation condition is met with:  590 

𝛼0 =
1 −  𝑞𝑛𝐼

𝑞𝑛𝐼−1 −  𝑞𝑛𝐼
(10) 591 

To verify the results and determine the actual improvement of the parameter estimation 592 

procedure, a test function is applied, considering the covariance of the data and the estimate 593 

parameters after the last assimilation step: 594 

𝜒2 = (𝑮�̂� − 𝒅)
𝑇

(𝑪𝑑 + 𝑪𝑮�̂�)−1 ( 𝑮�̂� − 𝒅) (11) 595 

The outcome of this equation should be around the degree of freedom (Nd), so that 
𝜒2

𝑁𝑑
≈ 1. 596 

The parameters for this study are summarized in table 1. The number of grid cells equals the 597 

number of lithological and groundwater voxel cells the InSAR data points cover. In the result 598 

section, we present key examples of individual voxel cell locations, the values of the optimized 599 

parameters and correlations between different parameters. 600 

 601 

Table 1: Parameters for the data assimilation procedure of this study. 602 

Number of ensemble members (-) 200 

Number of assimilations (-) 4 

q (-) 0.666667 

Covariance data (m) 0.01  

Number of InSAR data points (-) 3747 (descending), 2846 (ascending) 

Number of voxel locations (-) 199 (descending), 158 (ascending) 

Number of points in time (-) 208 (descending), 212 (ascending) 

Number of model parameters 6 

 603 

3 Results 604 

Our ES-MDA based workflow yielded 357 individual scatter point locations. To provide a 605 

representative summary of the results on point location scale, we present 4 key examples below 606 

(Fig. 5). Additionally, we present four key indicators for parameter covariance (Fig. 6), values 607 

for the estimated parameters (Table 1), and the average contribution to subsidence for clay and 608 

peat (Table 2). The estimated parameters consist of the four model parameters for the shrinkage 609 

of clay (shrinkage rate and relative residual thickness for clay and sandy clay), and two model 610 

parameters for oxidation (oxidation velocity and relative residual thickness of peat). 611 

 612 

The four key examples of the results of the simultaneous assimilation are presented in Figure 5. 613 

The time series of the prior ensemble is not indicated in Figure 5. Because they have a high 614 

variance, they would not fit into the scale of the figure. The red time series in Figure 5 are the 615 

200 modelled surface movement developments for the ensemble of assimilated parameters. The 616 

black dots are the InSAR data points, and the grey area represents the uncertainty given to each 617 

data point, as described in section 2.1. On the right y-axis in the same plot the phreatic 618 

groundwater level variation is plotted. The lithological column and the location of the column 619 

with respect to the phreatic groundwater level is indicated on the right of the plot. The time series 620 

and the estimated subsidence correspond well, regardless of lithology, except for Figure 5a. The 621 

prior and estimated parameters are presented in Table 2.  622 

 623 
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Table 2 provides the estimates prior and posterior to the data assimilation with their standard 624 

deviation. Results are given for the descending and ascending satellite tracks separately. The two 625 

tracks provide comparable estimated parameters as a result of the data assimilation. A few of the 626 

parameters are plotted against each other in Figure 6. For each assimilation step, the 200 627 

estimates of the parameters are plotted against each other. The figure indicates the ensemble 628 

spread in the prior estimates and the operation of the smoother by molding the cloud of 629 

parameter values. A clear relationship between different parameters evolves, along the lines of 630 

the argument in the previous paragraph: different combinations of the shrinkage and oxidation 631 

rate and the associated residual height give identical outcomes, as long as they follow the 632 

relationship 𝑅 = 1 −
𝐶

𝑣
. The final ensembles have been fitted to this relationship, as indicated 633 

with the dotted black line. The resulting constant C is given in the figure description.  634 

 635 

In summary, Table 3 provides the overview of the average contribution to subsidence in mm for 636 

the different lithologies for both the ascending and descending satellite tracks. 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 
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Figure 5: Comparison of surface movements, groundwater levels and lithology for 4 example locations. All figures 659 

show the InSAR-derived surface movements (black points) on the scale of the left y-axis. The uncertainty around 660 

them is depicted in gray. It was determined as described in section 2.1. The red lines are the 200 ensemble members 661 

of the optimized fit after 4 assimilation steps, also on the scale of the left y-axis. The groundwater is the blue line 662 

and is with respect to the right y-axis. Next to the graph a stratigraphic column for that specific location is given, 663 

according to GeoTOP. The legend of the column is the same as for figure 4. All y-axes are in meters with respect to 664 

NAP. 665 

a: descending track, this location shows in increase in subsidence rate once the phreatic surface is below the sandy 666 

layers, which happens from spring 2018 onwards. b: ascending track. Shows the fit of subsidence, where the 667 

phreatic surface steadily drops under a seasonal trend. There was no significant increase in subsidence rate. d: 668 

descending track. Combination of subsidence due to peat and clay. Enhanced subsidence rate from spring/summer 669 

2018 onwards is clear. d: descending track. Seemingly linear subsidence, with a slight acceleration from 670 

spring/summer 2018 onwards.  671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 
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Table 1: The parameters that are optimized in this study for all the locations at the same time. The optimized fit of 679 

the ascending and descending track are result of separate data assimilation procedures, but the results are similar. 680 

The pre parameters were chosen based on the study of Fokker et al. (2019). The chi-squared error of the ascending 681 

track data set has been reduced from 5.2 (prior)  to 1.01 (posterior); for the descending track data set  it has been 682 

reduced from 3.6 (prior) is 3.6 to 0.77 (posterior). 683 

PARAMETER PRE POST (ASCENDING)  POST (DESCENDING) 

VSH CLAY 0.02 ± 0.005 0.017 ± 0.0012 0.018 ± 0.001 
RH CLAY 0.6 ± 0.05 0.79 ± 0.017 0.78 ± 0.019 
VSH SANDY CLAY 0.02 ± 0.005 0.017 ± 0.0015 0.018 ± 0.0016 
RH SANDY CLAY 0.6 ± 0.05 0.77 ± 0.02 0.77 ± 0.025 
VOX PEAT 0.01 ± 0.005 0.009 ± 0.003 0.02 ± 0.007 
RH PEAT 0.9 ± 0.05 0.89 ± 0.04 0.88 ± 0.04 

 684 

Figure 6: Several of the optimized parameters are plotted against each other for the pre-scenario (assimilation step 0) 685 

until the optimized result for the parameters (assimilation step 4) for the ascending satellite track. For all lithoclasses 686 

there is a strong correlation between the residual height (Rh) and the rate of subsidence (V). There is no clear 687 

correlation between the different lithoclasses, as indicated in figure 6d. For all the lithoclasses the relation of 688 

equation 12 is optimized for assimilation step 4, using an automated least squares polynomial fit. The constants for 689 

the line in figure a is C = v(1 − R) = 0.0038 yr−1; for b it is C = v(1 − R) = 0.0021 yr−1 and for c C =690 

v(1 − R) = 0.0040 yr−1.  691 
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Table 2: The average contribution of clay shrinkage versus peat 21oxidation for all the locations is provided below, in mm/year . 692 
Clay incorporates both clay and sandy clay lithoclasses from the GeoTOP model. 693 

 Ascending Descending 

Average contribution clay 
shrinkage (mm/year) 

5.7 ± 2.0 5.8 ± 2.3 

Average contribution peat 
oxidation (mm/year) 

0.07 ± 0.17 0.2 ± 0.42 

 694 

4. Discussion 695 

4.1 Future estimates and spatial pattern of subsidence 696 

This study has demonstrated the possibility to make reliable estimates of subsidence related to 697 

phreatic groundwater level changes and lithoclass layering. The study area was the urbanized 698 

Almere area of the reclaimed South Flevoland polder. For relatively short timescales, this 699 

enables making estimates of future subsidence, providing indications to drivers and hence tools 700 

for designing mitigation strategies. To provide information on expected future subsidence rates, 701 

four scenarios for the next five years were simulated. The first scenario was to continue the 702 

average rate of phreatic groundwater level change towards the future (red in figure 7b), the 703 

second scenario was to fix the level at the average height from April 2018 until the end of the 704 

research period (blue in Figure 7b) – no more lowering is allowed. The third scenario fixed the 705 

phreatic groundwater level at the average height of the phreatic surface for the research period 706 

until April 2018 (green in figure 7b): the phreatic level is brought back to higher values. The last 707 

scenario, finally, increased the water level even further by adding to the third scenario an extra 708 

20 centimeters. No seasonal trends were added to the scenarios, it is a mere indication of phreatic 709 

groundwater level elevation effects on subsidence until 2025.  710 

 711 

Figure 7a shows the spatial distribution of the total absolute increase in subsidence since the start 712 

of the study related to the different scenarios. The difference between a continuous decrease 713 

versus the average level of before March 2018 +0.2 m can be up to 2 centimeters in 5 years. The 714 

spatial plotting also makes apparent that most of the subsidence is expected in the southwest and 715 

northeast of the city of Almere. The area in the northeast part coincides with the course of the 716 

Eem paleovalley (Fig. 1), where the thickest Holocene sequence is present. Naturally, as this 717 

study does not provide a continuous image of subsidence, local alternating Holocene sequences 718 

are not accounted for. The spatial relation of subsidence with Holocene thickness or groundwater 719 

level is not a result straightforward relation, where clay thickness or groundwater level alone 720 

determines the subsidence rate. From our results, we see that not one single factor influences the 721 

spatial pattern of subsidence. This amplifies our need for subsidence modelling on the urban 722 

scale. 723 

 724 

Figure 7B provides predictions for one randomly chosen location, to give an idea of what 725 

subsidence looks like over time. The phreatic groundwater level is a key factor in the subsidence 726 

rates. From our analysis it follows that one meter drop in the phreatic surface will lead to one 727 

centimeter of additional subsidence in five years. This relationship can help in decisions 728 

concerning groundwater management, the single key factor of human influence on the 729 
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subsidence rate. The result of this study can be used to support science-based mitigation 730 

measures. 731 

Figure 7: Future estimates of subsidence. Figure 7a plots the expected subsidence since the start of the study for 732 

different scenarios of groundwater development. The scenarios range from largest to smallest drop in the phreatic 733 

surface, and hence largest to smallest expected subsidence. Locations are the same as in Figure 1. 7b shows the 734 

subsidence development of one individual location over time, from the start of the study period until 5 years after 735 

the end of the study period. The continuous lines show the phreatic surface, on the right y-axis, the dashed line 736 

shows the modelled subsidence, with height on the left y-axis In red the continuous decrease of subsidence is 737 
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modelled, in blue the average groundwater level from March 2018 until the end of the study period, the green line 738 

the average groundwater level of the study period until March 2018 and the black line is the green groundwater level 739 

plus 0.2 meters.  740 

4.2 Comparison to other subsidence regions 741 

The Flevoland Polder is unique in the Netherlands in the sense that subsidence is dominated by 742 

shrinkage of clay. Clay-shrinkage dominated subsidence is however observed in many other 743 

regions in the world. An example is the northern Nile Delta plain in Egypt, where Holocene clay 744 

related subsidence is enhanced by climate change that affects the Nile’s flow regime (Stanley 745 

and Clemente, 2014). There, subsidence ranges from 3.7-8.4 mm/year, which are comparable to 746 

the subsidence by clay derived in this study for the South-Flevoland polder. 747 

 748 

In and around Venice, Italy there is ongoing subsidence caused by compression of the natural 749 

lagoon (0.0-0.5 mm/year). More recently, there is human-induced subsidence (> 2.5 mm/year) 750 

due to groundwater withdrawals (Tosi et al., 2013). Parallels with the South Flevoland polder 751 

can be found in the reducing natural consolidation over time and significant subsidence induced 752 

by groundwater withdrawals. Both areas must deal with irreversible land lowering caused by 753 

groundwater withdrawals which are required to prevent the area from flooding.  754 

