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Abstract

Aeolian processes on Mars form a distinct class of meter-scale ripples, whose mechanisms of formation are debated. We present

a global morphometric survey of bedforms on Mars, adding relevant observational constraints to the ongoing debate. We show

that the bedforms located in the Tharsis region form a distinct group, not akin to the large dark-toned ripples which cover dune

fields elsewhere on the planet. The relation between wavelength and atmospheric density derived from the new data is consistent

with the predictions of a wind-drag mechanism, favoring the model that uses a saltation saturation length. Regardless of the

mechanism that limits the size of bedforms, these results confirm the existence of a robust relationship between the wavelength

of large ripples and atmospheric density (ripples spacings increases with decreasing atmospheric density). This provides further

support to the interpretation of paleoatmospheric conditions on Mars through the analysis of its aeolian sedimentary record.
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Key Points:   13 

• We present a global morphometric survey of aeolian bedforms on Mars and assess the 14 

mechanisms that may control their size  15 

• Bedforms within the high elevation Tharsis region form a distinct group, attributed here 16 

to different sediment and transport conditions 17 

• We confirm the existence of a robust relation between wavelength and atmospheric 18 

density, which is consistent with a fluid-drag mechanism 19 
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Abstract 21 

Aeolian processes on Mars form a distinct class of meter-scale ripples, whose mechanisms of 22 

formation are debated. We present a global morphometric survey of bedforms on Mars, adding 23 

relevant observational constraints to the ongoing debate. We show that the bedforms located in 24 

the Tharsis region form a distinct group, not akin to the large dark-toned ripples which cover 25 

dune fields elsewhere on the planet. The relation between wavelength and atmospheric density 26 

derived from the new data is consistent with the predictions of a wind-drag mechanism, favoring 27 

the model that uses a saltation saturation length. Regardless of the mechanism that limits the size 28 

of bedforms, these results confirm the existence of a robust relationship between the wavelength 29 

of large ripples and atmospheric density (ripples spacings increases with decreasing atmospheric 30 

density). This provides further support to the interpretation of paleoatmospheric conditions on 31 

Mars through the analysis of its aeolian sedimentary record. 32 

 33 

Plain Language Summary 34 

The winds that shape the surface of Mars form two distinct scales of aeolian ripples, which 35 

coexist and evolve over martian dunes. The larger ripples (with spacing between crests between 36 

1-5 m) are enigmatic, as the mechanisms that control their equilibrium size are not fully 37 

understood. In this study we provide new observational data, which we use to assess different 38 

models that predict a dependence of bedform wavelength with atmospheric density. This new 39 

dataset shows that there are more than one population of meter-scale bedforms, with the ones 40 

located around the Tharsis volcanos being significantly different from the ones that cover dark 41 

dunes. We found a good agreement with the predictions of the wind-drag model, suggesting that 42 

the size of the large ripples is controlled by an aerodynamic mechanism. Most importantly, we 43 

confirm the existence of a global relation between wavelength and atmospheric density (ripples 44 

spacings increases with decreasing atmospheric density). This provides further support to the 45 

interpretation of paleoatmospheric conditions on Mars, as this relation can be applied to infer 46 

past atmospheric densities from the sedimentary record. 47 

 48 
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1 Introduction 49 

Martian dark dunes are covered by large ripple-like bedforms which are actively migrating 50 

under present-day atmospheric conditions (Bridges et al., 2012; Silvestro et al., 2010). These are 51 

metric-scale bedforms (~1-5 m spacing between crests, ~5-40 cm high) which can have 52 

symmetrical or asymmetrical profiles and sinuous or straight crests. On terrestrial aeolian 53 

environments with well-sorted sediments there are no obvious analogue bedforms in terms of 54 

scale, morphometry and dynamics (Lapotre et al., 2018; Silvestro et al., 2016; Vaz et al., 2017). 55 

Most notably, the meter-scale bedform are overlaid by centimeter-scale ripples, similar in scale 56 

and dynamics to impact ripples (Bridges et al., 2012; Lapotre et al., 2016; Weitz et al., 2018). The 57 

coexistence to these two different scales of bedforms raised several questions. Namely, why do we 58 

have two scales of ripples on Mars and what are the mechanisms that control their sizes?  59 

To explain orbital and ground-based observations of widespread aeolian activity (Baker et 60 

al., 2022; Bridges et al., 2012; Silvestro et al., 2010, 2013) transient low-flux transport regimes, 61 

that occur between impact threshold and fluid threshold speeds, were invoked (Andreotti et al., 62 

2021; Baker et al., 2018; Lapotre et al., 2018; Sullivan & Kok, 2017; Swann et al., 2020). Recent 63 

in situ observations by the Curiosity rover at Gale crater demonstrate that intermittent saltation is 64 

taking place, contributing to the migration of centimeter-scale ripples (Baker et al., 2022; Sullivan 65 

et al., 2022). In addition, wind tunnel experiments suggest that the size of impact ripples does not 66 

vary significantly with atmospheric density, maintaining their characteristic centimeter scale even 67 

in the low density conditions that exist on the surface of Mars (Andreotti et al., 2021). Therefore, 68 

all evidence shows that the size of centimeter scale ripples on Mars is controlled by the same 69 

impact-splash mechanism that produces terrestrial aeolian impact ripples. 70 

In contrast, two hypotheses have been proposed to explain the origin of the meter-scale 71 

ripples. They have been interpreted: a) as arising from a hydrodynamic instability i.e., they are 72 

analogous to fluid drag ripples typically found on terrestrial subaqueous environments (Duran 73 

Vinent et al., 2019; Lapotre et al., 2016, 2021); or b) as forming from the same impact-splash 74 

mechanism as terrestrial aeolian ripples (Sullivan et al., 2020; Sullivan & Kok, 2017). In the first 75 

hypothesis, the equilibrium wavelength of the large ripples is limited by a hydrodynamic anomaly 76 

(Duran Vinent et al., 2019; Lapotre et al., 2016), while in the second case ripple height (and 77 

consequently their wavelength) is controlled by the wind dynamic pressure at the bedforms crests, 78 

which is lower on Mars and would allow the growth of the bedforms (Sullivan et al., 2020). Lapotre 79 
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et al. (2016, 2021) argued that there is a clear wavelength gap between the two types of bedforms, 80 

inferring that two different mechanisms are limiting the size of the bedforms (impact-splash for 81 

the centimeter-scale ripples and fluid-drag for the meter-scale bedforms). In contrast, Sullivan et 82 

al. (2022) reported a continuum distribution of superimposed ripple wavelengths observed by the 83 

Curiosity rover at the “Sands of Forvie” sand sheet. They also reported the existence of 84 

granulometric segregation between the troughs and crests of large ripples (the same was reported 85 

in other areas by Gough et al., 2021) with coarser grains preferentially located on the crests of the 86 

larger bedforms. They interpreted these two characteristics as evidence that the meter-scale ripples 87 

are impact ripples rather than fluid-drag bedforms.  88 

An important aspect of the debate about the mechanism that sets the size of large ripples is 89 

the near-inverse relation observed between wavelength and atmospheric density at a global scale. 90 

This relation was initially hinted at by Lorenz et al. (2014) for the bedforms located across the 91 

high elevation Tharsis region, while Lapotre et al. (2016) extended the number of surveyed areas, 92 

focusing on sites where dark dunes are present. Based on this compilation, Lapotre et al. (2016) 93 

argued that the observed decrease in ripple wavelength with increasing atmospheric density is 94 

consistent with a fluid-drag origin. A view not shared by Lorenz (2020), which highlighted the 95 

different gradient of the model predictions and observational data (see Fig. 2 in Lorenz, 2020). 96 

Lapotre et al. (2021) revisited the same dataset proposing that when a saltation saturation length 97 

formulation is adopted (Duran Vinent et al., 2019), the fluid-drag mechanism provides a better fit 98 

to the data, particularly to the bedforms analyzed outside Tharsis.  99 

Drag ripples wavelength scales according to 𝜆 ≈
(
𝜇

𝜌𝑓
)

2
3⁄

𝐷
1
6⁄

(𝑅𝑔)
1
6⁄ 𝑢∗

1
3⁄
 (Lapotre et al., 2017), where µ is 100 

the dynamic viscosity, 𝜌𝑓 is the fluid density, D is grain diameter, g is the gravity acceleration and 101 

R is the submerged reduced density of the sediment (
𝜌𝑠−𝜌𝑓

𝜌𝑓
). This relation predicts that bedform 102 

wavelength is strongly dependent on 𝜌𝑓
−2 3⁄ . The mechanisms that set the wavelength of impact 103 

ripples are less understood. Wind tunnel experiments show that the saturation wavelength on well 104 

sorted sediments increases linearly with friction velocity (Andreotti et al., 2006; Cheng et al., 2018; 105 

Rasmussen et al., 2015), and is thought to be limited by the height of the ripples (Bagnold, 1954; 106 

Manukyan & Prigozhin, 2009). Yet, in less well sorted sediments coarser particles form an armor 107 

layer on the crests, causing ripples to increase in height and consequently in wavelength (Sharp, 108 



manuscript submitted to Geophysical Research Letters 

 

1963). Sullivan et al. (2020) argue that the wind dynamic pressure 𝑊𝐷𝑃 =
1

2
𝜌𝑓𝑢

2 (𝑢 is the wind 109 

velocity) controls ripples height, with higher dynamic pressures removing particles from the crests 110 

and precluding the growth of the bedforms. Therefore, higher WDP should generate smaller 111 

ripples. In this case, if we assume a constant wind velocity the wavelength of impact ripples scales 112 

with  1 𝜌𝑓⁄ . Note that this assumption (constant wind speed at a global scale) may be problematic, 113 

as according to the equation WDP may be relatively more influenced by wind velocity than by 114 

density variations, which is the only factor addressed in previous studies as well as in this work. 115 

Nevertheless, both theories suggest an increase in wavelength when atmospheric density 116 

decreases. 117 

Other questions not entirely settled in previous studies regard the nature of the bedforms 118 

located in the Tharsis region. Lapotre et al. (2016) noticed the morphologic and albedo differences 119 

between the dark-toned ripples covering dunes and Tharsis bedforms. Nevertheless, they merged 120 

the two datasets to fit their wind-drag model, while in later works Tharsis and non-Tharsis 121 

bedforms were analyzed separately (Lapotre et al., 2021; Lorenz, 2020).  122 

Here we focus on these unresolved issues, reviewing and expanding the observational 123 

dataset, analyzing the consistency of measurements, and testing the models that predict the size of 124 

large ripples on Mars as a function of atmospheric density. 125 

 126 

2 Data and methodology 127 

We use High-Resolution Imaging Science Experiment (HiRISE) images (0.25-0.5 m/pix, 128 

McEwen et al., 2007) to perform a global scale mapping and wavelength survey of aeolian 129 

bedforms. Our survey cover the same 25 areas located in the Tharsis regions and analyzed by 130 

Lorenz et al. (2014), as well as the 11 areas reported in Lapotre et al. (2016) (Fig. 1). Furthermore, 131 

we expand the elevation coverage including 39 new areas where meter-scale bedforms are present 132 

covering dark-toned dunes (Supporting information S1 - section 1, Fig. S1 and Table S1).  133 

 134 
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 135 

Figure 1. Location (a) and elevation distribution (b) of the 75 sites surveyed in this study. We 136 

analyzed the same 25 areas of Lorenz et al. (2014) as well as the 11 dark-tone dune sites previously 137 

analyzed by Lapotre et al. (2016). Our survey improves the spatial coverage, extends the range of 138 

surveyed elevations and provides a more continuous elevation sampling. A global dune catalog 139 

(Fenton, 2020; Hayward et al., 2014) is shown overlaying MOLA elevation data. 140 

 141 

Previous surveys relied on the discrete manual measurements of crest-to-crest distances in 142 

randomly selected points (Lapotre et al., 2016; Lorenz et al., 2014). Here we applied a set of image 143 

processing and machine learning techniques which allow the mass automatic mapping of bedforms 144 

and the accurate measurement of their wavelengths (Fig. 2). We adapted the 2D Fast Fourier 145 

Transform approach introduced by Voulgaris and Morin (2008), implementing a multiscale 146 

scheme coupled with neural networks. This method allows the mapping and characterization of 147 
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large ripples and transverse aeolian ridges (TARs) in a wide range of spatial scales and surface 148 

settings. See Supporting information S1 - section 2 for a in depth description of the method.  149 

 150 

 151 

Figure 2. Wavelength survey of aeolian bedforms on Lyot crater (ESP_055318_2290, area 26 in 152 

