Methane emissions in seagrass meadows as a small offset to carbon sequestration

Yvonne Yu Yan Yau¹, Gloria Reithmaier², Claudia Majtenyi-Hill¹, Nerea Piñeiro-Juncal³, Martin Dahl², Miguel Angel Mateo⁴, Stefano Bonaglia¹, Oscar Serrano⁵, and Isaac Santos¹

¹University of Gothenburg ²Unknown ³University of Aveiro ⁴Consejo Superior Investigaciones Cientificas ⁵Edith Cowan University

December 14, 2022

Abstract

Seagrass meadows are effective carbon sinks due to their high primary production and sequestration in sediments. However, methane (CH4) fluxes can partially counteract their carbon sink capacity. Here, we measured diffusive sediment-water and air-sea CO2 and CH4 fluxes in a coastal embayment dominated by Posidonia oceanica in the Mediterranean Sea. High resolution timeseries observations revealed large spatial and temporal variability in CH4 concentrations (2 to 36 nM). Higher emissions were observed in an area with dense seagrass meadows. A 6 - 40% decrease of CH4 concentration in the surface water around noon indicates that photosynthesis likely limits CH4 fluxes. Sediments were the major CH4 source as implied from radon (a natural porewater tracer) observations and evidence for methanogenesis in deeper sediments. CH4 sediment-water fluxes (0.1 \pm 0.1 - 0.4 + 0.1 µmol m-2 d-1) were higher than average water-air CH4 emissions (0.12 \pm 0.10 µmol m-2 d-1), suggesting that dilution and CH4 oxidation in the water column could reduce net CH4 fluxes into the atmosphere. Overall, relatively low air-sea CH4 fluxes at this likely represent net emissions from subtidal seagrass habitats sites, which are not influenced by nearby allochthonous CH4 sources. The local CH4 emissions in P. oceanica offset less than 1% of the carbon burial in sediments (142 \pm 69 g CO2eq m-2 yr-1). Combining our results with earlier observations in other seagrass meadows worldwide reveals that global CH4 emissions within seagrass meadows only offset a small fraction (<2%) of carbon sequestration in sediments.

Hosted file

950175_0_art_file_10525187_rmtb30.docx available at https://authorea.com/users/566175/ articles/612952-methane-emissions-in-seagrass-meadows-as-a-small-offset-to-carbonsequestration

Methane emissions in seagrass meadows as a small offset to carbon sequestration

2 3 4	Yvonne Y.Y. Yau ¹ , Gloria Reithmaier ¹ , Claudia Majtenyi-Hill ¹ , Oscar Serrano ^{2,3} , Nerea Piñeiro-Juncal ^{2,4} , Martin Dahl ^{2,6} , Miguel Angel Mateo ^{2,3} , Stefano Bonaglia ¹ , and Isaac R. Santos ^{1,7}
5	
6	¹ Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
7 8	² Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Spain
9 10	³ School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
11 12	⁴ Department of Biology & CESAM – Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
13 14	⁵ CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, Campus Sur s/n, Santiago de Compostela, 15782, Spain
15 16	⁶ Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Environmental Science. Stockholm University, Sweden
17 18	⁷ National Marine Science Centre, Southern Cross University, Australia
19 20	Corresponding author: Yvonne Yu Yan Yau (<u>yvonne.yau@gu.se</u>)
21	Key Points:
22 23 24 25	 High resolution CH₄ observations reveal diel cycles linked to seagrass productivity Sediments were the main CH₄ source in both living and dead seagrass areas CH₄ emissions were a small offset to seagrass C sequestration on local and global scales
26	
27	
28	
29	
30	
31	
32	
33	
21	

36 Abstract

37 Seagrass meadows are effective carbon sinks due to their high primary production and sequestration in sediments. However, methane (CH₄) fluxes can partially counteract their 38 39 carbon sink capacity. Here, we measured diffusive sediment-water and air-sea CO_2 and CH_4 fluxes in a coastal embayment dominated by Posidonia oceanica in the Mediterranean Sea. 40 High resolution timeseries observations revealed large spatial and temporal variability in CH₄ 41 concentrations (2 to 36 nM). Higher emissions were observed in an area with dense seagrass 42 43 meadows. A 6 - 40% decrease of CH₄ concentration in the surface water around noon indicates that photosynthesis likely limits CH₄ fluxes. Sediments were the major CH₄ source 44 as implied from radon (a natural porewater tracer) observations and evidence for 45 methanogenesis in deeper sediments. CH₄ sediment-water fluxes $(0.1 \pm 0.1 - 0.4 \pm 0.1 \mu mol)$ 46 $m^{-2} d^{-1}$) were higher than average water-air CH₄ emissions (0.12 ± 0.10 µmol m⁻² d⁻¹), 47 suggesting that dilution and CH₄ oxidation in the water column could reduce net CH₄ fluxes 48 49 into the atmosphere. Overall, relatively low air-sea CH₄ fluxes at this likely represent net emissions from subtidal seagrass habitats sites, which are not influenced by nearby 50 allochthonous CH₄ sources. The local CH₄ emissions in P. oceanica offset less than 1% of 51 the carbon burial in sediments $(142 \pm 69 \text{ g CO}_{2eq} \text{ m}^{-2} \text{ yr}^{-1})$. Combining our results with earlier 52 observations in other seagrass meadows worldwide reveals that global CH₄ emissions within 53 seagrass meadows only offset a small fraction (<2%) of carbon sequestration in sediments. 54

55

56 Plain language Summary

57 Seagrass meadows are important hotspots for carbon storage in the sediment. Part of the sediment carbon can be emitted as the greenhouse gases carbon dioxide and methane (CH₄). 58 59 Methane has a 45 - 96 times more powerful global warming effect than carbon dioxide. If 60 seagrass meadows release CH₄, the emissions counteract their climate mitigation potential. 61 We measured greenhouse gas concentrations and fluxes in a seagrass-dominated 62 Mediterranean embayment. Low CH₄ coincided with the increase of oxygen produced 63 through seagrass photosynthesis. Areas with dense seagrass meadows had lower CH₄ emissions. Overall, the seagrass-dominated bay was a small source of CH₄ that can offset 64 only <1% of carbon buried in sediments. Hence, seagrass meadows remain an effective 65 carbon sink. 66

67 **1 Introduction**

Seagrass meadows are effective carbon sinks recognized for their potential role in climate 68 change mitigation (Fourqurean et al., 2012; Lovelock & Duarte, 2019; Mcleod et al., 2011). 69 70 Seagrass meadows sequester carbon dioxide (CO₂) through photosynthesis (Van Dam et al., 71 2021) and trap allochthonous particles within their canopy (Gacia et al., 2002). Part of this 72 carbon is then stored as biomass and as organic carbon in sediments for centuries and even millennia (Serrano et al., 2016, 2021). Seagrass meadows account for 10 - 18% of the total 73 carbon burial (27 44 Tg C y^{-1}) in the ocean even though they cover only 0.1% of the global 74 ocean area (Kennedy et al., 2010). In addition, about 5% of the particulate organic carbon and 75 76 dissolved organic carbon produced within seagrass habitats is exported beyond the meadows 77 and stored in the deep ocean (Duarte & Krause-Jensen, 2017). Seagrass meadows are 78 considered an important blue carbon ecosystem that should be protected and restored to 79 mitigate anthropogenic CO₂ emissions

80

81 Posidonia oceanica is the dominant seagrass species along the Mediterranean coast and an important blue carbon ecosystem (Telesca et al., 2015). P. oceanica is a slow-growing and 82 long-living seagrass, which accumulates 84 ± 20 g C m⁻² yr⁻¹ of organic carbon in the 83 sediment (Serrano et al., 2016). A special feature of P. oceanica is the formation of thick (up 84 85 to 6.5 m) and old (up to millennia) organic detritus known as *mattes*, storing large quantities of organic matter in the sediments (Lo Iacono et al., 2008; Mateo et al., 1997). These dead 86 mattes can remain as important carbon and biogeochemical sinks even 30 years after seagrass 87 88 death of the meadow (Apostolaki et al., 2022). Due to their slow decay rates and recalcitrant 89 nature, P. oceanica is one of the largest blue carbon sinks among seagrass species (Gacia et al., 2002; Kaal et al., 2018; Serrano et al., 2018). However, natural and human disturbances 90 91 such as moorings and coastal development destroy seagrass meadows potentially leading to 92 reduction of carbon stocks and increased emissions of CO₂ and CH₄ to the atmosphere 93 (Carnell et al., 2020; Lyimo et al., 2018).

94

95 The coastal ocean is a hotspot of CH_4 emissions, contributing with 75% of the global oceanic CH_4 emissions (Weber et al., 2019). While seagrass meadows store organic carbon, the high 96 sediment organic matter content also favors methane (CH₄) production (Rosentreter, Al-Haj, 97 et al., 2021). CH_4 is produced during anaerobic microbial degradation of organic carbon via 98 99 methanogenesis (Martens & Klump, 1980) usually after all the other energetically favorable 100 electron acceptors become depleted in sediments (Froelich et al., 1979). Thus, oxygen, 101 nitrate, metal oxide and sulphate availability in marine sediments can limit methanogenesis and CH₄ emissions (Egger, Kraal, et al., 2016). The presence of methylated compounds in 102 seagrass rhizosphere provide another pathway for CH₄ production, even in dead seagrass 103 meadows (Schorn et al., 2022). The net CH_4 emission is also controlled by production and 104 oxidation in sediment and water column before reaching the atmosphere (Egger, Lenstra, et 105 al., 2016; Ward et al., 1987). Understanding both sediment-water and air-sea fluxes can 106 107 provide insight on net CH₄ fluxes to the atmosphere.

