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Abstract

Climate change has altered the frequency, intensity, and timing of mean and extreme precipitation events. Extreme precipitation

has caused tremendous socio-economic losses and displays strong regional variability. Although many previous studies have

addressed daily extreme precipitation, hourly extreme rainfall still needs to be thoroughly investigated. In this study, we

investigated the trends, spatio-temporal variability, and long-term variations in mean and extreme precipitation over South

Korea using daily and hourly observational data. During the past 50 years (1973–2022), there has been a notable escalation

in maximum hourly precipitation, although the boreal summer mean precipitation has increased only marginally. Regionally,

an increase in mean and extreme rainfall occurred in the northern part of the central region. Moreover, increased intensity

and frequency of extreme precipitation have contributed more to the total summer precipitation in recent years. Our findings

provide scientific insights into the progression of extreme summer precipitation events in South Korea.
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Key Points: 14 

• Observational data are invaluable in studying extreme precipitation events.  15 

• Extreme precipitation increased in 1973–2022, with the hourly-maximum precipitation 16 
showing a statistically significant increase. 17 

• Extreme precipitation has a major effect on the summer rainfall in South Korea.  18 
  19 
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Abstract 20 

Climate change has altered the frequency, intensity, and timing of mean and extreme 21 
precipitation events. Extreme precipitation has caused tremendous socio-economic losses and 22 
displays strong regional variability. Although many previous studies have addressed daily 23 
extreme precipitation, hourly extreme rainfall still needs to be thoroughly investigated. In this 24 
study, we investigated the trends, spatio-temporal variability, and long-term variations in mean 25 
and extreme precipitation over South Korea using daily and hourly observational data. During 26 
the past 50 years (1973–2022), there has been a notable escalation in maximum hourly 27 
precipitation, although the boreal summer mean precipitation has increased only marginally. 28 
Regionally, an increase in mean and extreme rainfall occurred in the northern part of the central 29 
region. Moreover, increased intensity and frequency of extreme precipitation have contributed 30 
more to the total summer precipitation in recent years. Our findings provide scientific insights 31 
into the progression of extreme summer precipitation events in South Korea. 32 

  33 

Plain Language Summary 34 

Climate change affects both mean and extreme precipitation events. This leads to changes in the 35 
frequency, intensity, and timing of extreme rainfall events. Extreme precipitation is inextricably 36 
linked to our human livelihoods and has the potential to cause substantial socioeconomic losses. 37 
In addition, there are large regional differences between these events. Although many previous 38 
studies have examined daily extreme precipitation, hourly extreme rainfall remained unclear. 39 
Here we investigated the trends, spatio-temporal variability, and long-term variations in mean 40 
and extreme precipitation across South Korea using daily and hourly observational data. It was 41 
important to note that hourly maximum precipitation was significantly intensified, whereas the 42 
boreal summer mean precipitation displayed a slight increase over the past 50 years (1973–43 
2022). In terms of spatial distribution, the northern part of the central region experienced an 44 
increase in mean and extreme rainfall. Also, increased intensity and frequency of extreme 45 
precipitation have played key roles in the summertime total precipitation in recent years. Our 46 
findings provide a scientific background for understanding changes in summer extreme rainfall 47 
events in South Korea. 48 

 49 

1 Introduction 50 

Climate change has a significant impact on the Earth system. Globally, total human-51 
induced surface air temperature increased by approximately 1.07 °C (0.8 °C to 1.3 °C) from 52 
1850 to 2019 (IPCC, 2022). In tandem with rising temperatures, worldwide mean precipitation 53 
tends to increase  (Allen & Ingram, 2002; Held & Soden, 2006). The frequency of heavy rainfall 54 
has increased considerably since 1951, and it varies strongly between regions and subregions 55 
(IPCC, 2022). Light precipitation events decreased in frequency, whereas heavy precipitation 56 
events increased in frequency and intensity (Trenberth et al., 2003; Alexander et al., 2006; 57 
Kharin et al., 2007; Allan & Soden, 2008; O’Gorman & Schneider, 2009; Min et al., 2011; Chou 58 
et al., 2012; Ha et al., 2020). The Intergovernmental Panel on Climate Change (IPCC) also 59 
pointed out that climate change could affect the frequency, intensity, and timing of extreme 60 
events such as heatwaves, droughts, tropical cyclones, and extreme rainfall events (IPCC, 2022). 61 
As one of the most hazardous extreme phenomena, extreme rainfall events bring considerable 62 
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damage, resulting in secondary disasters including landslides and flash floods (Dave et al., 2021; 63 
Kim et al., 2021; Meyer et al., 2021; Ning et al., 2021). Extreme rainfall has a severe impact on 64 
human life, ecosystems, and the social economy of agriculture, causing colossal socioeconomic 65 
losses. Therefore, it is essential to understand extreme rainfall events.  66 