 755 

The same comparison can be made with the Vietnamese Mekong Delta, where groundwater 756 

lowering by withdrawals is the main driver of subsidence. The rates of groundwater withdrawal 757 

and subsidence are significantly higher in the Mekong Delta. Compaction rates are estimated at 758 

an average of 16 mm/year and total subsidence rates, including the subsidence as a result of 759 

groundwater withdrawal, can locally be up to 40 mm/year (Erban et al., 2014).   760 

 761 

Despite the differences between these areas in rates of subsidence and groundwater withdrawal, 762 

the common thread is that all areas are affected by groundwater lowering, either by climate 763 

change or anthropogenic causes. Understanding the importance of groundwater level changes to 764 

subsidence is therefore of major importance for all these coastal regions across the world. The 765 

method presented in this study, and the results in relation to clay behavior of the reclaimed land 766 

and the response to groundwater lowering can be of help to tackle this problem. 767 

4.3 Subsidence by drought 768 

In the results, a slight acceleration of subsidence around summer 2018 is visible. This 769 

acceleration is related to relative deep lowering of the phreatic groundwater level. At some 770 

locations, this acceleration is more profound than in others, as this is influenced by litholoclass 771 

and fluctuations of the phreatic levels as well. As shown in Figure 5, this relative low elevation 772 

of the phreatic groundwater level influences the processes responsible for subsidence. Namely, 773 

due to a lowered groundwater level, deep peat layers are temporarily aerated, resulting in 774 

oxidation and volumetric loss. Furthermore, a deeply lowered groundwater level can therefore 775 

instigate subsidence at locations that were previously not subsiding.  776 

 777 

These temporary deeply lowered phreatic groundwater levels are the results of climate change 778 

related drought events, such as the summers of 2018 and 2019 (Hari et al., 2020). Observed 779 

accelerated subsidence due to drought is new in the context of the Netherlands. Studies in other 780 

(Northwestern) European countries have recently linked drought to increased shrinkage in clay 781 
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and associated damage to the built environment (e.g. Charpentier et al., 2021; Gruslin et al., 782 

2022). With global warming resulting in more frequent droughts, establishing these relationships 783 

becomes increasingly more important.  784 

 785 

The results for the effects of drought in this study, however, must be viewed with care. As the 786 

number of groundwater datapoints decreases with time, the uncertainty increases. Our results are 787 

indicators of drought having an effect, but more extensive and consistent measuring of the 788 

phreatic surface is essential to assess groundwater related subsidence. Especially the effect of 789 

drought on the phreatic surface height is an important link for future scenarios of subsidence and 790 

mitigation strategies. 791 

4.4 Implications 792 

Current governmental attention in the Netherlands for shallow subsidence is predominantly 793 

focusing on peat oxidation (Van Nieuwenhuizen Wijbenga, 2019). Therefore, the current study 794 

fills a gap in the Netherlands knowledge base. Quantifying the process of clay-driven subsidence 795 

is important for optimal decision making regarding shallow subsidence in Almere. Additionally, 796 

showing that drought enhances subsidence rates is important for focusing future measures to 797 

mitigate subsidence, and connects the problem to climate change. Furthermore, phreatic surface 798 

lowering exposing deeper peat beds also increases carbon dioxide emissions by peat oxidation 799 

(e.g. Koster et al., 2020).  800 

 801 

This study would not have been possible without a structure of nation-wide freely available data 802 

on the construction of buildings, relative elevation measurements, geology, and groundwater. 803 

Still, more data will help to corroborate our findings. Investments in a network to monitor 804 

phreatic groundwater level changes and shallow extensometers able to measure volumetric loss 805 

within the Holocene sequence is critical herein (cf. Van Asselen et al., 2020). For improved 806 

processing of geodetic data, a network of corner reflectors is required to measure surface 807 

movement of the ground level (e.g. Yu et al., 2013). Such investments should be conducted in 808 

close collaboration with policy makers and spatial planners. 809 

4.5 A comparison of parameters with previous studies 810 

The South Flevoland polder is unique in the Netherlands with respect to the progressively 811 

increasing number of clay and peat beds that encounter contact with atmosphere for the first time 812 

since their formation. The estimated subsidence rates are therefore not directly comparable to 813 

other polder areas in the Netherlands that have been reclaimed centuries ago.  814 

 815 

Earlier studies on subsidence in the South Flevoland polder determined the rates of subsidence 816 

due to shrinkage after reclamation estimated based on a few measurements of non-urbanized 817 

locations across the South Flevoland polder (De Lange et al., 2012; De Lange, 2015; Fokker et 818 

al., 2019). The estimated subsidence in those regions was larger than what we have observed 819 

here in the urbanized areas. A reasonable explanation would be that construction has an 820 

inhibitory effect on the shrinkage of clay (and when applicable oxidation of organic material) 821 

(De Lange, 2015). This study focuses on an urbanized area to estimate the contribution of the 822 

different background subsidence processes in urbanized settings.  823 

 824 
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The residual height estimated by Fokker et al., 2019 lies between 0.50 and 0.67 for clay. 825 

However, as mentioned before, the start of modelling subsidence is ~50 years after reclamation 826 

in our study, whereas Fokker et al., 2019 start modelling from reclamation onwards, hence the 827 

layers still have their original thickness. The values found in this study are higher; ~0.78. Due to 828 

the length of the modelling period, only a relation between residual height and reduction rate 829 

could be established (Fig. 6). A higher residual height can be explained when layers already have 830 

partly undergone shrinkage before the start of the observations. Indeed, in our study, the 831 

reference is not at the start of exposure to air but a long time later in the compaction history. 832 

 833 

A good match between the estimated parameters and the InSAR time series was found for our 834 

spatiotemporal model of subsidence in the city of Almere, quantified with the calculated chi-835 

square error, whilst incorporating groundwater levels, lithology, and the physical models. In line 836 

with literature, the shrinkage rates of clay are larger than the oxidation rates of peat (Fokker et al, 837 

2019; Schothorst, 1982).  838 

 839 

The same value for uncertainty is currently attributed to each InSAR-derived data point in space 840 

and time.  There was no covariance matrix available for the dataset. Accurate covariance 841 

matrices could increase our ability to fit parameters and models to the data, by reducing the 842 

weight given to less reliable data points and incorporating interdependencies. 843 

4.6 Correlations between parameters 844 

We found correlations between the residual height and reduction rate parameters for the same 845 

soil types. This correlation could have been expected from the form of their presence in the 846 

forward model. The relationship, as shown in Figure 6, helps in future subsidence estimates. By 847 

parameterizing the average behavior of the three lithological types, prediction on future behavior 848 

with respect to phreatic groundwater changes can be made even when the individual values of 849 

the parameters are rather uncertain. 850 

 851 

There is no correlation between the shrinkage rate of clay and the oxidation rate of peat (Fig. 6), 852 

because lithoclasses act independently. Clay and sandy clay show similar behavior (Figure 6 and 853 

Table 2). In the South Flevoland polder, sandy clay is the product of tidal dynamics, and consists 854 

of mm-thick alternating clay and sand beds. The comparable behavior between these thin-bedded 855 

sandy-clay and clay deposits indicates the dominance of clay shrinkage within the sandy-clay 856 

cells. Apparently, the presence of sand is only minimally preventing these deposits from 857 

volumetric loss by shrinkage.  858 

 859 

Figure 5a shows a scenario in which the average phreatic groundwater level is located within the 860 

uppermost sand bed. Here, the model underestimated observed subsidence. We think the 861 

mismatch is related to short drought events not captured by our monthly updated groundwater 862 

model.  Phreatic groundwater levels that are temporally lowered, result in shrinkage of clay 863 

directly underneath the upper sand bed, resulting in enhanced subsidence. This explanation is 864 

corroborated by the increase in subsidence rate in Figure 5a that coincides with the phreatic 865 

surface drop into the clay layer.  866 
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5 Conclusions 867 

We have presented a novel data processing and data assimilation workflow with an 868 

unprecedented dataset to identify processes resulting in anthropogenically-induced subsidence 869 

around the city of Almere in the reclaimed South Flevoland polder in the Netherlands. The 870 

workflow integrates  lithoclass, phreatic groundwater level changes, and InSAR data, with 871 

information on construction dates of structures, and a suite of physical models. The assimilation 872 

exercise has enabled us to quantify the drivers of subsidence.  873 

 874 

Our results have revealed that shrinkage of shallow clay beds induced by artificial lowering of 875 

phreatic groundwater levels is the dominant subsidence process in the South Flevoland polder, 876 

with rates up to 6 mm/yr. In line with previous research in the South Flevoland polder, the 877 

subsidence rates due to clay shrinkage are significantly higher than those due to peat oxidation, 878 

which are up to 0.2 mm/yr. The rates depend critically on the development of phreatic water 879 

levels – drought has therefore been identified in this study as an important catalyzer of 880 

subsidence. At longer timescales we estimated that one meter drop in groundwater level results 881 

in 10 millimeter of subsidence in the urbanized area of Almere. 882 

 883 

Groundwater governance is the single human activity influencing land subsidence in Almere. 884 

Our study highlights the necessity of high-quality data in order to make trustworthy analyses of 885 

subsidence processes and support such governance. Data is obtained by measuring campaigns 886 

and continuous monitoring. This includes lithology, groundwater development and surface level 887 

changes. Robust analyses of subsidence processes and quality predictions are possible through 888 

the application of an approach that integrates all available data with knowledge on physical 889 

processes in a dedicated data assimilation procedure.  890 
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Open Research 902 

Data from the geological survey of the Netherlands (TNO-GSN, 2022) is used to construct the 903 

lithological and groundwater model. Kadaster (2022) has been used to verify the age of the 904 

buildings. From Rijkswaterstaat (2022) InSAR data products were retrieved. Figures were made 905 

with Matplotlib v.3.4.3 (Caswell et al., 2022) available under the matplotlib license at 906 

https://matplotlib.org and QGIS v3.24 (QGIS Development team, 2022).  907 
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Abstract 18 