Table S1). a) The applied method allows the full mapping and wavelength characterization of 153 

aeolian bedforms. b) Detailed view of the wavelength and trend of the mapped bedforms: large 154 

dark-toned ripples (LDRs) cover a barchan dune and have a spacing between crests of less than 4 155 

m; megaripples (MRs) and transverse aeolian ridges (TARs) present higher albedos, higher 156 

wavelengths and are overlaid by the dune darker sediments. c and d) 2D histograms showing the 157 
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distribution of wavelength, circular standard deviation and albedo (I/F), a square root stretch is 158 

used to highlight secondary peaks. Red dashed lines correspond to the wavelength and albedo 159 

thresholds used to segment two bedform classes. The black dots and lines represent the computed 160 

averages and 1σ intervals. 161 

 162 

Previous studies analyzed the relation between the average wavelength and atmospheric 163 

density at the surface, focusing on large ripples and TARs. To comply with this framework, we 164 

segment the mapped bedforms in two classes: a) large dark-toned ripples and b) a second class that 165 

comprises megaripples and TARs. Wavelength and relative grain size were proposed to be key 166 

parameters to discriminate different types of aeolian bedforms on Mars (Day & Zimbelman, 2021). 167 

We use albedo as a proxy for grain size, as it is usually assumed to be related to dust coating and/or 168 

to the presence of coarser particles (Sullivan et al., 2020). We examine the wavelength and albedo 169 

distributions using 2D histograms and we define threshold values that allow the partition of the 170 

mapping results, so that summary statistics can be computed for each class (see Supporting 171 

information S1 - section 3 for examples and Supporting information S2 for global results).  172 

To evaluate the mechanisms that set the size of large ripples on Mars we test which model 173 

best describes the wavelength vs. atmospheric density relation observed in our dataset. We tested 174 

three models (refer to Supporting information S1 - section 5 for details): a) the wind-drag model 175 

of Lapotre et al. (2016), where the saturation length scale is approximated as that of fluvial 176 

bedload, b) a modified version of the same scaling, which instead uses a saturation length scale for 177 

aeolian saltation (Duran Vinent et al., 2019; Lapotre et al., 2021), and c) a generic inverse linear 178 

dependence between wavelength and atmospheric density (as proposed by Lorenz et al., 2014). 179 

We fit power laws and linear models to facilitate the comparison between our measurements and 180 

the models’ predictions.  181 

 182 

4 Results and discussion 183 

Bedforms spaced between 1 to 100 m were mapped over a total area of ~2200 km2 184 

(Supporting information S2). The applied method correctly identifies the location of bedforms 185 

(93.7% of overall accuracy) and robustly measures their wavelength (we estimate a confidence 186 

interval of ±12%, Supporting information S1 - section 2). When comparing our data with previous 187 
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surveys, we found a good agreement with large ripple measurements reported by Lapotre et al. 188 

(2016), which on average differ by 4%. Yet, the averages for the larger bedforms (megaripples 189 

and TARs) reported in the same study are severely underestimated by 84%, which we attribute to 190 

a possible under sampling. To assess the wavelength of these larger bedforms Lapotre et al. (2016) 191 

collected on average of 46 wavelength measurements on each site. This number of randomly 192 

located measurements may not be enough to characterize these populations, as they cover a small 193 

percentage of the mapped areas and form scattered patches of bedforms with variable wavelengths.  194 

Our results for the Tharsis sites (which represent ~2/3 of the data analyzed in previous 195 

studies) show that Lorenz et al. (2014) values are systematically underestimated: on average they 196 

are 73% lower than the values obtained in this study (Fig. S10 and S11; Supporting information 197 

S1 - section 4). Indeed, some cited measurements there (e.g., 0.5-1.1 m) are dubious at best given 198 

HiRISE resolution (0.25 m/pix). The causes for this large disparity are less clear, nevertheless we 199 

note that in this case the measurement locations were not randomized, and that in some of the areas 200 

the spatial distribution of the bedforms is not uniform. These two factors may complicate the 201 

obtention of representative values from a few tens of scattered measurements.  202 

Other potential sources of uncertainty are the elevation values reported for each site, which 203 

are used to derive the atmospheric pressure. We sampled the MOLA elevations at the centroid 204 

point of the largest bedform patch mapped in each area. However, previous works do not refer the 205 

sampling scheme or location where elevation values were collected. Therefore, in areas where the 206 

HiRISE footprints cover regions with higher elevation gradients (mainly in the Tharsis region) we 207 

can have elevation differences between our values and previous surveys of more than 2 km. This 208 

happens in four of the areas analyzed by Lorenz et al. (2014) (Fig. S11b). 209 

We found several lines of evidence which support that Tharsis bedforms form a distinct 210 

population, apart from the large dark-toned ripples found elsewhere on Mars: a) as noted by  211 

Lapotre et al. (2021), we found that Tharsis bedforms have higher albedos (Fig. S12); b) we found 212 

that they have distinct thermal inertia (Putzig and Mellon, 2007) and dust cover index signatures 213 

(Ruff and Christensen, 2002), denoting lower thermal inertias (possibly associated with finer 214 

materials) and higher dust content/coverage (Fig. S13); c) as noted by others, Tharsis bedforms 215 

form unique patterns (Fig. S14) such as honeycomb or reticulate patterns (Bridges et al., 2010; 216 

Lorenz et al., 2014); and d) are in most cases associated with extensive mantling units, while large 217 

ripples outside Tharsis are typically found overlaying dark dunes (see Supporting information S1 218 
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- section 5 for details). These distinctive characteristics suggest that the two sets of bedforms 219 

should be considered separately when evaluating bedform-formation mechanisms. 220 

The compiled data confirms the existence of a decrease of wavelength with increasing 221 

atmospheric density for the large dark-toned ripples (Fig. 3). Only five areas (~7%) deviate from 222 

this general tendency (Supporting information S1 - section 5 and Fig. S15), corresponding to cases 223 

where: a) sand sheets occupy a significant percentage of the mapped areas, suggesting the presence 224 

of coarse and/or poorly sorted sediments; and b) where dust devil tracks are visible covering the 225 

bedforms, suggesting limited migration/activity. These outliers are not included in the fits done to 226 

evaluate the proposed models, but their existence highlights two points: the accuracy and 227 

consistency of the measurements and the need to select comparable dune settings, as differences 228 

in grain size and sorting influence the wavelength of the bedforms.  229 

 230 

 231 

Figure 3. Relation between bedforms wavelength and Martian atmospheric density. The same data 232 

is shown in two different plots: a) highlighting the linear inverse relation proposed by Lorenz et 233 

al. (2014) and b) comparing with the models proposed by Lapotre et al. (2016; 2021), the gray area 234 

represents the maximum range of atmospheric densities on Mars while the cyan line represents the 235 

density of Earth’s atmosphere. Black lines represent the best fitted models for each dataset, 236 

computed using the average wavelengths for each site (linear models in a) and power laws in b); 237 

the R2 values in b) were computed in the log space). The golden line represents Lapotre et al. 238 

(2016) empirical relationship where transport saturation length is taken as that of fluvial bedload, 239 
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while the green line corresponds to a transport saturation length for aeolian saltation (Lapotre et 240 

al., 2021). A similar plot that includes the datasets used in previous studies is shown in Fig. S19. 241 

 242 

 The model obtained by fitting previous datasets which takes into account the bedload 243 

transport saturation length (Lapotre et al., 2016) predicts significantly lower wavelengths and a 244 

different scaling to the one we derived from our dataset. Conversely, our data for the dark-toned 245 

large ripples overlaps the predictions of the wind-drag model that uses the saltation transport 246 

saturation length, with a best fitted power law with ~2/3 scaling.  247 

Tharsis data presents higher scattering, particularly for lower wavelengths where data 248 

points seem to converge towards the dark-toned ripple dataset. Due to the discrepancies found 249 

between our results and those of Lorenz et al. (2014), we note that the Tharsis data compiled in 250 

this study does not overlap or follow a similar scaling to the wind-drag model that considers a 251 

bedload transport saturation length (Fig. 3 and S19). Instead, the best fitted power law (R2=0.42) 252 

has the same scaling (~2/3) of the model that uses the saltation transport saturation length. 253 

The compiled data suggests that the mechanism that limits the size of large ripples on Mars 254 

is dependent on the atmospheric density. Overall, we observe that all our data are bounded by the 255 

two saturation length scaling laws, supporting the hypothesis that the equilibrium size of large 256 

martian ripples is controlled by an aerodynamic mechanism. The scaling laws for saturation length 257 

arise from idealized representations of transport in unimodal sediments. As previously discussed, 258 

the grain size distribution of the sediments on the Tharsis bedforms is probably more complex, 259 

which may contribute to the observed differences between Tharsis and non-Tharsis bedforms. 260 

Even so, in accordance with previous studies (Lorenz, 2020; Lorenz et al., 2014) we notice 261 

that linear functions (which imply that  262 

𝜆 ∝ 1 𝜌𝑓⁄ ) also provide robust fits to the data (R2=0.79 and 0.73 for the dark large ripples and 263 

Tharsis bedforms, respectively). In the case of the large ripples, both inverse and power law 264 

functions explain ~80% of the variance. This means that, strictly from a numeric point of view, 265 

we cannot discriminate what is the best model to fit the data. As previously mentioned, to fully 266 

test the impact ripple hypothesis we would need to consider the wind velocities at each site, 267 

something that could be done using climate model predictions.    268 

Finally, the wavelengths of the larger bedforms (megaripples and TARs) present a large 269 

dispersion (Fig. 3B), not showing an obvious relation with any of the scaling laws. Linear or power 270 
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law models do not produce a meaningful fit to the data (R2=0.03). This suggests that at a global 271 

scale these bedforms do not form a homogeneous set and are probably not representative of the 272 

same boundary conditions (i.e., they likely formed with different grain size distributions, or under 273 

differing atmospheric conditions). Nonetheless, we cannot exclude the possibility that including 274 

TARs and megaripples in a same class may be flawed, especially since different degrees of 275 

mobility under present day winds have been described for the two sets of bedforms (Chojnacki et 276 

al., 2021; Silvestro et al., 2020). 277 

For the dark-toned large ripples the degree of agreement between the global measurements 278 

and the predictions of the scaling relationship of Lapotre et al. (2021) (where saturation length is 279 

taken as that of aeolian saltation) is remarkable. Particularly if we consider that we are using a 280 

“static” average atmospheric density, which is merely a function of elevation and does not consider 281 

regional and seasonal atmospheric density variations. On the other hand, we cannot exclude that 282 

the density may just be one of the factors influencing the bedforms dimensions. As suggested by 283 

Lorenz (2020), wind speed at a global scale may increase with elevation creating a more complex 284 

interplay between density, wind speed and resulting bedform size. 285 

 286 

5 Conclusions 287 

This survey provides improved measurements to evaluate the mechanisms that set the size 288 

of bedform on Mars. We show that previous works used biased measurements, particularly for the 289 

bedforms located in the Tharsis region. We investigated the uniqueness of the bedforms located in 290 

this region, concluding that these bedforms form a distinct population and should be analyzed 291 

separately from the more common dark-toned large ripples that cover dunes outside Tharsis. 292 

Our survey covers a larger range of elevations than previous works, and for the first time 293 

provides full wavelength mapping of extensive regions. Overall, our results are consistent with the 294 

predictions of the “wind-drag” hypothesis, favoring the model that considers a saltation transport 295 

saturation length. Still, the compiled morphometric data is not enough to refute the impact ripple 296 

hypothesis, as that would probably require the integration of variable wind velocities for each site.  297 

The compiled dataset corroborates the existence of a robust relation between the 298 

wavelength of large dark-toned ripples and atmospheric density. Therefore, this new survey 299 

complements and helps to validate the main concept introduced in Lapotre et al. (2016): that paleo-300 
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atmospheric density can be inferred for Mars by looking at the aeolian sedimentary record, 301 

providing an important tool to probe the evolution of the planet’s environment.  302 
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Abstract 21 

Aeolian processes on Mars form a distinct class of meter-scale ripples, whose mechanisms of 22 

formation are debated. We present a global morphometric survey of bedforms on Mars, adding 23 

relevant observational constraints to the ongoing debate. We show that the bedforms located in 24 

the Tharsis region form a distinct group, not akin to the large dark-toned ripples which cover 25 

dune fields elsewhere on the planet. The relation between wavelength and atmospheric density 26 

derived from the new data is consistent with the predictions of a wind-drag mechanism, favoring 27 

the model that uses a saltation saturation length. Regardless of the mechanism that limits the size 28 

of bedforms, these results confirm the existence of a robust relationship between the wavelength 29 

of large ripples and atmospheric density (ripples spacings increases with decreasing atmospheric 30 

density). This provides further support to the interpretation of paleoatmospheric conditions on 31 

Mars through the analysis of its aeolian sedimentary record. 32 

 33 

Plain Language Summary 34 

The winds that shape the surface of Mars form two distinct scales of aeolian ripples, which 35 

coexist and evolve over martian dunes. The larger ripples (with spacing between crests between 36 