Compared to the global mean surface warming, South Korea has experienced 67 
considerably greater surface warming because of the complex influence of several climate 68 
variabilities along the northeastern coast of Asia (Jung et al., 2002; An et al., 2011). In terms of 69 
linear trends, the local temperatures have risen by 1.90 °C (1912–2014), 1.35 °C (1954–2014), 70 
and 0.99 °C (1973–2014), which are 1.4–2.6 times greater than the global land mean temperature 71 
increases (Park et al., 2017). Regarding global warming, particularly for the Korean Peninsula 72 
(KP), a growing number of previous studies proposed that the frequency and intensity of extreme 73 
weather events (i.e., extreme precipitation events, droughts, heat waves, and tropical cyclones) 74 
have increased over the past few decades (Kim et al., 2012; Lee et al., 2012; Min et al., 2015; Ha 75 
et al., 2020; Park et al., 2021; Seo et al., 2021). This summer, the metropolitan area endured 76 
particularly heavy torrential rain and flooding. In Seoul, an hourly downpour of 141.5 mm/hr 77 
was recorded, which was the heaviest hourly precipitation breaking the record in 80 years (Bae 78 
& Yeung, 2022). In addition, this event surpassed 381.5 mm, which was the heaviest daily 79 
precipitation recorded in the past 102 years. At least 14 people died as a result of heavy rainfall, 80 
and the total sum of the damage was estimated to exceed USD 50M. Several studies have 81 
investigated the changes in mean and extreme rainfall in South Korea (Ho et al., 2003; Jung et al., 82 
2011; Baek et al., 2017; Azam et al., 2018). Most of these studies focused on daily extreme 83 
precipitation, therefore, our understanding of hourly extreme rainfall events is insufficient. 84 
However, hourly extreme precipitation should be highlighted because it can induce great damage, 85 
as we have already experienced.  86 

As one of the primary factors of heavy rainfall events, the Changma and typhoons greatly 87 
impact extreme precipitation, whereas the East Asian summer monsoon has a major effect on the 88 
rainy season (Lee et al., 2017). The Changma is most active between early July and early 89 
September, with the first Changma starting in late June and ending in late July (Seo et al., 2011; 90 
Park et al., 2015). In addition, the second Changma is mainly associated with typhoons in late 91 
summer, and typhoons intensively affect the KP in July, August, and September (Lee et al., 92 
2017; Moon & Ha, 2021). Heavy rainfall in the KP during the boreal summer needs to be 93 
investigated because the sub-seasonal variability is very large, even during summer. 94 

On the other hand, it is necessary to understand long-term variations and trends in mean 95 
and extreme precipitation in water resource and flood risk management (Moberg et al., 2006; Ha 96 
et al., 2009; Pei et al., 2017; Kim & Ha, 2021; Wang et al., 2021; Hu et al., 2022; Ryan et al., 97 
2022). Ensemble empirical mode decomposition (EEMD) method is employed to appropriately 98 
reflect nonlinear responses to global warming and urbanization (Yun et al., 2018; Jeong et al., 99 
2022). Hu et al., (2022) revealed that the extreme precipitation on the Tibetan Plateau and its 100 
surrounding areas is strongly correlated with the strength of the Indian Ocean and Western 101 
Pacific warm pools through the multi-time-scale analysis.  102 

Consequently, the purpose of this study was as follows: (1) to analyze the trends of 103 
extreme precipitation in terms of hourly and daily time scales, as well as their spatial patterns 104 
over South Korea; (2) to focus on long-term variations in the mean temperature and extreme 105 
precipitation, as well as their relationships with EEMD methods; and (3) to identify the recent 106 
changes in major spatio-temporal distributions of summertime precipitation.  107 
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2 Data and Methods 108 