Since CH_4 is a potent greenhouse gas with 45–96 times greater sustained-flux warming potential (SGWP) than CO_2 (Neubauer & Megonigal, 2015), the efficiency of seagrasses as a carbon sink can be partially offset by CH_4 emissions. Although measurements of CH_4 fluxes 111 have been widely performed in mangroves (Call et al., 2019), saltmarshes (Yau et al., 2022), and other coastal ecosystems (Borges & Abril, 2011), CH₄ fluxes in seagrass meadows 112 remain poorly constrained across multiple spatial and temporal scales. The air-sea and 113 sediment-water CH₄ fluxes from seagrass ranged from 0 to 400 µmol m⁻² d⁻¹, resulting in 114 global upscaled fluxes of 0.18 Tg CH₄ per year (Al-Haj et al., 2022). Several seagrass 115 116 meadow CH₄ flux estimates considered sediment-water fluxes, obtained from benthic 117 chambers and sediment incubation approaches, to be equivalent to air-sea fluxes. This 118 assumes that sediment CH₄ propagates through the shallow water column and reaches the 119 atmosphere unmodified.

120

121 Here, we report high resolution timeseries observations of dissolved CH₄ over multiple diel 122 cycles and estimate sediment-water and air-sea CH₄ fluxes in P. oceanica meadows at a 123 Mediterranean bay. We quantified air-sea CO_2 and CH_4 fluxes above the seagrass using automated, in situ surface water observations (including ²²²Rn measurements, a natural 124 porewater tracer), and at the sediment-water interface using sediment cores. This study aims 125 126 to (1) estimate sediment-water CH_4 fluxes, (2) evaluate the spatial and diel variability of airsea CH_4 fluxes, (3) assess the fate of CH_4 by comparing CH_4 sediment-water fluxes and air-127 128 sea fluxes, and (4) examine whether CH_4 emissions can partially offset carbon sequestration 129 in seagrass on both local and global scales.

130 2 Materials and Methods

131 2.1Sampling location

Field observations were performed at Portlligat Bay (42°17'32" N, 3°7'28" E) on the 132 northeast coast of Spain in the Mediterranean Sea. The bay is shallow ranging from 2 to 10 133 134 m, with < 0.5 m tidal ranges (Serrano et al., 2012). P. oceanica is the dominant seagrass species in the bay, covering 41% of the area (0.12 km^2) . The seabed is irregular with mounds 135 136 of matte deposits (ranging from 3.5 to 6 m in thickness) formed by P. oceanica debris intertwined with fine to medium sands (Lo Iacono et al., 2008). Dense P. oceanica (> 600 137 138 shoots m⁻²) were found within the center and north of the bay, whereas patchy seagrass meadows within sand and dead mattes were found at the south of the bay. Anthropogenic 139 disturbances in the embayment are limited to boating and the deployment of environmentally 140 friendly moorings in the center of the bay. The nature of the matte with the presence of dense 141 142 roots, rhizomes and sheaths remains of P. oceanica limits burrowing activities in the 143 sediments. An ephemeral stream is located at the northeast edge of the bay, but there are no 144 permanent rivers supplying freshwater to the bay.

Figure 1. Study site map. (a) Location of Portlligat bay; (b) Portlligat bay with location of
 timeseries Stations S and P, sediment core of living and dead seagrasses, extent of *Posidonia oceanica* meadows (shaded green) modified from (Leiva-Dueñas et al., 2018) and the dead
 matte.

151

152 2.2Timeseries and spatial survey

Two timeseries stations were deployed simultaneously during 11th to 18th September 2021 (Figure 1). Station S was in a healthy seagrass-dominated area (42°17'38" N, 3°17'19 E"), whilst Station P was surrounded by patchy seagrass meadows, including dead seagrass areas (42°17'29" N, 3°17'22 E"). Precipitation events were recorded from 01:00 to 09:00 on 16th September with a maximum 2.9 cm hr⁻¹.

158 Water depth, salinity and temperature were measured every 5 minutes (Levelogger 5 LTC, Solinst), whereas dissolved oxygen (DO) was recorded at 1 min intervals (miniDOT, PME), 159 which were installed close to the sediment surface. Radon was measured with a ²²²Rn-air 160 analyzer (RAD7), while CO2 and CH4 were measured with a greenhouse gas analyzer (LI-161 162 7810, LI-COR). Both were connected to a Durridge shower head gas exchange device as described elsewhere (Webb et al. 2016 and references there in). A water pump was attached 163 at the side of the boat (~50 cm deep) to sample surface water at 3 L min⁻¹ to the showerhead 164 gas exchange. There were data gaps in the patchy seagrass due to instrument failure (days 165 13th and 14th September 2021). CO2 and CH4 concentrations were recorded at 1-second 166 intervals and radon at 30 min intervals. Time lags of 30, 10 and 30 minutes were applied to 167 ²²²Rn, CO₂ and CH₄ respectively to account for gas equilibrium between water and the closed 168 air loop (Webb et al., 2016). The data were aggregated into 5 minutes intervals. 169

170 A spatial survey was conducted to measure 222 Rn, CO₂ and CH₄ across the bay covering a 171 track of 1.5 km on 18th September 2021 from 16:00 to 17:30 using the same experimental 172 setup as described above. CH₄ fluxes for the whole bay area were found using inverse 173 distance weighted interpolation methods, from which an average was obtained.. Solubility of 174 CO₂ and CH₄ was calculated as a function of temperature and salinity using Weiss (1974) and 175 Yamamoto et al. (1976), respectively, and normalized to the Schmidt number as described in 176 Wanninkhof (2014). Meteorological parameters such as radiation, wind speed and precipitation were obtained from nearest automated station of Roses (42° 16' 20.56" N, 3° 11'

178 1.16" E) from the government of Catalonia.

179

180 2.3 Sediment and porewater analysis

181 Six sediment cores were collected by manual hammering of PVC pipes (1 m long and 60 mm inner diameter) in both dead and living seagrass (Figure 1). To sample for dissolved CH₄ in 182 porewater, a push-core with pre-drilled holes (1 cm diameter) was used to minimize the 183 184 oxidation during sampling. 3mL of wet sediment were extracted using a cut-off plastic 185 syringe and transferred into 22mL gas-tight vials containing 10 mL of a 1M NaOH solution 186 to preserve methane. The vials were then crimped immediately using aluminum caps with 187 butyl rubber stoppers. Back in the lab, all headspace from each vial (7-10 mL) were 188 transferred into a second N_2 flushed vial using a gas-tight syringe. The headspace CH_4 189 concentrations were then measured using a gas chromatographer (Thermo Scientific Trace 190 1300) equipped with flame ionization detector. Reference gas standards of 1.9 ppm and 50 191 ppm (Air Liquide Gas AB) were used for instrument calibration. The porewater methane 192 concentrations were calculated from the measured headspace concentrations (Hoehler et al., 193 2000), (Equation 1):

$$[CH_4] = \frac{P * V_H}{R * T * \emptyset * V_S} \tag{1}$$

where $[CH_4]$ is the porewater CH₄ concentration (nM), *P* is the methane partial pressure inside the vial (atm), V_H and V_S are the volume of headspace in each vial and the sediment sample (mL), *R* is the universal gas constant (L atm K⁻¹ mol⁻¹), *T* is the laboratory temperature (°C) and \emptyset is the sediments porosity in each sediment layer. Sediment porosity was calculated from water content (weight difference of wet and dry sample weight after drying at 100°C) and sediment bulk density (Lengier et al., 2021)

Porewater for DIC was extracted from sediment cores using Rhizon samplers (Rhizosphere research product). Approximately 10–15 mL of porewater was collected. DIC samples were collected in 12 mL exetainers without headspace. DIC concentrations were analyzed by Total Dissolved Inorganic Carbon Analyzer (Appollo AS-C5) at the University of Gothenburg.
Certified reference material (CRM from Dickson Laboratory, Scripps Institute of Oceanography) was used as the standard. The analytical precision was better than 2% for porewater.

The organic matter content of the sediment layers was estimated based on the Loss of Ignition method (LOI), after homogenising the samples with a mill and combusting the organic matter for 4h at 500 $^{\circ}$ C (Heiri et al., 2001).

211

212 2.4 Estimation of sediment-water and air-sea CH₄ and CO₂ flux

213 The sediment-water CO_2 and CH_4 diffusive fluxes were calculated using Fick's first law:

214
$$J = -\phi D_S \frac{dC}{dz}$$
(2)

where J is diffusive flux of CH₄ and DIC (μ mol m⁻² d⁻¹), Ø is the sediment porosity, D_S is the sediment diffusion coefficient (cm² s⁻¹), C is the CH₄ concentration in porewater (μ M) and z is the sediment depth (cm). The values of $\frac{dC}{dz}$ were obtained from the slope of the linear regressions where p < 0.05. The diffusion in sediment (D_S) was adjusted to the diffusion in seawater using sediment tortuosity based on $D_S = \frac{D_{SW}}{\theta}$, where the seawater diffusion coefficient (D_{SW}) for CH₄ and DIC seawater at 20°C was 1.39*10⁻⁹ and 9.89*10⁻¹⁰ (Lerman, 1979). Tortuosity (θ) was calculated from sediment porosity using $\theta = 1 - ln(\phi^2)$ (Boudreau, 1997; Lengier et al., 2021).

223

The air-sea CO_2 and CH_4 fluxes were determined by gradient of air-sea gas concentration, gas solubility and gas transfer velocity (Equation 1).

226
$$FCH_4 / FCO_2 = k k_0 (P_W - P_a)$$
 (3)

where F is the CO₂ and CH₄ flux (mmol $m^{-2} d^{-1}$), k represents gas transfer velocity (m d⁻¹), k_0 227 is the solubility coefficient (mol kg⁻¹ atm⁻¹), and P_w and Pa are the partial pressures (µatm) of 228 CO₂ and CH₄ in water and air, respectively. The atmospheric partial pressures of CO₂ and 229 CH₄ were 419 and 1.9 ppm, respectively. Positive air-sea gas flux values indicate gas evasion 230 from water to air. Four empirical models were used to determine the gas transfer velocity k, 231 which was based on the water depth and wind speed at 10 m above sea level (m s⁻¹) (Borges 232 et al., 2004; Dobashi & Ho, 2022; Raymond & Cole, 2001; Wanninkhof, 2014) (Table 1). 233 These models were selected for intermediate wind speed of 3-15 m s⁻¹. Dobashi and Ho 234 (2022) model was determined in seagrass in Florida Bay, which accounted for the wave 235 resistance by seagrass and lower wind fetch in meadows. Dobashi and Ho (2022) model for 236 the analysis as it is more suitable for our coastal bay and prevents overestimation of fluxes. 237

Table 1. Models for gas transfer velocity parameterizations. k is normalized to Schmidt number (k_{600}) as a function of temperature and salinity.