1-5 m) are enigmatic, as the mechanisms that control their equilibrium size are not fully 37 

understood. In this study we provide new observational data, which we use to assess different 38 

models that predict a dependence of bedform wavelength with atmospheric density. This new 39 

dataset shows that there are more than one population of meter-scale bedforms, with the ones 40 

located around the Tharsis volcanos being significantly different from the ones that cover dark 41 

dunes. We found a good agreement with the predictions of the wind-drag model, suggesting that 42 

the size of the large ripples is controlled by an aerodynamic mechanism. Most importantly, we 43 

confirm the existence of a global relation between wavelength and atmospheric density (ripples 44 

spacings increases with decreasing atmospheric density). This provides further support to the 45 

interpretation of paleoatmospheric conditions on Mars, as this relation can be applied to infer 46 

past atmospheric densities from the sedimentary record. 47 

 48 
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1 Introduction 49 

Martian dark dunes are covered by large ripple-like bedforms which are actively migrating 50 

under present-day atmospheric conditions (Bridges et al., 2012; Silvestro et al., 2010). These are 51 

metric-scale bedforms (~1-5 m spacing between crests, ~5-40 cm high) which can have 52 

symmetrical or asymmetrical profiles and sinuous or straight crests. On terrestrial aeolian 53 

environments with well-sorted sediments there are no obvious analogue bedforms in terms of 54 

scale, morphometry and dynamics (Lapotre et al., 2018; Silvestro et al., 2016; Vaz et al., 2017). 55 

Most notably, the meter-scale bedform are overlaid by centimeter-scale ripples, similar in scale 56 

and dynamics to impact ripples (Bridges et al., 2012; Lapotre et al., 2016; Weitz et al., 2018). The 57 

coexistence to these two different scales of bedforms raised several questions. Namely, why do we 58 

have two scales of ripples on Mars and what are the mechanisms that control their sizes?  59 

To explain orbital and ground-based observations of widespread aeolian activity (Baker et 60 

al., 2022; Bridges et al., 2012; Silvestro et al., 2010, 2013) transient low-flux transport regimes, 61 

that occur between impact threshold and fluid threshold speeds, were invoked (Andreotti et al., 62 

2021; Baker et al., 2018; Lapotre et al., 2018; Sullivan & Kok, 2017; Swann et al., 2020). Recent 63 

in situ observations by the Curiosity rover at Gale crater demonstrate that intermittent saltation is 64 

taking place, contributing to the migration of centimeter-scale ripples (Baker et al., 2022; Sullivan 65 

et al., 2022). In addition, wind tunnel experiments suggest that the size of impact ripples does not 66 

vary significantly with atmospheric density, maintaining their characteristic centimeter scale even 67 

in the low density conditions that exist on the surface of Mars (Andreotti et al., 2021). Therefore, 68 

all evidence shows that the size of centimeter scale ripples on Mars is controlled by the same 69 

impact-splash mechanism that produces terrestrial aeolian impact ripples. 70 

In contrast, two hypotheses have been proposed to explain the origin of the meter-scale 71 

ripples. They have been interpreted: a) as arising from a hydrodynamic instability i.e., they are 72 

analogous to fluid drag ripples typically found on terrestrial subaqueous environments (Duran 73 

Vinent et al., 2019; Lapotre et al., 2016, 2021); or b) as forming from the same impact-splash 74 

mechanism as terrestrial aeolian ripples (Sullivan et al., 2020; Sullivan & Kok, 2017). In the first 75 

hypothesis, the equilibrium wavelength of the large ripples is limited by a hydrodynamic anomaly 76 

(Duran Vinent et al., 2019; Lapotre et al., 2016), while in the second case ripple height (and 77 

consequently their wavelength) is controlled by the wind dynamic pressure at the bedforms crests, 78 

which is lower on Mars and would allow the growth of the bedforms (Sullivan et al., 2020). Lapotre 79 
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et al. (2016, 2021) argued that there is a clear wavelength gap between the two types of bedforms, 80 

inferring that two different mechanisms are limiting the size of the bedforms (impact-splash for 81 

the centimeter-scale ripples and fluid-drag for the meter-scale bedforms). In contrast, Sullivan et 82 

al. (2022) reported a continuum distribution of superimposed ripple wavelengths observed by the 83 

Curiosity rover at the “Sands of Forvie” sand sheet. They also reported the existence of 84 

granulometric segregation between the troughs and crests of large ripples (the same was reported 85 

in other areas by Gough et al., 2021) with coarser grains preferentially located on the crests of the 86 

larger bedforms. They interpreted these two characteristics as evidence that the meter-scale ripples 87 

are impact ripples rather than fluid-drag bedforms.  88 

An important aspect of the debate about the mechanism that sets the size of large ripples is 89 

the near-inverse relation observed between wavelength and atmospheric density at a global scale. 90 

This relation was initially hinted at by Lorenz et al. (2014) for the bedforms located across the 91 

high elevation Tharsis region, while Lapotre et al. (2016) extended the number of surveyed areas, 92 

focusing on sites where dark dunes are present. Based on this compilation, Lapotre et al. (2016) 93 

argued that the observed decrease in ripple wavelength with increasing atmospheric density is 94 

consistent with a fluid-drag origin. A view not shared by Lorenz (2020), which highlighted the 95 

different gradient of the model predictions and observational data (see Fig. 2 in Lorenz, 2020). 96 

Lapotre et al. (2021) revisited the same dataset proposing that when a saltation saturation length 97 

formulation is adopted (Duran Vinent et al., 2019), the fluid-drag mechanism provides a better fit 98 

to the data, particularly to the bedforms analyzed outside Tharsis.  99 

Drag ripples wavelength scales according to 𝜆 ≈
(
𝜇

𝜌𝑓
)

2
3⁄

𝐷
1
6⁄

(𝑅𝑔)
1
6⁄ 𝑢∗

1
3⁄
 (Lapotre et al., 2017), where µ is 100 

the dynamic viscosity, 𝜌𝑓 is the fluid density, D is grain diameter, g is the gravity acceleration and 101 

R is the submerged reduced density of the sediment (
𝜌𝑠−𝜌𝑓

𝜌𝑓
). This relation predicts that bedform 102 

wavelength is strongly dependent on 𝜌𝑓
−2 3⁄ . The mechanisms that set the wavelength of impact 103 

ripples are less understood. Wind tunnel experiments show that the saturation wavelength on well 104 

sorted sediments increases linearly with friction velocity (Andreotti et al., 2006; Cheng et al., 2018; 105 

Rasmussen et al., 2015), and is thought to be limited by the height of the ripples (Bagnold, 1954; 106 

Manukyan & Prigozhin, 2009). Yet, in less well sorted sediments coarser particles form an armor 107 

layer on the crests, causing ripples to increase in height and consequently in wavelength (Sharp, 108 
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1963). Sullivan et al. (2020) argue that the wind dynamic pressure 𝑊𝐷𝑃 =
1

2
𝜌𝑓𝑢

2 (𝑢 is the wind 109 

velocity) controls ripples height, with higher dynamic pressures removing particles from the crests 110 

and precluding the growth of the bedforms. Therefore, higher WDP should generate smaller 111 

ripples. In this case, if we assume a constant wind velocity the wavelength of impact ripples scales 112 

with  1 𝜌𝑓⁄ . Note that this assumption (constant wind speed at a global scale) may be problematic, 113 

as according to the equation WDP may be relatively more influenced by wind velocity than by 114 

density variations, which is the only factor addressed in previous studies as well as in this work. 115 

Nevertheless, both theories suggest an increase in wavelength when atmospheric density 116 

decreases. 117 

Other questions not entirely settled in previous studies regard the nature of the bedforms 118 

located in the Tharsis region. Lapotre et al. (2016) noticed the morphologic and albedo differences 119 

between the dark-toned ripples covering dunes and Tharsis bedforms. Nevertheless, they merged 120 

the two datasets to fit their wind-drag model, while in later works Tharsis and non-Tharsis 121 

bedforms were analyzed separately (Lapotre et al., 2021; Lorenz, 2020).  122 

Here we focus on these unresolved issues, reviewing and expanding the observational 123 

dataset, analyzing the consistency of measurements, and testing the models that predict the size of 124 

large ripples on Mars as a function of atmospheric density. 125 

 126 

2 Data and methodology 127 

We use High-Resolution Imaging Science Experiment (HiRISE) images (0.25-0.5 m/pix, 128 

McEwen et al., 2007) to perform a global scale mapping and wavelength survey of aeolian 129 

bedforms. Our survey cover the same 25 areas located in the Tharsis regions and analyzed by 130 

Lorenz et al. (2014), as well as the 11 areas reported in Lapotre et al. (2016) (Fig. 1). Furthermore, 131 

we expand the elevation coverage including 39 new areas where meter-scale bedforms are present 132 

covering dark-toned dunes (Supporting information S1 - section 1, Fig. S1 and Table S1).  133 

 134 
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 135 

Figure 1. Location (a) and elevation distribution (b) of the 75 sites surveyed in this study. We 136 

analyzed the same 25 areas of Lorenz et al. (2014) as well as the 11 dark-tone dune sites previously 137 

analyzed by Lapotre et al. (2016). Our survey improves the spatial coverage, extends the range of 138 

surveyed elevations and provides a more continuous elevation sampling. A global dune catalog 139 

(Fenton, 2020; Hayward et al., 2014) is shown overlaying MOLA elevation data. 140 

 141 

Previous surveys relied on the discrete manual measurements of crest-to-crest distances in 142 

randomly selected points (Lapotre et al., 2016; Lorenz et al., 2014). Here we applied a set of image 143 

processing and machine learning techniques which allow the mass automatic mapping of bedforms 144 

and the accurate measurement of their wavelengths (Fig. 2). We adapted the 2D Fast Fourier 145 

Transform approach introduced by Voulgaris and Morin (2008), implementing a multiscale 146 

scheme coupled with neural networks. This method allows the mapping and characterization of 147 
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large ripples and transverse aeolian ridges (TARs) in a wide range of spatial scales and surface 148 

settings. See Supporting information S1 - section 2 for a in depth description of the method.  149 

 150 

 151 

Figure 2. Wavelength survey of aeolian bedforms on Lyot crater (ESP_055318_2290, area 26 in 152 

Table S1). a) The applied method allows the full mapping and wavelength characterization of 153 

aeolian bedforms. b) Detailed view of the wavelength and trend of the mapped bedforms: large 154 

dark-toned ripples (LDRs) cover a barchan dune and have a spacing between crests of less than 4 155 

m; megaripples (MRs) and transverse aeolian ridges (TARs) present higher albedos, higher 156 

wavelengths and are overlaid by the dune darker sediments. c and d) 2D histograms showing the 157 
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distribution of wavelength, circular standard deviation and albedo (I/F), a square root stretch is 158 

used to highlight secondary peaks. Red dashed lines correspond to the wavelength and albedo 159 

thresholds used to segment two bedform classes. The black dots and lines represent the computed 160 

averages and 1σ intervals. 161 

 162 

Previous studies analyzed the relation between the average wavelength and atmospheric 163 

density at the surface, focusing on large ripples and TARs. To comply with this framework, we 164 

segment the mapped bedforms in two classes: a) large dark-toned ripples and b) a second class that 165 

comprises megaripples and TARs. Wavelength and relative grain size were proposed to be key 166 

parameters to discriminate different types of aeolian bedforms on Mars (Day & Zimbelman, 2021). 167 

We use albedo as a proxy for grain size, as it is usually assumed to be related to dust coating and/or 168 

to the presence of coarser particles (Sullivan et al., 2020). We examine the wavelength and albedo 169 

distributions using 2D histograms and we define threshold values that allow the partition of the 170 

mapping results, so that summary statistics can be computed for each class (see Supporting 171 

information S1 - section 3 for examples and Supporting information S2 for global results).  172 

To evaluate the mechanisms that set the size of large ripples on Mars we test which model 173 

best describes the wavelength vs. atmospheric density relation observed in our dataset. We tested 174 

three models (refer to Supporting information S1 - section 5 for details): a) the wind-drag model 175 

of Lapotre et al. (2016), where the saturation length scale is approximated as that of fluvial 176 

bedload, b) a modified version of the same scaling, which instead uses a saturation length scale for 177 

aeolian saltation (Duran Vinent et al., 2019; Lapotre et al., 2021), and c) a generic inverse linear 178 

dependence between wavelength and atmospheric density (as proposed by Lorenz et al., 2014). 179 

We fit power laws and linear models to facilitate the comparison between our measurements and 180 

the models’ predictions.  181 

 182 

4 Results and discussion 183 

Bedforms spaced between 1 to 100 m were mapped over a total area of ~2200 km2 184 

(Supporting information S2). The applied method correctly identifies the location of bedforms 185 

(93.7% of overall accuracy) and robustly measures their wavelength (we estimate a confidence 186 

interval of ±12%, Supporting information S1 - section 2). When comparing our data with previous 187 
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surveys, we found a good agreement with large ripple measurements reported by Lapotre et al. 188 

(2016), which on average differ by 4%. Yet, the averages for the larger bedforms (megaripples 189 

and TARs) reported in the same study are severely underestimated by 84%, which we attribute to 190 

a possible under sampling. To assess the wavelength of these larger bedforms Lapotre et al. (2016) 191 

collected on average of 46 wavelength measurements on each site. This number of randomly 192 

located measurements may not be enough to characterize these populations, as they cover a small 193 

percentage of the mapped areas and form scattered patches of bedforms with variable wavelengths.  194 

Our results for the Tharsis sites (which represent ~2/3 of the data analyzed in previous 195 

studies) show that Lorenz et al. (2014) values are systematically underestimated: on average they 196 

are 73% lower than the values obtained in this study (Fig. S10 and S11; Supporting information 197 