2.1 Data  109 

We used daily mean precipitation, 1-hour maximum precipitation, and daily mean 110 
temperature from the Automated Surface Observing System (ASOS) for the investigation of 111 
trends and variability in Korean summer rainfall from 1973 to 2022. Sixty stations out of a total 112 
of 103 stations were selected, encompassing the entire analysis period (Figure 1a). The months 113 
of June–July–August (JJA) are regarded as the boreal summer. Hourly precipitation data were 114 
obtained from the European Center for Medium-Range Weather Forecasts reanalysis version 5 115 
(ERA5; Hersbach et al., 2020). We adjusted the time in line with Korea Standard Time (KST) 116 
owing to the time difference between the Universal Time Coordinate (UTC) and KST. For the 117 
ERA5 reanalysis data, the area-averaged precipitation and nearest grid point precipitation were 118 
compared to the ASOS total station mean precipitation. Instead of area-averaged precipitation, 119 
the nearest grid point precipitation corresponded more closely with the ASOS. However, since 120 
the late 1990s, the ERA5 dataset has tended to underestimate the JJA mean precipitation from 121 
the ASOS (Figure 1b). In particular, when the JJA mean precipitation was at its peak, ERA5 data 122 
could not match the observation. A heavy rainfall event is typically a localized event occurring in 123 
a small area. Therefore, ERA5, which had a spatial resolution of approximately 30km, was not 124 
sufficient to simulate these peak events in observation. This was consistent with that of Borodina 125 
et al., (2017) and highlighted the importance of observational data in studying localized heavy 126 
rainfall events. In terms of the topography, the ETOPO1 dataset was selected (Amante & Eakins, 127 
2009).  128 
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(a) Locations of ASOS stations

(b) JJA daily mean precipitation
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Figure 1. (a) Topographical sketch map of South Korea with 60 ASOS stations (circles, bottom 130 
colored bar). The shading displays the topographic elevation (upper-right colored bar). (b) 131 
Interannual variability in summertime (JJA) daily precipitation at each station over the past 50 132 
years (1973–2022). The solid black line represents the JJA mean precipitation of all stations, and 133 
its trend is indicated via a black dashed line. For the ERA5 dataset, the nearest grid point of each 134 
station (solid dark olive-green line) and area-averaged value (solid yellow-green line) are also 135 
exhibited.  136 

 137 

2.2 Extreme Indices 138 

 Five indices derived from the Expert Group on Climate Change Detection and Indices 139 
(ETCCDI) were calculated to describe the features of extreme precipitation (Table S1). A wet 140 
day indicated that the daily precipitation amount was more than 1mm (Yao et al., 2008; Kim et 141 
al., 2013). The total precipitation (PRCPTOT) was the sum of precipitation on wet days. 142 
Extremely wet day total precipitation denoted instances where the daily precipitation exceeded 143 
the 95th and 99th percentiles of the wet day precipitation (R95p, R99p); this was calculated during 144 
the summer. In addition, to compare the changes in summertime precipitation, we divided the 50 145 
years into two periods: 1973–1992 (P1, reference period) and 2003–2022 (P2), and calculated 146 
each percentile value for the reference period. For frequency, we used the number of heavy 147 
precipitation days when the daily precipitation amount was more than 20mm (R20mm) and the 148 
number of dry days when the daily precipitation was less than 1mm. We defined the number of 149 
days with R95p and R99p as R95pF and R99pF, respectively. The hourly extreme precipitation 150 
index (RX1H) was defined as the maximum 1-hour precipitation; this index was used to focus on 151 
heavy downpours in a short period of time. In Section 3.3, we selected a high-population group 152 
with a population of more than 1,000,000 and a low-population group with a population of less 153 
than 50,000 in order to examine the effects of urbanization on extreme precipitation (Table S2).  154 