Model	Parameters	Location	Equation
Raymond & Cole (2001)	Wind speed	River and	$k_{600} = 1.91e^{0.35u_{10}}$
		estuary	
Borges et al., (2004)	Wind speed	Estuary	$k_{600} = 5.141 u_{10}^{0.758}$
Wanninkhof (2014)*	Wind speed	River	$k_{660} = 0.251 u_{10}^2$
Dobashi and Ho (2022)	Wind speed	Seagrass	$k_{600} = 0.125 u_{10}{}^2$

240 *Note.* u_{10} is the wind speed at 10 m height (m s⁻¹). * k_{660} is converted to k_{600} for comparison by assuming that both the Schmidt number had the same ratio and exponent of -0.5.

242 To evaluate the global warming potential, CH₄ flux was converted to CO₂ equivalents. CH₄

flux estimates were based on the sustained-flux global warming potential (SGWP) 96 and 45

for time horizons of 20 and 100 years, respectively (Al-Haj & Fulweiler, 2020; Neubauer &

Megonigal, 2015). The CO_2 equivalent emissions of CH_4 were calculated as follows:

246
$$SGWP_{100/20}(Tg CO_{2-eq}) = FCH_4 * 365 * A * SGWP_{100/20} * f$$
(5)

247 where FCH_4 represents average CH₄ flux (µmol m⁻² d⁻¹); A is the area of seagrass (km²),

SGWP of 100 and 20 years of 45 and 96, f is the conversion factor from μ mol to Tg

249 To investigate whether CO₂ and CH₄ fluxes were different between stations, Mann-Whitney

250 tests were used due to the non-normal distributed data. Spearman's Rank-order test was used

to determine the correlations between different environmental parameters. All statistical tests

252 were considered significant when p < 0.05.

253

254 **3 Results**

255 3.1 Timeseries observations

256 The average water temperature and salinity were similar at Stations S and P, with 23.3 ± 0.7 °C (SD) and 36 ± 1 respectively (Figure 2). The water depth ranged from 1.4 to 2.4 m and 257 wind speeds at 10 m above sea level averaged 2.1 ± 1.6 m s⁻¹ over the study period. The light 258 intensity under the water was higher in Station P (1747 ± 633 lum ft⁻²) than Station S ($1044 \pm$ 259 670 lum ft⁻²). Over diel periods, DO at both Stations S and P was undersaturated (77.9 \pm 260 261 16.0% and 74.7 \pm 18.2%, respectively). DO followed the expected diel pattern with 262 oversaturated and undersaturated conditions during noon and night, respectively. pCO_2 exhibited a diel cycle with a peak around 9 to 10 am and lowest values around 6 pm and was 263 264 negatively correlated with DO in both stations (Figure 2). The hourly average CH_4 265 concentrations were significantly different at both sites, with Station P were 5 times higher 266 than Station S. We observed a 40% decrease in CH₄ concentrations from 11:00 to 14:00 at 267 Station P, but only 6% decrease in Station P during noon in Station S. The daytime average wind speed, and the CH₄ and CO₂ fluxes were higher than at nighttime (Table 2). The hourly 268 average of pCO_2 exhibited a clockwise hysteresis loop with DO saturation and CH₄ at both 269 270 sites and both stations exhibited a weak but significant correlation between DO saturation and 271 CH_4 (Figure 7). The hourly average CH_4 concentration had a hysteretic pattern to light intensity in Station S but a strong correlation in Station P. However, ²²²Rn did not follow a 272 diel pattern at both stations. 273

274 3.2 Spatial variation

275 pCO_2 and CH₄ were significantly different between the two stations (Figure 6). pCO_2 values at Station S ($538 \pm 50 \mu$ atm), which is surrounded by healthy seagrass meadows, were lower 276 277 than at Station P (632 \pm 103 µatm), which is mostly surrounded by dead *matte* and organic matter debris over sand (Table 2). Similarly, the CH₄ concentrations were five times lower in 278 Station S (2.68 \pm 0.17 nM) compared to Station P (8.57 \pm 6.72 nM). ²²²Rn concentration at 279 Station P (383 ± 125 dpm m³) was also significantly lower than Station S (892 ± 331 dpm 280 m³) (Figure 2). The high CH₄ concentrations at Station P (peak at 36.3 nM at 13:00) occurred 281 in the first two days of observations coinciding with the high concentrations of ²²²Rn (peak at 282 1886 dpm m³) and high irradiance (6000 lum ft⁻²) (Figure 3). ²²²Rn concentrations were 283 positively correlated with CH₄ at Station P (r = 0.73) and Station S (r = 0.51) and pCO₂ (r =284 0.49 and r = 0.32, respectively) (Figure 6). Net CH₄ emissions were observed in both stations, 285 with one order of magnitude higher CH₄ sea-air fluxes at Station P ($1.10 \pm 2.29 \text{ }\mu\text{mol m}^{-2} \text{ d}^{-1}$) 286 compared to Station S ($0.10 \pm 0.12 \mu mol m^{-2} d^{-1}$) over the study period. Similarly, net release 287 of CO₂ to the atmosphere was up to 2-fold lower in Station S $(3.75 \pm 2.63 \text{ mmol m}^{-2} \text{ d}^{-1})$ 288 compared to Station P ($6.32 \pm 5.59 \text{ mmol m}^{-2} \text{ d}^{-1}$). 289

The CH_4 and CO_2 emissions were calculated from four different gas transfer models. CH_4 emissions estimated from Dobashi and Ho (2022) were 2-times, 6-times and 11-times smaller

than those obtained with the other gas transfer models tested: Wanninkhof (2014), Raymond
& Cole (2001) and Borges et al., (2004), respectively.

294

Figure 2. Timeseries observations of dissolved greenhouse gases and ancillary parameters at (a) Station S; and (b) Station P. The shaded area indicates nighttime, whereas the non-shaded area indicates daytime. Gaps in the data were due to instrument failure.

298

299

Figure 3. Mean \pm standard deviation of hourly concentration of CH₄ (nM), CO₂ (*p*CO₂), light intensity (lum ft⁻²), percentage saturation of dissolved oxygen (DO, % sat), wind speed at 10 m above sea level (u10), CO₂ fluxes (FCO₂), and CH₄ fluxes (FCH₄) at Station S (left) and Station P (right) over the period of study. Both CO₂ and CH₄ fluxes were obtained based on the gas transfer model from (Dobashi & Ho, 2022). The shaded area indicates nighttime, whereas the non-shaded area indicates daytime.

Table 2. A summary of environmental parameters and GHG fluxes measured simultaneously at Station S and Station P. Day indicates data from 06:00 to 18:00 and night indicates data from 18:00 to 06:00. All data are reported as mean \pm SD. The air-sea CO₂ and CH₄ fluxes were calculated from four gas transfer velocity models (R&C from Raymond and Cole 2001; B04 from Borges et al. 2004; W14 from Wanninkhof 2014; and RY22 from Dobashi and Ho 2022).

			Station S			Station P		Spatial Survey
	Unit	Overall	Day	Night	Overall	Day	Night	Overall
Description		P.oce	<i>eanica</i> domin	ated	Pachy and dead P.oceanica			Whole bay
No. of hours	hr	205	97	108	109	61	48	2
Temperature	°C	23.5 ± 0.6	23.0 ± 0.4	23.0 ± 0.3	23.2 ± 0.4	23.1 ± 0.1	23.3 ± 0.1	23.7*
Salinity		36.8 ± 0.9	37 ± 1	37 ± 1	36 ± 1	35 ± 0	35 ± 0	$37\pm0\text{*}$
Water depth	m	1.7 ± 0.1	1.7 ± 1	1.7 ± 1	1.5 ± 0.1	1.5 ± 0.1	1.5 ± 0.1	1.7*
Wind speed	ms^{-1}	2.6 ± 1.6	2.6 ± 1.1	1.6 ± 1.4	1.8 ± 1.4	1.7 ± 0.4	1.9 ± 0.4	$1.6\pm0.1 \texttt{*}$
Irridance	lum ft ⁻²	526 ± 942	1044 ± 670	18 ± 0	873 ± 1456	1747 ± 633	33 ± 70	/
DO	% Sat	78 ± 16	79 ± 6.8	76 ± 6.5	75 ± 18	74 ± 1	74 ± 1	$102\pm1\texttt{*}$
DO	$mg L^{-1}$	5.4 ± 1.1	5.4 ± 0.5	5.2 ± 0.4	5.0 ± 1.3	4.5 ± 0.5	5.5 ± 0.4	$7\pm0*$
$p \operatorname{CO}_2$	µatm	538 ± 50	561 ± 41	522 ± 27	632 ± 103	677 ± 36	614 ± 20	606 ± 51
CH_4	nM	2.68 ± 0.17	2.69 ± 0.17	2.69 ± 0.19	8.57 ± 6.72	9.82 ± 1.83	7.72 ± 0.72	4.07 ± 1.18
²²² Rn	dpm m ⁻³	377 ± 129	392 ± 159	376 ± 130	892 ± 331	863 ± 128	933 ± 81	/
CO ₂ flux								
R&C	mmol $m^{-2} d^{-1}$	3.75 ± 2.63	5.12 ± 2.44	2.81 ± 1.59	6.32 ± 5.59	7.88 ± 2.27	5.53 ± 2.8	4.21 ± 0.84
B04	mmol $m^{-2} d^{-1}$	7.22 ± 5.27	10.36 ± 4.7	4.91 ± 2.97	11.85 ± 11.05	15.19 ± 4.79	9.96 ± 3.6	9.52 ± 2.01
W14	mmol $m^{-2} d^{-1}$	1.35 ± 1.78	2.10 ± 1.69	0.82 ± 1.21	2.13 ± 3.58	2.77 ± 1.6	1.75 ± 2.15	0.85 ± 0.20
RY22	mmol $m^{-2} d^{-1}$	0.64 ± 0.85	1.00 ± 0.76	0.39 ± 0.57	1.01 ± 1.70	1.31 ± 0.76	0.83 ± 1.02	0.38 ± 0.09
CH₄ flux								
R&C	μ mol m ⁻² d ⁻¹	0.56 ± 0.37	0.66 ± 0.36	0.49 ± 0.31	$\boldsymbol{6.59 \pm 9.21}$	9.76 ± 3.18	4.37 ± 0.80	1.33 ± 0.65
B04	μ mol m ⁻² d ⁻¹	1.07 ± 0.71	1.32 ± 0.66	0.87 ± 0.58	12.71 ± 18.73	19.71 ± 5.74	7.75 ± 1.59	2.97 ± 1.47
W14	μ mol m ⁻² d ⁻¹	0.20 ± 0.26	0.28 ± 0.24	0.15 ± 0.21	2.34 ± 4.88	4.24 ± 2.59	1.01 ± 0.83	0.27 ± 0.14
RY22	μ mol m ⁻² d ⁻¹	0.10 ± 0.12	0.13 ± 0.1	0.07 ± 0.1	1.10 ± 2.29	2.00 ± 1.21	0.48 ± 0.39	0.12 ± 0.10