S1 - section 4). Indeed, some cited measurements there (e.g., 0.5-1.1 m) are dubious at best given 198 

HiRISE resolution (0.25 m/pix). The causes for this large disparity are less clear, nevertheless we 199 

note that in this case the measurement locations were not randomized, and that in some of the areas 200 

the spatial distribution of the bedforms is not uniform. These two factors may complicate the 201 

obtention of representative values from a few tens of scattered measurements.  202 

Other potential sources of uncertainty are the elevation values reported for each site, which 203 

are used to derive the atmospheric pressure. We sampled the MOLA elevations at the centroid 204 

point of the largest bedform patch mapped in each area. However, previous works do not refer the 205 

sampling scheme or location where elevation values were collected. Therefore, in areas where the 206 

HiRISE footprints cover regions with higher elevation gradients (mainly in the Tharsis region) we 207 

can have elevation differences between our values and previous surveys of more than 2 km. This 208 

happens in four of the areas analyzed by Lorenz et al. (2014) (Fig. S11b). 209 

We found several lines of evidence which support that Tharsis bedforms form a distinct 210 

population, apart from the large dark-toned ripples found elsewhere on Mars: a) as noted by  211 

Lapotre et al. (2021), we found that Tharsis bedforms have higher albedos (Fig. S12); b) we found 212 

that they have distinct thermal inertia (Putzig and Mellon, 2007) and dust cover index signatures 213 

(Ruff and Christensen, 2002), denoting lower thermal inertias (possibly associated with finer 214 

materials) and higher dust content/coverage (Fig. S13); c) as noted by others, Tharsis bedforms 215 

form unique patterns (Fig. S14) such as honeycomb or reticulate patterns (Bridges et al., 2010; 216 

Lorenz et al., 2014); and d) are in most cases associated with extensive mantling units, while large 217 

ripples outside Tharsis are typically found overlaying dark dunes (see Supporting information S1 218 



manuscript submitted to Geophysical Research Letters 

 

- section 5 for details). These distinctive characteristics suggest that the two sets of bedforms 219 

should be considered separately when evaluating bedform-formation mechanisms. 220 

The compiled data confirms the existence of a decrease of wavelength with increasing 221 

atmospheric density for the large dark-toned ripples (Fig. 3). Only five areas (~7%) deviate from 222 

this general tendency (Supporting information S1 - section 5 and Fig. S15), corresponding to cases 223 

where: a) sand sheets occupy a significant percentage of the mapped areas, suggesting the presence 224 

of coarse and/or poorly sorted sediments; and b) where dust devil tracks are visible covering the 225 

bedforms, suggesting limited migration/activity. These outliers are not included in the fits done to 226 

evaluate the proposed models, but their existence highlights two points: the accuracy and 227 

consistency of the measurements and the need to select comparable dune settings, as differences 228 

in grain size and sorting influence the wavelength of the bedforms.  229 

 230 

 231 

Figure 3. Relation between bedforms wavelength and Martian atmospheric density. The same data 232 

is shown in two different plots: a) highlighting the linear inverse relation proposed by Lorenz et 233 

al. (2014) and b) comparing with the models proposed by Lapotre et al. (2016; 2021), the gray area 234 

represents the maximum range of atmospheric densities on Mars while the cyan line represents the 235 

density of Earth’s atmosphere. Black lines represent the best fitted models for each dataset, 236 

computed using the average wavelengths for each site (linear models in a) and power laws in b); 237 

the R2 values in b) were computed in the log space). The golden line represents Lapotre et al. 238 

(2016) empirical relationship where transport saturation length is taken as that of fluvial bedload, 239 
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while the green line corresponds to a transport saturation length for aeolian saltation (Lapotre et 240 

al., 2021). A similar plot that includes the datasets used in previous studies is shown in Fig. S19. 241 

 242 

 The model obtained by fitting previous datasets which takes into account the bedload 243 

transport saturation length (Lapotre et al., 2016) predicts significantly lower wavelengths and a 244 

different scaling to the one we derived from our dataset. Conversely, our data for the dark-toned 245 

large ripples overlaps the predictions of the wind-drag model that uses the saltation transport 246 

saturation length, with a best fitted power law with ~2/3 scaling.  247 

Tharsis data presents higher scattering, particularly for lower wavelengths where data 248 

points seem to converge towards the dark-toned ripple dataset. Due to the discrepancies found 249 

between our results and those of Lorenz et al. (2014), we note that the Tharsis data compiled in 250 

this study does not overlap or follow a similar scaling to the wind-drag model that considers a 251 

bedload transport saturation length (Fig. 3 and S19). Instead, the best fitted power law (R2=0.42) 252 

has the same scaling (~2/3) of the model that uses the saltation transport saturation length. 253 

The compiled data suggests that the mechanism that limits the size of large ripples on Mars 254 

is dependent on the atmospheric density. Overall, we observe that all our data are bounded by the 255 

two saturation length scaling laws, supporting the hypothesis that the equilibrium size of large 256 

martian ripples is controlled by an aerodynamic mechanism. The scaling laws for saturation length 257 

arise from idealized representations of transport in unimodal sediments. As previously discussed, 258 

the grain size distribution of the sediments on the Tharsis bedforms is probably more complex, 259 

which may contribute to the observed differences between Tharsis and non-Tharsis bedforms. 260 

Even so, in accordance with previous studies (Lorenz, 2020; Lorenz et al., 2014) we notice 261 

that linear functions (which imply that  262 

𝜆 ∝ 1 𝜌𝑓⁄ ) also provide robust fits to the data (R2=0.79 and 0.73 for the dark large ripples and 263 

Tharsis bedforms, respectively). In the case of the large ripples, both inverse and power law 264 

functions explain ~80% of the variance. This means that, strictly from a numeric point of view, 265 

we cannot discriminate what is the best model to fit the data. As previously mentioned, to fully 266 

test the impact ripple hypothesis we would need to consider the wind velocities at each site, 267 

something that could be done using climate model predictions.    268 

Finally, the wavelengths of the larger bedforms (megaripples and TARs) present a large 269 

dispersion (Fig. 3B), not showing an obvious relation with any of the scaling laws. Linear or power 270 
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law models do not produce a meaningful fit to the data (R2=0.03). This suggests that at a global 271 

scale these bedforms do not form a homogeneous set and are probably not representative of the 272 

same boundary conditions (i.e., they likely formed with different grain size distributions, or under 273 

differing atmospheric conditions). Nonetheless, we cannot exclude the possibility that including 274 

TARs and megaripples in a same class may be flawed, especially since different degrees of 275 

mobility under present day winds have been described for the two sets of bedforms (Chojnacki et 276 

al., 2021; Silvestro et al., 2020). 277 

For the dark-toned large ripples the degree of agreement between the global measurements 278 

and the predictions of the scaling relationship of Lapotre et al. (2021) (where saturation length is 279 

taken as that of aeolian saltation) is remarkable. Particularly if we consider that we are using a 280 

“static” average atmospheric density, which is merely a function of elevation and does not consider 281 

regional and seasonal atmospheric density variations. On the other hand, we cannot exclude that 282 

the density may just be one of the factors influencing the bedforms dimensions. As suggested by 283 

Lorenz (2020), wind speed at a global scale may increase with elevation creating a more complex 284 

interplay between density, wind speed and resulting bedform size. 285 

 286 

5 Conclusions 287 

This survey provides improved measurements to evaluate the mechanisms that set the size 288 

of bedform on Mars. We show that previous works used biased measurements, particularly for the 289 

bedforms located in the Tharsis region. We investigated the uniqueness of the bedforms located in 290 

this region, concluding that these bedforms form a distinct population and should be analyzed 291 

separately from the more common dark-toned large ripples that cover dunes outside Tharsis. 292 

Our survey covers a larger range of elevations than previous works, and for the first time 293 

provides full wavelength mapping of extensive regions. Overall, our results are consistent with the 294 

predictions of the “wind-drag” hypothesis, favoring the model that considers a saltation transport 295 

saturation length. Still, the compiled morphometric data is not enough to refute the impact ripple 296 

hypothesis, as that would probably require the integration of variable wind velocities for each site.  297 

The compiled dataset corroborates the existence of a robust relation between the 298 

wavelength of large dark-toned ripples and atmospheric density. Therefore, this new survey 299 

complements and helps to validate the main concept introduced in Lapotre et al. (2016): that paleo-300 
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atmospheric density can be inferred for Mars by looking at the aeolian sedimentary record, 301 

providing an important tool to probe the evolution of the planet’s environment.  302 
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1. DATA AND GLOBAL BEFORM SURVEYS  24 

To investigate the relation between atmospheric pressure (as function of elevation) 25 

and the wavelength of Martian large ripples we analyze a total of 75 HiRISE images (Table 26 

S1), some of which were previously surveyed by other authors. Namely, the first 11 areas 27 
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are the same reported by Lapotre et al. (2016), while the last 25 areas are the same analyzed 28 

by Lorenz et al. (2014) in the Tharsis region. We provide a complete mapping of the 29 

HiRISE images, extending the elevation coverage (Fig. S1b) and filling the gaps of 30 

previous works.  31 

The new areas were selected based on the presence of dark-toned dunes or sand sheets 32 

which are covered by large ripples. Besides the Tharsis cluster that corresponds to the 33 

Lorenz et al. (2014) dataset, the selected areas are scattered across Mars surface (Fig. S1a). 34 

We primarily use full resolution HiRISE data (0.25 m/pix), although 0.5 m/pix images were 35 

used in five areas (this coarser spatial resolution is still enough to identify and map large 36 

ripples).  37 

 38 

 39 

Fig. S1 – Global map and elevation distribution of the study areas. a) Location of the study areas, the 40 
global distribution of dune fields is shown in white (Fenton, 2020; Hayward et al., 2013). b) Elevations 41 
of the mapped areas, the different colors highlight the areas which were analyzed in previous studies 42 
(Lapotre et al., 2016; Lorenz et al., 2014); the numbers next to each dot correspond to the IDs in Table 43 
1; areas where lower resolution 50 cm/pixel data were used are also noted. In this study we extend the 44 
sampled elevation range and provide more continuous coverage.  45 
 46 
Table S1 – List of surveyed areas, including their location and spatial resolution. A full record of the 47 
information compiled in this study can be found at 48 
https://doi.org/10.6084/m9.figshare.21064657. 49 
 50 
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 Area 

ID 

Image Spatial resolution 

(m/pix) 

Location Previous studies 

1 ESP_027864_2295_RED 0.25 Acidalia Mensa Lapotre et al. 2016 

2 ESP_018854_1755_RED 0.25 Gale crater Lapotre et al. 2016 

3 ESP_034909_1755_RED 0.25 Juventae Chasma Lapotre et al. 2016 

4 ESP_025042_1375_RED 0.25 SE of Yaonis Regio Lapotre et al. 2016 

5 ESP_011421_1300_RED 0.25 Hellespontus Lapotre et al. 2016 

6 ESP_041987_1340_RED 0.25 Proctor crater Lapotre et al. 2016 

7 ESP_011909_1320_RED 0.50 SE of Proctor crater Lapotre et al. 2016 

8 ESP_024502_1305_RED 0.50 SW of Proctor crater Lapotre et al. 2016 

9 PSP_001970_1655_RED 0.25 Coprates Chasma Lapotre et al. 2016 

10 ESP_018011_2565_RED 0.25 North Polar erg Lapotre et al. 2016 

11 ESP_039955_1875_RED 0.25 S of Nili Patera Lapotre et al. 2016 

12 ESP_013790_1035_RED 0.25 Planum Australe 
 

13 ESP_049439_1165_RED 0.25 Sisyphi Planum 
 

14 ESP_023913_1275_RED 0.25 Thaumasia 
 

15 ESP_021509_1325_RED 0.25 Kaiser Crater 
 

16 ESP_048154_1255_RED 0.25 S Eridania 
 

17 ESP_022320_1335_RED 0.25 Terra Sirenum 
 

18 ESP_022422_1300_RED 0.25 Ogygis Undae 
 

19 ESP_032941_1310_RED 0.25 Noachis Terra 
 

20 ESP_019570_1390_RED 0.25 North of Rabe Crater 
 

21 PSP_009758_2030_RED 0.25 Baldet Crater 
 

22 ESP_037082_1870_RED 0.25 S Arabia Terra 
 

23 ESP_018500_2000_RED 0.25 Crater NE of Jezero 
 

24 ESP_045307_2580_RED 0.25 Mare Boreum 
 

25 PSP_010413_1920_RED 0.25 Pettit Crater 
 

26 ESP_055318_2290_RED 0.25 Lyot Crater 
 

27 ESP_037201_2450_RED 0.25 Lomonosov Crater 
 

28 ESP_024237_1315_RED 0.25 Hellas Planitia 
 

29 ESP_022668_1340_RED 0.25 Hellas Planitia 
 

30 ESP_028410_1710_RED 0.50 Noctis Labyrinthus 
 

31 ESP_034274_1780_RED 0.25 Meridiani Planum 
 

32 PSP_001513_1655_RED 0.25 Gusev Crater 
 

33 ESP_025054_1370_RED 0.25 Hellas Planitia 
 

34 ESP_017610_1730_RED 0.25 Noctis Labyrinthus 
 

35 PSP_008097_1450_RED 0.50 Hellas Basin 
 

36 ESP_028856_1710_RED 0.25 Ganges Chasma 
 

37 ESP_022151_1660_RED 0.50 Crater West of Herschel 
 

38 PSP_002860_1650_RED 0.25 Herschel Crater 
 

39 ESP_035948_1900_RED 0.25 Arabia Terra 
 

40 ESP_043742_1800_RED 0.25 Meridiani Planum 
 

41 ESP_040058_1020_RED 0.25 Ultima Lingula 
 

42 ESP_062177_2370_RED 0.25 Kunowsky Crater 
 

43 ESP_062168_2585_RED 0.25 Mare Boreum 
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44 ESP_063282_2225_RED 0.25 Renaudot Crater 
 