This research targets disentangling shallow causes of anthropogenically-induced subsidence in a 19 

reclaimed and urbanized coastal plain. The study area is around the city of Almere, in the South 20 

Flevoland polder, the Netherlands, which is among the countries’ fastest subsiding areas. The 21 

procedure consists of integrating Interferometric Synthetic Aperture Radar (InSAR) data with 22 

high-resolution phreatic groundwater and lithoclass models, and a database containing 23 

construction details. The two main parts of the workflow are isolation of the InSAR points of 24 

structures without a pile foundation and a data assimilation procedure by Ensemble Smoothing 25 

with Multiple Data Assimilation. The shrinkage of surficial clay beds by phreatic groundwater 26 

level lowering is identified to be the main cause of shallow subsidence in the area, with an 27 

average contribution of 6 mm/year. The history-matched physics-based model predicts that one 28 

meter drop in phreatic groundwater level now translates into 10 millimeter of subsidence in the 29 

next five years. Also, this study showed that a groundwater deficiency due to severe dry periods 30 

should be considered as an accelerator of subsidence in both the short- and long-term planning. 31 

To ensure a robust network to estimate future subsidence, we advise on a consistent monitoring 32 

strategy of the phreatic groundwater level. 33 

Plain Language Summary 34 

The city of Almere, in the Netherlands, is part of a polder that was reclaimed in 1968. Land 35 

reclamation is accompanied by lowering of groundwater levels, which can cause land 36 

subsidence. Almere is situated on top of ~9 meters of soft soil layers. These layers were 37 

deposited after the last ice age and consist predominantly of clay and peat. It is important to 38 

understand and quantify the subsidence processes in these Holocene layers, to be able to mitigate 39 

subsidence.  40 

By lowering the groundwater level, the soft soil layers are dried. Clay shrinks when it dries out 41 

and organic material (within peat) oxidizes. Lowering the groundwater level also causes the load 42 

of the layers below to increase, which can result in compaction of the layers (reduction in size by 43 

pressing together). This study targets the behavior of these processes. 44 

Results of our study indicate that the shrinkage of clay is the dominant driver of subsidence in 45 

Almere. One meter lowering in groundwater level now results in approximately one centimeter 46 

subsidence in five years. To improve our understanding of the non-trivial link between 47 

groundwater fluctuations and subsidence, higher spatial-temporal resolution groundwater 48 

monitoring is required. 49 

1 Introduction 50 

Over half a billion people live in coastal plains and deltas threatened by anthropogenically 51 

induced subsidence, and this number is expected to increase in the foreseeable future (Neumann, 52 

2015; Schmidt, 2015). Many anthropogenic subsurface activities in coastal areas and delta plains 53 

result in subsidence, thereby amplifying relative sea-level rise and flood risks, inflicting damage 54 

to infrastructure, and overall, reducing the viability of these low-lying areas (Dinar et al., 2021; 55 

Guo and Jiao, 2007; Syvitski et al., 2009). Examples of subsurface activities are resources 56 

extraction, such as groundwater (Jones et al., 2016) and deep hydrocarbons (Chaussard et al., 57 

2013), and surficial processes related to land use, primarily phreatic groundwater level 58 

management (Koster, Stafleu and Stouthamer, 2018), and sediment deficit (Eslami et al., 2019).  59 
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 60 

Some heavily populated coastal plains and deltas require engineered extension of their surface 61 

area by land reclamation, to accommodate population growth, and increase the surface area of 62 

arable land, e.g. China, Belgium, Japan, Dubai, U.S. and Singapore (e.g. Declerq et al., 2021; Li 63 

et al., 2022; Martín-Antón et al, 2016; Wang et al., 2014). When land is gained along sea or lake 64 

shorelines by drainage of open water, this in essence means exposing waterlogged sediments to 65 

the atmosphere, thereby instigating various subsidence processes, primarily by shrinkage, 66 

compaction, and oxidation of fine grained and organic deposits.  67 

 68 

The dense population of Hong Kong for instance, prompted the government to reclaim land since 69 

the nineteenth century. There, rates of subsidence are around 20 mm/year, resulting in major 70 

damage to the built environment by differential settlements (Sun et al., 2018; Wang et al., 2016). 71 

In Bangladesh, reclamation primarily serves the purpose of gaining arable land, resulting in 72 

subsidence rates up to 10 mm/year in these reclaimed areas. This catalyzes a rise in social 73 

inequality as especially low-income farmers are not able to cover adaptation costs for the 74 

negative effects of these high subsidence rates (Barbour et al., 2002; Steckler et al., 2022). 75 

 76 

The Netherlands is a prime example of a country that has extended its coastal plains by land 77 

reclamation. In total, the Netherlands has 443 reclaimed former lakes located in its coastal plains, 78 

with a cumulative surface area of 3123.60 km2 (Schultz, 1987). The centuries-long tradition of 79 

reclaiming land, referred to as ‘polder’, can be divided into three main periods of lake drainage. 80 

The first stage comprised the sixteenth to seventeenth century, when many small lakes within the 81 

back-barrier peatlands were drained with windmills. Secondly, in the nineteenth century, larger 82 

lakes in the coastal plain were drained with steam pumping stations. Lastly, in the twentieth 83 

century, Lake IJssel, the countries’ largest lake that was created by the damming of a tidal inlet, 84 

was reclaimed, resulting in the largest polders of all: the Lake IJssel polders (Fig. 1a).  85 

 86 

The focus of this study is on understanding and predicting shallow causes of subsidence in the 87 

reclaimed urbanized South Flevoland Polder (430 km2), which is part of the Lake IJssel polders 88 

(Fig. 1). The polder was created in 1968 by constructing a ring-dike around the water body to be 89 

reclaimed. This enclosed water body was subsequently drained until the water level dropped 90 

below the former lakes’ floor. Subsidence immediately commenced when the waterlogged 91 

deposits experienced aeration for the first time and pore water progressively evaporated (De 92 

Glopper, 1969). Ultimately, the polder has experienced locally one to two meters of subsidence 93 

since its reclamation (Barciela Rial, 2019; De Glopper, 1973; De Glopper  1984; De Lange et al., 94 

2012; De Lange, 2015; Fokker et al., 2019).  95 

 96 

Paradoxically, severe water pumping has been ongoing to this day, as it is required to keep 97 

phreatic water levels low, thereby preventing the polder from flooding due to its low-lying 98 

position relative to adjacent Lake IJssel water level and increasing the load-bearing capacity of 99 

the former lake floor. The area thus continues to subside as waterlogged sediments are 100 

progressively exposed to the atmosphere. Besides flood risks, differential subsidence in the 101 

urbanized areas of the South Flevoland polder causes stress on structures, which results in 102 

damage to the built environment, leading to major costs. This especially accounts for the 103 

‘Regenboogbuurt’, which is a neighborhood that onlaps the thickest sequence of soft soil 104 

deposits in the area (Maas, 2021). Additionally, the severe drought events that have been striking 105 
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Northwestern Europe during recent summers, pose the threat of accelerated subsidence to the 106 

area by increasing evaporation of pore water from fine grained and organic deposits. To the best 107 

of our knowledge, no study has been reported on the effects of severe drought in South 108 

Flevoland, although Hoogland et al. (2020) showed that subsidence may be slowed down by 109 

proactively saturating shallow peat beds within the area. Understanding, quantifying, and 110 

predicting subsidence, both spatially and temporally in the South Flevoland polder is therefore 111 

from a socio-economic as well as a hazard-prevention point of view of immense importance. 112 

 113 

The artificial lowering of phreatic water levels in the South Flevoland polder results in shrinkage 114 

of clay and oxidation of peat in the unsaturated zone (i.e. above the annually averaged lowest 115 

phreatic groundwater level). Clay shrinks as water that is adsorbed to charged platy clay particles 116 

evaporates and organic matter mixed within the clay oxidizes (Barciela Rial et al., 2020). This 117 

leads to volumetric loss and is largely irreversible. Peat oxidation regards the breakdown of 118 

organic components by microbial activity, is completely irreversible, and results in the emission 119 

of carbon dioxide (Koster et al., 2020). Further, there are subsidence processes in the saturated 120 

zone: the consolidation of clay and peat layers due to an increase in effective stress by lowering 121 

the hydrostatic pressure when phreatic water levels are lowered (De Glopper and Ritzema, 122 

1994). Consolidation and oxidation have been addressed regularly in other areas in the 123 

Netherlands that experience shallow subsidence (e.g. Kooi, 2000; Van Asselen et al., 2009; Van 124 

Asselen et al., 2018). On the contrary, shrinkage of clay in the context of subsidence has been 125 

poorly covered (Fokker et al., 2019). However, in other countries, subsidence by clay shrinkage 126 

is considered as a major issue. In France and Great Britain for example, potential damage to the 127 

built environment inflicted by clay shrinkage as a result of drought and climate change has been 128 

studied in terms of cost per annum in the light of the insurance industry for decades (e.g. Burnol 129 

et al., 2021; Charpentier et al., 2021; Pritchard et al., 2015).  130 

 131 

Most recent studies focus on establishing physics-based subsidence forecasts using input 132 

parameters derived by field- and laboratory measurements (Koster, Stafleu and Stouthamer, 133 

2018; Mayoral et al., 2017; Nusantara et al., 2018; Schothorst, 1982; Van Asselen et al., 2018). 134 

This approach inherently renders the subsidence estimates to be strongly dependent on used 135 

models and input soil parameters. A step forward regards the coupling of the different processes. 136 

Allison et al. (2016) for instance, stressed that developing an integrated model with coupled 137 

behavior of the different subsidence processes is critical for reliable subsidence estimates. Only 138 

by considering the behavior of all subsidence processes combined with real observations can the 139 

full impact of subsidence be understood.  140 

 141 

Optimizing the relation between coupled subsidence processes and measured subsidence can 142 

improve subsidence forecasts. A history matching procedure by correlation and/or trial-and-error 143 

is often employed (e.g. Caló et al., 2017; Castellazzi et al., 2016; Teatini et al., 2006). For larger 144 

areas, or areas where multiple subsidence processes are superimposed, a more formal approach is 145 

considered more efficient (e.g. Candela and Koster, 2022; Fokker et al., 2019). A mathematically 146 

driven approach such as data assimilation can cover the entire range of uncertainty of all the 147 

parameters, to seek the optimal solution.  148 

 149 

Data assimilation combines models and observations to obtain the best possible description of 150 

the system (Evensen, 2009; Evensen et al., 2022). This approach is customary practice in a wide 151 
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range of disciplines such as subsurface modelling (Candela et al., 2022; Chang et al., 2010; 152 

Evensen et al., 2022; Fokker et al., 2016; Gazolla et al., 2021), weather predictions (Navon, 153 

2009; Thépaut, 2003) and oceanographic simulations (Carton and Giese 2008; Ghil and 154 