324 **3.3 Spatial survey in the bay**

323

The 2-hour survey across the bay was conducted in late afternoon with wind speed (1.6 m s^{-1}) 325 lower than the average timeseries measurements (2.2 m s⁻¹). CH₄ concentrations varied across 326 327 the bay, ranging from 2.6 to 6.9 nM. The highest CH₄ concentration was detected around 328 Station P and along the SW shoreline, and further decreased towards the east and the opening 329 towards the Mediterranean Sea (Figure 4). This trend is consistent with timeseries observations. Overall, a net release of CH4 was estimated for the whole bay, ranging from 330 0.12 ± 0.10 to $2.97 \pm 1.47 \ \mu mol \ m^{-2} \ d^{-1}$, depending on the gas transfer model used. The 331 spatial survey represents the average of whole bay (0.21 km²), which was 50% higher than 332 333 the average timeseries measurements recorded at Station S and 91% lower at Station P. For the upscaling of CH₄ emissions, we used the average CH₄ flux for the whole bay to account 334 335 for the spatial differences.

Figure 4. The distribution of CH₄ concentration across Portlligat bay. The dashed black line
represents the spatial survey. The northeast exit of the bay is the Mediterranean Sea.

339 **3.4 Porewater profiles**

340 Sediment cores in both living and dead seagrass areas had similar water content ranging from 40% to 55%. Total organic matter content of sediments was similar between cores from 341 342 living and dead seagrass areas, with an average of 37.9% and 44.3%, respectively (Table 3). 343 Porewater CH₄ concentration in living seagrass cores were two-times higher than in the dead 344 seagrass. Both cores showed similar CH₄ depth profiles, increasing from 1 μ M at the surface up to 6 µM at 50 cm (Figure 5). The estimated sediment diffusive CH₄ flux in living seagrass 345 $(0.1 - 0.4 \mu \text{mol m}^{-2} \text{ d}^{-1})$ was 2 to 11 times higher than in dead seagrass $(0 - 0.1 \mu \text{mol m}^{-2} \text{ d}^{-1})$. 346 347 CH₄ sediment-water fluxes in the living seagrass were 2.5 times higher than CH₄ air-sea 348 emissions in the Station S (i.e., seagrass-dominated site), whereas sediment-water CH₄ fluxes 349 in the dead seagrass were 0.1 times lower than air-sea emissions in Station P (i.e., a mix of 350 patchy and dead seagrass). Porewater DIC concentrations in living seagrass (1,460 to 8,060 351 μ M) were also two times higher than in the dead seagrass (940 to 5,390 μ M) (Table 3). DIC 352 concentration in dead seagrass remained relatively constant with increasing sediment depth, whilst in living seagrass increased steeply up to 30 cm, where the rhizosphere ends, and then 353 354 after continued to increase until 70 cm depth (Figure 5). The estimated DIC diffusive flux in the living seagrass $(185 - 355 \mu \text{mol m}^{-2} \text{ d}^{-1})$ was three-times higher than in the dead seagrass 355 $(68 - 88 \text{ umol m}^{-2} \text{ d}^{-1}).$ 356

Figure 5. Vertical sediment profiles of porewater CH_4 concentrations (μ M) in three replicate cores within a) living meadows and b) dead matte; and DIC concentrations in c) living meadows and d) dead matte.

Table 3. Sediment characteristics and porewater DIC and CH_4 concentrations in 50cm thick cores from living meadows and dead matte cores. All data are reported as mean \pm SD.

	Unit	Living	Dead
Dry Bulk density ^a	g cm ⁻³	0.2 ± 0.1	0.3 ± 0.1
Water content ^a	%	51 ± 5.1	46 ± 4.9
Particulate Organic matter ^a	%	16.9 ± 7.4	17.5 ± 7.4

DIC	μM	$4094 \pm$	
	•	1827	2974 ± 939
CH_4	μM	2.3 ± 1.5	1.1 ± 0.6
CH ₄ sediment-water flux	μ mol m ⁻² d ⁻¹	0.25 ± 0.1	0.1 ± 0.1
DIC sediment-water flux	μ mol m ⁻² d ⁻¹	280 ± 87	78 ± 15

^aAverage of the first 50 cm of the sediment

365 4 Discussion

366 4.1 Porewater methane fluxes

Organic sediments in anoxic conditions support methanogenic activity and can result in high 367 carbon mineralization rates and thus benthic CH_4 effluxes. The high porewater CH_4 368 369 concentration $(0.3 - 2.1 \,\mu\text{M})$ in both living and dead seagrass sediment, was 20 times higher than previously measured in Italy for the same seagrass species (0.04–0.09 μ M), but similar 370 371 to those estimated for Zostera noltii in France (2.5 - 8 µM) (Deborde et al., 2010; Schorn et 372 al., 2022). This might be related to abiotic factors including sediment grain-size distribution (i.e., mud content), and/or the quality and quantity of organic carbon in sediment. The higher 373 CH_4 production below 40 - 50 cm sediments in seagrass sediments compared to the relative 374 flat CH₄ trend in the dead matte could be related to the effects of oxygen pumping by the 375 seagrass rhizosphere on methanogenic activity (Figure 5). The CH₄ consumption could occur 376 in upper layer (Schorn et al., 2022). Positive correlations between the porewater tracer ²²²Rn 377 and CH₄ concentrations also suggested that the sediments underlying the seagrasses are the 378 main source of CH₄ (and ²²²Rn) into the environment (Figure 6). There are no other major 379 ²²²Rn sources such as fresh groundwater or river water input to the bay. Higher sediment-380 water fluxes than the air-sea water fluxes in dense seagrass (Station S) also implied that the 381 382 sediment is the source.

383 High organic carbon in sediments support CH₄ production. A positive relationship between porewater DIC and CH₄ concentrations suggested that methanogenesis supports organic 384 carbon mineralization (Aleksandra & Katarzyna, 2018). Both DIC and CH₄ diffusion rates in 385 386 the living seagrass were 2-3 times higher than in sediments of dead seagrasses, suggesting that living seagrass releases organic carbon together with O₂ in root exudates, which enhances 387 388 carbon remineralization rates and thus DIC fluxes (Li, 2021). Living seagrasses, with a higher 389 liable content of labile organic carbon compared to dead *matte* could stimulate the CH₄ production (Piñeiro-Juncal et al., 2021), which was also observed in sediments with Z. noltii, 390 which had four-times higher fluxes than bare sediments (Bahlmann et al., 2015). However, 391 392 based on the sediment CH₄: DIC, the contribution of methanogenesis to total carbon 393 mineralization was at maximum 0.03%.

Our CH₄ diffusive sediment-water flux in living and dead *P.oceanica* of (0.2 μ mol m⁻² d⁻¹ and 0.08 μ mol m⁻² d⁻¹, respectively) at PortIligat Bay was 2 orders of magnitude lower than the fluxes measured in Fetoviaia Bay (median of 106 μ mol m⁻² d⁻¹ living; 142 μ mol m⁻² d⁻¹ for dead) (Schorn et al., 2022), using core incubations. While the flux may not be directly comparable due to different methods, both studies supported the hypothesis that dead *P.oceanica* could accumulate CH₄ due to the production of methylated compounds that fuels methanogenesis (Schorn et al. 2022).

³⁶⁴

Figure 6. Scatter plot of ²²²Rn against CH₄ and pCO_2 in Station S (left) and Station P (right). The solid line represents the fitted regression equation, the shaded area are the 95% confidence limits of the regression line, the r² value the degree of correlation, and the *p* value the level of significance.

406

407 **4.2 Diel pattern in air-sea fluxes of CH**₄

A diel air-sea CH_4 pattern with a decreasing trend in afternoon suggests that oxygen 408 409 availability can control CH_4 emissions to the atmosphere (Figure 3). A 6% to 40% decrease of CH₄ concentrations in the afternoon coinciding with increasing DO and high light intensity 410 411 indicates higher CH₄ oxidation rate within the water column due to higher oxygen 412 concentration derived from seagrass photosynthesis (Bahlmann et al., 2015) (Figure 7). 413 Increased oxygen from the roots or plant could stimulate aerobic CH₄ oxidation in the water 414 column (Al-Haj & Fulweiler, 2020). Similarly, Lyimo et al., (2018) reported that a reduction 415 of photosynthetic activity result in an increase of CH₄ emissions in a tropical seagrass 416 meadow. Lower air-sea CH₄ emissions in the dense seagrass site (Station S) further 417 demonstrates that photosynthesis could limit CH₄ emissions. The diel CH₄ variation likely implied that the productivity of seagrass drives the oxidation rate of CH₄, controlling CH₄ 418 419 emissions.