45 ESP_057799_1910_RED 0.25 Arabia Terra 
 

46 ESP_058788_1320_RED 0.25 Asimov Crater 
 

47 PSP_009721_2370_RED 0.25 Kunowsky Crater 
 

48 ESP_017426_2570_RED 0.25 Scandia Cavi 
 

49 ESP_018427_2640_RED 0.25 Mare Boreum 
 

50 ESP_061119_1990_RED 0.25 North of Jezero Crater 
 

51 PSP_005387_1935_RED 0.25 Ascraeus Mons Lorenz et al. 2014 

52 PSP_005032_1985_RED 0.25 Olympus Mons Lorenz et al. 2014 

53 PSP_006811_1910_RED 0.25 Ascraeus Mons Lorenz et al. 2014 

54 PSP_002249_1805_RED 0.25 Pavonis Mons Lorenz et al. 2014 

55 ESP_011928_2025_RED 0.25 NW of Olympus Mons Lorenz et al. 2014 

56 PSP_008460_1980_RED 0.25 Olympus Mons Lorenz et al. 2014 

57 PSP_005546_1960_RED 0.25 E of Olympus Mons Lorenz et al. 2014 

58 ESP_013655_1710_RED 0.25 Arsia Mons Lorenz et al. 2014 

59 PSP_005441_1970_RED 0.25 Olympus Mons Lorenz et al. 2014 

60 ESP_012310_1715_RED 0.25 Arsia Mons Lorenz et al. 2014 

61 PSP_002118_2015_RED 0.25 Olympus Mons Lorenz et al. 2014 

62 PSP_003476_1940_RED 0.25 Olympus Mons Lorenz et al. 2014 

63 PSP_001642_1895_RED 0.25 Ascraeus Mons Lorenz et al. 2014 

64 PSP_005783_1775_RED 0.25 Pavonis Mons Lorenz et al. 2014 

65 PSP_004754_1915_RED 0.25 Ascraeus Mons Lorenz et al. 2014 

66 PSP_004109_2010_RED 0.25 Olympus Mons Lorenz et al. 2014 

67 ESP_013998_2035_RED 0.25 Olympus Mons Lorenz et al. 2014 

68 PSP_005111_1985_RED 0.25 Olympus Mons Lorenz et al. 2014 

69 PSP_005084_1810_RED 0.25 Pavonis Mons Lorenz et al. 2014 

70 PSP_008341_1705_RED 0.25 Arsia Mons Lorenz et al. 2014 

71 PSP_010780_1805_RED 0.25 Pavonis Mons Lorenz et al. 2014 

72 PSP_010213_1785_RED 0.25 Pavonis Mons Lorenz et al. 2014 

73 PSP_005322_1955_RED 0.25 Olympus Mons Lorenz et al. 2014 

74 PSP_008803_1980_RED 0.25 Olympus Mons Lorenz et al. 2014 

75 ESP_014341_2035_RED 0.25 Olympus Mons Lorenz et al. 2014 

 51 

2. RIPPLE PATTERN MAPPING AND WAVELENGTH SURVEY 52 

Different methods have been proposed to automatically map aeolian bedforms from 53 

HiRISE images. Previous studies mapped bedform crests, producing a set of polylines that 54 

can be used to assess bedform trends and lengths (Foroutan & Zimbelman, 2017; Vaz & 55 

Silvestro, 2014). These outputs can be used to study bedforms’ spatial variations and 56 

patterns, however when applied at a dune field scale they generate a large set of crestlines, 57 

requiring subsequent spatial integration/generalization (Vaz et al., 2017). Furthermore, 58 

given the high number of ripples that can be present on one image, the size of the output 59 
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datasets may be of the same order of magnitude of the image itself (a few gigabits), which 60 

complicates the study of these bedforms at a global level. 61 

Here we address these limitations by applying a new approach to Mars data for 62 

detection and quantification of bedform metrics, namely wavelength. We adapted the 2D 63 

Fast Fourier Transform (2D FFT) approach described by Voulgaris and Morin (2008) to 64 

study seabed bedforms, implementing a multiscale search scheme that allows the 65 

identification and characterization of large ripples and TARs (Transverse Aeolian Ridge) 66 

at different spatial scales. Figure S2 illustrates the adopted procedure. 67 

 68 

 69 

Fig. S2 - Flowchart with the main processing steps used to map and characterize large ripples and 70 
TARs using HiRISE images. See text for details. 71 
 72 

Multiscale sampling  73 

The technique we use to map the location of the bedforms and extract precise 74 

wavelength measurements begins with the creation of a regular grid which overlaps the 75 

HiRISE scene. A grid spacing of 15 m is used, so that we guarantee that each grid note 76 

includes several large ripples crests (~3 m spacing between crests). We then sample the 77 

image content around the grid nodes, with different spatial resolutions and window sizes 78 

(Fig. S3a). HiRISE images are stored in JP2000 image file format, therefore we take 79 
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advantage of the wavelet-based compression algorithm that is used in this format 80 

(Taubman & Marcellin, 2002) to sample the image at different scales (Fig. S3c-f). A dyadic 81 

sampling scheme is implemented, where the spatial resolution (rs) at each scale/reduction 82 

level (L) is given as a function of the images’ spatial resolution (ri): 83 

rs = ri * 2 L         (Eq. 1) 84 

This implies that the extent of the sampled area and the examined wavelength at each 85 

scale also increases proportionally to 2L, while the dimensions of the sampled areas are 86 

constant. For instance, when L=0 the band-pass filter that is later applied in the spectral 87 

domain preserves wavelengths in the range 1-5 m, while when L=1 the range is 2-10 m 88 

(Fig. S3g-j). The only required input is the maximum wavelength of analysis, which is 89 

derived from a preliminary inspection of the image and that corresponds to the estimated 90 

maximum TAR spacing. This parameter is used to define the maximum L, controlling the 91 

maximum scale of analysis.  92 
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 93 

Fig. S3 – Example of the adopted sampling scheme and scale selection procedure (Area 2: 94 
ESP_018854_1755_RED). a) A grid with 15 m spacing is created and for each node the image is 95 
sampled at different spatial resolutions and extents (the colored outlines correspond to the extent of 96 
the sampled areas for each L, c-f). b) normalized peak energy (derived from g-j), the identification of 97 
the primary and secondary local maxima allows the selection of the best scales of analysis, i.e. the ones 98 
with more relevant and sharpest content. c-f) sampled datasets which include the filtering pre-99 
processing described in the following section, note the smoother appearance of the corner areas created 100 
by the imposed circular taper function. Large ripples with straight crests are discernible when 0≤L≤2, 101 
while for L=3 the albedo variation due to dune topography is the only recognizable feature. g-j) shifted 102 
2D FFT spectra (values were stretched with a log transformation) for each L, a band pass filter is used 103 
to subset the target wavelengths at each scale. At L=0 a strong peak is present, denoting the preferential 104 
trend and periodicity of the large ripples. The maximum energy at each scale is used to select the best 105 
scale/s of analysis (b).  106 
 107 

2D FFT analysis and scale selection 108 
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The objective of the described sampling scheme is to implement the spectral 109 

characterization (which provides the characterization of the bedforms, for instance their 110 

trend and wavelength) in the most suitable scale of analysis, the same way as a mapper 111 

would use different zoom levels (i.e. different scales of analysis) to map ripples or larger 112 

TARs. To remove long wavelength components (e.g. created by dune topography) and 113 

increase the image contrast we subtract top-hat and bottom-hat (Soille, 2002) filtered 114 

versions of the input areas (a circular structuring element with radius 8 is used). To reduce 115 

the artifacts caused by the non-isotropic sampling (the sampled areas have square shapes) 116 

we multiply the matrix by a circular taper function (computed as the normalized Euclidean 117 

distance to the central pixel). Figures S3c-f show the results of these operations, which 118 

prepare the data for the subsequent spectral analysis. 119 

A 2D spectrum is computed for each filtered area/scale using the FFT. A band-pass 120 

filter is applied in the spectral domain, which subsets the analyzed wavelength range on 121 

each scale. The same scaling function described in Eq. 1 is used to define the target 122 

wavelength ranges, starting at a range of 1-5 m for L=0 (Fig. S3g-j). Power spectrums (the 123 

square of the transform magnitudes; Gonzalez et al., 2004) are computed and the spectral 124 

peak energies (SL) are collected for each scale (Voulgaris & Morin, 2008). This is the 125 

parameter used to choose the most relevant scale (i.e. the scale with the sharpest periodic 126 

features), which is found by identifying the local maxima of the peak spectral energy across 127 

scales (Fig. S3b). In certain situations, different sets of bedforms with different trends and 128 

wavelengths overlap in the same areas, which translates in the existence of a secondary 129 

maxima. If present, the two local maxima are recorded, while if only one is present the 130 

secondary scale is set as argmax(SL)-1. No secondary maxima is derived when argmax(SL) 131 

is one. 132 

 133 

Spectral and textural characterization  134 

The objective of this processing step is twofold: 1) measure the trend and wavelength 135 

of the bedforms, and 2) assemble a sparse set of descriptors that summarize image 136 

proprieties and textures, to be used in the following classification step. Table S1 lists the 137 

computed parameters and detail how they were computed while Fig. S4 show some 138 

examples. The same descriptors are computed for the two selected scales and stored in a 139 
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database. We adopted the same approach described by Voulgaris and Morin (2008) to 140 

measure the wavelength and the trend of the bedforms. Additionally, we apply a kernel-141 

based technique to analyze the circular distribution derived from the spectral analysis in 142 

order to parameterize bimodal circular distributions (Vaz et al., 2015), which is of 143 

relevance since the trend of large ripples may not be unidirectional.  144 

 145 

Table S2 – List of parameters compiled for the identified primary and secondary scales.  146 

Description Descriptors Details References 

Selected scale/reduction 

level 

L (Fig. S4b) See previous section for details  

Normalized peak energy SL e.g., Fig. S3b  

Azimuth Trend of the spectral peak Sub-pixel interpolation using 

the neighborhood of the 

maximum peak   

(Voulgaris & 

Morin, 2008) 

Wavelength  Wavelength of the spectral 

peak (Fig. S4e) 

Sub-pixel interpolation using 

the neighborhood of the 

maximum peak   

(Voulgaris & 

Morin, 2008) 

Average trend and 

wavelength  

Mean vector trend, circular 

standard deviation (Fig. S4d), 

circular skewness and 

kurtosis.  

Wavelength weighted average 

and standard deviation.  

Spectral energies are used as 

weighting factor.  

 

Directional modes Trend of the primary and 

secondary modes. Primary 

mode kernel frequency (Fig. 

S4f) and kernel frequency 

ratio.  

Spectral energies are used as 

weighting factor and a kernel 

window of 20º is used to create 

the circular kernel function (see 

Vaz et al., 2015 for details). 

(Vaz et al., 2015) 

Spectral proprieties Maximum peak energy. Peak 

and quality indices (Fig. S4c). 