Malanotte-Rizzoli, 1991), but for interpreting shallow causes of subsidence this method has not 155 

yet been applied widely. Peduto et al. (2017; 2020) presented examples of shallow subsidence 156 

studies that apply a form of data assimilation to a geotechnical problem. Their studies show the 157 

benefit of combining multiple datasets. Li et al. (2017) applied data assimilation with an 158 

Ensemble Kalman Filter and showed the strength of data assimilation procedures, although they 159 

did not emphasize the subsidence models in their study.  160 

 161 

Data assimilation procedures have also been applied in studies on polders in the Netherlands 162 

(Fokker et al., 2019; Muntendam-Bos et al., 2009). Fokker et al., 2019 used Ensemble 163 

Smoothing with Multiple Data Assimilation (ES-MDA) for ten distinct locations in the South 164 

Flevoland polder with a few dozens of timesteps over a period from reclamation until recent, 165 

combined with coring for lithological data and phreatic groundwater level measurements. They 166 

focused on the agricultural areas of the South Flevoland polder, over a longer timescale with a 167 

small number of locations. Therefore, their results are not directly applicable to the subsidence in 168 

the urbanized areas of the South Flevoland polder, where the urbanization might have had 169 

inhibitory effect on shrinkage and layers might have undergone more severe compaction in the 170 

past. Additionally, corings of individual locations were used in Fokker et al., 2019, whilst in this 171 

study we introduce an automated procedure including a lithological and groundwater model, 172 

making it possible to apply this methodology to larger areas.  173 

 174 

We here aimed to quantify the subsidence processes within urbanized areas of the South 175 

Flevoland polder in relation to phreatic groundwater level changes and to showcase the added 176 

value of combining large observational data sets with numerical models to improve parameter 177 

estimations for shallow subsidence processes. We deployed data assimilation on a dataset 178 

comprising thousands of locations with hundreds of timesteps derived from satellite 179 

observations, high-resolution 3D models of subsurface lithology and groundwater to quantify the 180 

contribution of the different shallow subsidence processes. We studied multiple subsidence 181 

processes at the same time to understand the full impact of subsidence and to identify the relative 182 

contributions of the different processes. Such information is critical for policymakers and spatial 183 

planners to design strategies to mitigate subsidence in the South Flevoland polder. 184 

 185 

1.2 Study area 186 

The South Flevoland polder is situated in the central Netherlands in the partly reclaimed Lake 187 

IJssel (Fig. 1). The Holocene sequence of the polder is underlain by several hundreds of meters 188 

thick Pleistocene sediments, consisting of a complex of alternating sandy to clayey marine, 189 

fluvial, and (peri-)glacial deposits (Menke et al., 1999; Peeters et al., 2015; TNO, 2022). The 190 

uppermost Pleistocene unit consists of a several meters thick aeolian sand bed, which grades 191 

from ca. -5 to -12 m below NAP (i.e. the Dutch ordinance datum, approximately corresponding 192 

to the mean sea level) in northwestern direction, locally incised by the Eem brook paleo-valley or 193 

elevated by dune formation (Fig. 1). 194 

 195 

During the Holocene, the South Flevoland Polder became part of the landward margin of a 196 

coastal plain. The base of the Holocene sequence consists of a basal peat bed, formed between 197 
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6000- and 7000-year BP under influence of inland groundwater level rise in tandem with post-198 

glacial sea-level changes (Koster et al., 2017; Makaske et al., 2003). These peatlands drowned 199 

and transformed into an open tidal basin under the influence of continuous sea-level rise (Vos, 200 

2015). The tidal basin deposits consist of alternating sand-clay beds, with local erosion of the 201 

underlying basal peat. When around 5500-year BP eustatic sea-level rise decreased, the open 202 

tidal basin was closed off by the formation of a beach-barrier, transforming the area into a 203 

freshwater swamp with large-scale peat formation (Beets and Van der Spek, 2000; Makaske et 204 

al., 2003). In parallel, the area remained connected in the west to the North-Sea by several 205 

smaller tidal inlets, making the Eem brook part of a branched network of freshwater tidal 206 

channels (Vos, 2015). The peatland itself was characterized by a series of open lakes (Menke et 207 

al., 1999). From the north, this lake system was connected to the Waddensea. When the 208 

peatlands deteriorated as a combination of natural and anthropogenic causes, the open sea 209 

connection in the north expanded southwards, thereby gradually drowning the peatlands and 210 

turning the area into a partly enclosed inland sea (Van den Biggelaar et al., 2014). The inland sea 211 

was dammed off and became Lake IJssel in 1932, to protect the surrounding areas against 212 

flooding. After the damming several parts of the newly formed lake were reclaimed from 1939 213 

onwards. The South Flevoland polder is the final area that was reclaimed.  214 

 215 

Almere is a large urban conglomerate in the polder of South Flevoland (Fig. 1), with a 216 

population of ca. 200,000. Almere was founded in 1976, approximately eight years after 217 

reclamation to account for the first years of subsidence, for which it was predicted to be the 218 

highest (up to 70 centimeters in total) (Hoeksma, 2007). Almere has been partly built on top of 219 

the paleo-valley of the Eem brook system, which incised several meters into underlying deposits 220 

of Pleistocene age. Therefore, the thickness of the Holocene sequence underneath Almere 221 

strongly varies, with thicknesses between <1 and 10 meter. The thickest sequence can be found 222 

over the course of the former Eem brook system. Generally, basal peat in the Netherlands, like 223 

underneath Almere, has undergone substantial compression by the overburden, and consequently 224 

has mechanical characteristics that deviate from the younger peat beds (Koster, De Lange et al., 225 

2018). Due to sea-ingressions that drowned the peatlands, the paleo-valley infill on top of the 226 

basal peat consists of marine clay with sandy infills overlain by organic clay, gyttja and peat, 227 

interfingered with some sand (Menke et al, 1999). 228 

 229 

Subsidence was expected after reclamation (De Glopper, 1969), therefore, regular monitoring 230 

campaigns were conducted, including regular levelling measurements, corings, and soil sampling 231 

(De Glopper, 1984; Van Dooremolen et al., 1996). Within 25 years, the a priori expected 232 

subsidence for the South Flevoland polder was exceeded, in some places by 0.5 m (Van 233 

Dooremolen et al., 1996), resulting in complications for the drainage of the area. Most buildings 234 

have a concrete pile foundation in sandy, less compressible layers of Pleistocene age, and 235 

consequently do not subside in parallel with the overlying Holocene sequence. On the contrary, 236 

public structures, such as (local) roads, squares, sport fields and playgrounds are often lacking a 237 

pile foundation and are constructed immediately on top of the Holocene sequence. The 238 

consequential differential subsidence between structures with and without a concrete pile 239 

foundation inflicts stress on pipeline structures, belowground electrical and network cables, and 240 

the connection from buildings to the roads in general, potentially causing damage. Currently, the 241 
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city of Almere, lying ~4 meters below NAP, must deal with damage to buildings and 242 

infrastructure because of the ongoing differential subsidence (Lambert et al., 2016). 243 

Figure 1 a: Map of the Netherlands showing all the areas that accommodate polders (adjusted from Steenbergen et 244 

al., 2009). b: Map of the area of Almere and its surroundings projected on a map showing the thickness of the 245 

Holocene sequence (TNO, 2022). The thickness decreases towards the south-east. The incised course of the Eem 246 

River, in the northeast of the city Almere is reflected by an increased Holocene thickness. The map is plotted on the 247 

Rijksdriehoek coordinate system. The green dots indicate the locations of the data points included in this study. The 248 

locations of the graphs of Figure 5a-5d are denoted.                  249 

2 Materials and Methods 250 

We used a data assimilation procedure combining the use of InSAR data with 3D lithological 251 

and phreatic groundwater level models. Figure 2 depicts the complete workflow, with the 252 

different colors indicating the different steps. In green, three classes of input data are displayed: 253 

(1) data in the form of previously developed geological and groundwater level models 254 

(paragraph 2.1.3 and 2.1.4.), (2) estimates of input parameters necessary for the forward model, 255 

based on a literature search (paragraphs 2.2), and (3) satellite data for actual surface movement 256 

estimates (paragraph 2.1.1).  257 

 258 

We defined three steps of the subsidence estimation algorithm: 259 

1. The preprocessing the InSAR data to filter the appropriate measurements points 260 

from the full data set (paragraph 2.1). 261 

2. The forward model in which we calculated subsidence for all locations and 262 

timesteps in this study (paragraph 2.2). 263 

3. The data assimilation step, where the subsidence measurements derived from 264 

InSAR were combined with the forward model, to optimize the forward model by 265 

changing the input parameters (paragraphs 2.3).  266 

 267 

Lastly, the output of our analysis is defined into two classes; (1) refined estimated parameters. 268 

As a result of the data assimilation approach, refined estimated parameters are the optimized 269 
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values for the input parameters, and (2) a subsidence prediction. The outcome of the forward 270 

model is a subsidence prediction for all the locations and timesteps.  271 

 272 

Figure 2: Workflow of the different steps of the methodology divided into: input, working space and output. The 273 

steps of the workflow are explained in corresponding sections. The parameters of the physical models that estimate 274 

subsidence are optimized towards measured relative subsidence from satellite data, with the use of a groundwater 275 

model and a lithological model (GeoTOP). InSAR points measured on top of unfounded objects are separated by a 276 

data selection process (Fig. 3). A prior estimate of the parameters part of the forward model is initially made, 277 

whereafter the forward model and optimization with data assimilation is repeated multiple times. The image of 278 

lithological grid model is adjusted from Van der Meulen et al. (2007). 279 

2.1 Input data 280 

2.1.1 InSAR data 281 

The InSAR data consists of Sentinel-1 images for one ascending and one descending track, 282 

ranging over the period March 2015 until June 2020 and November 2015 until June 2020 283 

respectively. The sampling interval of the data points varies temporarily by the availability of the 284 

6- or 12-days repeat pass (Wegmüller et al., 2015). One of the key issues of InSAR data is loss of 285 

signal coherence, both in space and time. Spatial decorrelation is caused by changes in the 286 

acquisition baseline, resulting in a different phase between two images and causing phase 287 

wrapping errors that reduce the coherence. This implies that spatially decorrelated data is less 288 
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suitable for subsidence research. Temporal decorrelation is caused by atmospheric variability and 289 

changes in the physical and geometric properties of the scatter points, e.g. due to seasonal 290 

changes in vegetation which result in landcover changes (Ferretti et al, 2007; Hanssen, 2001). As 291 

a result, vegetation-rich areas are suboptimal for the analysis of subsidence by satellite imaging 292 

(Conroy et al., 2022). Therefore, the focus of this study is on man-made structures, because these 293 

scatter points face less decorrelation issues. 294 

 295 

The ascending and descending tracks were processed and analyzed separately. This yielded two 296 

results of subsidence estimations and associated fits, which were compared for an additional 297 

quality check of the workflow. The line-of-sight movement was projected in the vertical 298 

direction with the use of the incident angle as part of the processing. We assume no significant 299 

horizontal displacements, because of the shallow character of the cause of subsidence.  300 