The patchy seagrass contributed to a higher CH_4 flux than the dense seagrass and exhibited a more pronounced CH_4 peak during noon, which was not observed in the dense seagrass. This CH_4 peak could be produced during photosynthesis of submerged photosynthetic organisms as ebullition or through direct CH_4 production, including seagrass, cyanobacteria and algae during (Hilt et al., 2022). The positive correlation of light intensity with CH_4 concentrations observed only in patchy seagrass might suggest abiotic CH_4 photoproduction (Figure 7). A 426 peak of CH₄ towards noon was also observed in other submerged vegetated habitats such as

427 temperate freshwater marsh in China and a mixed-vegetated habitat in a nearshore bay in the

428 Baltic Sea during summer (Ding et al., 2004; Roth et al., 2022). Moreover, the dead seagrass

429 debris could serve as a source of methylated compounds and stimulate the CH₄ production

430 (Schorn et al., 2022). More studies are needed to understand the contribution of both seagrass

431 meadows and dead matte habitat to CH_4 production.

432 The high spatial differences in CH_4 concentrations could link to the proximity to the open 433 ocean. The patchy seagrass area had two-times higher ²²²Rn concentrations and ten-times 434 greater CH_4 fluxes than the area with dense seagrass. As the dense seagrass site was closer to

435 the open ocean, ocean waters could dilute CH_4 concentration within the area, resulting in a

436 lower CH₄ and ²²²Rn concentrations compared to the more enclosed location of Station P

437 with patchy seagrass (Rosentreter, Borges, et al., 2021).

Figure 7. a) Scatter plot of average hourly values of dissolved oxygen (DO) and b) and light intensity against CH₄ and CO₂ in Station S (left) and Station P (right). The solid line represents the fitted regression equation (\pm SE), and the shaded area are the 95% confidence limits of the regression line, the r² value the degree of correlation, and the *p* value the level of significance. The numbers inside the plots indicate the hour of the day. Arrows indicates the hysteresis pattern along the day.

445

447 4.3 Low seagrass CH₄ emissions on local and global scales

The average air-sea CH₄ flux $(0.12 \pm 0.10 \mu \text{mol CH}_4 \text{ m}^2 \text{ d}^{-1})$ estimated are the lowest among seagrass meadows reported to date, which can reach up to 307 µmol CH₄ m⁻² d⁻¹ (Table 4). Our fluxes using the seagrass-derived *k* model from Dobashi and Ho (2022) were 2-11 times lower than other *k* models often used for coastal or open ocean (Borges et al., 2004; Raymond & Cole, 2001; Wanninkhof, 2014). Seagrass meadows attenuate wave energy compared to bare sediment. Therefore, using coastal ocean gas transfer *k* models might overestimate the CH₄ emissions (Table 2). For example, Ollivier et al.(2022) and Banerjee et al. (2018) applied

455 B04 and W14 models, respectively, which partially explains their higher CH₄ emissions.

Another reason for our relatively low CH₄ flux could be the lack of other freshwater sources 456 457 at our study site. Methane-enriched freshwater inputs could result in overestimates of CH₄ 458 fluxes within seagrass meadows. The air-water CH₄ fluxes from our sites and Australia (Ollivier et al., 2022) (10.6 μ mol CH₄ m⁻² d⁻¹) were at the lower end of published data (Table 459 4). Both studies were located in coastal bays with high salinity and limited tidal or freshwater 460 influence. Our fluxes were two orders of magnitude lower than a brackish lagoon in India 461 (120 μ mol CH₄ m⁻² d⁻¹), and a meso-tidally lagoon in Portugal (307 μ mol CH₄ m⁻² d⁻¹), 462 France and US (Table 4) (Al-Haj et al., 2022; Bahlmann et al., 2015; Banerjee et al., 2018). 463 464 These other seagrass sites were in tidal systems with freshwater inputs suggesting that the 465 reported high CH_4 fluxes could be partially explained by external freshwater or marsh inputs. 466 This has been observed in other tidally-influenced ecosystems such as mangroves and 467 saltmarshes where higher CH₄ concentration in porewater drives the high surface water CH₄ (Call et al., 2018; Santos et al., 2019; Yau et al., 2022). Flanking saltmarshes adjacent to 468 seagrass export CH₄, elevating CH₄ flux in the seagrass meadows (Al-Haj et al., 2022). Since 469 470 our system is not directly influenced by flanking marshes, porewater, and freshwater inputs, 471 the relatively low CH_4 air-sea fluxes likely represent emissions from subtidal seagrass 472 habitats.

473 We combined our results with the literature to re-evaluate global CH_4 emissions from 474 seagrass meadows. It is important to differentiate between sediment-water and air-sea fluxes 475 (Table 4). Fluxes from benthic chamber and sediment core incubation only capture the CH_4 476 from the sediment to water but do not account for the exchange of CH_4 across the water-air 477 interface or potentially CH₄ oxidation in the water column (Asplund et al., 2022; Bonaglia et al., 2017; Schorn et al., 2022). Our sediment-water fluxes were up to 2 times higher than the 478 air-sea CH4 fluxes. Earlier global estimates of seagrass CH4 emissions to the atmosphere 479 (1.25 to 401 μ mol CH₄ m⁻² d⁻¹) were extrapolated from studies using benthic chambers and 480 481 sediment core incubations (Rosentreter et al. (2021b). Our results show that sediment-water 482 fluxes do not necessarily represent water-air fluxes. Therefore, we updated earlier 483 compilations (Al-Haj et al., 2022) to differentiate between air-sea (8 sites) and sediment-484 water CH_4 (20 sites) fluxes in seagrass meadows (Table 4). Both air-sea and sediment-water CH₄ fluxes are highly variable. The geometric mean of air-sea and sediment-water CH₄ 485 fluxes (21.6 and 26.1 µmol m⁻² d⁻¹, respectively) was 3-fold lower than arithmetic mean 486 values (61.6 \pm 19.4 and 81.0 \pm 19.8 μ mol m⁻² d⁻¹, respectively). The skewed dataset suggests 487 that geometric mean is likely a more realistic representation of fluxes (Williamson & Gattuso, 488 489 2022). Overall, previous compilations may have overestimated CH_4 emissions by relying on 490 sediment-water fluxes and mean values rather than air-sea and geometric mean values.

Table 4. Mean of methane (CH₄) in air-sea and sediment-water fluxes in seagrass reported 491 492 in the literature. The mean (\pm SE), geometric mean and median of air-sea and sediment-water CH₄ fluxes represent the global average. 493

	CH ₄ flux		
Species	$(\mu mol m^{-2} d^{-1})$	Site	Method
Halodule sp. and Halophila sp	120.0	Tidal lagoon	Water samples
Z. noltii	42.0	Tidal lagoon	Discrete Water samples
R. megacarpa	33.8	Mouth of estuary	Continous surface water
Z. marina	107.5	Lagoon + marsh	Discrete water samples
Z. marina	113.8	Coastal lagoon	Discrete water samples
Z. mulleri	10.6	Tidal lagoon	Continous surface water
P. oceanica	0.1	Coastal bay	Continous surface water
Mean	61.1 (± 19.4)		
Geometric mean	21.6		
Median	42.0		
T tostudinum	44.0	Coastal lagoon	Banthic chamber
1. lestaunam	5 9	Coastal hav	Benthie chamber
S. juljoi me	248.0	Coastal lagoon	Core insubation
Z. capricorni T. tostudinum	192.4	Coastal lagoon	Ponthia abambar
T. lestuainam	25.7	Coastal inlat	Benulic chamber
Z. marina E. accucidea	55.7 05.7	Coastal here	Benutic chamber
E. acorolaes	95.7	Tidal lagaan	Water commiss
Z. noltil	98.4	Tidal lagoon	Water samples
Z. noltii	307.2	lidal lagoon	
H. uninervis	48.1	Coastal inlet	
C. serrulata and H. uninervis	401.3	Coastal inlet	Core incubation
E. acoroides	96.2	Coastal inlet	Core incubation
T. ciliatum	3.2	Coastal inlet	Core incubation
H. decipiens	1.4	Coastal inlet	Core incubation
T. hemprichii	6.5	Coastal inlet	Core incubation
H. stipulacea and H. uninervis	61.0	Coastal inlet	Core incubation
T. hemprichii	74.8	Coastal bay + mangrove	Benthic chamber
H. stipulacea and H. unervis	59.7	Coastal lagoon	Core incubation
Z.marina	136.7	Coastal bay with marsh	Benthic chamber
P. oceanica	106.0	Coastal bay	Core incubation
H. ovalis	45.4	Mouth of estuary	Benthic chamber
P. australia	279.3	Mouth of estuary	Benthic chamber
Z. muelleri	46.0	Mouth of estuary	Benthic chamber
Z. muelleri	10.9	Mouth of estuary	Benthic chamber
Z. marina	1.6	Coastal bay	Benthic chamber
Z. marina	3.4	Fjord and coastal bay	Benthic chamber
Z. marina	2.6	Coastal bay	Benthic chamber
Z. marina	0.0	Back-barrier lagoon	Benthic chamber
Z. marina	73.3	Coastal lagoon	Benthic chamber
P. oceanica	0.3	Coastal bay	Porewater samples
Mean	81.0 (± 19.8)		
Geometric mean	26.1		
	SpeciesHalodule sp. and Halophila spZ. noltiiR. megacarpaZ. marinaZ. marinaZ. mulleriP. oceanicaMeanGeometric meanMedianT. testudinumS. filiformeZ. capricorniT. testudinumS. filiformeZ. capricorniT. testudinumZ. marinaE. acoroidesZ. noltiiZ. noltiiH. uninervisC. serrulata and H. uninervisE. acoroidesT. ciliatumH. decipiensT. hemprichiiH. stipulacea and H. uninervisZ.marinaP. oceanicaH. ovalisP. australiaZ. marinaZ. marinaP. oceanicaMeanGeometric mean	Species (µmol m² d¹) Halodule sp. and Halophila sp 120.0 Z. noltii 42.0 R. megacarpa 33.8 Z. marina 107.5 Z. marina 107.5 Z. marina 107.5 Z. marina 107.5 Z. marina 106 P. oceanica 0.1 Mean 61.1 (± 19.4) Geometric mean 21.6 Median 42.0 T. testudinum 44.0 S. filiforme 5.8 Z. capricorni 348.0 T. testudinum 183.4 Z. marina 35.7 E. acoroides 95.7 Z. noltii 307.2 H. uninervis 48.1 C. serrulata and H. uninervis 401.3 E. acoroides 96.2 T. ciliatum 3.2 H. decipiens 1.4 T. hemprichii 74.8 H. stipulacea and H. uninervis 59.7 Z.marina 136.7 P. o	CH4 flux Species (µmol m² d²) Site Halodule sp. and Halophila sp 120.0 Tidal lagoon Z. noliti 42.0 Tidal lagoon R. megacarpa 33.8 Mouth of estuary Z. marina 107.5 Lagoon + marsh Z. marina 10.6 Tidal lagoon Z. marina 10.6 Tidal lagoon Z. marina 113.8 Coastal lagoon Z. marina 61.1 (± 19.4) Coastal bay Mean 61.1 (± 19.4) Coastal bay Geometric mean 21.6 Median T. testudinum 44.0 Coastal lagoon S. filiforme 5.8 Coastal lagoon Z. capricorni 348.0 Coastal lagoon Z. noltii 98.4 Tidal lagoon Z. noltii 98.4 Tidal lagoon Z. noltii 307.2 Coastal inlet Geometric mean 3.2 Coastal inlet G. acoroides 96.2 Coastal inlet G. acoroides 14 </td