 155 

2.3 Ensemble Empirical Mode Decomposition (EEMD) 156 

 An improved noise-assisted data analysis method, Ensemble Empirical Mode 157 
Decomposition (EEMD), decomposes the original signals (𝑥(𝑡)) into a finite number (𝑁) of 158 
independent signals with periodicity (𝐶 (𝑡), 𝑖 = 1, 2, 3, ⋯ , 𝑛) and a residual linear or nonlinear 159 
trend (𝑅(𝑡)) (Wu & Huang, 2004, 2009).  160 
 161 𝑥(𝑡) = ∑ 𝐶 (𝑡) + 𝑅(𝑡)      (1) 162 
 163 
Here, the standard deviation of the added noise series and the ensemble number for EEMD were 164 
entered as 0.2 and 200, respectively.  165 

 166 

2.4 Extended Empirical Orthogonal Function (EEOF) 167 

The Extended Empirical Orthogonal Function Analysis (EEOF) was employed in 168 
conjunction with reanalysis data to analyze the temporal evolution of the principal spatial 169 
structure. Several previous studies have applied EEOF to investigate the evolution of the 170 
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substructure (Chen & Harr, 1993; Kim et al., 2008). Using the EEOF analysis, we interpreted the 171 
substructure as the propagation or evolution of the sub-seasonal mode over time of the first 172 
substructure of the function. The eigenvector and eigenfunction for an atmospheric variable, 173 𝜇( ), were as follows: 174 
 175 𝛼( ) = ∑ 𝜇( )Ψ       (2) 176 

 177 
where 𝑖 indicates the space, 𝑗 denotes the time, 𝑗′ indicates the time in the window, and 𝑛 178 
represents the number of windows. Ψ  is a function of temporal variation, and α  is a window-179 
averaged space structure with the l-th eigenfunction serving as the weight. In a previous study, a 180 
window size of 20 days was used to focus on quasi-stationary properties (Kim et al., 2008). In 181 
this study, we set the window size (substructure) as the minimum sub-seasonal time scale (2 182 
weeks) with a lag of 6 days to analyze the evolution of precipitation in the finer sub-seasonal 183 
mode. The number of windows (𝑛 in Equation (2)) was 14, from June 1 to August 31. 184 

 185 

3 Results 186 

3.1 Boreal Summer Mean and Extreme Precipitation from 1973 to 2022 187 

 To determine the interannual variability (IAV) of the JJA mean daily precipitation, we 188 
calculated the IAV for each station between 1973 and 2022. Figure 1b depicts the IAV of each 189 
ASOS station, the total station mean as well as area-averaged, and the closest grid point values of 190 
ERA5. The IAV of the JJA mean precipitation shows large differences among stations. 191 
Similarly, in Figure 2a (grey shading), the JJA mean precipitation exhibits large spatial 192 
variability among the stations. This result supported the notion that precipitation in South Korea 193 
displayed strong spatial variability (Jung et al., 2011). In addition, the station mean of JJA mean 194 
precipitation exhibited a slightly increasing trend of 0.65 mm/day over 50-year period, but it was 195 
not statistically significant. Spatially, 80% of the total stations (48 of  60 stations) presented an 196 
increasing trend in JJA mean precipitation, whereas 20% displayed a decreasing trend, which 197 
was not significant (Figure 2b). Specifically, 20% of total stations (12 of 60 stations) showed a 198 
greater increasing trend (above 1.5mm/day) over the 50-year period, and most of these stations 199 
were concentrated in the northern part of the central region near 38°N and certain coastal regions 200 
such as Geoje and Busan.  201 