2.1.2 InSAR processing by TSNE-HDBSCAN 301 

InSAR locations were selected based on two main criteria, forming the first step in the point-302 

selection procedure of Figure 3. We selected PS-InSAR points in the built-up area of Almere 303 

without a pile foundation. Buildings in the area typically have a pile foundation reaching depths 304 

of ca. –7 to  –20 m with respect to NAP, i.e. piles driven in Pleistocene sand beds with load 305 

bearing capacity (Spikker, 2010). Consequently, buildings with a pile foundation are less suitable 306 

to reflect subsidence processes that happen within the Holocene sequence. We therefore focused 307 

on large reflective objects (~>10 reflection points) without pile foundations. These objects range 308 

from large parking lots around shopping centers and business parks, to playgrounds, concrete 309 

sport fields, and artificial grass turfs. 310 

 311 

The next selection criterium was that the structures without foundations had been built at least 10 312 

years before the first InSAR acquisition dates. Therefore, only objects constructed before the 313 

year 2005 were considered. This choice was made to reduce the effect of consolidation due to 314 

construction of the objects without foundations on the subsidence signal. Because no register 315 

exists for the construction date of parking lots, playgrounds and sport fields, the year of 316 

construction of the associated buildings was used. The construction year of all buildings in the 317 

Netherlands are registered in ‘Basisregistratie Adressen en Gebouwen’ (BAG) (Kadaster, 2022), 318 

which was used to verify the construction year of objects in the selected areas. 319 

 320 

Reflection points on top of structures without a pile foundation that meet above stated criteria 321 

were isolated from the ones on top of structures with a pile foundation using a statistical 322 

visualization method. Firstly, data points were separated with time Distributed Stochastic 323 

Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008), subsequently data points 324 

were appointed to a cluster using HDBSCAN (Campello et al., 2014). This two-steps approach 325 

based on unsupervised machine learning enables isolating time series that measure the same 326 

processes. In the case of Almere, no significant subsidence below the level of the pile 327 

foundations was expected. Hence, objects with a pile foundation should show negligible 328 

subsidence, whilst other nearby objects without a foundation were expected to show subsidence. 329 

This would result in differently behaving timeseries for points measured on top of objects with 330 

and without a pile foundation. This step formed the second step in the point selection procedure 331 

of figure 3 332 

 333 
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The practice of dimensionality reduction followed by clustering is common for large input data 334 

and has been applied to SAR datasets (Van de Kerkhof et al., 2020), and for a wide range of 335 

other date types (Fernández Llamas et al., 2019; Harrison et al. 2019; Kahloot and Ekler, 2019). 336 

T-SNE is a dimensionality reduction method that can group similarly behaving timeseries of 337 

height measurements of the different reflection points (Van der Maaten and Hinton, 2008). For 338 

the present study, clustering was conducted with Hierarchical Density-Based Spatial Clustering 339 

of Applications with Noise (HDBSCAN). HDBSCAN provides significant clusters, where the 340 

clusters can vary in density threshold. The method maximizes the stability of the selected 341 

clusters by calculating the optimal solution (Campello et al., 2014).  342 

 343 

To ensure that the selected clusters represent the time series of measurements on top of objects 344 

without a pile foundation, the clusters were verified by checking the time series of all the clusters 345 

and their location in a geographic information system. This is the third procedure of Figure 3. 346 

 347 

The last step in Figure 3 entails the optimization of the selected InSAR points for the subsidence 348 

optimization procedure. InSAR data points in a single lithological grid cell (see section 2.2. 349 

about lithological modelling) were averaged. Reducing the number of points by averaging 350 

reduces the computational time, whilst still incorporating the uncertainty for the InSAR data for 351 

each grid cell. The variance of this average was added to the chosen standard deviation squared 352 

of 0.01 m2, to ensure that the uncertainty of variance in the subsidence measurements was 353 

incorporated. A 0.01 m2 standard deviation for each epoch aims to capture both the uncertainty 354 

in the model and measuring space, as the true standard deviation is unknown. To prevent a 355 

disproportionate weight of the first measurement in time, an average of the first ten 356 

measurements in time was taken as the first time step in our post-processing timeseries data. 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 
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Figure 3: Workflow for selecting InSAR points. Firstly, areas with a significant amount of data points, potentially on 380 

top of structure without a pile foundation are selected. With the BAG register (Kadaster, 2022), the construction date 381 

of the area is verified. The image shows the construction years of the buildings in the example area (image adjusted 382 

from Spaan, 2015)..  The remaining areas follow dimensionality reduction by T-SNE, followed by a clustering 383 

method HDBSCAN. At the second processing step, the average yearly subsidence rate of the selected InSAR points 384 

of the sample area are shown on the left. On the right, the result of the T-SNE dimension reduction is plotted, where 385 

the colors refer to the clusters each point is assigned to. The number of dimensions of the initial data set is equal to 386 

the number of locations. Thirdly, the clusters are visualized as scatter points for each time step and in a geographic 387 

information system, to verify the clusters and select the cluster representing the scatter points on top of unfounded 388 

man-made structures. The clusters from the second time step, in their corresponding colors are plotted spatially on 389 

the left image and over time on the right. Lastly, for each grid cell corresponding to the lithological and groundwater 390 

model, an average of the selected InSAR points within the cell is taken This is depicted in the graph belonging to the 391 

last processing step, where the thick black line represents the average of the InSAR timeseries falling into the grid 392 

cell. To not give a disproportionate high weight to the first measurement of the InSAR series, an average has been 393 

taken of the first 10 timesteps, which forms the first timestep in our post processing time series.  394 
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2.1.3 Lithoclass model 395 

A previously released 3D lithoclasses (classes of different grainsize compositions) voxel model 396 

for the province of Flevoland that covers the entire study area was used as input for numerical 397 

modeling (Fig. 4b) (Gunnink, 2021). The model was initially developed for high-resolution 398 

hydraulic resistance modelling for groundwater flows within the Holocene sequence and had 399 

been constructed based on 31.000 digitalized borehole logs and 4250 Cone Penetration Tests that 400 

had been derived from the freely accessible online data portal of the Geological Survey of the 401 

Netherlands (TNO-GSN, 2022). The boreholes are sufficiently distributed throughout the 402 

province of Flevoland, whereas the Cone Penetration Test are primarily clustered in urbanized 403 

areas and along infrastructural elements.  404 

 405 

The 3D model had been created by interpolation via spatial kriging, following a similar 406 

procedure as explained in Van der Meulen et al. (2013). The voxel x,y,z dimensions are 407 

100x100x0.5 meter and the model ranges from the surface to the top of geological units of 408 

Pleistocene age, thereby encompassing the entire Holocene sequence. The different lithoclasses 409 

(sand, sandy clay, clay, peat, and basal peat – the latter being in a more compressed state than 410 

peat) are described with their probability of occurrence for each voxel, based on 100 realizations 411 

of the interpolation. The highest probability was taken as the truth scenario for this study.  412 

2.1.4  Groundwater model 413 

Changes in groundwater heads form an important explanatory variable for shallow sources of 414 

subsidence. Therefore, time series of this data are needed all over the study area. Unfortunately, 415 

this was only sparsely available at locations with observation wells. Therefore, a model was 416 

developed to estimate the required time series (TNO-GSN, 2022; Zaadnoordijk et al., 2018): 417 

monthly phreatic water level values for grid cells of x,y 100x100 meter (Fig. 4a) from the year 418 

2000 until 2020. The applied method was an interpolation in two steps. The first step was an 419 

interpolation of the groundwater heads within the time series to obtain for all well locations an 420 

observation on the same day (28th) of each month. This yielded interpolated heads including 421 

variances. The second step comprised a spatial (kriging) interpolation, applying a sequential 422 

Gaussian simulation (Deutsch and Journel, 1998, p.170), which yielded for each month a map of 423 

the interpolated heads. Since the observation wells were sparse, their observed heads could not 424 

fully describe the spatial variation in the groundwater heads. Therefore, a trend surface was used 425 

with a spatial interpolation performed on the residuals (observation minus trend surface). To 426 

honor the seasonal fluctuation of the groundwater heads, each month had a separate trend 427 

surface. Herewith, one hundred equiprobable interpolations of phreatic groundwater levels for 428 

each month were created. We used the average of the 100 realizations as the truth scenario for 429 

the phreatic surface model in space and time. 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 
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Figure 4: Left: Map of the South Flevoland polder lithologies according to GeoTOP at 5 meters below NAP. Right: 440 

Map of phreatic surface level in the South Flevoland polder in January 2015. The scale is in cm with respect to 441 

NAP. The polder itself lies ~400 cm below NAP (Dutch ordinance level ~ sea level).  The areas that lie at NAP are 442 

the lake IJssel area and in the left bottom the Dutch mainland.  443 

2.2 Forward model 444 

The different shallow subsidence processes initiated by human-induced phreatic groundwater 445 

level lowering in the South Flevoland polder are described in forward models. These forward 446 

models include physical relations that describe the subsidence processes and thereby, with an 447 

estimate of the parameters, provide an estimate of the subsidence. The groundwater and 448 

lithoclass models are used to describe which lithology is present and to what depth the sediments 449 

are saturated. Previous studies identified oxidation of peat, shrinkage of clay, and compression of 450 

clay and peat as the main subsidence processes in the area (De Lange et al., 2012; Fokker et al., 451 

2019; Lambert et al, 2016; Van Dooremolen et al., 1996).  452 

 453 

Fokker et al. (2019), described a subsidence model with a relation between shrinkage and 454 

equivalent age using linear-strain fits and time series of land levelling subsidence observations in 455 

the South Flevoland polder from 1967 to 2012. They used an exponential relation of clay 456 

shrinkage processes to fit the model to the data. Furthermore, they described that well-457 

established compression functions of consolidation and creep (Den Haan, 1996; Visschendijk 458 

and Trompille, 2009) did not fit with the observed subsidence trend. Given the results of the 459 

study of Fokker et al. (2019), subsidence by compression was expected to be negligible in 460 

comparison to the processes of shrinkage and oxidation for the timing after reclamation and due 461 

to the length of our study period. We have therefore not modelled compression as a separate 462 

process in this study. Note also here that compression by the overburden weight of building 463 

material was assumed to have a negligible effect on the selected InSAR time series, because all 464 
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the locations included in this study have undergone settlement due to loading by construction for 465 

minimal >10 years (cf. CUR, 1992). 466 

2.2.1 Oxidation model 467 

The applied equation for the oxidation model is widely applied to describe peat oxidation in the 468 

Netherlands (Fokker et al., 2019; Koster, Stafleu and Stouthamer, 2018; Van den Akker, 2008; 469 