494

¹Banerjee et al., 2018; ²Deborde et al., 2010; ³Camillini, 2020; ⁴Al-Haj et al., 2022; ⁵Ollivier et al., 2022; ⁶This study; ⁷Oremland, 1975; ⁸Moriarty et al., 1984; ⁹Barber & Carlson, 1993; 495

- ¹⁰Sansone et al., 1998; ¹¹Alongi et al., 2008; ¹²Bahlmann et al., 2015; ¹³Garcias-Bonet, 2017; ¹⁴Lyimo et al., 2018; ¹⁵Burkholz et al., 2020; ¹⁶Oreska et al., 2020; ¹⁷Schorn et al., 2022; ¹⁸ 497
- 498
- Asplund et al., 2022 499

4.4 Implications for net carbon sequestration 500

501 To evaluate the global warming potential of CH₄ emissions in seagrass and the potential 502 offset from carbon burial benefits, air-sea CH4 fluxes were converted to CO2-equivalents in 503 20 and 100 year time horizons using sustained-flux global warming potential (SGWP) of 96 504 and 45, respectively (Neubauer & Megonigal, 2015). Using different metrics could change 505 the interpretation of the global climatic impact of methane emissions. Our average CH₄ fluxes in Portilligat bay are equivalent to 0.05 and 0.03 g CO_{2-eq} m² yr⁻¹ in 20 and 100 year time 506 horizons, respectively. The carbon burial rates from seagrass meadows at our study site have 507 been estimated at 142 ± 69 g C m⁻² yr⁻¹ (Serrano et al., 2016). Therefore, the estimated air-sea 508 509 CH_4 emissions from *P. oceanica* in our site offset the carbon burial only by < 0.7 % in a 20year time horizon. The low CH_4 offset is attributed to the low CH_4 flux and high carbon 510 511 burial of P. oceanica. Our average CH₄/CO₂ flux ratio indicate that only about 0.01% of 512 carbon mineralized is emitted as CH₄ (Figure 8).

Global air-sea CH₄ emissions upscaled from the total seagrass area of $160,387 - 266,562 \text{ km}^2$ 513 were 13.0 ± 33.4 Tg CO_{2-eq} yr⁻¹ (4.6 g C m⁻² yr⁻¹) in 20-year time horizons, which would 514 offset only 1.6% (maximum of 25%) of global seagrass carbon sequestration in soils (833 \pm 515 230 Tg CO₂ yr⁻¹ or 138 \pm 38 g C m⁻² yr⁻¹) (Table 5). Yet, both our measurements and the 516 global estimates were mostly conducted across a short period of time. Therefore, long-term 517 518 CH₄ flux measurements are required to cover the natural variability. Negligible CH₄ offset in 519 both our site and global seagrass averages highlight that seagrasses are significant carbon 520 sinks. Seagrass seems to emit less CH_4 than other coastal vegetated ecosystems such as 521 mangroves and saltmarshes. For example, previous studies showed that methane emissions 522 can offset <6% of carbon burial in a saltmarsh in China (Yau et al., 2022) and 18% in 523 Australian mangroves receiving freshwater inputs (Rosentreter et al., 2018). Since seagrass 524 are fully submerged and freshwater inputs are often limited, higher CH₄ oxidation in the 525 water column could reduce CH₄ emissions relative to periodically inundated mangrove and 526 saltmarsh systems. Overall, our study suggests that seagrass sequesters carbon without 527 emitting large amounts of methane to the atmosphere.

Figure 8. Relationship between CO_2 flux and CH_4 flux in Station S across the study period. The colour represents hour of the day. The solid line represents the fitted regression equation (±SE), and the shaded area are the 95% confidence limits of the regression line, the r² value the degree of correlation, and the *p* value the level of significance.

Table 4. Global CH_4 air-sea and sediment-water emissions estimates from seagrass and the carbon offset. The CH_4 flux for the seagrass is updated from (Rosentreter, Al-Haj, et al., 2021). *n* refers to number of study sites.

Parameters			Air-sea	Sediment water
n			8	18
CH ₄ flux	μ mol CH ₄ m ⁻² d ⁻¹	Geomean ^a	30.1	26.1
	μ mol CH ₄ m ⁻² d ⁻¹	Range	0.1 - 307.2	0.3 - 401.3
Area	km ²	Range	160,387	$-266,562^{b}$
Global CH ₄ flux	Tg CH ₄ yr ⁻¹	Mean	0.03	0.02
	Tg CH ₄ yr ⁻¹	Range	0.00009 - 0.48	0.00028 - 0.62
SGWP ₁₀₀	Tg CO _{2-eq} yr ⁻¹	Mean	1.3	1.1
SGWP ₂₀	Tg CO _{2-eq} yr ⁻¹	Mean	2.7	2.3
Carbon burial*	$g C m^2 yr^{-1}$	Mean + SE	138	$8\pm 38^{\circ}$
	$g C m^2 yr^{-1}$	Range	45	- 190
Global C burial	Tg C yr ⁻¹	Mean + SE	22	7 ± 63
Global C burial	$Tg CO_2 yr^{-1}$	Mean + SE	833	3 ± 230
Offset of SGWP ₁₀₀	%	Mean	1.6	1.4
	%	Range	0.02 - 11.6	0.05 - 15.1
Offset of SGWP ₂₀	%	Mean	3.3	2.9
	%	Range	0.03 - 25	0.1 - 32

^a Global geometric mean was calculated from the global complied data set based on Table 3;
 ^b Global seagrass area from McKenzie et al., (2020); ^c Global carbon burial was extracted from Mcleod et al., (2011).

541 **5** Conclusion

Our continuous timeseries observations provide new insights into the spatial and diel patterns 542 543 of CH₄ sediment-water and air-sea fluxes in seagrass-dominated ecosystems. Small CH₄ emissions to the atmosphere were measured in the coastal bay dominated by *P.oceanica*. 544 Porewater profiles reflected methanogenesis activity in deep sediments. The link between 545 ²²²Rn concentrations and the higher sediment-water to air-sea CH₄ fluxes suggested that 546 sediments were the main source of CH₄ emissions to the atmosphere. CH₄ oxidation in the 547 water column, supported by photosynthesis in seagrass, seem to explain the low CH₄ 548 549 emissions in the dense seagrass areas. The high spatial variability of CH_4 within the bay 550 highlights the importance of seagrass in regulating CH₄ emissions and/or the dilution by oceanic water. More continuous, high resolution CH₄ measurements are required to resolve 551 the potential diel patterns and the role of seagrass in CH₄ emissions. 552

Our study highlights the importance of differentiating air-sea and sediment-water flux when estimating seagrass CH_4 emissions. A low CH_4 offset to carbon burial was estimated both on local and global scale seagrass meadows. More site-specific carbon burial and long-term emission estimates are needed to resolve CH_4 dynamics in seagrass carbon budgets. The current evidence suggests minor offsetting of carbon sequestration by seagrass CH_4 emissions.

559

560 Acknowledgements

This project was funded by the Swedish Research Council (2020-00457) and Spanish RYC2019027073-I project. OS was supported by I+D+i project PIE HOLOCENO 20213AT014 funded by
MCIN/AEI/10.13039/501100011033 and FEDER. N. P-J. was supported by the Programme for
Requalification of the Spanish University System 2021-2023 (Ministerio de Universidades), modality
Margarita Salas Grants. We thank the locals from the PortIligat Bay for the boat.

References

567	Aleksandra, BG., & Katarzyna, ŁM. (2018). Porewater dissolved organic and inorganic carbon in
568	relation to methane occurrence in sediments of the Gdańsk Basin (southern Baltic Sea).
569	Continental Shelf Research, 168, 11–20. https://doi.org/10.1016/j.csr.2018.08.008
570	Al-Haj, A. N., Chidsey, T., & Fulweiler, R. W. (2022). Two temperate seagrass meadows are negligible
571	sources of methane and nitrous oxide. Limnology and Oceanography, Ino.12250.
572	https://doi.org/10.1002/lno.12250
573	Al-Haj, A. N., & Fulweiler, R. W. (2020). A synthesis of methane emissions from shallow vegetated
574	coastal ecosystems. Global Change Biology, 26(5), 2988–3005.
575	https://doi.org/10.1111/gcb.15046
576	Alongi, D., Trott, L., Undu, M., & Tirendi, F. (2008). Benthic microbial metabolism in seagrass
577	meadows along a carbonate gradient in Sulawesi, Indonesia. Aquatic Microbial Ecology, 51,
578	141–152. https://doi.org/10.3354/ame01191
579	Apostolaki, E. T., Caviglia, L., Santinelli, V., Cundy, A. B., Tramati, C. D., Mazzola, A., & Vizzini, S.
580	(2022). The Importance of Dead Seagrass (Posidonia oceanica) Matte as a Biogeochemical
581	Sink. Frontiers in Marine Science, 9, 861998. https://doi.org/10.3389/fmars.2022.861998
582	Asplund, M. E., Bonaglia, S., Boström, C., Dahl, M., Deyanova, D., Gagnon, K., Gullström, M., Holmer,
583	M., & Björk, M. (2022). Methane Emissions From Nordic Seagrass Meadow Sediments.
584	Frontiers in Marine Science, 8, 811533. https://doi.org/10.3389/fmars.2021.811533
585	Bahlmann, E., Weinberg, I., Lavrič, J. V., Eckhardt, T., Michaelis, W., Santos, R., & Seifert, R. (2015).
586	Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon
587	(southern Portugal). <i>Biogeosciences, 12</i> (6), 1683–1696. https://doi.org/10.5194/bg-12-1683-
588	2015
589	Banerjee, K., Paneerselvam, A., Ramachandran, P., Ganguly, D., Singh, G., & Ramesh, R. (2018).
590	Seagrass and macrophyte mediated CO2 and CH4 dynamics in shallow coastal waters. PLOS
591	ONE, 13(10), e0203922. https://doi.org/10.1371/journal.pone.0203922