Provide textural context and 

can be regarded as proxies for 

bedform/image sharpness 

(Voulgaris & 

Morin, 2008) 

Lambert albedo Lambert albedo (I/F) average 

and standard deviation 

Computed using the scaling 

factors and offsets obtained 

from the HiRISE label files 

 

 147 
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 148 

Fig. S4 – Examples of pattern descriptors used in the classification process (see Table S2 for details 149 
and Fig. S5 for the classification outputs). a) HiRISE image (Area 1:  ESP_027864_2295_RED). b) 150 
Selected primary scale. c) Quality index (stretched using a log scaling). d) Circular standard deviation. 151 
e) Spectral peak wavelength. f) Kernel frequency of the main mode (stretched using a log scaling). 152 
 153 
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Supervised classification 154 

Bedforms are typically scattered covering different types of surfaces (e.g. bedrock, 155 

regolith), and do not usually form a continuous patch. Therefore, we need to discriminate 156 

two classes: targeted bedforms (large ripples, megaripples and TARs) and bedrock 157 

(including slipfaces and other long-wavelength or shadowed terrains). To achieve this, we 158 

implemented a supervised classification using artificial neural networks (ANN). We use a 159 

feedforward ANN architecture with one input, one hidden (38 nodes) and one output layer 160 

(two nodes). We use hyperbolic tangent transfer functions and conjugate gradient 161 

backpropagation (Moller, 1993) to train the networks.  162 

All the fields listed in Table S2 that correspond to azimuthal information are excluded 163 

from the classification procedure (using them would result in directional bias). The 164 

remaining parameters for the primary and secondary scales are normalized (min-max 165 

normalization) to serve as inputs to the ANN classifier. The training datasets were digitized 166 

for each area using QGIS and a random partition (train, test, and validation datasets) is 167 

performed. Fig. S5 show examples of training data and output final classification.  168 

 169 

 170 

Fig. S5 - Classification process overview. a) Labeled training data (Area 1: ESP_027864_2295_RED). 171 
b) Output classification (accuracy of 96.6%). c) Measured bedform wavelength.  172 
 173 

Accuracy Assessment 174 

To assess the performance of the described technique we need to evaluate two types 175 

of accuracies: 1) classification accuracy: how well can we identify and map bedforms?; 176 

and 2) wavelength accuracy: can we retrieve accurate wavelength measurements? 177 
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The first question is addressed by creating confusion matrices and computing the 178 

overall accuracy and kappa index to evaluate the classification results. Overall, the training 179 

data corresponds to 7.5% of total mapped area, with a prevalence (percentage of bedform 180 

class in the training dataset) of 59%. The overall classification accuracy is 93.7% (kappa 181 

index of 0.87) which demonstrates the excellent performance of the proposed technique 182 

(Table S3). 183 

 184 

Table S3 – Accuracy of the supervised classification with two classes: bedforms (large ripples and 185 
TARs) and bedrock (other non-bedforms features). Overall accuracy ranges from 0 to 100%, with 186 
100% denoting a perfect classification. Kappa index range from 0 to 1, where 0 corresponds to a 187 
random non-agreement case. Prevalence is the percentage of training data that correspond to the 188 
positive case (bedform class), ideally if should be ~50%. N is the number of mapped grid nodes. The 189 
training dataset corresponds to 7.5% of the total mapped area. 190 
 191 

Area ID 

Accuracy 

(%) Kappa index 

Prevalence 

(%) N Train % 

1 96.6 0.93 58.1 20923 10.0 

2 98.0 0.87 90.7 56423 15.9 

3 97.8 0.93 19.6 19659 7.3 

4 92.5 0.83 66.2 28902 14.6 

5 92.3 0.84 63.8 39844 10.7 

6 88.0 0.73 68.6 29173 17.3 

7 94.3 0.86 28.1 14635 3.7 

8 96.1 0.91 66.3 60308 20.0 

9 93.4 0.81 79.6 52435 16.7 

10 96.0 0.91 68.5 9534 2.6 

11 93.4 0.87 47.5 21168 6.8 

12 94.1 0.86 71.4 16189 3.0 

13 94.5 0.87 30.8 6779 5.8 

14 90.2 0.80 50.7 13724 14.2 

15 94.7 0.87 29.0 15132 5.1 

16 92.9 0.85 60.1 11059 5.2 

17 99.2 0.95 91.4 29229 13.2 

18 91.3 0.81 37.1 31141 11.6 

19 94.8 0.90 44.6 31954 15.5 

20 90.2 0.80 43.3 46403 22.8 

21 95.0 0.84 17.0 17445 3.3 

22 88.7 0.76 33.0 14769 8.5 

23 98.0 0.96 46.2 19334 6.1 

24 96.1 0.92 63.7 23035 5.7 

25 94.8 0.88 67.0 39433 9.7 

26 98.1 0.96 66.5 22238 9.5 

27 94.8 0.89 57.4 8663 1.7 
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28 94.4 0.89 44.3 11122 5.2 

29 89.9 0.70 17.4 15666 7.6 

30 94.1 0.52 91.8 45895 6.0 

31 97.0 0.94 45.5 13917 3.9 

32 92.3 0.72 81.5 28053 5.2 

33 87.8 0.75 54.9 27698 8.5 

34 95.3 0.89 71.0 13885 6.0 

35 85.3 0.71 47.6 77548 12.9 

36 92.6 0.76 83.1 15699 7.0 

37 93.5 0.87 45.7 13657 12.0 

38 90.4 0.80 35.9 11340 3.2 

39 95.3 0.91 47.0 23407 8.4 

40 97.3 0.95 53.2 38685 14.1 

41 94.6 0.88 67.4 4484 3.0 

42 92.1 0.84 55.3 18859 7.8 

43 98.7 0.96 18.5 14804 7.1 

44 93.1 0.83 27.2 17261 9.8 

45 96.5 0.90 78.6 19742 16.3 

46 93.3 0.75 86.4 31039 11.6 

47 92.0 0.82 65.4 31130 7.8 

48 93.9 0.87 37.1 43224 11.8 

49 94.5 0.88 64.4 52921 7.3 

50 95.2 0.90 64.4 20660 9.2 

51 91.8 0.72 81.2 32572 6.8 

52 96.4 0.8 12.9 4926 1.4 

53 90.4 0.8 34.8 11924 4.3 

54 96.2 0.9 17.2 4521 3.6 

55 93.7 0.7 84.4 14067 6.6 

56 99.5 0.8 1.4 13800 5.8 

57 90.3 0.8 59.2 41672 10.4 

58 98.9 1.0 16.4 28720 26.1 

59 90.6 0.8 70.4 15438 3.3 

60 97.7 0.9 81.0 25090 6.8 

61 90.5 0.8 70.8 16495 6.1 

62 89.4 0.8 67.3 11844 2.5 

63 97.8 0.9 27.9 10764 3.1 

64 98.0 0.9 17.0 5810 3.4 

65 90.8 0.8 38.0 36124 10.8 

66 98.2 1.0 36.6 5438 2.1 

67 92.6 0.5 92.8 49404 15.9 

68 89.1 0.8 56.1 5046 0.9 

69 99.1 1.0 75.5 21921 4.4 

70 98.0 0.9 15.1 11501 5.4 

71 99.3 0.7 1.2 8536 2.9 
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72 96.7 0.8 10.0 3379 1.4 

73 97.6 0.8 90.9 32621 8.1 

74 91.1 0.7 19.4 18819 3.7 

75 93.4 0.8 77.7 46119 10.9 

Total 93.71 0.87 58.8 1766778 7.45 

 192 

To evaluate the accuracy of the wavelength measurements we use hillshade images of 193 

synthetic bedforms’ topography, modelled with a superellipse function (Eq. 2). Transverse 194 

bedform topography is modelled with n=0.4 and h= λ /10 (h represents the maximum height 195 

of the bedforms and corresponds to 1/10 of the wavelength λ). The length of the bedforms 196 

is assumed to scale with wavelength (λ*50) and is controlled with a longitudinal taper, 197 

obtained with n=4 and h=1.  198 

|𝒙|𝒏 + |
𝒚

𝒉
|

𝒏

= 𝟏             (Eq. 2) 199 

Random azimuths allow to test the directional precision of the adopted technique. Fig. 200 

S6a-c shows examples of the test datasets, displaying periodic bedform-like features with 201 

different trend and spacing. In Fig. S6d we evaluate our measurements (peak and average) 202 

for a wide range of wavelengths. Peak wavelengths provide the most accurate predictions 203 

(average error of 3% and trend accuracy below 1º, Table S4) and present narrower 204 

uncertainty bars. Additionally, we demonstrate the stability of the sampling and scale 205 

selection schemes, with a regular progression of L with increasing wavelength (Fig. S6d). 206 

 207 
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 208 

Fig. S6 – Wavelength accuracy assessment using synthetic hillshade views of periodic bedform-like 209 
patterns. a-c) Examples of the datasets created using random trends (λ corresponds to the crest spacing 210 
in meters). d) Measured vs. modelled wavelength, the black line corresponds to a perfect agreement 211 
case while two different wavelength estimates are shown: the spectral peak wavelength which produces 212 
more accurate results across all scales of analysis and with smaller uncertainty bars, and the average 213 
wavelength with larger uncertainty bars. The different scales of analysis (L) are depicted in different 214 
colors, note the congruent sequency of selected scales when wavelength increases.    215 
  216 

Table S4 – Wavelength percentual error and azimuth error computed using synthetic datasets (Fig. 217 
S6). We estimate wavelength errors of 3% and trend errors of less than 1º. 218 

Measurement type Wavelength percent error 

(average±STD %) 

Azimuth error 

(average ±STD º) 

Spectral peak 2.7±2.3 -0.1±0.8 

Spectral average 6.4±6.9 -0.01±0.6 

 219 

Finally, a total of 978 reference wavelength measurements were compiled in QGIS 220 

(e.g. Fig. S7a) and compared with our results. Fig. S7b highlights the linear response of the 221 

mapping algorithm for a large range of values. We compute an average percentual 222 

difference of -0.7±11.9% (Table S5), which demonstrates that the obtained results are not 223 
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biased and that differences are within a standard deviation interval of ±12%. Besides this 224 

detailed local assessment, section 4 presents a global comparison with previously published 225 

measurements.  226 

 227 

 228 

Fig. S7 – Comparison of wavelength measurements. a) Example of reference wavelength 229 
measurements obtained by mapping successive bedform crests (yellow dots), the peak wavelength 230 
obtained automatically is also shown. b) automated wavelength estimates vs. manually derived 231 
measurements (manual estimates were averaged and integrated into the sampling grid using a 7.5 m 232 
spatial buffer), the red line corresponds to a 1:1 ratio.  233 
 234 

Table S5 – Wavelength was compared for five different areas, including one with coarser spatial 235 
resolution. Overall, we estimate that the obtained wavelengths are comparable to manually derived 236 
measurements within a ±12% confidence interval.  237 

Area ID 

Percent difference 

(average±STD %) N 

Spatial resolution 

(m/pix) 

1 -0.8±11.6 331 0.25 

2 -1.7±14.4 181 0.25 

3 -0.6±12.5 192 0.25 

4 0.7±9 111 0.25 

8 -0.1±10.1 163 0.5 

All -0.7±11.9 978  
 238 

3. BEDFORM POPULATION SEGMENTATION AND SUMMARY 239 

STATISTICS 240 
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Two main characteristics are commonly used to discriminate and classify Martian 241 

aeolian bedforms from remote sensing imagery: wavelength and albedo (Day & 242 

Zimbelman, 2021). We use an exploratory and iterative approach to set threshold values 243 

for these two parameters. This allows a quantitative and more objective segmentation of 244 

the bedform types. To the purpose of this work, we discriminate two classes: large ripples 245 

and megaripples & TARs. We create 2D kernel density histograms using the mapped 246 

bedform’s wavelength (e.g. Fig. S5c), HiRISE Lambertian albedo (I/F) and circular 247 

standard deviation (here used as a proxy to crest straightness). These plots are inspected 248 

for each area, and putative wavelength and albedo thresholds are selected (Fig. S8e, f). 249 

These values are then tested/visualized in QGIS and iteratively adjusted (Fig. S8b-d). In 250 

most cases this is a straightforward process, since large ripples cover extensive areas, thus 251 

forming clear maxima corresponding to meter-scale wavelengths and low albedos. Fig. S8 252 

shows how the threshold values identified in the histograms correspond to clear pattern 253 

changes in map view. Supporting information S2 includes the histograms and global map 254 

views for all the mapped areas.  255 

In this work we focus on a first order segmentation, collapsing the data into two 256 

classes. Yet, in some areas the plots also highlight the presence of second order sub-257 

populations, which may be attributed to the effect of dune topography and/or granulometric 258 

differences (for instance between putative megaripples and TARs, Fig. S9). A finer 259 

analysis and clustering are thus possible, although it is out of the scope of this paper. 260 

Summary statistics (wavelength mean and standard deviation) are computed for the 261 

two classes and constitute the basis of the following analysis. To help to identify outliers 262 

and evaluate possible relations between dune morphology and large ripples morphometry, 263 

we identified the type of dunes in the areas mapped outside Tharsis (Fig. S15), as that 264 

region lacks dark dunes. Most areas present more than one dune type, therefore we used a 265 

dual classification scheme, visually identifying a primary and secondary dune types. 266 

Primary class corresponds to the type of dune most abundant, in terms of relative area.  267 

 268 
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 269 

Fig. S8 – Bedform segmentation using wavelength and albedo threshold values derived from 2D 270 
histograms. a, b) HiRISE image (Area 1: ESP_027864_2295_RED). c) map view of the two classes 271 
defined using a wavelength threshold range of 1.3-3.8 m (large ripples) and >3.8 m (megaripples & 272 
TARs); these values correspond to the red dashed lines in (e); the trend of the mapped bedforms is also 273 
shown. d) map view of the two classes defined using an albedo threshold range of 0.07-0.11 (large 274 
ripples) and >0.11 (megaripples & TARs); these values correspond to the vertical red dashed lines in 275 
(f); the trend of the mapped bedforms is also shown. e) 2D histogram relating bedforms’ wavelength 276 
and circular standard deviation (to improve readability the frequencies were scaled with a square root 277 
function), the defined threshold values are depicted as red dashed lines (figure (c) provides a map 278 
view), note the main maxima corresponding to a wavelength of ~2.5 m; the black dots and variation 279 
intervals correspond to the averages and standard deviations computed for the segmented classes; the 280 
green (large ripples) and magenta (TARs) dots located near the right edge of the plot correspond to 281 
the summary statistics of Lapotre et al. (2016). f) 2D histogram relating bedforms’ wavelength and 282 
albedo (frequencies were scaled with a square root function), the defined threshold values are depicted 283 
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as a red square (figures (c, d) provide map views of the two parameters); the black dots and intervals 284 
correspond to the computed averages and standard deviations. 285 
 286 