Van Hardeveld et al., 2017; Van der Meulen et al., 2007). It provides a relative annual oxidation 470 

rate for peat above the phreatic groundwater level. Since only organic matter oxidizes, admixed 471 

sediments remain, albeit on average 3 to 4 % of the total volume (Koster, Stafleu and 472 

Stouthamer, 2018). Hence, a residual thickness is considered.  473 

 474 

Firstly, for a unit above the phreatic groundwater level the part susceptible to oxidation needs to 475 

be determined.  476 

ℎ𝑜𝑥,0 = ℎ𝑜𝑥(𝑡 = 0) = (1 − 𝑅𝑜𝑥)ℎ0 (1)  477 

If part of a unit has already been reduced, we have ℎ𝑜𝑥(𝑡) = ℎ(𝑡) −  𝑅𝑟,𝑜𝑥ℎ0. The original 478 

thickness of the unit is unknown, since collection of the data used in this study started ~50 years 479 

after reclamation. Hence, we simply assumed ℎ equals ℎ0 at t=0. This results in a higher residual 480 

height than for completely virgin soil, as the original units are (partly) reduced in thickness 481 

already. The oxidation rate can be calculated as follows: 482 

𝑑ℎ

𝑑𝑡
=

𝑑ℎ𝑜𝑥

𝑑𝑡
=  −𝑉𝑜𝑥 ℎ𝑜𝑥 (2) 483 

Over time 𝛥𝑡 the thickness reduction of a layer can be written as: 484 

𝛥ℎ =  ℎ𝑜𝑥(𝑡) − ℎ𝑜𝑥(𝑡 +  𝛥𝑡) = (1 − 𝑒−𝑉𝑜𝑥𝛥𝑡) ∙  ℎ𝑜𝑥(𝑡)

= (1 − 𝑒−𝑉𝑜𝑥𝛥𝑡) ∙ (ℎ(𝑡) − 𝑅𝑜𝑥ℎ0) (3)
 485 

Incorporating units that are partly aerated, the part susceptible of oxidation is corrected for the 486 

wet part of the voxel:    487 

𝛥ℎ𝑜𝑥 = (1 −  𝑒−𝑉𝑜𝑥𝛥𝑡)(ℎ(𝑡) −  ℎ𝑤𝑒𝑡 − 𝑅𝑜𝑥 [ℎ0 − ℎ𝑤𝑒𝑡]) (4) 488 

In which 𝑉𝑜𝑥  is the shrinkage rate and 𝑅𝑜𝑥 the residual height. 489 

2.2.2 Shrinkage model 490 

Time-dependent shrinkage models have not been documented for the Netherlands yet. Typically, 491 

shrinkage is expressed as a function of clay mineral content, organic matter, and calcareous 492 

admixture (e.g. Barciela Rial, 2019; De Glopper, 1969). To overcome this, Fokker et al. (2019) 493 

designed a simple shrinkage relation, inspired by Equation 4, which enabled good matches 494 

between the subsidence model and the observed subsidence. This relation assumes that the 495 

shrinkage rate is proportional to the volume sensitive to shrinkage. A lithology-dependent 496 

residual height was assumed to indicate an asymptotic value to which the shrinkage can lead.  497 

 498 

The process of clay swelling has been ignored in this study. Furthermore, seasonal swelling 499 

effects of clay by a relative increase in precipitation during autumn and winter were not observed 500 

in the InSAR data. Most likely, if present, a swelling capacity is suppressed in the urbanized area 501 
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by structure overburden. In general, the South Flevoland polder is subjected to net groundwater 502 

level lowering; this is reflected in net subsidence, visible as a decreasing trend without a large 503 

swelling effect in the InSAR data. Furthermore, previous studies reported that the clay beds in 504 

our study area have a relatively high irreversible character regarding shrinkage (Bronswijk et al., 505 

1990; Kim et al., 1993).  506 

 507 

The equation for shrinkage (Eq. 5): 508 

Δℎ𝑠ℎ = (1 − 𝑒−𝑉𝑠ℎ𝛥𝑡)(ℎ(𝑡) −  ℎ𝑤𝑒𝑡 − 𝑅𝑠ℎ  [ℎ0 −  ℎ𝑤𝑒𝑡]) (5) 509 

In which 𝑉𝑠ℎ  is the shrinkage rate and 𝑅𝑠ℎ the residual height.   510 

2.2.3 The prior estimated parameters 511 

The parameters aimed to optimize are the shrinkage and oxidation rate and their respective 512 

residual heights (see first column of table 2). The prior estimated values take into account the 513 

results of Fokker et al., (2019). The rates were lowered, because a significant amount of time 514 

(~50 years) has passed since reclamation (and the start of the study of Fokker et al., 2019), 515 

decreasing the void ratio of deposits and increasing the stiffness. Additionally, there is a potential 516 

inhibitory effect of shrinkage and oxidation rate in the urbanized area, compared to the 517 

agricultural area of Fokker et al. (2019). 518 

 519 

The rates of shrinkage and oxidation are closely related to the associated residual heights. Due to 520 

the brief period of the surface elevation data (~4-5 years), the exponential relation between 521 

relative residual height and reduction (shrinkage or oxidation) rate cannot be established 522 

absolutely: an increase in subsidence rates can have the same effect on total subsidence as a 523 

reduction in residual height. As a result, the contribution of relative residual height and reduction 524 

cannot be distinguished. If one of the two parameters increases, the other should increase as well, 525 

to reach the same value for total subsidence. From Equations 1 and 2 we can derive: 526 

𝑑ℎ

𝑑𝑡
=  ℎ0𝑣  (1 − 𝑅)ℯ−𝑣𝑡 (6) 527 

Therefore, if a certain height reduction rate is acting it can be the result of different combinations 528 

of 𝑣 and 𝑅, as long as the right-hand side of Eq. (10) gives the same number. The exponential in 529 

this equation can be neglected because the compaction (order of mm) is very small with respect 530 

to the layer thickness (order of m). Different combinations with the same value of 𝐶 = 𝑣(1 − 𝑅), 531 

or 𝑅 = 1 −
𝐶

𝑣
 therefore, give equally good fits, with no time dependence in the expression. This 532 

equation was hence fitted to the posterior result of the residual height and rate of oxidation and 533 

shrinkage for the different lithologies, utilizing an automated least squares polynomial fit.  534 

2.3 ES-MDA 535 

Parameters have been estimated with Ensemble Smoother with Multiple Data Assimilation (ES-536 

MDA) (Emerick and Reynolds, 2016; Evensen et al., 2022). Earlier accounts for the method to 537 

estimate parameters for shallow subsidence can be found in Fokker et al. (2019); the method has 538 

also been applied to estimate the parameters for deep subsidence processes (gas production) (e.g. 539 

Fokker et al., 2016; Gazolla et al., 2021).  540 

 541 

An ensemble refers to a collection of members that are the result of a Monte Carlo analysis. 542 

Members are single realizations of the model with specific values for the different parameters. 543 

ES-MDA is thus based on a parameter description of the properties that describe the physical 544 
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processes in the subsurface. A forward model takes the parameters and calculates the subsidence 545 

in space and time for each member of the ensemble. The ES-MDA algorithm minimizes the 546 

mismatch between the measured data and the estimated subsidence values by changing the 547 

parameters of the ensemble members in an organized manner. The multiple data assimilation 548 

notion of ES-MDA indicates that the assimilation process is repeated several times. The newly 549 

estimated parameters are taken to create a new ensemble of members, with each step increasing 550 

the confidence in the parameters. 551 

 552 

ES-MDA can be mathematically described as follows. The parameters collected form the vector 553 

m. The subsidence data is put into a vector d, this vector has the length of the number of data 554 

points in the area multiplied by the time steps taken at each location. Operation of the forward 555 

model is indicated by G(m); it calculates the subsidence as a function of time for each individual 556 

location, based on the parameters in m. We want to estimate the vector m for which G(m) has 557 

the smallest misfit with the data d. To do so, for a single member, as set of prior parameters is 558 

created (m0), with covariance in a matrix Cm. Another covariance matrix is created for the data 559 

(Cd). Following Tarantola (2005), the least square solution is acquired by maximizing J in the 560 

following function: 561 

𝐽 = exp (−
1

2
[𝒎 − 𝒎𝟎]𝑇 𝑪𝑚

−1 [𝒎 −  𝒎𝟎] −  
1

2
 [𝒅 − 𝑮(𝒎)]𝑇𝑪𝑑

−1[𝒅 − 𝑮(𝒎)]) (7) 562 

In the ensemble procedure, the values of the members are derived from a prior estimate with a 563 

standard deviation of the parameters. An ensemble consists of Ne vectors of m; M = (m1, m2, 564 

…,mNe). Similarly, an ensemble of data vectors is created by adding random noise to the data 565 

following the uncertainty of the data points: D = (d1, d2, …,dNe). 566 

 567 

To solve the least square solution for the entire ensemble at once, GM replaces G(m) in equation 568 

5. GM is the result of the parameters of all ensemble members operating in the forward model 569 

and is the collection of realizations of surface elevations through time. GM’ is defined as the 570 

difference between GM and the average of GM. M’ is the difference with the prior mean for 571 

each ensemble member: M’ = M – m0. The covariance matrix is defined as: Cm = M’M’T/(Ne-1). 572 

The new set of parameters for the ensemble is given by: 573 

 574 

�̂� = 𝑴 + 𝑴′[𝑮𝑴′]𝑇(𝑮𝑴′[𝑮𝑴′]𝑇 + (𝑁𝑒 − 1)𝑪𝑑)−1(𝑫 − 𝑮𝑴) 575 

                  = 𝑴 + 𝑴′([𝑮𝑴′]𝑇𝑪𝑑
−1𝑮𝑴′ + (𝑁𝑒 − 1)𝐈)

−1
[𝑮𝑴′]𝑇𝑪𝑑

−1(𝑫 − 𝑮𝑴) (8) 576 

Depending on the number of parameters versus number of data points one of the two equivalent 577 

expressions might be more appropriate to use. �̂� is the estimated ensemble of parameters. 578 

 579 

The ensemble smoother technique with a new estimate of parameters can be applied repetitively 580 

to obtain a better estimate of parameters in the case of non-linear forward models (Emerick and 581 

Reynolds, 2013). The set of parameters is updated with each subsequent step. The data remains 582 

the same over the entire procedure. To compensate for the effect of multiple applications with 583 

the same data, the covariance of the data is increased with each step of the optimization. This is 584 

done with a factor 𝛼𝑖, where the following condition is met: ∑
1

𝛼𝑖

𝑛𝐼
𝑖=1 = 1. 𝑛𝐼 is the number of 585 

assimilation steps (Fokker et al., 2019). We used a factor 𝛼𝑖   that decreases every step with a 586 

factor q to ensure increasing influence of subsequent assimilations.  587 

 588 

𝛼𝑖 =  𝛼0 ∙  𝑞𝑖 (9) 589 
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With 𝑖 being the assimilation step. The above summation condition is met with:  590 