592	Barber, T. R., & Carlson, P. R. (1993). Effects of Seagrass Die-Off on Benthic Fluxes and Porewater
593	Concentrations of Σ CO2, Σ H2S, and CH4 in Florida Bay Sediments. In <i>Biogeochemistry of</i>
594	Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_29
595	Bonaglia, S., Brüchert, V., Callac, N., Vicenzi, A., Chi Fru, E., & Nascimento, F. (2017). Methane fluxes
596	from coastal sediments are enhanced by macrofauna. Scientific Reports, 13145, 13145.
597	https://doi.org/10.1038/s41598-017-13263-w
598	Borges, A. V., & Abril, G. (2011). Carbon Dioxide and Methane Dynamics in Estuaries. In Treatise on
599	Estuarine and Coastal Science (pp. 119–161). Elsevier. https://doi.org/10.1016/B978-0-12-
600	374711-2.00504-0
601	Borges, A. V., Vanderborght, JP., Schiettecatte, LS., Gazeau, F., Ferrón-Smith, S., Delille, B., &
602	Frankignoulle, M. (2004). Variability of the gas transfer velocity of CO2 in a macrotidal
603	estuary (the Scheldt). <i>Estuaries, 27</i> (4), 593–603. https://doi.org/10.1007/BF02907647
604	Boudreau, B. P. (1997). Diagenetic Models and Their Implementation: Modelling Transport and
605	Reactions in Aquatic Sediments. Springer Berlin Heidelberg.
606	http://catalog.hathitrust.org/api/volumes/oclc/35095947.html
607	Burkholz, C., Garcias-Bonet, N., & Duarte, C. M. (2020). Warming enhances carbon dioxide and
608	methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments.
609	<i>Biogeosciences</i> , 17(7), 1717–1730. https://doi.org/10.5194/bg-17-1717-2020
610	Call, M., Sanders, C. J., Enrich-Prast, A., Sanders, L., Marotta, H., Santos, I. R., & Maher, D. T. (2018).
611	Radon-traced pore-water as a potential source of CO2 and CH4 to receding black and clear
612	water environments in the Amazon Basin. Limnology and Oceanography Letters, 3(5), 375–
613	383. https://doi.org/10.1002/lol2.10089
614	Call, M., Santos, I. R., Dittmar, T., de Rezende, C. E., Asp, N. E., & Maher, D. T. (2019). High pore-
615	water derived CO2 and CH4 emissions from a macro-tidal mangrove creek in the Amazon
616	region. Geochimica et Cosmochimica Acta, 247, 106–120.
617	https://doi.org/10.1016/j.gca.2018.12.029

- 618 Camillini, N. (2020). *Carbon and nitrogen cycling in seagrass ecosystems* [Southern Cross University;
- 619 Application/pdf].
- 620 https://researchportal.scu.edu.au/esploro/outputs/doctoral/991012947400202368
- 621 Carnell, P. E., Ierodiaconou, D., Atwood, T. B., & Macreadie, P. I. (2020). Overgrazing of Seagrass by
- 622 Sea Urchins Diminishes Blue Carbon Stocks. *Ecosystems*, 23(7), 1437–1448.
- 623 https://doi.org/10.1007/s10021-020-00479-7
- 624 Deborde, J., Anschutz, P., Guérin, F., Poirier, D., Marty, D., Boucher, G., Thouzeau, G., Canton, M., &
- 625 Abril, G. (2010). Methane sources, sinks and fluxes in a temperate tidal Lagoon: The
- 626 Arcachon lagoon (SW France). *Estuarine, Coastal and Shelf Science, 89*(4), 256–266.
- 627 https://doi.org/10.1016/j.ecss.2010.07.013
- 628 Ding, W., Cai, Z., & Tsuruta, H. (2004). Diel variation in methane emissions from the stands of Carex
- 629 lasiocarpa and Deyeuxia angustifolia in a cool temperate freshwater marsh. *Atmospheric*
- 630 Environment, 38(2), 181–188. https://doi.org/10.1016/j.atmosenv.2003.09.066
- 631 Dobashi, R., & Ho, D. T. (2022). Air-sea gas exchange in a seagrass ecosystem [Preprint].
- 632 Biogeochemistry: Air Sea Exchange. https://doi.org/10.5194/egusphere-2022-525
- 633 Duarte, C. M., & Krause-Jensen, D. (2017). Export from Seagrass Meadows Contributes to Marine
- 634 Carbon Sequestration. *Frontiers in Marine Science*, 4.
- 635 https://doi.org/10.3389/fmars.2017.00013
- 636 Egger, M., Kraal, P., Jilbert, T., Sulu-Gambari, F., Sapart, C. J., Röckmann, T., & Slomp, C. P. (2016).

637 Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in

- 638 the Black Sea. *Biogeosciences*, 13(18), 5333–5355. https://doi.org/10.5194/bg-13-5333-2016
- 639 Egger, M., Lenstra, W., Jong, D., Meysman, F. J. R., Sapart, C. J., van der Veen, C., Röckmann, T.,
- 640 Gonzalez, S., & Slomp, C. P. (2016). Rapid Sediment Accumulation Results in High Methane
- 641 Effluxes from Coastal Sediments. *PLOS ONE*, *11*(8), e0161609.
- 642 https://doi.org/10.1371/journal.pone.0161609

643	Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E.
644	T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., & Serrano, O. (2012). Seagrass
645	ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505–509.
646	https://doi.org/10.1038/ngeo1477
647	Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Health, G. R., Cullen, D., Dauphin,
648	P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in
649	pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et
650	Cosmochimica Act, 43(7).
651	Gacia, E., Duarte, C. M., & Middelburg, J. J. (2002). Carbon and nutrient deposition in a
652	Mediterranean seagrass (Posidonia oceanica) meadow. Limnology and Oceanography,
653	47(1), 23–32. https://doi.org/10.4319/lo.2002.47.1.0023
654	Garcias-Bonet, N. (2017). Methane Production by Seagrass Ecosystems in the Red Sea. Frontiers in
655	Marine Science, 4, 10.
656	Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and
657	carbonate content in sediments: Reproducibility and comparability of results. Journal of
658	Paleolimnology, 25(1), 101–110.
659	Hilt, S., Grossart, H., McGinnis, D. F., & Keppler, F. (2022). Potential role of submerged macrophytes
660	for oxic methane production in aquatic ecosystems. Limnology and Oceanography,
661	Ino.12095. https://doi.org/10.1002/Ino.12095
662	Hoehler, T. M., Borowski, W. S., Alperin, M. J., Rodriguez, N. M., & Paull, C. K. (2000). Model, stable
663	isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-
664	bearing sediments of the Blake ridge (C. K. Paull, R. Matsumoto, P. J. Wallace, & W. P. Dillon,
665	Eds.; Vol. 164). Proc. ODP, Sci. https://doi.org/10.2973/odp.proc.sr.164.2000
666	Kaal, J., Serrano, O., del Río, J. C., & Rencoret, J. (2018). Radically different lignin composition in
667	Posidonia species may link to differences in organic carbon sequestration capacity. Organic
668	Geochemistry, 124, 247–256. https://doi.org/10.1016/j.orggeochem.2018.07.017

- 669 Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., & Middelburg, J. J.
- 670 (2010). Seagrass sediments as a global carbon sink: Isotopic constraints: SEAGRASS
- 671 MEADOWS AS CARBON SINKS. *Global Biogeochemical Cycles*, 24(4), n/a-n/a.
- 672 https://doi.org/10.1029/2010GB003848
- 673 Leiva-Dueñas, C., López-Merino, L., Serrano, O., Martínez Cortizas, A., & Mateo, M. A. (2018).
- 674 Millennial-scale trends and controls in Posidonia oceanica (L. Delile) ecosystem productivity.
- 675 Global and Planetary Change, 169, 92–104. https://doi.org/10.1016/j.gloplacha.2018.07.011
- 676 Lengier, M., Szymczycha, B., Brodecka-Goluch, A., Kłostowska, Ż., & Kuliński, K. (2021). Benthic
- 677 diffusive fluxes of organic and inorganic carbon, ammonium and phosphates from deep
- 678 water sediments of the Baltic Sea. *Oceanologia*, 63(3), 370–384.
- 679 https://doi.org/10.1016/j.oceano.2021.04.002
- 680 Lerman, A. (1979). *Geochemical processes water and sediment environment*. John Wiley and Sons.
- Li, L. (2021). Interspecific differences in root exudation for three tropical seagrasses and sediment
- 682 pore-water dissolved organic carbon beneath them. *Marine Pollution Bulletin*, 8.
- Lo Iacono, C., Mateo, M. A., Gràcia, E., Guasch, L., Carbonell, R., Serrano, L., Serrano, O., &
- 684 Dañobeitia, J. (2008). Very high-resolution seismo-acoustic imaging of seagrass meadows
- 685 (Mediterranean Sea): Implications for carbon sink estimates. Geophysical Research Letters,
- 686 35(18), L18601. https://doi.org/10.1029/2008GL034773
- Lovelock, C. E., & Duarte, C. M. (2019). Dimensions of Blue Carbon and emerging perspectives.
 Biology Letters, 15(3), 20180781. https://doi.org/10.1098/rsbl.2018.0781
- 689 Lyimo, L. D., Gullström, M., Lyimo, T. J., Deyanova, D., Dahl, M., Hamisi, M. I., & Björk, M. (2018).
- 690 Shading and simulated grazing increase the sulphide pool and methane emission in a tropical
- 691 seagrass meadow. *Marine Pollution Bulletin*, 134, 89–93.
- 692 https://doi.org/10.1016/j.marpolbul.2017.09.005