Five indices were calculated as indicators of extreme precipitation: RX1H, R95p, R99p, 202 
R95pF, and R99pF. These indices showed an increasing trend for the 50-year period, but only 203 
two had significant increasing trends at a 90% significance level. Figure 2a displays the IAV and 204 
trends for the extreme indices from 1973 to 2022. While JJA mean precipitation showed a very 205 
slight increase (0.65 mm/day/50 yrs), RX1H presented a very clear increasing trend (7 mm/hr/50 206 
yrs) at a 99% significance level. The linear trends of R95p (R99p) and R95pF (R99pF) were 60.5 207 
mm/50 yrs (37 mm/50 yrs) and 0.5 days/50 yrs (0.2 days/50 yrs) for the same period, 208 
respectively. Figures 2c –2g show the spatial distribution of the linear trend for each extreme 209 
precipitation index. For RX1H, 50 (10) stations, which accounted for 83.3% (16.7%) of the total 210 
stations, showed an increasing (decreasing) trend over the past five decades. Twelve stations 211 
(20%) had a significant increasing trend for RX1H (Figure 2c). Most of the significant stations 212 
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were concentrated in the northern portion of the central region, along the southern coast of Korea. 213 
Some stations, such as Imsil and Gumi, were located in inland regions. For R95p, 47 (13) 214 
stations, which equate to 78.3% (21.7%), showed increasing (decreasing) trends, and seven 215 
stations (approximately 13%) showed significant increasing trends (Figure 2d). In addition to 216 
RX1H, the majority of the significant regions were located in the northern portion of the central 217 
region. The frequency of R95p occurred more (less) frequently at 43 (17) stations, comprising 218 
71.7% (28.3%) of total stations. Specifically, six stations (10%) displayed increasing trends in 219 
R95pF, and their locations were identical to those of R95p, except for one less station (Figure 2e). 220 
An increasing (decreasing) trend for R99p was observed at 46 (14) stations, comprising 76.7% 221 
(23.3%) of total stations. Specifically, only 3 (5%) stations, namely Incheon, Inje, and Ulleungdo 222 
Island, exhibited a significant increasing trend (Figure 2f). Likewise, the frequency of R99p 223 
tended to increase (decrease) at 45 (15) stations, with 75% (25%) and six stations (10%) 224 
experiencing significant increases. These stations are primarily located in the northern and 225 
several coastal regions (Figure 2g). In general, extreme precipitation intensified in the northern 226 
portion of the South and certain coastal regions. The exception was the inland basin of Gumi, 227 
which also experienced significant increases in RX1H, R95p, and R95pF.  228 

The changes in JJA mean rainfall and each extreme precipitation index between the P1 229 
and P2 revealed the evolution of daily precipitation in South Korea over the past two decades 230 
(Figure S1). The increase in the JJA mean precipitation rate was 6.71%. Given that the JJA mean 231 
precipitation was 7.63 mm/day for 50-years period, higher summer precipitation was indicated in 232 
P2 with a value of 7.72 mm/day, whereas 7.24 mm/day was depicted in P1. The RX1H increased 233 
by 12.28%. In addition, R95p (R95pF) tended to increase by approximately 22.85% (20.91%). A 234 
notable increase in R99p (R99pF) was observed, at a rate of 43.23% (47.3%), during P2. In 235 
addition, South Korea exhibited salient intraseasonal variability; therefore, there was a need to 236 
divide the summer season into monthly segments (Ha & Oh, 2019; Jia et al., 2022; Ren et al., 237 
2022). The monthly average precipitation was the highest in July (8.99 mm/day), followed by 238 
August (8.55 mm/day), and June (5.26 mm/day). In P1 and P2, JJA mean precipitation increased 239 
in July (P1: 8.63 mm/day, P2: 9.92 mm/day) and August (P1: 7.58 mm/day, P2: 8.46 mm/day), 240 
whereas it decreased in June (P1: 5.44 mm/day, P2: 4.68 mm/day). R95p (R95pF) and R99p 241 
(R99pF) comprised the largest portions at 40.93% (41.12%) and 42.76% (43.16%) in July, 242 
respectively, which was followed by August at 38.04% (34.74%) and 39.15% (35.71%), as well 243 
as June at 21.03% (24.14%) and 18.09% (21.13%), respectively, for 1973–2022. The amount and 244 
frequency of extreme precipitation were mostly concentrated in July. Comparing P1 and P2, this 245 
trend became more pronounced in P2. For P1, R95p (R95pF) was 25.17% (27.52%), 38.21% 246 
(38.87%), and 36.62% (33.62%) in June, July, and August, respectively. Similarly, R99p 247 
(R99pF) constituted 24.37% (27.52%), 39.31% (39.37%), and 36.32% (33.11%) in June, July, 248 
and August, respectively. During P2, R95p (R95pF) accounted for 17.05% (19.81%), 49.78% 249 
(49.00%), and 33.17% (31.19%) in June, July, and August, respectively. In the case of R99p 250 
(R99pF), 15.27% (18.13%), 54.41% (53.51%), and 30.32% (28.36%) were observed in June, 251 
July, and August, respectively. In P2, extreme precipitation decreased in June, with the exception 252 
of R99pF. Although these four indices increased in July and August, a much further increase was 253 
observed in July. Thus, the ratio of extreme indices appeared to decline in August in P2, whereas 254 
there was an increase in extreme rainfall occurs in July.  255 
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(a) Trend and interannual variability