 287 

Fig. S9 - To establish direct comparisons with previous studies only a first order bedform segmentation 288 
is discussed in this work (Fig. S8), nevertheless this example illustrates the possibility to pursuit more 289 
detailed studies in the future. a) 2D histogram showing the wavelength intervals that produce the 290 
partition shown in the map views, the first order wavelength thresholds correspond to the red dashed 291 
lines while the colored double arrows identify the wavelength intervals shown in the map views. b, c, 292 
e) possible secondary partition of the large meter-scale ripples, bedforms with less than 2.3 m appear 293 
clustered in the center of the dune field (e) and occur in the downwind sections of some dunes (b, c). d, 294 
f) possible megaripples are widespread (f), have wavelengths between 3.7 and 14 m, are located in the 295 
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lower sections of the dunes and appear in continuity with large ripples (d), while TARs have larger 296 
wavelengths and are mainly located in the NE corner of the mapped area (f).    297 
 298 

4. COMPARISON WITH PUBLISHED MEASUREMENTS 299 

In this section we compare our results with the ones obtained by Lapotre et al. (2016) 300 

and Lorenz et al. (2014) for a total of 11 and 25 areas, respectively (Table S6). The average 301 

large ripples wavelengths computed in this study are inline with the values reported by 302 

Lapotre et al. (2016) (Fig. S10a). On average, we estimate a percentual difference of 303 

4±10% with a maximum difference of 21% for Area 2 (Table S6). If we also consider the 304 

standard deviation intervals, we conclude that the two sets of measurements are very 305 

similar, presenting overlapping distributions (Fig. S10a and Table S6).  The case of the 306 

larger bedforms seems to be different, with an average percentual difference of 84±83% 307 

and a maximum of 236%. Even if we have overlapping distributions in four areas (Fig. 308 

S10b, note how in some cases the standard deviation intervals intersect the 1:1 line), half 309 

of Lapotre et al. (2016) areas clearly show an underestimation of the larger bedforms’ 310 

wavelengths (data points and standard deviations below the 1:1 curve, Fig. S10b). 311 

In summary, our wavelength estimates for the large ripples are consistent with the 312 

measurements made by Lapotre et al. (2016). We found that for most of the areas the 313 

averages differ by less than 10%, approximately the same confidence interval derived from 314 

the comparison made with manually derived measurements in this work (±12% confidence 315 

interval, Table S5). To understand the larger discrepancies associated with the larger 316 

bedforms, one must question if the sampling used by Lapotre et al. (2016) was enough to 317 

characterize these populations. Focusing in the two areas with larger differences (Areas 6 318 

and 8), Lapotre et al. (2016) collected 36 and 40 measurements for TARs and 136 and 98 319 

for large ripples. These were randomly sampled across the HiRISE scenes. Yet, our 320 

complete mapping reveals that TARs only cover a small fraction of the mapped areas (38 321 

and 20% respectively), in addition TARs tend to form disperse sets of bedforms with 322 

variable wavelengths. Therefore, we hypothesize that a more complete sampling would be 323 

needed to characterize these populations and that this is the main reason for the observed 324 

wavelength disparities.  325 

Lorenz et al. (2014) values are consistently underestimated when compare with our 326 

measurements (Fig. S10a). On average, their values differ by 73±106% with a maximum 327 
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percentual difference of 563% (Area 55, Table S6). In this specific area, Lorenz et al. 328 

(2014) reported an average wavelength of 0.5 m, which is a questionable estimate since it 329 

only corresponds to two pixels. This was noted in Lapotre et al. (2021), which replace this 330 

value by an estimated wavelength of ~1 m (see their Fig. 2). In each area Lorenz et al. 331 

(2014) sampled approximately 40 sets of bedforms, divided by four selected sub-areas. 332 

Among other possible causes (e.g. non-random sampling), also in this case we hypothesize 333 

that under sampling may have contributed to the measured differences. Bedforms in the 334 

Tharsis region do not form unambiguous dune fields or sand sheets, and most of the times 335 

they are scattered or preferentially located in depressions. This non-uniform spatial 336 

distribution may further complicate the obtention of representative wavelength samples 337 

from a few tens of measurements. In section 5 we argue that Tharsis bedforms represent a 338 

different type of bedforms and that merging the two datasets is not appropriate. In any case, 339 

from the validation presented in section 2 and from the comparison with Lapotre et al. 340 

(2016) results we determine that wavelengths derived with our method are robust, which 341 

means Lorenz et al. (2014) results denote a systematic underestimation (Fig. S11a).  342 

 343 

 344 

Fig. S10 – Comparison of wavelength measurements. a) Large ripples, there is a good agreement with 345 
Lapotre et al. (2016) values and error bars always overlap the 1:1 (perfect agreement) line; when 346 
compared with our data, Lorenz et al. (2014) measurements are clearly underestimated. b)  In the case 347 
of the larger bedforms, half of Lapotre et al. (2016) values are comparable to our data, while the other 348 
half seems to be relatively underestimated.  349 
 350 
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Previous works used MOLA elevations to compute atmospheric density, so this is 351 

also a variable we try to verify and compare. The elevations presented in this work are 352 

automatically extracted from the MOLA MEGDR (Mission Experiment Gridded Data 353 

Records), which represent elevations above the areoid with a spatial resolution of 463 354 

m/pixel (Smith et al., 1999). The spatial centroids of the largest bedform patches mapped 355 

in each area are used as sampling points. Lorenz et al. (2014) mentions that their elevation 356 

data was derived from MOLA data, however they do not provide any other detail (e.g. 357 

specific sampling locations, reference datum or methods used to collect the elevation 358 

values). In their supplementary materials, Lapotre et al. (2016) mentions that Lorenz’s data 359 

“were measured with respect to the Mars Reconnaissance Orbiter reference ellipsoid” and 360 

that for this reasons they have corrected the data to be consistent with the areoid datum 361 

used in their survey. We applied the same correction, converting Lorenz’s (2014) 362 

elevations to orthographic heights.  363 

We found a good agreement with Lapotre et al. (2016) elevations (Fig. S11b), the 364 

only exception is Area 3, which has an elevation difference of ~700 m. In this specific case, 365 

elevations inside the mapped area can vary by ~ 1000 m, therefore the mentioned 366 

discrepancy can be attributed to the different sampling location.  367 

We found significant differences between the elevations computed in this work and 368 

part of the elevations reported in Lorenz et al. (2014). In four areas differences can range 369 

between 2 and 3 km (Fig. S11b). Also in this case, differences are likely caused by a 370 

different sampling location. The Tharsis region extreme topography result in large 371 

elevation variations across the HiRISE image footprints. In some cases, maximum 372 

elevation differences of ~4 km are possible, depending where in the image footprint the 373 

MOLA data is sampled.  374 

We conclude that relevant elevation differences may exist between studies. These are 375 

due to the uncertain location of the sampling points and produce higher disparities for the 376 

studied areas located in the Tharsis region. We implicitly use the location of the mapped 377 

bedforms to define the sampling points, thus we adopt a more consistent and robust 378 

methodology which reduces the uncertainty in the measurement of this variable.     379 

 380 
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 381 

Fig. S11 – Differences in large ripples’ average wavelength and elevation. a) Wavelength differences 382 
between our measurements and Lapotre et al. (2016) are small and cluster around 0 m, while Lorenz 383 
et al. (2014) dataset presents higher discrepancies and are consistently bellow the values obtained in 384 
this study. b) Lapotre et al. (2016) elevation values are consistent with our work, except for Area 3 385 
which has an elevation difference of ~700 m, yet this is understandable since inside the mapped area 386 
elevations can vary by ~ 1000 m; the differences with Lorenz et al. (2014) measurements are more 387 
relevant, with elevation differences that can reach 3 km, which is justified by the fact that high slope 388 
areas in the Tharsis region (e.g. Olympus Mons basal scarp) can produce large topographic differences 389 
(we measured elevation ranges up to 4 km) even inside the relatively small footprint of an HiRISE 390 
image. 391 
 392 

 393 
Table S6 – Comparison of wavelength summary statistics, the first 11 areas correspond to the areas 394 
analyzed by Lapotre et al. (2016) while area IDs above 51 correspond to the 25 areas studied in 395 
Lorenz et al. (2014). Summary statistics (average and standard deviation) are reported, and 396 
percentual errors were computed according to: 100*(Wavthis study – Wavother studies) / Wavother studies. 397 
 398 

 Large ripples TARs & megaripples Percentual differences 

Are

a ID 

Wav. avg. ± 

STD (m) 

Wav. avg. ± STD  

(Lapotre, 2016 / 

Lorenz, 2014) 

Wav. avg. ± 

STD (m) 

Wav. avg. ± STD  

(Lapotre, 2016 / 

Lorenz, 2014) 

LRs % 

difference 

TARs % 

difference 

1 2.5 ± 0.5 2.2 ± 0.5 7.8 ± 4.8 5.2 ± 1.8 13.0 50.7 

2 2.5 ± 0.7 2.1 ± 0.6 8.9 ± 5.5 7 ± 2.2 20.9 26.5 

3 3.4 ± 1 3 ± 0.6 13.2 ± 7.4 16.1 ± 7.8 13.8 -17.8 

4 3.6 ± 0.9 3.5 ± 0.8 16.9 ± 12 8.8 ± 5.6 2.8 91.8 

5 3.5 ± 1.1 3.3 ± 0.9 21.7 ± 13.2 17.8 ± 14.1 5.0 22.2 

6 3.2 ± 0.8 3.1 ± 0.9 20.2 ± 12.3 7.6 ± 3.1 4.3 165.6 

7 3.4 ± 0.6 3.1 ± 0.8 20.3 ± 9.8 10.3 ± 4 10.8 97.3 

8 3.1 ± 0.6 3.6 ± 0.9 27.9 ± 21.1 8.3 ± 4.4 -13.2 235.8 

9 2.5 ± 0.4 2.6 ± 0.5 7.4 ± 4.1  -3.6  

10 2.4 ± 0.3 2.5 ± 0.4 9.6 ± 7  -4.7  
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11 3.4 ± 0.8 3.4 ± 0.8 13 ± 7.7  -0.3  

51 2.7 ± 0.5 1.6 ± 0.9 7.4 ± 4.7  62.1  

52 5 ± 1.1 3.3 ± 0.5   50.5  

53 4.4 ± 1 3.3 ± 0.4 13.1 ± 9.9  33.1  

54 2.6 ± 0.4 2.1 ± 0.3 6 ± 1.2  21.0  

55 3.3 ± 1 0.5 ± 0.2 12.4 ± 5.7  563.0  

56 7.5 ± 2 5 ± 1.1 17.8 ± 2.1  51.3  

57 2.3 ± 0.6 1.5 ± 0.6 16.3 ± 14  58.3  

58 2.2 ± 0.5 1.4 ± 0.2 7.6 ± 4  64.3  

59 2.1 ± 0.4 1.1 ± 0.2 5.1 ± 3.7  89.7  

60 1.9 ± 0.4 1.4 ± 0.2 5.6 ± 1.1  35.8  

61 2.3 ± 0.5 1.4 ± 0.2 5 ± 1.3  66.5  

62 2.2 ± 0.4 1.3 ± 0.6 4.1 ± 0.9  73.7  

63 2.6 ± 0.5 1.5 ± 0.2 19.2 ± 13.4  70.6  

64 1.9 ± 0.4 1.8 ± 0.4 24.4 ± 10  10.3  

65 4 ± 1.1 3.2 ± 0.8 14.6 ± 7.5  25.7  

66 2.4 ± 0.5 1.5 ± 0.2 4.3 ± 0.6  61.1  

67 2.4 ± 0.5 1.1 ± 0.3 6.6 ± 4.2  118.7  

68 4.3 ± 1.6 2.6 ± 0.7 10.5 ± 1.2  67.4  

69 1.9 ± 0.4 1.6 ± 0.3 14.1 ± 3.9  20.1  

70 4.5 ± 1.1 4.5 ± 0.8 21 ± 14  -0.5  

71 3.3 ± 0.6 2.8 ± 0.3 8.7 ± 1.8  17.9  

72 2 ± 0.2 1.5 ± 0.1 20.7 ± 11.7  32.0  

73 2.2 ± 0.5 1 ± 0.2 5.9 ± 1.7  126.7  

74 2.1 ± 0.5 1.4 ± 0.3 14 ± 10.6  55.2  

75 2.2 ± 0.5 1.4 ± 0.2 8.7 ± 3.8  50.7  
 399 

 400 

5. EXPLORATORY DATA ANALYSIS AND OUTLIER IDENTIFICATION 401 

We note that Lapotre et al. (2016) merged their dataset with the one derived by 402 