- 693 Martens, C. S., & Klump, M. J. (1980). Biogeochemical cycling in an organic-rich coastal marine
- basin—I. Methane sediment-water exchange processes. *Geochimica et Cosmochimica Acta*,
 471–490.
- 696 Mateo, M. A., Romero, J., Pérez, M., Littler, M. M., & Littler, D. S. (1997). Dynamics of Millenary
- 697 Organic Deposits Resulting from the Growth of the Mediterranean SeagrassPosidonia
- 698 oceanica. *Estuarine, Coastal and Shelf Science*, 44(1), 103–110.
- 699 https://doi.org/10.1006/ecss.1996.0116
- 700 McKenzie, L. J., Nordlund, L. M., Jones, B. L., Cullen-Unsworth, L. C., Roelfsema, C., & Unsworth, R. K.
- 701 F. (2020). The global distribution of seagrass meadows. *Environmental Research Letters*,
- 702 15(7), 074041. https://doi.org/10.1088/1748-9326/ab7d06
- 703 Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger,
- 704 W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved
- understanding of the role of vegetated coastal habitats in sequestering CO 2. Frontiers in
 Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004
- 707 Moriarty, D. J. W., Boon, P. I., Hansen, J. A., Hunt, W. G., Poiner, I. R., & Pollard, P. C. (1984).
- 708 Microbial biomass and productivity in seagrass beds. *Geomicrobiology Journal*, 4(1), 21–51.
- 709 Neubauer, S. C., & Megonigal, J. P. (2015). Moving Beyond Global Warming Potentials to Quantify
- the Climatic Role of Ecosystems. *Ecosystems*, *18*(6), 1000–1013.
- 711 https://doi.org/10.1007/s10021-015-9879-4
- 712 Ollivier, Q. R., Maher, D. T., Pitfield, C., & Macreadie, P. I. (2022). Net Drawdown of Greenhouse
- 713 Gases (CO2, CH4 and N2O) by a Temperate Australian Seagrass Meadow. *Estuaries and*
- 714 *Coasts*. https://doi.org/10.1007/s12237-022-01068-8
- 715 Oremland, R. S. (1975). Methane Production in Shallow-Water, Tropical Marine Sediments. APPL.
- 716 *MICROBIOL., 30, 7.*

717	Oreska, M. P. J., McGlathery, K. J., Aoki, L. R., Berger, A. C., Berg, P., & Mullins, L. (2020). The
718	greenhouse gas offset potential from seagrass restoration. Scientific Reports, 10(1), 7325.
719	https://doi.org/10.1038/s41598-020-64094-1
720	Piñeiro-Juncal, N., Kaal, J., Moreira, J. C. F., Martínez Cortizas, A., Lambais, M. R., Otero, X. L., &
721	Mateo, M. A. (2021). Cover loss in a seagrass Posidonia oceanica meadow accelerates soil
722	organic matter turnover and alters soil prokaryotic communities. Organic Geochemistry,
723	151, 104140. https://doi.org/10.1016/j.orggeochem.2020.104140
724	Raymond, P., & Cole, J. (2001). Gas Exchange in Rivers and Estuaries: Choosing a Gas Transfer
725	Velocity. Estuaries and Coasts, 24, 312–317. https://doi.org/10.2307/1352954
726	Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W., & Williamson, P. (2021). Methane and Nitrous Oxide
727	Emissions Complicate Coastal Blue Carbon Assessments. Global Biogeochemical Cycles,
728	<i>35</i> (2). https://doi.org/10.1029/2020GB006858
729	Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J.,
730	Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., & Eyre, B. D.
731	(2021). Half of global methane emissions come from highly variable aquatic ecosystem
732	sources. Nature Geoscience, 14(4), 225–230. https://doi.org/10.1038/s41561-021-00715-2
733	Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H., & Eyre, B. D. (2018). Methane emissions
734	partially offset "blue carbon" burial in mangroves. Science Advances, 4(6), eaao4985.
735	https://doi.org/10.1126/sciadv.aao4985
736	Roth, F., Sun, X., Geibel, M. C., Prytherch, J., Brüchert, V., Bonaglia, S., Broman, E., Nascimento, F.,
737	Norkko, A., & Humborg, C. (2022). High spatiotemporal variability of methane
738	concentrations challenges estimates of emissions across vegetated coastal ecosystems.
739	Global Change Biology, gcb.16177. https://doi.org/10.1111/gcb.16177
740	Sansone, F. J., Rust, T. M., & Smith, S. V. (1998). Methane Distribution and Cycling in Tomales Bay,
741	California. <i>Estuaries</i> , 21(1), 66. https://doi.org/10.2307/1352547

- 742 Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R., & Sanders, C. J. (2019). Carbon outwelling and
- 743 outgassing vs. Burial in an estuarine tidal creek surrounded by mangrove and saltmarsh
- 744 wetlands. *Limnology and Oceanography*, *64*(3), 996–1013.
- 745 https://doi.org/10.1002/lno.11090
- 746 Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M., Lavik, G., Kuypers, M. M. M.,
- 747 Graf, J. S., & Milucka, J. (2022). Diverse methylotrophic methanogenic archaea cause high
- 748 methane emissions from seagrass meadows. Proceedings of the National Academy of
- 749 Sciences, 119(9), e2106628119. https://doi.org/10.1073/pnas.2106628119
- 750 Serrano, O., Almahasheer, H., Duarte, C. M., & Irigoien, X. (2018). Carbon stocks and accumulation
- rates in Red Sea seagrass meadows. *Scientific Reports*, 8(1), 15037.
- 752 https://doi.org/10.1038/s41598-018-33182-8
- 753 Serrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R.,
- 754 González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021). Seagrass
- 755 blue carbon stocks and sequestration rates in the Colombian Caribbean. *Scientific Reports*,

756 *11*(1), 11067. https://doi.org/10.1038/s41598-021-90544-5

- 757 Serrano, O., Lavery, P. S., López-Merino, L., Ballesteros, E., & Mateo, M. A. (2016). Location and
- 758 Associated Carbon Storage of Erosional Escarpments of Seagrass Posidonia Mats. *Frontiers in*
- 759 *Marine Science*, 3. https://doi.org/10.3389/fmars.2016.00042
- Serrano, O., Mateo, M. A., Renom, P., & Julià, R. (2012). Characterization of soils beneath a Posidonia
 oceanica meadow. *Geoderma*, *185–186*, 26–36.
- 762 https://doi.org/10.1016/j.geoderma.2012.03.020
- 763 Telesca, L., Belluscio, A., Criscoli, A., Ardizzone, G., Apostolaki, E. T., Fraschetti, S., Gristina, M.,
- 764 Knittweis, L., Martin, C. S., Pergent, G., Alagna, A., Badalamenti, F., Garofalo, G., Gerakaris,
- 765 V., Louise Pace, M., Pergent-Martini, C., & Salomidi, M. (2015). Seagrass meadows
- 766 (Posidonia oceanica) distribution and trajectories of change. *Scientific Reports*, 5(1), 12505.
- 767 https://doi.org/10.1038/srep12505

- 768 Van Dam, B., Polsenaere, P., Barreras-Apodaca, A., Lopes, C., Sanchez-Mejia, Z., Tokoro, T., Kuwae,
- 769 T., Loza, L. G., Rutgersson, A., Fourqurean, J., & Thomas, H. (2021). Global Trends in Air-
- 770 Water CO ₂ Exchange Over Seagrass Meadows Revealed by Atmospheric Eddy Covariance.
- 771 Global Biogeochemical Cycles, 35(4). https://doi.org/10.1029/2020GB006848
- 772 Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean
- revisited. *Limnology and Oceanography: Methods*, *12*(6), 351–362.
- 774 https://doi.org/10.4319/lom.2014.12.351
- 775 Ward, B. B., Kilpatrick, K. A., Novellit, P. C., & Scrantont, M. I. (1987). Methane oxidation and
- methane fluxes in the ocean surface layer and deep anoxic waters. *Nature*, 4.
- 777 Webb, J. R., Maher, D. T., & Santos, I. R. (2016). Automated, in situ measurements of dissolved CO2,
- 778 CH4 and δ 13C values using cavity enhanced laser absorption spectrometry: Comparing
- 779 response times of air-water equilibrators: Equilibrator measurement of dissolved CO2, CH4,
- 780 and δ 13 C values. *Limnology and Oceanography: Methods*, 14(5), 323–337.
- 781 https://doi.org/10.1002/lom3.10092
- 782 Weber, T., Wiseman, N. A., & Kock, A. (2019). Global ocean methane emissions dominated by
- shallow coastal waters. *Nature Communications*, *10*(1), 4584.
- 784 https://doi.org/10.1038/s41467-019-12541-7
- 785 Weiss, R. F. (1974). Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine

786 Chemistry, 2(3), 203–215. https://doi.org/10.1016/0304-4203(74)90015-2

- 787 Williamson, P., & Gattuso, J.-P. (2022). Carbon Removal Using Coastal Blue Carbon Ecosystems Is
- 788 Uncertain and Unreliable, With Questionable Climatic Cost-Effectiveness. Frontiers in
- 789 *Climate*, *4*, 853666. https://doi.org/10.3389/fclim.2022.853666
- 790 Yamamoto, S., Alcauskas, J. B., & Crozier, T. E. (1976). Solubility of methane in distilled water and
- 791 seawater. Journal of Chemical & Engineering Data, 21(1), 78–80.
- 792 https://doi.org/10.1021/je60068a029

- 793 Yau, Y. Y. Y., Xin, P., Chen, X., Zhan, L., Call, M., Conrad, S. R., Sanders, C. J., Li, L., Du, J., & Santos, I. R.
- 794 (2022). Alkalinity export to the ocean is a major carbon sequestration mechanism in a
- 795 macrotidal saltmarsh. *Limnology and Oceanography*, Ino.12155.
- 796 https://doi.org/10.1002/lno.12155
- 797 Automatic citation updates are disabled. To see the bibliography, click Refresh in the Zotero tab.