(b) JJA mean PRCP (c) RX1H

(d) R95p (e) R95pF

(f) R99p (g) R99pF
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Figure 2. (a) Time series of boreal summer daily mean precipitation (JJA mean precipitation, 257 
solid black line) with its trend (dashed black line) and spatial variability (grey shading) from 258 
1973 to 2022. Extreme indices, hourly-maximum precipitation (RX1H, solid red line) and its 259 
trend (dashed red line), as well as the frequencies of R95p (R95pF, light sky-blue bar) and R99p 260 
(R99pF, blue bar). The spatial patterns of the trends over the past 50 years are presented in (b) 261 
JJA mean precipitation (mm/day/ 50yrs), (c) RX1H (mm/hr/50 yrs), (d) R95p (mm/50 yrs), (e) 262 
R95pF (days/50 yrs), (f) R99p (mm/50 yrs), (g) R99pF (days/50 yrs). The enclosed yellow 263 
indicates statistical significance at a 90% confidence level. 264 
 265 

3.2 Long-term Variations in Mean Temperature and Extreme Precipitation Indices  266 

The EEMD decomposed the mean temperature and extreme precipitation indices into 267 
four interannual to interdecadal components (C1 to C4) and one residual trend (Table S3). For 268 
1973–2022, C1 and C2 showed approximately 2.8-year and 5.6-year periodic oscillations, 269 
accounting for approximately 55.9% and 20.7% of the total variance, respectively. C3 and C4 270 
show approximately 11.2-year and 28.7-year oscillations and contribute about 10.0% and 4.2% 271 
of the total variance, respectively. The residual trend was 9.1%. 272 

To shed light on the long-term changes in the mean temperature and extreme 273 
precipitation indices, we defined long-term variations as the sum of decomposed components 274 
with more than 10 years of mean periods (C3 and C4) and residuals. Higher temperatures were 275 
recorded in high-population regions than in low-population regions (Figure 3a). This result 276 
corresponds to the fact that big cities have experienced greater warming because of rapid 277 
urbanization and population growth since 1973 (Korea Meteorological Administration, 2020). 278 
One salient feature was that long-term changes in mean temperature and PRCPTOT did not 279 
occur simultaneously. The mean temperature increased, with multi-decadal fluctuations entering 280 
a phase higher than the mean temperature (23.7 °C) from the mid-2000s and stabilizing at 24.4 to 281 
24.5 °C after 2010 (Figure 3a). However, PRCPTOT was in a phase higher than the mean 282 
PRCPTOT (698.7 mm) from the mid-1990s to 2010. It peaked at 837 mm in 2002 and decreased 283 
to 613.7 mm in 2017. Since then, it has soared (Figure 3b). RX1H, R95p, and R20mm also 284 
displayed similar features to PRCPTOT (Figures 3c-e), and the dry day was negatively correlated 285 
with PRCPTOT (Figure 3f), indicating that the frequency and intensity of extreme precipitation 286 
contributed significantly to PRCPTOT and implying that the increase in the number of dry days 287 
and the increase in the frequency and intensity of extreme precipitation during the recent years 288 
have greatly influenced the total precipitation in summer. Notably, the long-term changes in 289 
PRCPTOT, RX1H, and R95p appeared to be greater in urbanized areas. This result was 290 
consistent with that of Wang et al., (2021). 291 
 292 
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 293 

Figure 3. Long-term variations of (a) mean temperature (°C), (b) PRCPTOT (mm), (c) RX1H 294 
(mm), (d) R95p (mm), (e) R20mm (days), and (f) dry day (days) from 1973 to 2022 at 60 295 
stations (grey line); 8 stations had a population of 1 million or more (red line), and 11 stations 296 
with a population of 50000 or less (blue line). Grey-shaded areas represent one standard error of 297 
the mean values from 60 stations. Long-term variations were defined as the sum of decomposed 298 
components with mean periods and residuals exceeding 10 years. 8STN (population 299 ≥1,000,000): Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Suwon, and Ulsan. 11STN 300 
(population < 50,000): Uljin, Wando, Hapcheon, Namhae, Jangheung, Yeongdeok, Sancheong, 301 
Boeun, Inje, Imsil, Ulleungdo. 302 
 303 