𝛼0 =
1 −  𝑞𝑛𝐼

𝑞𝑛𝐼−1 −  𝑞𝑛𝐼
(10) 591 

To verify the results and determine the actual improvement of the parameter estimation 592 

procedure, a test function is applied, considering the covariance of the data and the estimate 593 

parameters after the last assimilation step: 594 

𝜒2 = (𝑮�̂� − 𝒅)
𝑇

(𝑪𝑑 + 𝑪𝑮�̂�)−1 ( 𝑮�̂� − 𝒅) (11) 595 

The outcome of this equation should be around the degree of freedom (Nd), so that 
𝜒2

𝑁𝑑
≈ 1. 596 

The parameters for this study are summarized in table 1. The number of grid cells equals the 597 

number of lithological and groundwater voxel cells the InSAR data points cover. In the result 598 

section, we present key examples of individual voxel cell locations, the values of the optimized 599 

parameters and correlations between different parameters. 600 

 601 

Table 1: Parameters for the data assimilation procedure of this study. 602 

Number of ensemble members (-) 200 

Number of assimilations (-) 4 

q (-) 0.666667 

Covariance data (m) 0.01  

Number of InSAR data points (-) 3747 (descending), 2846 (ascending) 

Number of voxel locations (-) 199 (descending), 158 (ascending) 

Number of points in time (-) 208 (descending), 212 (ascending) 

Number of model parameters 6 

 603 

3 Results 604 

Our ES-MDA based workflow yielded 357 individual scatter point locations. To provide a 605 

representative summary of the results on point location scale, we present 4 key examples below 606 

(Fig. 5). Additionally, we present four key indicators for parameter covariance (Fig. 6), values 607 

for the estimated parameters (Table 1), and the average contribution to subsidence for clay and 608 

peat (Table 2). The estimated parameters consist of the four model parameters for the shrinkage 609 

of clay (shrinkage rate and relative residual thickness for clay and sandy clay), and two model 610 

parameters for oxidation (oxidation velocity and relative residual thickness of peat). 611 

 612 

The four key examples of the results of the simultaneous assimilation are presented in Figure 5. 613 

The time series of the prior ensemble is not indicated in Figure 5. Because they have a high 614 

variance, they would not fit into the scale of the figure. The red time series in Figure 5 are the 615 

200 modelled surface movement developments for the ensemble of assimilated parameters. The 616 

black dots are the InSAR data points, and the grey area represents the uncertainty given to each 617 

data point, as described in section 2.1. On the right y-axis in the same plot the phreatic 618 

groundwater level variation is plotted. The lithological column and the location of the column 619 

with respect to the phreatic groundwater level is indicated on the right of the plot. The time series 620 

and the estimated subsidence correspond well, regardless of lithology, except for Figure 5a. The 621 

prior and estimated parameters are presented in Table 2.  622 

 623 
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Table 2 provides the estimates prior and posterior to the data assimilation with their standard 624 

deviation. Results are given for the descending and ascending satellite tracks separately. The two 625 

tracks provide comparable estimated parameters as a result of the data assimilation. A few of the 626 

parameters are plotted against each other in Figure 6. For each assimilation step, the 200 627 

estimates of the parameters are plotted against each other. The figure indicates the ensemble 628 

spread in the prior estimates and the operation of the smoother by molding the cloud of 629 

parameter values. A clear relationship between different parameters evolves, along the lines of 630 

the argument in the previous paragraph: different combinations of the shrinkage and oxidation 631 

rate and the associated residual height give identical outcomes, as long as they follow the 632 

relationship 𝑅 = 1 −
𝐶

𝑣
. The final ensembles have been fitted to this relationship, as indicated 633 

with the dotted black line. The resulting constant C is given in the figure description.  634 

 635 

In summary, Table 3 provides the overview of the average contribution to subsidence in mm for 636 

the different lithologies for both the ascending and descending satellite tracks. 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 
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Figure 5: Comparison of surface movements, groundwater levels and lithology for 4 example locations. All figures 659 

show the InSAR-derived surface movements (black points) on the scale of the left y-axis. The uncertainty around 660 

them is depicted in gray. It was determined as described in section 2.1. The red lines are the 200 ensemble members 661 

of the optimized fit after 4 assimilation steps, also on the scale of the left y-axis. The groundwater is the blue line 662 

and is with respect to the right y-axis. Next to the graph a stratigraphic column for that specific location is given, 663 

according to GeoTOP. The legend of the column is the same as for figure 4. All y-axes are in meters with respect to 664 

NAP. 665 

a: descending track, this location shows in increase in subsidence rate once the phreatic surface is below the sandy 666 

layers, which happens from spring 2018 onwards. b: ascending track. Shows the fit of subsidence, where the 667 

phreatic surface steadily drops under a seasonal trend. There was no significant increase in subsidence rate. d: 668 

descending track. Combination of subsidence due to peat and clay. Enhanced subsidence rate from spring/summer 669 

2018 onwards is clear. d: descending track. Seemingly linear subsidence, with a slight acceleration from 670 

spring/summer 2018 onwards.  671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 



manuscript submitted to Journal of Geophyiscal Research – Earth Surface 

 

Table 1: The parameters that are optimized in this study for all the locations at the same time. The optimized fit of 679 

the ascending and descending track are result of separate data assimilation procedures, but the results are similar. 680 

The pre parameters were chosen based on the study of Fokker et al. (2019). The chi-squared error of the ascending 681 

track data set has been reduced from 5.2 (prior)  to 1.01 (posterior); for the descending track data set  it has been 682 

reduced from 3.6 (prior) is 3.6 to 0.77 (posterior). 683 

PARAMETER PRE POST (ASCENDING)  POST (DESCENDING) 

VSH CLAY 0.02 ± 0.005 0.017 ± 0.0012 0.018 ± 0.001 
RH CLAY 0.6 ± 0.05 0.79 ± 0.017 0.78 ± 0.019 
VSH SANDY CLAY 0.02 ± 0.005 0.017 ± 0.0015 0.018 ± 0.0016 
RH SANDY CLAY 0.6 ± 0.05 0.77 ± 0.02 0.77 ± 0.025 
VOX PEAT 0.01 ± 0.005 0.009 ± 0.003 0.02 ± 0.007 
RH PEAT 0.9 ± 0.05 0.89 ± 0.04 0.88 ± 0.04 

 684 

Figure 6: Several of the optimized parameters are plotted against each other for the pre-scenario (assimilation step 0) 685 

until the optimized result for the parameters (assimilation step 4) for the ascending satellite track. For all lithoclasses 686 

there is a strong correlation between the residual height (Rh) and the rate of subsidence (V). There is no clear 687 

correlation between the different lithoclasses, as indicated in figure 6d. For all the lithoclasses the relation of 688 

equation 12 is optimized for assimilation step 4, using an automated least squares polynomial fit. The constants for 689 

the line in figure a is C = v(1 − R) = 0.0038 yr−1; for b it is C = v(1 − R) = 0.0021 yr−1 and for c C =690 

v(1 − R) = 0.0040 yr−1.  691 
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Table 2: The average contribution of clay shrinkage versus peat 21oxidation for all the locations is provided below, in mm/year . 692 
Clay incorporates both clay and sandy clay lithoclasses from the GeoTOP model. 693 

 Ascending Descending 

Average contribution clay 
shrinkage (mm/year) 

5.7 ± 2.0 5.8 ± 2.3 

Average contribution peat 
oxidation (mm/year) 

0.07 ± 0.17 0.2 ± 0.42 

 694 

4. Discussion 695 

4.1 Future estimates and spatial pattern of subsidence 696 

This study has demonstrated the possibility to make reliable estimates of subsidence related to 697 

phreatic groundwater level changes and lithoclass layering. The study area was the urbanized 698 

Almere area of the reclaimed South Flevoland polder. For relatively short timescales, this 699 

enables making estimates of future subsidence, providing indications to drivers and hence tools 700 

for designing mitigation strategies. To provide information on expected future subsidence rates, 701 

four scenarios for the next five years were simulated. The first scenario was to continue the 702 

average rate of phreatic groundwater level change towards the future (red in figure 7b), the 703 

second scenario was to fix the level at the average height from April 2018 until the end of the 704 

research period (blue in Figure 7b) – no more lowering is allowed. The third scenario fixed the 705 

phreatic groundwater level at the average height of the phreatic surface for the research period 706 

until April 2018 (green in figure 7b): the phreatic level is brought back to higher values. The last 707 

scenario, finally, increased the water level even further by adding to the third scenario an extra 708 

20 centimeters. No seasonal trends were added to the scenarios, it is a mere indication of phreatic 709 

groundwater level elevation effects on subsidence until 2025.  710 

 711 

Figure 7a shows the spatial distribution of the total absolute increase in subsidence since the start 712 

of the study related to the different scenarios. The difference between a continuous decrease 713 

versus the average level of before March 2018 +0.2 m can be up to 2 centimeters in 5 years. The 714 

spatial plotting also makes apparent that most of the subsidence is expected in the southwest and 715 

northeast of the city of Almere. The area in the northeast part coincides with the course of the 716 

Eem paleovalley (Fig. 1), where the thickest Holocene sequence is present. Naturally, as this 717 

study does not provide a continuous image of subsidence, local alternating Holocene sequences 718 

are not accounted for. The spatial relation of subsidence with Holocene thickness or groundwater 719 

level is not a result straightforward relation, where clay thickness or groundwater level alone 720 

determines the subsidence rate. From our results, we see that not one single factor influences the 721 

spatial pattern of subsidence. This amplifies our need for subsidence modelling on the urban 722 

scale. 723 

 724 

Figure 7B provides predictions for one randomly chosen location, to give an idea of what 725 

subsidence looks like over time. The phreatic groundwater level is a key factor in the subsidence 726 

rates. From our analysis it follows that one meter drop in the phreatic surface will lead to one 727 

centimeter of additional subsidence in five years. This relationship can help in decisions 728 

concerning groundwater management, the single key factor of human influence on the 729 
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subsidence rate. The result of this study can be used to support science-based mitigation 730 

measures. 731 

Figure 7: Future estimates of subsidence. Figure 7a plots the expected subsidence since the start of the study for 732 

different scenarios of groundwater development. The scenarios range from largest to smallest drop in the phreatic 733 

surface, and hence largest to smallest expected subsidence. Locations are the same as in Figure 1. 7b shows the 734 

subsidence development of one individual location over time, from the start of the study period until 5 years after 735 

the end of the study period. The continuous lines show the phreatic surface, on the right y-axis, the dashed line 736 

shows the modelled subsidence, with height on the left y-axis In red the continuous decrease of subsidence is 737 
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modelled, in blue the average groundwater level from March 2018 until the end of the study period, the green line 738 

the average groundwater level of the study period until March 2018 and the black line is the green groundwater level 739 

plus 0.2 meters.  740 

4.2 Comparison to other subsidence regions 741 

The Flevoland Polder is unique in the Netherlands in the sense that subsidence is dominated by 742 

shrinkage of clay. Clay-shrinkage dominated subsidence is however observed in many other 743 

regions in the world. An example is the northern Nile Delta plain in Egypt, where Holocene clay 744 

related subsidence is enhanced by climate change that affects the Nile’s flow regime (Stanley 745 

and Clemente, 2014). There, subsidence ranges from 3.7-8.4 mm/year, which are comparable to 746 

the subsidence by clay derived in this study for the South-Flevoland polder. 747 

 748 

In and around Venice, Italy there is ongoing subsidence caused by compression of the natural 749 

lagoon (0.0-0.5 mm/year). More recently, there is human-induced subsidence (> 2.5 mm/year) 750 

due to groundwater withdrawals (Tosi et al., 2013). Parallels with the South Flevoland polder 751 

can be found in the reducing natural consolidation over time and significant subsidence induced 752 

by groundwater withdrawals. Both areas must deal with irreversible land lowering caused by 753 

groundwater withdrawals which are required to prevent the area from flooding.  754 