Lorenz et al. (2014), and evaluated the model predictions using both datasets. In contrast, 403 

a segmentation of the two datasets and the fit of different models was later preferred 404 

(Lapotre et al., 2021; Lorenz, 2020). Therefore, the first question we address here is: can 405 

we integrate the measurements made in the Tharsis region with others made elsewhere on 406 

Mars, or do they constitute different sets of bedforms? To answer this question, we evaluate 407 

if there is a unique and continuous distribution of wavelength and albedo. Then we briefly 408 

discuss the morphological differences and overall setting and significance of the two sets 409 

of bedforms. 410 
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In Fig. S12 we compare the wavelength and albedo distributions of the large ripples 411 

mapped in the Tharsis region (the same 25 areas of Lorenz et al., 2014) and elsewhere on 412 

Mars. The wavelength of Tharsis’ bedforms is more variable, on average form more 413 

sinuous patterns (i.e. with higher circular standard deviation, Fig. S12a and c) and most 414 

importantly, they present higher HiRISE albedos (Fig. S12b and d). This clearly different 415 

albedo signature is further corroborated by plotting the thermal inertias (Putzig and Mellon, 416 

2007) and dust cover index (Ruff & Christensen, 2002) for the mapped areas (Fig. S13). 417 

This data shows that the Tharsis bedforms form a distinct population, with lower thermal 418 

inertia (possibly denoting finer materials), higher dust coverage/content and morphologies 419 

that possess a higher degree of directional variability (the fine “reticulate” texture of the 420 

bedforms in this region was previously discussed by Bridges et al., 2010).  421 

The morphology of some of the Tharsis bedforms is also distinctive and variable (e.g. 422 

Fig. S14), forming honeycomb patterns or appearing in association with longitudinal 423 

spurs/erosive features (Bridges et al., 2010; Lorenz et al., 2014). Tharsis bedforms usually 424 

overlay bedrock, forming in some cases extensive mantling units. In contrast, meter-scale 425 

bedforms surveyed outside Tharsis typically cover larger scale bedforms (i.e. dark dunes).  426 

The new global survey we present confirms the uniqueness of the bedforms located 427 

in the Tharsis region. Tharsis’ bedforms were studied in detail by Bridges et al. (2010), 428 

proposing that they were formed by saltation of dust aggregates, which in some cases may 429 

have produced indurated bedforms. This suggests that major differences in granulometry, 430 

density and transport susceptibility exist. Therefore, to test/fit wavelength predictive 431 

models Tharsis and non-Tharsis bedforms should be treated separately, as they represent 432 

two distinct populations.  433 

  434 
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 435 

 436 

Fig. S12 – 2D histograms of the dark-toned large bedforms mapped in the Tharsis region (c, b) and 437 
elsewhere on Mars (a, b). Bedforms in Tharsis show a larger dispersion of wavelengths (clustering at 438 
~2.5 m outside Tharsis and ranging from 1.5-5 m in Tharsis), form patterns with larger trend 439 
variations (median circular distributions of ~30º vs. 30-45º) and consistently present higher albedos 440 
(<0.25 vs. >0.2). 441 
 442 
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 443 

Fig. S13 – Nightside TES thermal inertia (Putzig & Mellon, 2007) vs. dust cover index (Ruff & 444 
Christensen, 2002) for all mapped areas. Tharsis areas form a distinct cluster, characterized by lower 445 
thermal inertias and lower dust cover index (lower index values are indicative of dust covering, while 446 
higher values correspond to dust free areas). This demonstrates that the Tharsis bedforms form a 447 
different population, in terms of thermophysical proprieties and dust coverage/content. 448 
 449 
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 450 

Fig. S14 – Different bedform morphologies in the Tharsis region. a, b) Example of honeycomb shaped 451 
bedforms forming a continuous covering unit that encompass all the area (Area 56, PSP_008460_1980). 452 
c, d) Transverse linear bedforms that overlay what appear to be erosive longitudinal troughs; also, in 453 
this case the bedforms are pervasive, covering almost completely the region and forming a mantling 454 
unit that seems to be controlled by the bedrock’s main topographic features (Area 72, 455 
PSP_010213_1785).       456 
 457 

Another point we address here regards the uniformity of the dataset collected outside 458 

Tharsis, does our survey include areas which may not be representative of the global trend, 459 

i.e. do we have and can we identify possible outliers?  460 

A linear direct relation is evident between average wavelength and elevation (Fig. 461 

S15), although a few points do not seem to follow the same trend (the five labelled points 462 



 

 

29 

 

in the plot correspond to the outliers we discuss here). Coincidently, we notice that these 463 

five areas have a common attribute: a significant part of the meter-scale bedforms in those 464 

areas are located on sand sheets and/or dome dunes.  465 

A closer inspection further revealed other factors that may condition the average 466 

measurements for these areas. Namely, in Area 16 (Fig. S16) we have a mixture of two 467 

sets of bedforms, one covering barchans and other covering a sand sheet area. The later set 468 

presents lower wavelengths which contribute to lower the average wavelength plotted in 469 

Fig. S15, producing a noticeable underestimation. Large ripples in Area 34 (Fig. S17) cover 470 

low-lying dome dunes or small sand patches located in depressions. This may justify why 471 

this area does not follow the same generic trend, as these topographic settings may shelter 472 

bedforms and influence their wavelength. Moreover, the assumption of well sorted 473 

sediments may not apply in this case, since substantial lag materials may be present in this 474 

sediment starved environment. We also note that large ripples in some of the areas 475 

identified as outliers are overprinted by dust devil tracks (Fig. S18). This may denote low 476 

or even null migration of the bedforms, since the presence of dust devil tracks implies 477 

cycles of dust deposition and removal.   478 

To summarize, five areas stand out as outliers, which we associate with cases where 479 

sediments may be coarser and poorly sorted, and where active aeolian processes may not 480 

be in equilibrium with current day atmospheric conditions. These areas were removed from 481 

the subsequent analysis and model fits. 482 

 483 
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 484 

Fig. S15 – Average wavelength vs. elevation for the 50 areas located outside Tharsis, gray lines 485 
correspond to 1σ intervals. The color code represents the type of dune morphology present in the 486 
mapped areas, when more than one type is present, we assign a primary (covering higher area) and 487 
secondary class. The five labeled sites correspond to the outliers discussed in this section.  488 

 489 
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 490 

Fig. S16 – Example of a possible outlier where barchans transition to an extensive sand sheet (Area 491 
16). a, b) Wavelength measurements overlaid in the HiRISE image, note the lower wavelengths in the 492 
sand sheet (northern section) when compared to the barchans (eastern section). c) Bedforms that cover 493 
the barchans, note the presence of dust devil tracks and the higher wavelengths of the ripples. d) 494 
Bedforms on the sand sheet present lower wavelengths, therefore the average value for this area 495 
merges two different sets of bedforms, with the sand sheet contributing to decreasing the overall 496 
wavelength estimate (Fig. S15).  497 
 498 

 499 

Fig. S17 – Area 34 large ripples cover low-lying dome dunes and sand sheets (ESP_017610_1730), 500 
typically located in depressions. We hypothesize that the bedforms in this area may be enriched in 501 
coarser/lag materials and that the specific topographic setting may also influence their wavelength. a, 502 
b) Wavelength measurements overlaid in the HiRISE image. c, d) large ripples located in crater 503 
depressions or other topographic lows.  504 
 505 
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 506 

 507 

Fig. S18 – Dust devil tracks overlay large ripples in Area 46 (ESP_058788_1320), which implies dust 508 
deposition and removal cycles as well as reduced bedform migration. a, b) Wavelength measurements 509 
overlaid in the HiRISE image. c, d) Examples of dust devil tracks overlapping the large ripples.  510 
 511 

6. WAVELENGTH VS. ATMOSPFERIC DENSITY SCALING: MODELS 512 

AND FITS 513 

Here we implemented the same model described in Lapotre et al. (2016), where wind 514 

shear velocity (𝑢∗) is set to be equal to the impact threshold shear velocity (𝑢𝑡) predicted 515 

by Kok (2010) model (Table S7 summarizes the models input parameters). Atmospheric 516 

density is computed as a function of elevation using the ideal gas law: 517 

𝝆𝒇(𝒛) =
𝑴𝑪𝑶𝟐

𝒓

𝒑(𝒛)

𝑻(𝒛)
        (Eq. 3), 518 

where MCO2 is the molar mass of carbon dioxide, r is the ideal gas constant and 𝑝(𝑧) is the 519 

atmospheric pressure computed from MOLA elevations (section 4) using the relation 520 

derived from the atmospheric descent profiles of the Mars Exploration Rovers missions  521 

(Withers & Smith, 2006). We assume an isothermal atmosphere with a temperature (T) of 522 

227 K, while kinematic viscosity (v) at elevation z is computed through: 523 

 𝒗(𝒛) =
𝝁

𝝆𝒇(𝒛)
        (Eq. 4), 524 

where µ is a constant dynamic viscosity (Table S7).  525 
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Based on a fit made to flume experiments and Martian morphometric data, drag 526 

ripples’ wavelength was predicted to vary according to: 527 

         𝝀 = 𝟐𝟕𝟕𝟕
𝒗

𝟐
𝟑⁄ 𝑫

𝟏
𝟔⁄

(𝑹𝒈)
𝟏

𝟔⁄ 𝒖∗

𝟏
𝟑⁄
         (Eq. 5) 528 

where D is grain diameter, g is the gravity acceleration on Mars and R is the submerged 529 

reduced density of the sediment (𝑅 =
𝜌𝑠−𝜌𝑓

𝜌𝑓
) (Lapotre et al., 2016). This is essentially the 530 

same relation later generalized in Lapotre et al. (2017), and is considered to be 531 

representative of bedload saturation length (Duran Vinent et al., 2019; Lapotre et al., 2021).  532 

Lapotre et al. (2021) adapted the same framework, considering a saltation saturation 533 

length 𝑙𝑠𝑎𝑡 =
𝜌𝑠𝑢𝑡

2

𝑔(𝜌𝑠−𝜌𝑓)
, which is used to predict bedform wavelength through 𝜆 =534 

𝜆∗𝑣

𝑢∗
, where 𝜆∗ is a dimensionless wavelength: 𝜆∗ ≈ 600 (

𝑙𝑠𝑎𝑡𝑢∗

𝑣
)

1
3⁄

 (Lapotre et al., 2021).  535 

In Fig. 3 and S19 we compare our wavelength measurements with the predictions of 536 

both models, and we fit power laws and linear models (as proposed by Lorenz et al.,  2014) 537 

to our datasets.  538 

 539 

540 
Fig. S20 – Previous surveys and relation between bedforms wavelength and Martian atmospheric 541 
density. This is the same plot shown in Fig. 3, where we added the dataset compiled by Lapotre et al. 542 
(2016), which includes Lorenz et al. (2014) data for the Tharsis region. We see that a large fraction of 543 
this data (corresponding to the Tharsis region bedforms) overlaps the fluid-drag predictions with a 544 
bedload saturation length formulation (golden line), while our dataset for these same areas presents 545 
higher wavelengths, with the data points located between the two models’ predictions. Like in our 546 
dataset, the existence of two different clusters is noticeable in the previous compilation, as well as an 547 
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overlap of the large ripples datasets with the fluid-drag model predictions when saltation saturation 548 
length is considered (green line). The gray area represents the maximum range of atmospheric 549 
densities on Mars while the cyan line represents the density of Earth’s atmosphere. Black lines 550 
represent the best fitted models for the datasets compiled in this study and were computed using the 551 
average values for each site (linear models in A and power laws in B; the R2 values in B were computed 552 
in the log space).  553 

 554 

Table S7 – Model input parameters.  555 
 556 

Variables Description Values 

MCO2 CO2 molar mass 44.01 g/mol 

r Ideal gas constant 8.314 JK−1mol−1 

T Temperature 227 K 

g Mars gravity acceleration  3.78 m/s2 

𝜎𝑠 Grain density (basalt) 2900 kg/m3 

D Grain diameter 200 µm 

µ Dynamic viscosity 10.8x10-6 Pa.s 

 557 
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Contents of this file  

In this file we present the maps and histograms used to discriminate bedform populations. A 

common layout was adopted for the 75 areas, the first 11 areas are the same surveyed by Lapotre 

et al. (2016), while areas 51-75 correspond to the Tharsis regions analyzed by Lorenz et al. (2014). 

The 2D kernel density histograms located in the first row display the distributions of 

wavelength, circular standard deviation and albedo (I/F), a square root stretch is used to highlight 

secondary maxima. Red dashed lines correspond to the wavelength and albedo thresholds used to 

segment the two bedform classes: large dark-toned ripples and megaripples & TARs. Computed 

averages and standard deviation intervals are shown in black, while wavelength averages from 

previous studies are shown in the right side of the first plot (green: large dark-toned ripples; 

magenta: TARs; cyan: Tharsis bedforms). In the middle row we show the HiRISE image (left) and 

the wavelength map (right). The lower-left map displays the albedo variations, and the lower-right 

map displays the classified bedform type. 
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