3.3 Sub-seasonal Modes of Precipitation across East Asia during the Boreal Summer 304 

 Sub-seasonal evolution is important because the Changma rainband shifts with the 305 
summer monsoon. Especially in recent years, ERA5 data could not exactly describe the IAV; 306 
therefore, we attempted to compare interdecadal changes between P1 and P2. We utilized the 307 
EEOF method on ERA5 daily precipitation over East Asia [120°E–135°E, 25°N–40°N] from 308 
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middle period (after the sixth window). Thus, the climatological sub-seasonal mode of 335 
precipitation associated with heavy rainfall in the EA region has recently become stronger and 336 
shorter. 337 
 338 

4 Summary and Discussion  339 

 This study analyzed the trend and variability of the summer mean and extreme 340 
precipitation from 1973 to 2022. Until the mid-1990s, the ERA5 was similar to the observations.  341 
However, since the late 1990s, precipitation from the reanalysis dataset has had a tendency to be 342 
underestimated, particularly at the peak of precipitation. This implied that torrential rainfall 343 
became more localized, and it was difficult to capture extreme events on a sub-grid scale solely 344 
using the reanalysis dataset. Therefore, observational data were invaluable for studying extreme 345 
rainfall events. Generally, precipitation indices, in terms of intensity and frequency, showed an 346 
increasing trend from 1973 to 2022. One noteworthy result was a significant increase in the 347 
hourly-maximum precipitation, whereas the mean precipitation presented a slight increase. In 348 
terms of frequency, the number of R99p days became significantly more frequent. Regarding 349 
spatial distribution, summer precipitation exhibited greater spatial variability across South Korea. 350 
In general, it was illustrated that an increasing trend of mean and extreme precipitation occurred 351 
in the northern part of the central region. Additionally, RX1H, R95p, and R95pF increased in 352 
some coastal and inland areas.   353 

 Changes in mean and extreme precipitation were identified in two periods; P1 and P2. All 354 
rainfall indices were higher during the latter period than during the former period. Four extreme 355 
indices (R95p, R99p, R95pF, and R99pF) were concentrated in July, August, and June. In P2, 356 
this trend strengthened, showing reduced intensity in June (except for R99pF) and strengthening 357 
in July and August. Owing to the larger increase in July, extreme precipitation appeared to 358 
decrease in August. At the sub-seasonal scale, the precipitation core occurred at 30°N from early 359 
to mid-June. Over time, it evolved and shifted to the KP. This core weakened from mid-July to 360 
early August, but another precipitation signal reappeared near 30°N by mid-August. During P2, 361 
this characteristic manifested with a stronger intensity of the major rainband and earlier timing. 362 
In terms of long-term variations, we found that changes in the mean temperature and PRCPTOT 363 
occurred at different times. The higher phase of the mean temperature, above the mean value, 364 
was reached in the mid-2000s and stabilized in 2010. However, PRCPTOT achieved a higher 365 
phase between the mid-1990s and 2010. Similarly, additional extreme precipitation indices, such 366 
as RX1H, R95p, and R20mm, showed similar characteristics to PRCPTOT. The dry day had a 367 
negative correlation with PRCPTOT. In other words, increases in the intensity and frequency of 368 
extreme rainfall had a major impact on the total quantity of summer precipitation in recent years. 369 
Moreover, PRCPTOT, RX1H, and R95p were elevated in urbanized regions.  370 

 Our results provided a foundation for understanding the mean and extreme precipitation 371 
in South Korea in terms of trends, spatio-temporal variability, and long-term variation. First, we 372 
emphasized the importance of observational data in the study of heavy rainfall. Second, extreme 373 
rainfall had increased more than mean precipitation during the last five decades. In particular, 374 
hourly-maximum precipitation increased significantly. Third, extreme precipitation played a 375 
greater role in summer precipitation, and several extreme precipitation indices appeared higher in 376 
urbanized areas. Finally, the intensification of the rainband occurred sooner over the recent two 377 
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decades. The results of this study suggested that extreme precipitation events would occur more  378 
frequently and with greater intensity in the future. In the event of rapid and extreme rainfall, we 379 
should be cautious and well-prepared.  380 
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