 755 

The same comparison can be made with the Vietnamese Mekong Delta, where groundwater 756 

lowering by withdrawals is the main driver of subsidence. The rates of groundwater withdrawal 757 

and subsidence are significantly higher in the Mekong Delta. Compaction rates are estimated at 758 

an average of 16 mm/year and total subsidence rates, including the subsidence as a result of 759 

groundwater withdrawal, can locally be up to 40 mm/year (Erban et al., 2014).   760 

 761 

Despite the differences between these areas in rates of subsidence and groundwater withdrawal, 762 

the common thread is that all areas are affected by groundwater lowering, either by climate 763 

change or anthropogenic causes. Understanding the importance of groundwater level changes to 764 

subsidence is therefore of major importance for all these coastal regions across the world. The 765 

method presented in this study, and the results in relation to clay behavior of the reclaimed land 766 

and the response to groundwater lowering can be of help to tackle this problem. 767 

4.3 Subsidence by drought 768 

In the results, a slight acceleration of subsidence around summer 2018 is visible. This 769 

acceleration is related to relative deep lowering of the phreatic groundwater level. At some 770 

locations, this acceleration is more profound than in others, as this is influenced by litholoclass 771 

and fluctuations of the phreatic levels as well. As shown in Figure 5, this relative low elevation 772 

of the phreatic groundwater level influences the processes responsible for subsidence. Namely, 773 

due to a lowered groundwater level, deep peat layers are temporarily aerated, resulting in 774 

oxidation and volumetric loss. Furthermore, a deeply lowered groundwater level can therefore 775 

instigate subsidence at locations that were previously not subsiding.  776 

 777 

These temporary deeply lowered phreatic groundwater levels are the results of climate change 778 

related drought events, such as the summers of 2018 and 2019 (Hari et al., 2020). Observed 779 

accelerated subsidence due to drought is new in the context of the Netherlands. Studies in other 780 

(Northwestern) European countries have recently linked drought to increased shrinkage in clay 781 
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and associated damage to the built environment (e.g. Charpentier et al., 2021; Gruslin et al., 782 

2022). With global warming resulting in more frequent droughts, establishing these relationships 783 

becomes increasingly more important.  784 

 785 

The results for the effects of drought in this study, however, must be viewed with care. As the 786 

number of groundwater datapoints decreases with time, the uncertainty increases. Our results are 787 

indicators of drought having an effect, but more extensive and consistent measuring of the 788 

phreatic surface is essential to assess groundwater related subsidence. Especially the effect of 789 

drought on the phreatic surface height is an important link for future scenarios of subsidence and 790 

mitigation strategies. 791 

4.4 Implications 792 

Current governmental attention in the Netherlands for shallow subsidence is predominantly 793 

focusing on peat oxidation (Van Nieuwenhuizen Wijbenga, 2019). Therefore, the current study 794 

fills a gap in the Netherlands knowledge base. Quantifying the process of clay-driven subsidence 795 

is important for optimal decision making regarding shallow subsidence in Almere. Additionally, 796 

showing that drought enhances subsidence rates is important for focusing future measures to 797 

mitigate subsidence, and connects the problem to climate change. Furthermore, phreatic surface 798 

lowering exposing deeper peat beds also increases carbon dioxide emissions by peat oxidation 799 

(e.g. Koster et al., 2020).  800 

 801 

This study would not have been possible without a structure of nation-wide freely available data 802 

on the construction of buildings, relative elevation measurements, geology, and groundwater. 803 

Still, more data will help to corroborate our findings. Investments in a network to monitor 804 

phreatic groundwater level changes and shallow extensometers able to measure volumetric loss 805 

within the Holocene sequence is critical herein (cf. Van Asselen et al., 2020). For improved 806 

processing of geodetic data, a network of corner reflectors is required to measure surface 807 

movement of the ground level (e.g. Yu et al., 2013). Such investments should be conducted in 808 

close collaboration with policy makers and spatial planners. 809 

4.5 A comparison of parameters with previous studies 810 

The South Flevoland polder is unique in the Netherlands with respect to the progressively 811 

increasing number of clay and peat beds that encounter contact with atmosphere for the first time 812 

since their formation. The estimated subsidence rates are therefore not directly comparable to 813 

other polder areas in the Netherlands that have been reclaimed centuries ago.  814 

 815 

Earlier studies on subsidence in the South Flevoland polder determined the rates of subsidence 816 

due to shrinkage after reclamation estimated based on a few measurements of non-urbanized 817 

locations across the South Flevoland polder (De Lange et al., 2012; De Lange, 2015; Fokker et 818 

al., 2019). The estimated subsidence in those regions was larger than what we have observed 819 

here in the urbanized areas. A reasonable explanation would be that construction has an 820 

inhibitory effect on the shrinkage of clay (and when applicable oxidation of organic material) 821 

(De Lange, 2015). This study focuses on an urbanized area to estimate the contribution of the 822 

different background subsidence processes in urbanized settings.  823 

 824 
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The residual height estimated by Fokker et al., 2019 lies between 0.50 and 0.67 for clay. 825 

However, as mentioned before, the start of modelling subsidence is ~50 years after reclamation 826 

in our study, whereas Fokker et al., 2019 start modelling from reclamation onwards, hence the 827 

layers still have their original thickness. The values found in this study are higher; ~0.78. Due to 828 

the length of the modelling period, only a relation between residual height and reduction rate 829 

could be established (Fig. 6). A higher residual height can be explained when layers already have 830 

partly undergone shrinkage before the start of the observations. Indeed, in our study, the 831 

reference is not at the start of exposure to air but a long time later in the compaction history. 832 

 833 

A good match between the estimated parameters and the InSAR time series was found for our 834 

spatiotemporal model of subsidence in the city of Almere, quantified with the calculated chi-835 

square error, whilst incorporating groundwater levels, lithology, and the physical models. In line 836 

with literature, the shrinkage rates of clay are larger than the oxidation rates of peat (Fokker et al, 837 

2019; Schothorst, 1982).  838 

 839 

The same value for uncertainty is currently attributed to each InSAR-derived data point in space 840 

and time.  There was no covariance matrix available for the dataset. Accurate covariance 841 

matrices could increase our ability to fit parameters and models to the data, by reducing the 842 

weight given to less reliable data points and incorporating interdependencies. 843 

4.6 Correlations between parameters 844 

We found correlations between the residual height and reduction rate parameters for the same 845 

soil types. This correlation could have been expected from the form of their presence in the 846 

forward model. The relationship, as shown in Figure 6, helps in future subsidence estimates. By 847 

parameterizing the average behavior of the three lithological types, prediction on future behavior 848 

with respect to phreatic groundwater changes can be made even when the individual values of 849 

the parameters are rather uncertain. 850 

 851 

There is no correlation between the shrinkage rate of clay and the oxidation rate of peat (Fig. 6), 852 

because lithoclasses act independently. Clay and sandy clay show similar behavior (Figure 6 and 853 

Table 2). In the South Flevoland polder, sandy clay is the product of tidal dynamics, and consists 854 

of mm-thick alternating clay and sand beds. The comparable behavior between these thin-bedded 855 

sandy-clay and clay deposits indicates the dominance of clay shrinkage within the sandy-clay 856 

cells. Apparently, the presence of sand is only minimally preventing these deposits from 857 

volumetric loss by shrinkage.  858 

 859 

Figure 5a shows a scenario in which the average phreatic groundwater level is located within the 860 

uppermost sand bed. Here, the model underestimated observed subsidence. We think the 861 

mismatch is related to short drought events not captured by our monthly updated groundwater 862 

model.  Phreatic groundwater levels that are temporally lowered, result in shrinkage of clay 863 

directly underneath the upper sand bed, resulting in enhanced subsidence. This explanation is 864 

corroborated by the increase in subsidence rate in Figure 5a that coincides with the phreatic 865 

surface drop into the clay layer.  866 
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5 Conclusions 867 

We have presented a novel data processing and data assimilation workflow with an 868 

unprecedented dataset to identify processes resulting in anthropogenically-induced subsidence 869 

around the city of Almere in the reclaimed South Flevoland polder in the Netherlands. The 870 

workflow integrates  lithoclass, phreatic groundwater level changes, and InSAR data, with 871 

information on construction dates of structures, and a suite of physical models. The assimilation 872 

exercise has enabled us to quantify the drivers of subsidence.  873 

 874 

Our results have revealed that shrinkage of shallow clay beds induced by artificial lowering of 875 

phreatic groundwater levels is the dominant subsidence process in the South Flevoland polder, 876 

with rates up to 6 mm/yr. In line with previous research in the South Flevoland polder, the 877 

subsidence rates due to clay shrinkage are significantly higher than those due to peat oxidation, 878 

which are up to 0.2 mm/yr. The rates depend critically on the development of phreatic water 879 

levels – drought has therefore been identified in this study as an important catalyzer of 880 

subsidence. At longer timescales we estimated that one meter drop in groundwater level results 881 

in 10 millimeter of subsidence in the urbanized area of Almere. 882 

 883 

Groundwater governance is the single human activity influencing land subsidence in Almere. 884 

Our study highlights the necessity of high-quality data in order to make trustworthy analyses of 885 

subsidence processes and support such governance. Data is obtained by measuring campaigns 886 

and continuous monitoring. This includes lithology, groundwater development and surface level 887 

changes. Robust analyses of subsidence processes and quality predictions are possible through 888 

the application of an approach that integrates all available data with knowledge on physical 889 

processes in a dedicated data assimilation procedure.  890 
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Open Research 902 

Data from the geological survey of the Netherlands (TNO-GSN, 2022) is used to construct the 903 

lithological and groundwater model. Kadaster (2022) has been used to verify the age of the 904 

buildings. From Rijkswaterstaat (2022) InSAR data products were retrieved. Figures were made 905 

with Matplotlib v.3.4.3 (Caswell et al., 2022) available under the matplotlib license at 906 

https://matplotlib.org and QGIS v3.24 (QGIS Development team, 2022).  907 
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